人教版八年级数学 几何培优讲义设计 第6讲 夹半角模型 无答案

合集下载

专题02 全等模型-半角模型(解析版)

专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D Ð+Ð=°,点E ,F 分别在BC ,CD 上,若2BAD EAF ÐÐ=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D Ð=°,120ABC Ð=°,150BCD Ð=°,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =-,若在M ,N 之间修一条直路,则路线M N ®的长比路线M A N ®®的长少_________m 1.7»).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E Ð=°,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,Q 60D Ð=°,120ABC Ð=°,150BCD Ð=°,30A \Ð=°,90E Ð=°,100DC DM ==Q DCM \V 是等边三角形,60DCM \Ð=°,90BCM \Ð=°,在Rt BCE V 中,100BC =,18030ECB BCD Ð=°-Ð=°,1502EB BC ==,EC ==100DE DC EC \=+=+Rt ADE △中,2200AD DE ==+150AE ==+,\200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN \+=++=+Rt CMB △中,BM ==Q )50501EN EB BN EC =+=+==ECN \V 是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB \Ð=Ð-Ð=Ð-Ð-Ð=°=Ð由阅读材料可得))100501501MN DM BN =+=+-=,\路线M N ®的长比路线M A N ®®的长少)250501200370+-+=+»m .答案:370.【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE ¢△的位置,然后证明AFE AFE ¢≌△△,从而可得=EF E F ¢.E F E D DF BE DF ¢¢=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD Ð=Ð,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD Ð=Ð,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O e 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.由旋转可知ABE ADE ¢≌△△,∴BE ∵∠B +∠ADC =180°,∴ADC ADE Ð+Ð∵12EAF BAD Ð=Ð,∴BAE DAF Ð+Ð∴12DAE DAF BAD ¢Ð+Ð=,∴FAE Ð∵AF =AF ,∴FAE FAE ¢≌△△,∴FE 由圆内接四边形性质得:∠AC P 即P ,C ,P ¢在同一直线上.∴∵BC 为直径,∴∠BAC =90°=∠BAP ∴△PAP ¢为等腰直角三角形,∴【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF Ð=°,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG V ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF Ð=°,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF Ð=°,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =AF 的长.BAE DAG \Ð=Ð,AE AG =,90B ADG Ð=Ð=°,180ADF ADG \Ð+Ð=°,F \,D ,G 三点共线,45EAF Ð=°Q ,45BAE FAD \Ð+Ð=°,45DAG FAD \Ð+Ð=°,EAF FAG \Ð=Ð,AF AF =Q ,()EAF GAF SAS \D @D ,EF FG DF DG \==+,EF DF BE \=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE D 绕点A 顺时针旋转90°至ADM D ,EAB MAD \Ð=Ð,AE AM =,90EAM =°∠,BE DM =,45FAM EAF \Ð=°=Ð,AF AF =Q ,()EAF MAF SAS \D @D ,EF FM DF DM DF BE \==-=-;②如图3,将ADF D 绕点A 逆时针旋转90°至ABN D ,4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,V CEF的周长等于.(4)如图4,正方形ABCD中,V AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=,求EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.(5)将△ADF 绕A 顺时针旋转120°,AD与AB 重合,F 转到G ,在AG 上取AH =AN ,连接BH 、MH ,利用△ABH ≌△ADN 和△AMH ≌△AMN ,证明MN =MH ,DN =BH ,再证明△BMH 为直角三角形即可.【详解】(1)EF =FC +AE ,理由如下:证明:将△DAE 绕点D 逆时针旋转90°,得到△DCM ,∴△DAE ≌△DCM ,∴DE =DM ,AE =CM ,∠ADE =∠CDM ,B 、C 、M 三点共线,∵∠EDF =45°,∴∠ADE +∠FDC =∠CDM +∠FDC =∠MDF =45°,在△DEF 和△DMF 中,45DE DM EDF MDF DF DF =ìïÐ=Ð=°íï=î,∴△DEF ≌△DMF (SAS ),∴EF =FM ∴EF =FM =FC +CM =FC +AE ;(2)解:如图,在DC 上取一点G ,使得DG =BE ,∵∠BAD =∠BCD =90°,∴∠ABC +∠D =180°,∠ABE +∠ABC =180°,∴∠ABE =∠D ,∵AB =AD ,BE =DG ,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =45°,∴∠EAB +∠BAF =∠DAG +∠BAF =45°,∵∠BAD =90°,∴∠FAG =∠FAE =45°,∵AE =AG ,AF =AF ,∴△AFE ≌△AFG (SAS ),∴EF =FG ,设BE =x ,则EC =EB +BC =x +7,EF =FG =18-x ,在Rt △ECF 中,∵EF 2=EC 2+CF 2,∴52+(7+x )2=(18-x )2,∴x =5,∴BE =5;(3)解:在DF 上截取DM =BE ,课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.(2)仍成立,理由:如图2,延长FD 到点G ,使DG =BE ,连接AG ,∵∠B +∠ADF =180°,∠ADG +∠ADF =180°,∴∠B =∠ADG ,又∵AB =AD ,∴△ABE ≌△ADG (SAS ),∴∠BAE =∠DAG ,AE =AG ,∵EF =BE +FD =DG +FD =GF ,AF =AF ,∴△AEF ≌△AGF (SSS ),∴∠EAF =∠GAF =∠DAG +∠DAF =∠BAE +∠DAF ;1∠DAB .证明:如图3,在DC 延长线上取一点G ,使得2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D Ð+Ð=°,AB AD =,以点A 为顶点作EAF Ð,且12EAF BAD Ð=Ð,连接EF .(1)观察猜想 如图(2),当90BAD B D Ð=Ð=Ð=°时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC V 中,90BAC Ð=°,4AB AC ==,点D ,E 均在边BC 上,且45DAE Ð=°,若BD =,求DE 的长.(2)如下图,延长CD 至点H ,使得DH=BE ,∵B ADF Ð+а,∴B ADH Ð=Ð,同(1)②的证明方法得ABE ADH ≌△△,同理证AEF ≌△△,从而得BE FD EF +=.(3)如图过点C 作CM BC ⊥,且CM BD =,3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF Ð=°,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD Ð=°,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B Ð、D Ð都不是直角,则当B Ð与D Ð满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC Ð=°,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.【详解】()1证明:如图1中,AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,AB与AD重合.∠ADC=∠B=90°∠FDG=180°,点F、D、G三点共线,则DAG BAEÐÐ=,AE AG=,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°-45°=45°=∠EAF即∠EAF=∠FAG,在△EAF和△GAF中,AF AFEAF GAFAE AG=ìïÐ=Ðíï=î,∴△AFG≌△()AFE SAS,∴EF=FG=BE+DF;()2当180B DÐ+Ð=°,仍有EF BE DF=+.理由:AB AD=Q,\把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,BAE DAG\Ð=Ð,∠B=∠ADG90BADÐ=°Q,45EAFÐ=°,∴∠BAE+∠DAF=45°,∴∠FAG=45°∴∠EAF=∠FAG,180ADC BÐ+Ð=°Q,∴∠ADC+∠ADG=180°∴∠FDG=180°,点F、D、G共线.在△AFE和△AFG中,AE AGFAE FAGAF AF=ìïÐ=Ðíï=î∴△AFE≌△AFG(SAS).EF FG\=,即:EF BE DF=+.故答案为:180B DÐ+Ð=°.()3将△ACE绕点A旋转到△ABF的位置,连接DF,则∠FAB=∠CAE90BACÐ=°Q,45DAEÐ=°,∴∠BAD+∠CAE=45°.又∵∠FAB=∠CAE,∴∠FAB+∠BAD=45°,∴∠FAD=∠DAE=45°.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.【答案】(1)BM DN MN +=,理由见解析;(2)DN BM MN -=,理由见解析【分析】(1)把ADN D 绕点A 顺时针旋转90°,得到ABE D ,然后证明得到AEM ANM D D ≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM D D ≌,得DQ BM =,再证明AMN AQN D D ≌,得MN QN =,可得结论;(1)解:BM DN MN +=.理由如下:如图2,把ADN D 绕点A 顺时针旋转90°,得到ABE D ,90ABE ADN \Ð=Ð=°,AE AN =,BE DN =,180ABE ABC \Ð+Ð=°,\点E ,点B ,点C 三点共线,90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM D 与ANM D 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM ANM \D D ≌(SAS ),ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ D 与ABM D 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ ABM \D D ≌(SAS ),DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN D 和AQN D 中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN AQN \D D ≌(SAS ),MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN Ð=°,MAN Ð绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN Ð绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ¹时(如图2),求证:MN BM DN =+;(3)当MAN Ð绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90°,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △≌ANM V ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △≌ABM V,同(2)的方法,即可得出结论.(1)证明:如图1,∵把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M 三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=,BM DN =Q ,2MN BM \=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90°,得到ABE △,ABE \V ≌ADN △,AE ANM \=,ABE D Ð=Ð,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE ABC \Ð=Ð=°,\点E 、B 、M三点共线.90904545EAM NAM \Ð=°-Ð=°-°=°,又45NAM Ð=°Q ,在AEM △与ANM V 中,AE AN EAM NAM AM AM =ìïÐ=Ðíï=î,AEM \△≌()ANM SAS V ,ME MN \=,ME BE BM DN BM =+=+Q ,DN BM MN \+=.(3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABMV 中,AD AB ADQ ABM DQ BM =ìïÐ=Ðíï=î,ADQ \V ≌()ABM SAS V ,DAQ BAM \Ð=Ð,QAN MAN \Ð=Ð.在AMN V 和AQN △中,AQ AM QAN MAN AN AN =ìïÐ=Ðíï=î,AMN\V ≌()AQN SAS V ,MN QN \=,DN BM MN \-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC Ð=Ð=°,100BAD Ð=°,50EAF Ð=°,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC Ð+Ð=°,2BAD EAF ÐÐ=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得△ABE ≌△ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD Ð=°,50EAF Ð=°,可证得△AEF ≌△AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得△ABE ≌△ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ÐÐ=,可证得△AEF ≌△AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∵90ABC ADC Ð=Ð=°,∴∠ADG =∠ABC =90°,∵AB =AD ,∴△ABE ≌△ADG ,∴AE =AG ,∠BAE =∠DAG ,∵100BAD Ð=°,50EAF Ð=°,∴∠BAE +∠DAF =50°,∴∠FAG =∠EAF =50°,∵AF =AF ,∴△AEF ≌△AGF ,∴EF =FG ,∵FG =DG +DF ,∴EF =DG +DF =BE +DF ;(2)EF =BE +DF ,理由如下:如图,延长CD 至点H ,使DH =BE ,连接AH ,∵180ABC ADC Ð+Ð=°,∠ADC +∠ADH =180°,∴∠ADH =∠ABC ,∵AB =AD ,∴△ABE ≌△ADH ,∴AE =AH ,∠BAE =∠DAH ,∵2BAD EAF ÐÐ=∴∠EAF =∠BAE +∠DAF =∠DAF +∠DAH ,∴∠EAF =∠HAF ,∵AF =AF ,∴△AEF ≌△AHF ,∴EF =FH ,∵FH =DH +DF ,∴EF =DH +DF =BE +DF ;(3)如图,连接CD ,延长AC 、BD 交于点M ,根据题意得: ∠AOB =20°+90°+40°=150°,∠OBD =60°+50°=110°,∠COD =75°,∠OAM =90°-20°=70°,OA =OB ,∴∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,∵OA=OB,∴由(2)【迁移推广】得:CD=AC+BD,∵AC=80×0.5=40,BD=90×0.5=45,∴CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.∴BE =DG ,AE =AG ,∵∠B +∠ADC =180°,∠∴∠ADG +∠ADC =180°∵∠EAF =12∠BAD ,∴∠8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,再根据45MAN Ð=°,90BAD Ð=°,可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND @△△,由此得到AG AN =,GAB DAN Ð=Ð,由此可得90GAN BAD Ð=Ð=°,再根据45MAN Ð=°可以得到45GAM NAM Ð=Ð=°,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG V V ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN △中,AB AD ABG ADN BG DN =ìïÐ=Ðíï=î, ()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,45MAN Ð=°Q ,90BAD Ð=°,∴45DAN BAM BAD MAN Ð+Ð=Ð-Ð=°,45GAM GAB BAM DAN BAM \Ð=Ð+Ð=Ð+Ð=°,GAM NAM \Ð=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î, ()AMN AMG SAS \△≌△,MN GM \=,又∵BM GB GM +=,BG DN =,BM DN MN \+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD Ð=Ð=Ð=°,在ABG V 与ADN△中,AB AD ABG ADN GB DN =ìïÐ=Ðíï=î,()AGB AND SAS \△≌△,AG AN \=,GAB DAN Ð=Ð,∴GAB GAD DAN GAD Ð+Ð=Ð+Ð,∴90GAN BAD Ð=Ð=°,又45MAN Ð=°Q ,45GAM GAN MAN MAN \Ð=Ð-Ð=°=Ð,在AMN V 与AMG V 中,AM AM GAM NAM AN AG =ìïÐ=Ðíï=î,()AMN AMG SAS \△≌△,MN GM \=,又∵BM BG GM -=,BG DN =,∴BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∴AB AD BC CD ===,90ABM ADG BAD Ð=Ð=Ð=°,//AB CD ,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF =12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.【答案】(1)EF =BE +DF .证明见解析;(2)AM =AB ;(3)AM =AB .证明见解析10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ 于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∵AD⊥CP,DF=DE,∴CE=CF,∴∠DCF =∠DCE =45°,∵∠ACB =90°,∴∠ACD +∠ECB =45°,∵∠DCA +∠ACF =∠DCF =45°,∴∠FCA =∠ECB ,在△ACF 和△BCE 中,CA CB ACF BCE CF CE =ìïÐ=Ðíï=î,∴△ACF ≌△BCE (SAS ),∴AF =BE ,∴AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

人教版中考数学压轴题解题模型----几何图形之半角模型(含解析)

几何图形之半角模型主题半角模型教学内容教学目标1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2。

掌握正方形的性质定理1和性质定理2。

3。

正确运用正方形的性质解题。

4.通过四边形的从属关系渗透集合思想。

5.通过理解四种四边形内在联系,培养学生辩证观点。

知识结构正方形的性质因为正方形是特殊的平行四边形,还是特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结).正方形性质定理1:正方形的四个角都是直角,四条边相等。

正方形性质定理2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。

说明:定理2包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。

小结:(1)正方形与矩形,菱形,平行四边形的关系如上图(2)正方形的性质:①正方形对边平行.②正方形四边相等.③正方形四个角都是直角.④正方形对角线相等,互相垂直平分,每条对角线平分一组对角.典型例题精讲例1.如图,折叠正方形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对角线BD 重合,得折痕DG ,使2AD =,求AG .【解析】:作GM ⊥BD ,垂足为M . 由题意可知∠ADG=GDM , 则△ADG ≌△MDG . ∴DM=DA=2. AC=GM 又易知:GM=BM .而BM=BD —DM=22-2=2(2-1), ∴AG=BM=2(2-1).例2 .如图,P 为正方形ABCD 内一点,10PA PB ==,并且P 点到CD 边的距离也等于10,求正方形ABCD 的面积?【解析】:过P 作EF AB ⊥于F 交DC 于E .设PF x =,则10EF x =+,1(10)2BF x =+.由222PB PF BF =+. 可得:222110(10)4x x =++. 故6x =.216256ABCD S ==.例3。

学而思初二数学上册培优辅导讲义(人教版)

学而思初二数学上册培优辅导讲义(人教版)

第1讲 与相交有关概念及平行线的判定 考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系. 经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解; 【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.【变式题组】 01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC=100°,则∠BOD 的度数是( ) A .20° B . 40° C .50° D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l1、l2相交于点O ,A 、B 分别是l1、l2上的点,试用三角尺完成下列作图:⑴经过点A 画直线l2的垂线.⑵画出表示点B 到直线l1的垂线段.【解法指导】垂线是一条直线,A B C D E F A B C DEF PQ R A BCE F E A ACD O (第1题图) 1 4 3 2(第2题图)2垂线段是一条线段. 【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: F B AO CD EAEB ACDO A BA E DCF EBAD 1 4 2 3 6 5∠2和∠4: ∠3和∠5: ∠3和∠4: 【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】 01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( ) A .4对 B . 8对 C .12对 D .16对 02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( ) A .∠1和∠2是同旁内角 B .∠3和∠4是内错角 C .∠5和∠6是同旁内角 D .∠5和∠7是同旁内角 【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内角,有“ ”即有内错角. 【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行. 【变式题组】 01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系.解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知) A BDC HG E F 7 1 5 6 84 1 2 乙丙 3 23 4 5 61 23 4甲1 A BC 2 3 45 67 A B CDO A BD E FA E12∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . 04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF. 【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵. 证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360°这与一周角等于360°矛盾 所以这12个角中至少有一个角小于31° 【变式题组】 01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 . 03.已知n (n >2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设Sn 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn = . 演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补 A BC D E A BC D E F l 1 l 2 l 3 l 4 l 5 l 6l 1 l 2 l 3l 4 l 5 l 6 A EA B EMα A02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC ②AD与AC互相垂直③点C到AB的垂线段是线段AB ④线段AB 的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD>BD A.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC =.07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG=. 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是.10.在同一平面内两条直线的位置关系有.11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBAC DE12AB CDEF第14题图培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是( )A .1,3B .0,1,3C .0,2,3D .0,1,2,302.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .5504.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性.06.平面上三条直线相互间的交点的个数是( )A .3B .1或3C .1或2或3D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法?08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( )A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件?a b AB C⑴任意两条直线都有交点;⑵总共有29个交点.第13讲平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析【例1】如图,四边形ABCD中,AB∥CD,BC∥AD度数.【解法指导】两条直线平行,同位角相等;两条直线平行,内错角相等;两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB∥CD BC∥AD∴∠A+∠B=180°∠B+∠C=180°(两条直线平行,同旁内角互补)∴∠A=∠C ∵∠A=38°∴∠C=38°【变式题组】01.如图,已知AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为()A.155°B.50°C.45°D.25°1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°03.如图,已知FC∥AB∥DE,∠α:∠D:∠B=2: 3: 4, 试求∠α、∠D、∠B的度数.【例2】如图,已知AB∥CD∥EF,GC⊥CF,∠B=60°,∠EFC=45°,求∠BCG的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB∥CD∥EF ∴∠B=∠BCD ∠F=∠FCD(两条直线平行,内错角相等)又∵∠B=60°∠EFC=45°∴∠BCD=60°∠FCD=45°又∵GC⊥CF ∴∠GCF=90°(垂直定理)∴∠GCD=90°-45°=45°∴∠BCG=60°-45°=15°【变式题组】EAFGDCB01.如图,已知AF ∥BC, 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD, MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F. 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC, 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC . 要证明DB ∥EC 即要 证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________.【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC .【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等)ABCDOE FAEBC (第1题图) (第2题图) BA MC D N P (第3题图)DE F2GB 3C A 1D 2E F (第1题图) A2 CF 3 E D1B(第2题图) 31ABG D CEDA2 E1 B C B F E AC D ∴AD 平分∠BAC (角平分线定义) 【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E,DF ⊥AB 于F, AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF.3.已知如图,AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCM 的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC=180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________BAPCAC CDAAPCBDPBPD BD ⑴⑵⑶⑷A DMCN EB F E D 2 1 AB Cα β P B C D A∠P =α+βF γ Dα β E B C A FD EBC A AA ′ lB ′C ′【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路【解】过点E 作EH ∥AB . 过点F 作FG∥AB . ∵直线平行,内错角相等)又∵FG ∥AB ∴EH∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD ∴∠ψ+∠4=180°+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γA . ∠β=∠α+∠γ B .∠β+∠α+∠γ=180° C . ∠α+∠β-∠γ=90° D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A/,画出平移后的三角形A/B/C/.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点.的平行线l ③在l 截取BB/=AA/,则点B/C 的对应点C/.连接A/B/,B/C/,C/A/就21cm ,作出平移后的图形. 三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A/B/C/的位置,若平移距离为3, 求△ABC与△A/B/C/的重叠部分的面积. 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)BB / AA / C C /演练巩固 反馈提高 01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60° 02平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个 03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130° C .第一次向左拐50°,第二次向右拐130° D .第一次向左拐60°,第二次向左拐120° 04.下列命题中,正确的是( ) A .对顶角相等 B . 同位角相等 C .内错角相等 D .同旁内角互补 05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]) .C .③④D .①④ A 地测得B 地的走向是南B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( ) A .北偏东52° B .南偏东52° C .西偏北52° D .北偏西38° 07.下列几种运动中属于平移的有( ) ①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动. A .1种 B .2种 C .3种 D .4种 08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)150°120°DBCE 湖09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的DEAB CE DB CE D AB CED AB CEDA B C4 P 23 1A BEF CD15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)A3向右平移1个单位得到B1B2B3,得到封闭图形A1A2 A3B3B2B1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S1=________, S2=________, S3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<⑶ ⑷ ... AF E B A C GD α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144° 06.两条直线a 、b 互相平行,直线a 上顺次有10个点A1、A2、…、A10,直线b 上顺次有10个点B1、B2、…、B9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF. 求∠BEG 和∠DEG.08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF. ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a2的小正方形和面积为b2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O ABCD第06讲 实 数 考点·方法·破译 1.平方根与立方根:若2x =a(a ≥0)则x 叫做a 的平方根,记为:a 的平方根为xa 的平方根为xa 的算术平方根.若x3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq (p 、q 是两个互质的整数,且q ≠0)的形式. 3非负数: 实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m−l 是同一个数的平方根,∴2m−4 +3m−l =0,5m =5,m =l . 【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知mm 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b2>0∴a -3≥0 a≥3∵24242a b a -+++=∴24242a b a -++=,∴20b ++=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则ab =____.02()230b -=,则a b 的平方根是____.03.(天津)若x 、y为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -+=+a +b 的平方根. 【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩, a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-)n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y−4−π=0,则x−y =____.【例4】若a2的整数部分,b−1是9的平方根,且a b b a-=-,求a+b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2−2 −2−4.∵a =2,b−1=±3 ,∴b =-2或4 ∵a b b a-=-.∴a<b ,∴a =2, b =4,即a +b =6.【变式题组】01.若3a ,的小数部分是b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±302.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a<b<c B .a<c<b C . b<a<c D .c<a<b03.下列各组数中,互为相反数的是( ) A .-9与81的平方根 B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( )A .2个B .3个C .4个D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( ) A .b>a B .a b>C . -a <bD .-b>a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( ) A . 1个 B .2个 C . 3个 D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A. m =±nB.m =n C .m =-n D.m n≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____.10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b +-,如3※2=3232+-=5.那么12.※4=____.12.(长沙中考题)已知a 、b 为两个连续整数,且a<7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a*b =()()22a b a b ab a b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn +4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A.2 B.-1 C.1 D.002.(黄冈竞赛)代数式x+1x-+2x-的最小值是( )A.0 B.1+2C.1 D.203.代数式53x+−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+则a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足2009a a-=,则a− 20092=_______.m满足关系式199y x=--,试确定m的值.08.(全国联赛)若a、b满足5b=7,S=3b,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且123303030a a a⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a⎡⎤+++⎢⎥⎣⎦2930a⎡⎤++⎢⎥⎣⎦18=,求[10a]的值[其中[x]表示不超过x的最大整数] .10.(北京竞赛试题)已知实数a、b、x、y满足y+21a=-,231x y b-=--,求22x y a b+++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0, b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>2 02.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x 轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC 的面积.【解法指导】(1)三角形的面积=12×底×高.。

八上培优半角模型

八上培优半角模型

八上培优5半角模型方法:截长补短图形中,往往出现90°套45°的情况,或者120°套60°的情况。

还有2α套α的情况。

求证的结论一般是线段的和与差。

解决的方法是:截长补短构造全等三角形。

旋转移位造全等,翻折分割构全等。

截长法,补短法。

勤学早和新观察均有专题。

勤学早在第49页,新观察在第34页,新观察培优也有涉及,在第27页2两个例题,29页有习题。

这些题大同小异,只是图形略有变化而已。

证明过程一般要证明两次全等。

下面是新观察第34页1~4题1.如图,四边形ABCD中,∠A=∠C=90゜,∠D=60゜,AB=BC,E、F,分别在AD、CD上,且∠EBF=60゜.求证:EF=AE+CF.2.如图2,在上题中,若E、F分别在AD、DC的延长线上,其余条件不变,求证:AE=EF+CF.3.如图,∠A=∠B=90°, CA=CB=4, ∠ACB=120°,∠ECF=60°,AE=3, BF=2, 求五边形ABCDE的面积.4.如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD上的点,且∠BAD=2∠EAF.(1)求证:EF=BE+DF;(2)在(1)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、DF之间的数量关系.3.如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.勤学早第40页试题1.(1)如图,已知AB=?AC, ∠BAC=90°,?∠?MAN=45°,过点C作NC?⊥AC交AN于点N,过点B作BM?垂直AB交AM于点M,当∠MAN在∠BAC内部时,求证:BM+CN?=MN;NNN证明: 延长MB到点G,使BG=CN,连接AG,证△ABG≌△ACN(SAS),∴AN=AG,∠BAG= ,∠NAC. L∵∠GAM=∠GAB + ∠BAM=∠CAN+ ∠BAM=45°= L∠MAN,证△AMN≌△AMG(SAS), '∴MN= MG= BM + BG= BM十NC.证明二:(此证明方法见新观察培优第27页例3)(2)如图,在(1)的条件下,当AM和AN在AB两侧时,(1)的结论是否成立?请说明理由.解:不成立,结论是:MN=CN一BM,证明略.基本模型二120°套60°2. 如图,△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=60°,∠DAE= 120°,求证:DE=BE证明:(补短法)延长EB至点F,使BF=AD,连接CF,则△CBF≌△CAD,△CED≌△CEF,.DE- AD=EF- BF= BE.3.如图,△ABC中,CA=CB,∠ACB=120°,点E为AB上一点,∠DCE=∠DAE= 60°,求证:AD+DE= BE.证明:(截长法)在BE上截取BF=AD,连接CF,易证△CBF≌△CAD,△CED≌ACEF, DE= EF, AD+DE= BF+EF=BE.比较:新观察培优版27页例4如图,△ABC是边长为1的等边三角形,△BDC是顶角,∠BDC= 120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC于M、N, 连结MN, 试求△AMN的周长.分析:由于∠MDN=60°,∠BDC=120°,所以∠BDM十∠CDN=60°,注意到DB=DC,考虑运用“旋转法”将∠BDM和∠CDN移到一起,寻找全等三角形。

初二半角模型经典例题

初二半角模型经典例题

初二半角模型经典例题初二半角模型是初中数学中重要的知识点之一,对于初学者来说,能够理解和掌握这一知识点是十分重要的。

本文将为大家介绍几道半角模型的经典例题,并且详细讲解解题思路和方法。

题目一甲乙两人联合生产产品,甲生产A产品一件需要10元,B产品一件需要5元;乙生产A产品一件需要5元,B产品一件需要8元。

如果他们合作生产A产品50件,B产品40件,问甲乙能不能合作。

解题思路首先,我们可以将甲之间生产A产品的成本记为 $10\\times50=500$ ,B产品的成本记为 $5\\times40=200$ ;乙之间生产A产品的成本记为$5\\times50=250$ ,B产品的成本记为 $8\\times40=320$ 。

然后,我们根据题目可以列出以下式子:$$ \\begin{cases} 10a + 5b = 750 \\\\ 5a + 8b = 680 \\\\ \\end{cases} $$式子中,a和b分别代表甲和乙生产的A和B产品的件数。

我们可以用消元法解出a=40,b=10,表示甲生产40件A产品和10件B产品,乙生产10件A产品和30件B产品。

这样,甲与乙合作能生产所需的产品,因此甲乙可以合作生产。

解题步骤•计算甲和乙分别生产A和B产品的成本•根据题目列出方程组•用消元法求出方程组的解•根据解的结果判断甲与乙是否能合作生产题目二甲乙两人联合发明一个新产品,甲出资6万元,占投资总额的$\\dfrac{3}{5}$,乙出资多少元,才能占投资总额的$\\dfrac{2}{5}$?解题思路设甲出资的金额为x,则乙出资的金额为y,根据题目可以列出以下方程组:$$ \\begin{cases} x + y = T \\\\ \\dfrac{x}{T} = \\dfrac{3}{5} \\\\ \\dfrac{y}{T} = \\dfrac{2}{5} \\\\ \\end{cases} $$其中,T表示投资总额。

新人教版秋季八年级数学培优讲义A

新人教版秋季八年级数学培优讲义A

DCB AFEDCBAHGE D C BAEDCBAAHEDCB图1图2图3 图1 图2 图3第一讲 三角形专题(一)【基本图形1】如图,求证:∠A +∠D =∠C +∠B .【探究1】(1)如图1,已知∠B = 60°,则∠A +∠B +∠C +∠D +∠E = __________.(2)如图2,则∠A +∠B +∠C +∠D +∠E +∠F = __________. (3)如图3,则∠A +∠B +∠C +∠D +∠E = __________.【基本图形2】如图,求证:∠A +∠D +∠B =∠BCD .【探究2】(1)如图1,则∠A +∠B +∠C +∠D +∠E +∠F = __________.(2)如图2,则∠A +∠B +∠C +∠D +∠E +∠F = __________. (3)如图3,则∠A +∠B +∠C +∠D +∠E = __________.DCA图1图2图3【例题讲解】【例1】已知△ABC 中,∠CAB >∠CBA ,CD 平分∠ACB ,E 为直线AB 上一点,过E 作ED 垂直于CD ,垂足为D . (1)当E 与A 重合时,如图1,求证:∠BED =12(∠CAB -∠CBA ); (2)当E 在AB 延长线上时,如图2,(1)中的结论是否仍成立,请你给出证明.【例2】已知△ABC 中,∠ABC = n ∠DBC ,∠ACB = n ∠BCE ,BD 与CE 交于点M . (1)如图1,当n = 2时,求证:1902BMCA ∠=︒+∠;(2)如图2,当n = 3时,过M 作MN ⊥BC 于N ,试探究:∠NMC -∠MBN 与∠A 的数量关系;(3)如图3,在(2)的条件下,若∠BEC = 130°,∠BCC = 110°,∠BDC = __________°(直接写出答案).图1 图2【例3】如图1,△ABC 中AD 、AE 分别为高、角平分线,F 在BC 的延长线上,过F 作FG ⊥AE 于G 且交AB 于H . (1)求证:∠DAE =∠F ;(2)求证:2∠DAE =∠ACB -∠B ;(3)△ABC 中,若∠ACB 为钝角,其它条件不变,如图2,请画出图形并直接写出∠DAE 、∠ACB 、∠B 之间的数量关系.【例4】如图1,一个直角⊿ABC 的木框和一个端点为O 且可任意调整角度的角尺,其中∠ACB = 90°, ∠A = α.(1)如图2,调整角尺,使角尺的一边OD 垂直于AB ,另一边OE 经过直角顶点C ,与AB 交于E 点,若∠DOE = 45°,α = 30°,求∠BCE 的度数;(2)如图3,使角尺的一边OD ⊥边AB ,另一边OE 搭在直角边AC 上,调整此时的角度,使∠DOE =∠A ,延长BC 交OE 于F ,作FG 平分∠CFE 交AC 于G ,请判断此时FG 与AB 的位置关系,并证明你的结论;(3)如图4,使角尺的两边分别与⊿ABC 的两边垂直,即OD ⊥AC 于D ,OE ⊥AB 交BA 的延长线于E ,∠DOE 与∠ACB 的平分线交于点P ,是否存在一个α,使∠P = α?若存在,请求出α的值,若不存在,请说明理由.C B图3D【家庭作业】1.已知D、E分别为△ABC的边AB、AC上的点,DE∥BC,DN、CN分别为∠ADE和∠ACF的平分线,BM、EM分别为∠GBC和∠DEC的平分线.(1)判断BM与DN的位置关系并证明;(2)求证:∠M +∠N = 90°.2.平面内,四条线段AB、BC、CD、DA首尾顺次相接,∠ABC =24°,∠ADC = 42°.(1)∠BAD和∠BCD的角平分线交于点M(如图1),求∠AMC的大小;(2)点E在BA的延长线上,∠DAE的平分线和∠BCD的平分线交于点N(如图2),则∠ANC = __________.M DCBA图1NDC BA图2EM图1 图23.如图,△ABC 中,AC ⊥BC,CD 是高,△ABC 的角平分线AE 交CD 于F . (1)请比较∠CEF 与∠CFE 的大小,并证明你的结论;(2)若“△ABC 的角平分线AE 改为△ABC 的外角平分线AE ”,其它条件不变,∠CEF 与∠CFE 的大小关系如何?请画出图形并予以判断(不要求证明过程).FE D CBADCBA图1图2图2第二讲 三角形专题(二)【例题讲解】【例1】已知在平面直角坐标系中,M 、N 分别为x 轴、y 轴上的两个动点,M 在原点的左侧,N 在原点的上方.(1)如图1,射线MO 、NO 平分∠BMC 、∠DNC ,∠BMC 与∠DNC 的各边分别交于A 、B 、C 、D ,试判断∠BAD 、∠C 之间有何确定的数量关系?证明你的结论;(2)如图2,ND 平分∠MNO ,ND 交x 轴于E ,∠11,3FEO NEF FMO NMF n=∠∠=∠,且∠MFE = 11.25°,求n 的值.【例2】已知P 为第四象限一动点,Q 为x 轴负半轴上一动点,R 在PQ 下方且为y 轴负半轴上一动点. (1)如图1,若P (2,-1),Q (-3,0),R (0,-5),求S △PQR ;(2)如图2,若RM 、QM 分别平分∠PRO ,∠PQO ,P 、Q 、R 在运动过程中,∠P 、∠M 是否存在确定的数量关系,若存在,请证明你的结论;若不存在,请说明理由;(3)若将R 点改为y 轴正半轴上一动点,且在P 、Q 及(2)中的条件不变的前提下,如图3,∠P 、∠M 又有何数量关系?(写出结论,不证明)图1图1图2【例3】已知平面直角坐标系中,直线MN 交x 轴于点A (a,0),交y 轴于点B (0.b ). (1)若2(231)10a b a b ++++-=,求A 、B 两点的坐标;(2)如图1,过G 点作GE ⊥AE ,GH 平分∠OGE ,求证:∠1=∠2; (3)如图2,BC ∥x 轴,且∠BAC =∠BCA ,D 为CA 延长线上一点,且∠DOY =12∠ABY ,当A 点在x 轴正半轴上运动时,∠D 的度数是否发生变化?若不变求其值;若变化,说明理由.【例4】已知A (0,m ),点C 在x 轴负半轴上,且有(-2m -5n + 3)2 +︱n -3︱= 0. (1)若227=ABCS △,求点C 的坐标: (2)如图1,将C 点向上平移,使CO 平分∠ACB ,点P 是y 轴B 点上方的一动点,PQ ⊥OC 于点Q ,当∠ABC =∠BAC + 54°时,求∠APQ 的度数.(3)如图2,在(2)的条件下,将线段AC 平移,使其经过P 点得线段EF ,作∠APE 的角平分线交OC 的延长线与点M ,当P 在y 轴上运动时,∠M -21∠BAC 的值是否发生变化?若不变,求其度数;若变化,求其变化范围.图1图 2图3(1)如图1,若点C 在y 轴上,且有0)2(42=-++b a ,△ABC 的面积为18,求点C 的坐标;(2) 如图2,若C 点在第一象限运动,交y 轴G 点,CB 的延长线交y 轴于D 点,E 点为B 点关于y 轴的对称点,DE 的延长线交AC 于F 点.①当∠DFC =∠C +70°时,求∠BAG 的度数;②如图3,将线段DC 平移,使其经过A 点得线段NK ,过A 的直线AM 交y 轴于M ,交CD 延长线于H 点,当满足∠CAH =∠CHA 时,求DFCAMO∠∠的值.【家庭作业】xyOABMyx B CHDKA FG NEOyAB CFG E O图1 图2 图3(1)求证:∠OAC=∠OCA;(2)若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于P,即满足∠POC=31∠AOC,∠PCE=31∠ACE,求∠P的大小;(3)在(2)中,若射线OP、CP满足∠POC =n1∠AOC,∠PCE =n1∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).2.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)延长AB交x轴于点E,过O作OD⊥AB,且∠DOB=∠EOB,∠OAE=∠OEA,求∠A的度数;(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P.当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),在(2)的条件下,试问∠P的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.第三讲等腰直角三角形专题MEDCBA EDCBA图1图2【例题讲解】【例1】如图,△ABC 中,∠A = 90°,AB = AC ,过A 在△ABC 外任作直线l ,BE ⊥l 于E ,CF ⊥l 于F . (1)求证:EF = BE + CF ;(2)若l 为经过△ABC 内部的一条直线,其它条件不变,①中的结论是否成立?【例2】已知:如图,DE 为过等腰Rt △ABC 锐角顶点A 的任意直线,CD ⊥DE 于D ,BE ⊥DE 于E . (1)若点D 在△ABC 内部(如图1),求证:CD + BE = AD ;(2)若点D 在△ABC 外部(如图2),其它条件不变,(1)的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【练】如图,△ABC 中,∠ACB = 90°,AC = BC ,若直线l 过顶点A ,BM ⊥l 于M ,CN ⊥l 于N . 求证:BM + CN = AN .【例3】如图1,在平面角直角坐标系中,A (–2,0),B (0,3),C (3,0),D (0,2).图1 图2 图3(2)如图2,以A为直角顶点在第二象限内作等腰直角三角形ABE,过点E作EF⊥x轴于点F,求点F的坐标;(3)如图3,若点P为y轴正半轴上一动点,以AP为直角边作等腰直角三角形APQ,∠APQ = 90º,QR⊥x轴于点R,当点P运动时,OP QR的值是否发生变化?若不变,求出其值;若变化,请说明理由.【练】1.如图1,OA = 2,OB = 4,以A点为顶点,AB为腰在第三象限内作等腰Rt△ABC,(1)求C点坐标.(2)如图2,P为y轴负半轴上的一个动点,当P点沿y轴负半轴向下运动时,以P为顶点,P A为腰作Rt△APD,过D 作DE⊥x轴于E点,求OP-AE的值.(3)如图3,点F坐标为(-2,-2),点G(0,m)(m<0)为y轴上一动点,H(n,0)(n>0)为x轴上一点,∠HFG=90°,当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m-n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.2.如图,在平面直角坐标系中,点A与点B的坐标分别是),0(),0,(bBaA,且ba,满足yxODCBAyxOFE DCBA RQPOA xyF yxO DCBAE2232(322)0a b a b +-+++=.点E 的坐标是(0,)(2)t t >,以AE 为边作如图所示正方形AEDC .DB 交x 轴于点F .(1)求点A 、点B 的坐标;(2)试用含t 的式子表示点D 和点C 的坐标;(3)当t (2)t >变化时,线段OF 的长度是否发生变化?为什么?【例4】如图△ABC 中,90C ∠=,BE AB ⊥且BE AB =,且BD BC =,CB 的延长线交DE 于F ,求证:F 点是DE 的中点.【练】1.如图,已知等腰直角△ABE 和已知等腰直角△ACD ,90BAE CAD ∠=∠=,AM DE ⊥ 于M ,交BC 于N,求证:AN 为△ABC 的中线.2.如图,A (–2,0),B (0,3),C (3,3),△ABD 是等腰直角三角形,∠ABD = 90º,CD 交y 轴于点E ,过点F 作CD的垂线,交CD 于点F ,交OA 于点G .DEBANMCFEDC BA(1)求点E 的坐标; (2)求证:AG = OG .【家庭作业】1.如图,在平面角直角坐标系中,点A 的坐标是(,0a )、D 的坐标是(0,b ),且,a b 满足22(4)0a b ++-=.(1)求点A 和点D 的坐标;(2)以AD 为直角边作等腰直角三角形AMD ,求点M 的坐标;2.如图,已知点A (2,0)和点B (0,4),以B 为直角顶点在第一象限作等腰Rt △ABC . (1)在y 轴上存在一点M ,使得MA + MC 最小,请画出点M ;(保留画图痕迹) (2)求点C 的坐标;(3)若P 点为y 轴正半轴上一个动点,分别以AP 、OP 为直角腰在第一象限、第二象限作等腰Rt △APE 和等腰Rt △OPD ,连接ED 交y 轴于N 点,当点P 在y 轴正半轴上移动时,求PN 的长度.3.已知:C 点的坐标为(4,4),A 为y 轴负半轴上一动点,连CA ,CB ⊥CA 交 x 轴于B . (1) 求证:CA = CB ;(2)问OB-OA是否为定值,是定值并求其定值.4.已知A(-4,0),B(0,4),C(0,-4),过O作OM⊥ON分别交AB、AC于M、N两点.(1)求证:OM = ON;(2)连MN,MN交x轴于Q,若M点的纵坐标为3,求M与N的坐标.第四讲角平分线专题一、角平分线的常用辅助线21DE CA B 【例1】如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【练】如图,在△ABC 中,∠C = 90︒,AD 平分∠BAC ,若AB = 20,BC = 16,BD :CD = 5:3,求ABD ∆的面积.【例2】如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE 的交点为F .求证:.【练】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.【例3】如图所示,在△ABC 中,∠ABC = 3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F . 求证:1()2BE AC AB =-.【练】已知:如图,AB = AC ,∠BAC = 90°,∠1 = ∠2,CE ⊥BE ,求证:BD = 2CE .FBEDCA C DBP AE DCABQPCBADCBA二、角平分线基本图形的应用【例4】已知:如图,在△ABC 中,∠C = 2∠B ,∠1 =∠2,求证:AB = AC + CD .【练】1.在△ABC 中,∠A = 90°,AB = AC ,BP 是角平分线,过P 作∠BPC 的平分线PQ 交BC 于Q ,试探究PC 、CQ 、PB 之间存在何种数量关系,并证明你的结论.2.△ABC 中,∠BAC = 60°,∠C = 40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q . 求证:AB + BP = BQ + AQ .3.如图,在△ABC 中∠A = 100°,AB = AC ,∠ABC 的平分线交AC 于D ,求证:AD + BD = BC .三、角平分线综合【例5】如图,△ABC 中,∠BAC 、∠ABC 的角平分线相交于点P ,连接CP ,求证:CP 一定平分∠ACB .【练】在△ABC 中,∠ABC =100°,∠ACB =20°,CE 平分∠ACB 交AB 于 E ,D 在 AC 上且∠CBD = 20°, 求∠CED 的度数.【例6】如图,在平面直角坐标系中,点B 的坐标是(-1,0),点C 的坐标是(1,0),点D 为y 轴上一点,点A 为第二象限内一点,且∠BAC = 2∠BDO ,过D 作DM ⊥AC 于M . (1)求证:∠ABD =∠ACD ;(2)若点E 在BA 延长线上,求证:AD 平分∠CAE ; (3)当点A 运动时,AC AB AM的值是否发生变化?若不变,求其值,若变化,请说明理由.【练】如图,点M (2,2),将一个90°的角尺的直角顶点放在点M 处,角尺的两边分别交x 轴,y 轴正半轴于A ,B ,AP 平分∠OAB 交OM 于P ,PN ⊥x 轴于N ,把角尺绕点M 旋转时:PACBEDCA B(1)求证:OM平分∠AOB;(2)求OA+OB的值;(3)ON+12AB 的值是否发生变化?试证明你的结论.【家庭作业】1.(1)如图,在四边形ABCD中,AD = DC,BD平分∠ABC,求证:∠A +∠C = 180°.(2)如图,在四边形ABCD中,∠A +∠C = 180°,BD平分∠ABC,求证:AD = DC.(3)如图,在四边形ABCD中,DE⊥BC于E,BD平分∠ABC,若∠A +∠C = 180°,求证:BE =12(AB + BC).(4)如图,在四边形ABCD中,DE⊥BC于E,若∠A +∠C = 180°,BE=12(AB + BC)求证:BD平分∠ABC.2.已知:如图,等腰三角形ABC中,AB = AC,∠A = 108°,BD平分∠ABC求证:BC = AB + DC.DCBA3.如图,△ABC中,∠ACB = 90°,AC = BC,若直线l过顶点A,BM⊥l于M,CN⊥l于N.(1)求证:BM + CN = AN;(2)若l平分∠BAC,求CN DNBM的值.第五讲等腰和等边三角形专题FEDCBAFEDCBA类型一:作平行线构造等腰三角形【基本图形】若AB = AC ,DE ∥AC ,求证:△BDE 为等腰三角形.【例1】如图,在△ABC 中,AB = AC ,点D 在AB 上,点F 在AC 的延长线上,DF 交BC 于点E ,且DE= EF ,求证:BD = CF .【例2】已知:如图,等边△ABC 中,D 是线段AB 上的任意一点,E 是AB 延长线上一点,CF 平分∠ACE ,∠ADF = 60°. (1)求证:AD = DF ;(2)若将上述条件中的“D 是线段AB 上的任意一点”改为“D 是AB 延长线上的任意一点”,其余条件不变,则结论“AD = DF ”还成立吗?如果成立,请证明:如果不成立,请说明理由.【例3】已知正方形ABCD 中,M 是线段AB 上的任意一点,E 是AB 延长线上一点,MN ⊥DM 且交∠CBZ 的平分线于N . (1)证明:MD = MN ;ADCBEADCBE(2)若将上述条件中的“M 是线段AB 上的任意一点”改为“M 是AB 延长线上的任意一点”,其余条件不变,则结论“MD = MN ”还成立吗?如果成立,请证明:如果不成立,请说明理由.【例4】已知△ABC 是等边三角形,点P 是AC 上一点,PE ⊥BC 于点E ,交AB 于点F ,在CB 的延长线上截取BD = P A ,PD 交AB 于点I ,PA nPC =.(1)如图1,若1n=,则EB BD = __________,FIED= __________; (2)如图2,若∠EPD = 60º,试求n 和FIED的值;(3)如图3,若点P 在AC 边的延长线上,且3n =,其他条件不变,则EBBD= __________.【练】已知等边三角形ABC ,点P 在射线BA 上,(1)BAn n AP=≠. I P F E D CBA图2I P F E DCBA 图1IPF E DCB A图3PCAFBEPCADBC A DB(2)点D 在BC 的延长线上,BC = CD ,PC = PD ,求n 的值; (3)若点P 在射线BA 上,D 在直线BC 上,PC = PD ,那么ACCD= __________(用n 的式子来表示).类型二、共顶点的等腰三角形【例5】已知△ABC 和△ADE 均为等边三角形,点A ,E 都在BC 的同侧. (1)当点D 在BC 上,写出线段AC 、CD 、CE 之间的数量关系;(2)若点D 在BC 的延长线上,其他条件不变,写出线段AC 、CD 、CE 之间的数量关系.AD CBEADCBE【变式】已知△ABC 为等边三角形,D 为BC 任意一点,CD + CE = AC ,边DE 与∠ACB 的外角平分线交于点E ,求证:△ADE 为等边三角形.【练】如图,△ABC 中,AB = AC ,D 为△ABC 外一点,∠ABD = 60°.(1)若190ADBBDC ∠=︒-∠,求证:AB BD CD =+;ADCBE图1(2)若60ACD ∠=︒,求证:AB BD CD =+.【例6】如图所示,△ABC 是等边三角形,D 为△ABC 外的一点,且∠BDA = ∠ADC = 60°,求证:BD + CD = AD .(两种方法)【练】已知:如图,△ABC 是等边三角形,∠BDC =120°,求证:AD =BD +CD .【家庭作业】1.已知等腰△ABC 和等腰△ADE 的顶点公共,B 、A 、E 在同一条直线上,∠BAC = ∠DAE ,PB = PD ,PC = PE .. (1)如图1,若∠BAC = 90°,则∠BPC +∠DPE = __________; (2)如图2,若∠BAC = α, 则∠BPC +∠DPE = __________;(3)在图1的基础上将等腰Rt △ABC 绕点A 旋转一个角度,得到图3,则∠BPC +∠DPE = __________;并证明你的结论.2.已知:AB = BC ,BD = BE , ∠ABC =∠DBE = α,M 、N 分别是AD 、CE 的中点. (1)如图1,若α=60°,∠BMN = __________;请证明. ADCBDCBAA B C DE P E D图1图2 图3(3)将图2中的△BDE 绕B 点逆时针旋转一锐角,在图3中完成作图,则∠BMN = __________.第六讲 共顶点半角专题【基本题】NMEDCB ABC【变式1】正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,AF 平分∠DFE ,求∠EAF 的度数.【练】正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,∠EAF = 45°,求证:BE + DF = EF .【变式2】如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC = 120°,以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为__________.【归纳总结】FED CBAFED CBA图1图2图3结论BE +DF =EF∠EAF =45° AE 平分∠BEF AF 平分∠DFE AE 平分∠BEFAF 平分∠DFE AE 平分∠BEF∠EAF =45° BE +DF =EF辅助线做法图形HF EDCB A图形特征1: 2:【例题讲解】【例1】如图1,ACB ∆为等腰直角三角形,∠ABC = 90°,点P 在线段BC 上(不与B ,C 重合),以AP 为腰长作等腰直角PAQ ∆,QE ⊥AB 于E . (1)求证:∆P AB ≌∆AQE ;(2)如图2,连接CQ 交AB 于M ,若PC = 2PB ,求MBPC的值; (3)如图3,过Q 作QF ⊥AQ 交AB 延长线于F ,过P 作DP ⊥AP 交AC 于D ,连接DF ,问:当点P 在线段BC 上运动时(不与B ,C 重合),DFDPQF -的值会变化吗?若不变,求出该值,并证明;若变化,请说明理由.【例2】如图,在平面直角坐标系中,点A 的坐标为(0,a ),点B 的坐标为(b ,0),且a 、b 4220a b a b +--+=.(1)求证:∠OAB =∠OBA ;(2)点C 为OB 的延长线上一点,连结AC ,过B 作BD ⊥AC ,连结OD .求证:OD 平分∠ADB ;HFEDCBA HF EDCB AxDCOB Ay GPy xOF E BA图1图2图3图1图2图3点,连接PG ,且满足BG = PG + PF ,当P 在AF 的延长线上运动的过程中,∠PEG 的度数是否会发生变化,若不变,请求出它的度数;若改变,请说明理由.【例3】如图1,在平面直角坐标系中,点A 的坐标为(a ,0),点B 的坐标为(0, b ),且a 、b 满足21440a b a -+-=.(1)求证:∠OAB = ∠OBA ;(2)如图2,△OAB 沿直线AB 翻折得到△ABM ,将OA 绕点A 旋转到AF 处,连接OF ,作AN 平分∠MAF 交OF 与点N ,连接BN ,求∠ANB 的度数;(3)如图3,若D (0,4),EB ⊥OB 于B ,且满足∠EAD = 45°,试求线段EB 的长度.【家庭作业】1.已知,如图四边形ABCD 中,AB ∥CD ,∠B = 90°,∠BAD = 60°,P A 平分∠BAD ,PD 平分∠ADC . (1)求证:PB = PC ;(2)点M 、N 为线段AB 、AD 上两点,当∠MPN = 60°,PD = 2时,求△AMN 的周长.图1图22.如图,在平面直角坐标系中,△ABO 是等腰直角三角形,∠OAB = 90º,点A 的坐标是(,n n ),其中122n m =-. (1)求点A 的坐标;(2)如图1,分别以AB 和OB 为边作等边三角形ABC 和OBD ,则线段BC 和DC 有怎样的数量关系和位置关系?为什么?(3)如图2,过点A 作AM ⊥y 轴于点M ,点E 为x 轴负半轴上一点,K 在ME 的延长线上,以MK 为直角边作等腰直角三角形MKJ ,∠MKJ = 90º,过点A 作x 轴的垂线交MJ 于点N ,连接EN .给出两个结论:①AN ENOE+的值不变;②AN EN OE-的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.第七讲 中线倍长【例题讲解】【例1】1.如图,已知在△ABC 中,AD 为中线,求证:AB + AC >2ADA2.如图,在△ABC 中,D 为BC 的中点,DE ⊥DF 交AB 、AC 于E 、F ,求证:BE + CF >EF .【例2】如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE = CF =12(AB + AC ).【例3】如图,两个正方形ABDE 和ACGF ,点P 为BC 的中点,连接PA 交EF 于点Q .探究AP 与EF 的关系.【例4】已知:如图1,正方形ABCD 和正方形EBGF ,点M 是线段DF 的中点. (1)试说明线段ME 与MC 的关系;(2)如图2,若将上题中正方形EBGF 绕点B 顺时针旋转α度数(︒<90α),其他条件不变,上述结论还正确吗?若正确,请你证明;若不正确,请说明理由. FEDCBAMFE DCBA图1图2图1 图2【例5】(1)如图1,操作:把正方形CGEF 的对角线CE 放在正方形ABCD 的边BC 的延长线上(BC CG )取线段AE 的中点P .探究:线段PD 、PF 的关系,并加以证明.(2)如图2,将正方形CGEF 绕点C 旋转任意角度后,其他条件不变. 探究:线段PD 、PF 的关系,并加以证明.【例6】如图,在等腰△ABC 中,AB = AC ,∠ABC = α,在四边形BDEC 中,DB = DE ,∠BDE = 2α,M 为CE 的中点,连接AM 、DM .(1)求证:AM ⊥DM ;(2)当α= __________,AM = DM .MDB【家庭作业】1.如图,AD 是△ABC 的中线,∠ADB 与∠ADC 的平分线分别交AB 、AC 于点E 、F ,求证:BE + CF >EF .2.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且AF =EF ,延长BE 交AC 于F , 求证:BE =AC .3.两个全等的含30°、60°角的三角板ADE 和三角板ABC ,如图所示,E 、A 、C 三点在一条直线上,连结BD ,取BD 的中点M ,连结ME 、MC ,试判断△EMC 的形状,并说明理由. FEDCBAFEDCBAMFDCBA4.如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MF∥AD,AB=7,AC=11,求FC的长为.5.如图,等腰直角ABC∆与等腰直角BDE∆,P为CE中点,连接PA、PD.探究PA、PD的关系.第八讲期中复习类型一:选填题(多结论的问题)1.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A = CQ时,连PQ交AC边于D,则DE的长为()FGEACBD第4题图第3题图第2题图第1题图第5题图 A .13 B .12 C .23D .不能确定2.如图,在ABC ∆中,AB =AC ,A ∠=36°,AB 的垂直平 分线DE 交AC 于D ,交AB 于E ,下列结论:①BD 平分∠ABC ; ②AD =BD =BC ;③△BDC 的周长等于AB +BC ;④D 是AC 中点. 其中正确结论的个数有( )A .1个B .2个C .3个D .4个3.如图,△ABC 中,高AD = BC ,以AB 为斜边向内作等腰Rt △ABE , EF ∥AD 交AC 于F ,则下列结论:①△ADE ≌△BCE ;②CE ⊥DE ; ③BD =2EF ;④△ABC 一定是等腰三角形.其中正确的有( ) A .①②③ B .①②④ C .②④ D .①③④4.如图,在Rt △ABC 中,∠ACB = 90°,CD ⊥AB ,作∠ABC 的平 分线交AC 、CD 于点E 、F ,过点F 作FG ∥AB 交AC 于点G ,则 下列结论①CE = CF ;②AG = CF ;③EG = CF ;④CD = GF 其中 一定正确的是( )A .①②B . ③④C .①②③D . ②③④5.如图,在等腰Rt △ABC 中,∠ACB = 90°,AC = BC ,AD 平 分∠BAC ,交BC 于点D ,CE ⊥AD 交AB 于E 点,垂足为F 点. 下列结论:①BD = BE ;②CF = EF ;③AB - BC = CD ;④AD = 2DF + CE .其中正确结论的序号是( )A .①②③B .①②④C .①③④D .②③④6.已知:如图,等腰△ABC ,AB = AC ,∠BAC = 120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP = OC ,下面的结论:①∠APO +∠DCO = 30°;②△OPC 是等边三 角形;③AC = AO + AP ;④S △ABC = S 四边形AOCP .其中正确第6题图A .①②③B .①②④C .①③④D .①②③④类型二:几何综合1.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证:BC = AB + AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD = 2CE ; (3)试探究线段EC 、AF 、FD 之间的数量关系,并证明你的结论.2.已知CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E F ,分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E F ,在射线CD 上,请解决下列问题:如图1,若90BCA ∠=,90α∠=,则BE __________CF ;EF __________BE AF -(填“>”,“<”或“=”);并证明你的结论;(2)如图2,若0180BCA <∠<,请添加一个关于α∠与BCA ∠关系的条件____________________,使(1)中的两个结论仍然成立,并证明两个结论成立; (3)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请写出EF BE AF ,,三条线段之间的数量关系____________________(不必证明结论).3.如图,已知等边△ABC 中, D 为AC 上一动点.CD = nAD ,连接BD ,M 为线段BD 上一点,∠AMD = 60︒,AM 交BC 于E .(1)若n = 1,如图1,则BE CE = __________,BM DM = __________;(2)若n = 2,如图2,求证:2AB = 3BE ;ABC D图1ABCD FE 图2ABCE FD DABC E F ADFC EB图1图2图3图1图2(3)当79BEAB时,则n的值为__________.4.如图1,在平面直角坐标系中,A(0,a),C(-a,a),ABDΔ是等边三角形,直线CB交x轴于点D.(1)求BDO∠的度数;(2)求证:CB=BD;(3)如图2,作BE⊥CD交OA于E,试探究线段DO、AE、BO之间的数量关系,并给出证明.5.已知:如图1,平面直角坐标系中,点A(-3,0),点B(0,3),点C为x轴正半轴上一动点,过点A作AD⊥BC交y 轴于点E.(1)若点C的坐标为(2,0),试求点E的坐标.(2)若点C在x轴正半轴上运动,且OC<3,其他条件不变,连OD,求证:∠BDO的度数不变.试猜想OP与MP的数量和位置关系并证明你的结论.图1 图2第九讲整式乘法【例题讲解】【例1】计算(1)()()3222ab ab a -⨯-⨯ (2)()23332221z xy xy •⎪⎭⎫ ⎝⎛-(3)()()⎪⎭⎫⎝⎛--+n m mn n m 322312(4)()⎪⎭⎫⎝⎛-•-•-232471235y x y x xy【例2】计算 ⑴()()=-222xy y x;⑵()()()=-+---b a c a c b c b a。

学而思初二数学上册培优辅导讲义(人教版)

学而思初二数学上册培优辅导讲义(人教版)

第 1 讲与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们 .3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例 1】如图,三条直线AB 、CD 、EF 相交于点O,一共构成哪几对对顶角?一共构成哪几对邻补角?A 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线 .C ⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有 6 对对顶角 . 12 对邻补角 .【变式题组】111∠ FOC=2∠ AOC∴∠ EOF =∠ EOC +∠ FOC =2∠BOC+2∠AOC=1AOC1BOC又∵∠ BOC+∠ AOC = 180° ∴∠ EOF=2× 180°= 90°2⑵∠ BOE 的余角是:∠ COF 、∠ AOF ;∠ BOE 的补角是:∠ AOE.【变式题组】01.如图,已知直线AB 、CD 相交于点 O,OA 平分∠ EOC,且∠ EOC=100°,E则∠ BOD 的度数是()D A .20°B . 40°C. 50° D .80°E D14B32FO AAC01.如右图所示,直线AB 、 CD、EF 相交于 P、Q、R,则:C⑴∠ ARC 的对顶角是.邻补角是.⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有 2 对对顶角;A Q 当三条直线相交于一点时,共有 6 对对顶角;当四条直线相交于一点时,共有12 对对顶角 .F 问:当有 100 条直线相交于一点时共有对顶角 .【例2】如图所示,点O 是直线 AB 上一点, OE、 OF 分别平分∠ BOC 、∠AOC .⑴求∠ EOF 的度数;⑵写出∠ BOE 的余角及补角 .F 【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;EPR BD【变式题组】CE(第 1 题图)(第 2 题图)02.(杭州)已知∠ 1=∠ 2=∠ 3= 62°,则∠ 4=.【例3】如图,直线l1、 l2 相交于点 O, A 、 B 分别是 l1、 l2 上的点,试用三角尺完成下列作图:A⑴经过点 A 画直线 l2的垂线 .⑵画出表示点 B 到直线 l1 的垂线段 .O【解法指导】垂线是一条直线,垂线l2段是一条线段 .B01. P 为直线 l 外一点,A、B、Cl 1是直线 l 上三点,且 PA= 4cm, PB= 5cm,PC= 6cm,则点 P到直线 l 的距离为()A . 4cm B.5cm C.不大于 4cm D.不小于 6cm02 如图,一辆汽车在直线形的公路AB 上由 A向B行驶,M、1A【解】⑴∵ OE、OF 平分∠ BOC 、∠ AOC∴∠ EOC=2∠BOC ,O B N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点 P 的位置时距离村庄M 最近.行驶到 AB 上点 Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P、Q的位置.⑵当汽车从 A 出发向 B 行驶的过程中,在的路上距离M 村越来越近 ..在的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线 AB 、 CD 相交于点 O,OE⊥ CD,OF⊥ AB ,∠ DOF = 65°,求∠ BOE 和∠ AOC 的度数 .E 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF = 90°,OF⊥AB .AOC【变式题组】01.如图,若 EO⊥ AB 于 O,直线 CD 过点 O,∠EOD ︰∠ EOB = 1︰ 3,求∠ AOC 、∠AOE 的度数 .E 03.如图,已知AB ⊥ BC 于 B ,DB ⊥ EB 于 B,并且∠ CBE ︰∠ ABD =1︰ 2,请作出∠ CBE 的对顶角,并求其度数.AB DAE【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:F C∠1 和∠ 2:1∠1 和∠ 3:46D A23B∠1 和∠ 6:5BDE∠2 和∠ 6:F∠2和∠4:∠3 和∠5:∠3 和∠4:D 02.如图,O 为直线 AB 上一点,∠ BOC= 3∠AOC ,OC 平分∠ AOD .⑴求∠ AOC 的度数;B ⑵试说明 OD 与 AB 的位置关系 .DB OA【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它O C们的名称 .C【变式题组】01.如图,平行直线AB 、CD 与相交直线EF,GH 相交,图中的同旁内角共有()AA.4对B.8对C . 12A对CHEGBDFD.16 对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.37854346216521123401.如图,推理填空.⑴∵∠ A =∠(已知)∴AC∥ED()⑵∵∠ C=∠(已知)∴AC ∥ED()⑶∵∠ A =∠(已知)∴AB ∥DF()02.如图, AD 平分∠ BAC ,EF 平分∠ DEC ,且∠ 1=∠ 2,试说明 DE 与 AB的位置关系 .C甲乙03.如图,按各组角的位置判断错误的是()A .∠ 1 和∠ 2 是同旁内角B.∠ 3 和∠ 4 是内错角丙A13254解:∵ AD 是∠ BAC 的平分线(已知)∴∠ BAC =2∠ 1(角平分线定义)又∵ EF 平分∠ DEC(已知)∴()又∵∠ 1=∠ 2(已知)A1E2C.∠ 5 和∠ 6 是同旁内角6D .∠ 5 和∠ 7 是同旁内角B 【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由?⑴∠ CBD =∠ ADB ;A⑵∠ BCD +∠ ADC = 180°⑶∠ ACD =∠ BAC【解法指导】图中有即即有同旁内B角,有“”即有内错角.7 C∴()∴AB∥DEB DF()DO03.如图,已知 AE 平分∠ CAB , CE 平分∠ ACD .∠ CAE +∠ ACE=90°,求证: AB ∥ CD .C AECB【解法指导】⑴由∠ CBD =∠ ADB ,可推得 AD ∥BC ;根据内错角相等,两直线平行 .⑵由∠ BCD +∠ ADC = 180°,可推得 AD ∥ BC;根据同旁内角互补,两直线平行 .⑶由∠ ACD =∠ BAC 可推得 AB ∥ DC ;根据内错A角相等,两直线平行 .F【变式题组】EBD04.如图,已知∠ ABC =∠ ACB , BE 平分∠ ABC ,CD 平分∠ ACB ,∠ EBF =∠ EFB ,求证: CD∥ EF.C DAD EBC F01.如,∠ EAC =∠ ADB = 90° .下列法正确的是(A.α的余角只有∠ B B.α的角是∠ DAC 【例7】如⑴,平面内有六条两两不平行的直,:在所有的交角中,至C.∠ ACF 是α的余角D.α与∠ ACF 互少有一个角小l4l4l3E E于 31°.A Al3l5l5l 2l6l2αM l 6Bl1l1C DB D CFFN第 1第 202.如,已知直 AB 、CD 被直 EF 所截,∠ EMBA.∠ AMFB .∠ BMF C.∠ ENC03.下列句中正确的是())ABD C第 4的同位角()D.∠ END⑴⑵【解法指】如⑵,我可以将所有的直移后,使它相交于同一点,此的形⑵.明:假⑵中的12 个角中的每一个角都不小于31°12× 31°= 372°> 360°与一周角等于 360°矛盾所以 12 个角中至少有一个角小于 31°【式】01.平面内有18 条两两不平行的直,:在所有的交角中至少有一个角小于11° .A.在同一平面内,一条直只有一条垂B.直上一点的直只有一条C.直上一点且垂直于条直的直有且只有一条D.垂段就是点到直的距离04.如,∠BAC = 90°,AD ⊥ BC 于 D,下列中,正确的个数有()① AB ⊥AC ② AD 与 AC 互相垂直③点 C 到 AB 的垂段是段 AB ④ 段 AB 的度是点 B 到 AC 的距离⑤垂段 BA 是点 B 到 AC 的距离⑥ AD > BDA. 0B.2C.4D.605.点 A 、 B 、C 是直 l 上的三点,点P 是直 l 外一点,且PA= 4cm,PB =5cm, PC= 6cm,点 P 到直 l 的距离是()A. 4cm B . 5cm C.小于 4cm D.不大于4cm06.将一副直角三角板按所示的方法旋(直角点重合),∠ AOB+∠ DOC=.02.在同一平面内有2010 条直 a1,a2,⋯, a2010,如果 a1⊥ a2,a2∥ a3, a3⊥a4,a4∥ a5⋯⋯那么a1 与 a2010 的位置关系是.03.已知 n( n> 2)个点 P1,P2,P3⋯ Pn.在同一平面内没有任何三点在同一直上, Sn 表示几个点中的任意两个点所作的所有直的条数,然:S2=1,S3= 3, S4= 6,∴ S5= 10⋯ Sn=.演巩固·反提高cC A E D21D B a34Gb65B FC78A O ∴AB ∥ FD.14.如,你填上一个适当的条件使AD∥ BC.FAEH第 61第 7第 907.如,矩形 ABCD 沿 EF 折,且∠ DEF = 72°,∠ AEG =. 08.在同一平面内,若直 a1∥ a2,a2⊥ a3,a3∥ a4,⋯ a1a10(. a1 与 a10不重合)09.如所示,直a、b 被直 c 所截,出下列四个条件:①∠1=∠ 5,②∠ 1 =∠ 7,③∠ 2+∠ 3= 180°,④∠ 4=∠ 7,其中能判断a∥ b的条件的序号是.10.在同一平面内两条直的位置关系有.11.如,已知 BE 平分∠ ABD ,DE 平分∠ CDB ,且∠ E=∠ ABE +∠ EDC.明 AB ∥CD?AE 12.如,已知 BE 平分∠ ABC , CF 平分∠ BCD ,∠ 1 =∠2,那么直 AB 与 CD 的位置关系如何?BBD第 14CCA1E13.如,推理填空:⑴∵∠ A=(已知)2∴AC ∥ED()C⑵∵∠ 2=(已知)∴AC ∥ED()⑶∵∠ A+= 180°(已知)DB培升·奥F01.平面上互不重合的三条直的交点的个数是()A. 1,3B. 0,1, 3C.0,2,3D. 0,1, 2, 3 D02.平面上有 10 条直,其中 4 条是互相平行的,那么 10条直最多能把平面分成()部分 .DAA. 60B.55C.50D. 4503.平面上有六个点,每两点都成一条直,除了原来的CBEF6 个点之外,这些直线最多还有()个交点 .⑵总共有 29 个交点 .A .35B. 40C. 45D. 55第 13讲平行线的性质及其应用04.如图,图上有 6 个点,作两两连线时,圆内最多有考点·方法·破译__________________ 交点 .1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;05.如图是某施工队一张破损的图纸,已知a、b 是一个角的两边,现在要在图纸2.初步了解命题,命题的构成,真假命题、定理;上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,并证明你的正确性 .感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析【例1】如图,四边形 ABCD 中, AB ∥ CD , BC ∥AD ,∠ A = 38°,a b求∠C 的度数 .D【解法指导】两条直线平行,同位角相等;A两条直线平行,内错角相等;06.平面上三条直线相互间的交点的个数是()两条直线平行,同旁内角互补 .A.3B.1 或 3C.1或2或3D.不一定是 1,2, 3平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截07.请你在平面上画出 6 条直线(没有三条共点)使得它们中的每条直线都恰好线,识别角的关系式关键 .与另三条直线相交,并简单说明画法?【解】:∵ AB ∥CD BC∥ AD∴∠ A +∠ B=180°∠ B+∠ C= 180°(两条直线平行,同旁内角互补 )08.平面上有 10 条直线,无任何三条交于一点,要使它们出现31 个交点,怎么∴∠A=∠C∵∠ A=38°∴∠ C= 38°安排才能办到?【变式题组】01.如图,已知 AD ∥BC,点 E 在 BD 的延长线上,若∠ ADE = 155 °,则∠ DBC的度数为()A. 155° B .50°C. 45°D. 25°09.如图,在一个正方体的 2 个面上画了两条对角线AB 、A E3C l12AC ,那么两条对角线的夹角等于()DA .60°B. 75°C. 90° D . 135°A l 2C1B10.在同一平面内有 9 条直线如何安排才能满足下面的两(第 1 题图)(第 2 题图)个条件?⑴任意两条直线都有交点;BF C21αA B(第 3 题图)D E02.(安徽)如图,直线l1∥ l2,∠ 1=55°,∠ 2=65°,则∠ 3 为()A. 50°B. 55°C. 60°D.65°03.如图,已知FC∥ AB ∥ DE,∠α:∠ D:∠ B =2: 3: 4, 试求∠α、∠ D、∠ B 的度数 .【例2】如图,已知 AB ∥ CD ∥ EF,GC⊥ CF,∠ B= 60°,∠ EFC=45°,求∠ BCG 的度数 .【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线A相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵ AB ∥CD∥ EF∴∠ B =∠ BCD∠ F=∠ FCD( 两条直线平行,内错角相等 ) 又∵∠ B= 60°∠ EFC= 45°∴∠ BCD =C 60°∠ FCD = 45°又∵ GC⊥ CF ∴∠ GCF = 90°(垂直定理)∴∠ GCD =90°- 45°= 45°∴∠ BCG= 60°- 45°= 15°E【变式题组】01.如图,已知AF∥ BC, 且 AF平分∠ EAB ,∠ B = 48°,则∠ C 的的度数=_______________E AFA B MD O EB C B C APND(第 1 题图)(第 2 题图)(第 3 题图)02.如图 ,已知∠ ABC +∠ ACB = 120°, BO、 CO 分别∠ ABC 、∠ ACB , DE 过点O 与 BC 平行,则∠ BOC= ___________03.如图,已知AB ∥ MP ∥ CD, MN 平分∠ AMD ,∠ A= 40°,∠ D= 50°,求∠NMP 的度数 .【例3】如图,已知∠1=∠ 2,∠ C=∠ D .求证:∠ A =∠ F.【解法指导】因果转化,综合运用.逆向思维:要证明∠ A =∠ F,即要证明 DF∥ AC .要证明 DF ∥ AC, 即要证明∠ D+∠ DBC = 180°,即:∠ C+∠ DBC = 180°;要证明∠ C+∠ DBC=180°即要证明 DB ∥ EC.要证明 DB ∥EC 即要证明∠ 1=∠ 3.证明:∵∠ 1=∠ 2,∠ 2=∠ 3(对顶角相等)所以∠1=∠ 3 ∴ DB ∥B EC(同位角相等 ?两直线平行)∴∠ DBC +∠ C= 180°(两直线平行,G同旁内角互补)∵∠C=∠ D∴∠ DBC +∠ D = 180° ∴ DF∥ AC(同旁内角,互补两直线平行)∴∠A=∠ F(两直线平行,内错角相D等)D E F2F【变式题组】01.如图,已知 AC ∥ FG,∠3C1=∠ 2,求证: DE ∥ FGA1A1DB C32E G C(第 1 题图)02.如图,已知∠ 1+∠ 2= 180°,∠ 3=∠ B .求证:∠ AED =∠ ACBADE312FB C(第 2 题图)03.如图,两平面镜α、β的夹角θ,入射光线 AO 平行于β入射到α上,经两次反射后的出射光线 O′B平行于α,则角θ等于_________.αOθ【例4】如图,已知 EG⊥ BC , AD ⊥BC,∠ 1=∠ 3.O/求证: AD 平分∠ BAC .E【解法指导】抓住题中给出的条件的目的,仔细分析条件给我们带来的结论,对于不能直接直接得出结论A.(题目中的:的条件,要准确把握住这些条件的意图13∠ 1=∠ 3)证明:∵ EG⊥ BC , AD ⊥BC∴∠ EGC=∠ ADC = 90°(垂直定义)∴ EG∥AD (同位角相等,两条直线平行)G DB∵∠ 1=∠ 3 ∴∠ 3=∠ BAD (两条直线平行,内错角相等)∴ AD 平分∠ BAC (角平分线定义)【变式题组】D01.如图,若AE ⊥ BC 于 E,∠ 1=∠ 2,求证: DC ⊥BC .A12B E C02.如图,在△ ABC 中,CE⊥AB 于 E,DF ⊥ AB 于 F, AC∥ ED ,CE 平分∠ACB .求证:∠ EDF=∠ BDF.AEFBD CB3.已知如图, AB ∥ CD,∠ B= 40°, CN 是∠ BCE 的平分线 . CM ⊥ CN,求:∠BCM 的度数 .A BβNME C DC【例5】已知,如图,AB ∥ EF,求证:∠ ABC +∠ BCF +∠ CFE= 360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,联想周角 .构造两个“平角”或构造两组“互补”的角.过点 C 作 CD∥AB 即把已知条件 AB ∥ EF 联系起来,这是关A B键 .1【证明】:过点 C 作 CD∥ AB∵ CD ∥ AB ∴∠ 1+∠ ABC DC = 180°2(两直线平行,同旁内角互补 )又∵ AB ∥EF,∴ CD ∥ EF(平E F行于同一条直线的两直线平行)∴∠ 2+∠ CFE= 180°(两直线平行,同旁内角互补 ) ∴∠ ABC +∠ 1+∠ 2+∠ CFE=180°+ 180°= 360°即∠ ABC +∠ BCF +∠ CFE= 360 °【变式题组】01.如图,已知, AB ∥ CD,分别探究下面四个图形中∠APC 和∠ PAB、∠ PCD的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性.结 论 : ⑴ ____________________________⑵____________________________⑶ ____________________________⑷ ____________________________ABPABABBAPPPDC ⑴D C ⑵ D C ⑶ DC ⑷【例6】如图,已知, AB ∥ CD ,则∠ α、∠ β、∠ γ、∠ ψ之间的关系是∠ α+∠ γ+∠ ψ-∠ β= 180°Aα B【解法指导】基本图形ABα1βHP ∠ P = α+ β E 2.善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路 3Fβγ 4∵AB ∥ EH∴∠ α=∠ 1(两 【解】过点 E 作 EH ∥AB . 过点 F 作 FG ∥AB .直线平行,内错角相等)又∵ C DFG ∥AB ∴ EH ∥ FG (平行于同一条直线的两直线ψ 平行)∴∠ 2=∠ 3 又∵ AB ∥ CD ∴FG ∥ CD (平行于同一条直线的两直线平行)CD∴∠ ψ+∠ 4= 180°(两直线平行,同旁内角互补)∴∠ α+∠ γ+∠ ψ-∠ β=∠ 1+∠ 3+∠ 4- ψ-∠ 1-∠ 2=∠ 4+ ψ=180°【变式题组】01.如图, AB ∥ EF ,∠ C = 90°,则∠ α、∠ β、∠ γ的关系是( )A . ∠ β=∠ α+∠ γB .∠ β+∠ α+∠ γ= 180°C . ∠ α+∠ β-∠ γ= 90°D .∠ β+∠ γ-∠ α= 90°【例7】如图,平移三角形 ABC ,设点 A 移动到点 A/ ,画出平移后的三角形 A/B/C/.【解法指导】抓住平移作图的“四部曲” —— 定,找,移,连 .A ′⑴定:确定平移的方向和距离 .⑵找:找出图形的关键点 .l⑶移:过关键点作平行且相等的线段, 得到关键点的对应点 .A⑷连 : 按原图形顺次连接对应点 .B ′C ′【解】①连接 AA/ ②过点 B 作 AA/ 的平行线 l ③在 l 截取BB/ =AA/, 则点 B/ 就是的 B 对应点,用同样的方法作出点 BC 的对应点 C/.连接 A/B/ ,B/C/ ,C/A/ 就得到平移后的三角C形 A/B/C/.【变式题组】01.如图,把四边形 ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.ADBC02.如图 ,已知三角形 ABC 中,∠ C = 90°, BC =4, AC= 4,现将△ ABC 沿 CB 方向平移到△A/B/C/ 的位置,若平移距离为3, 求△ ABCAA /02.如图, 已知, AB ∥ CD ,∠ ABE 求∠ BFD 的度数 .AαBCγ Dβ和∠ CDE 的平分线相交于点F ,∠ E = 140°,ABEFCD与△ A/B/C/ 的重叠部分的面积 .CC /BB /03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移 BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)EFA D83B 5 EC F演练巩固反馈提高A北01.如图,由 A 测 B 得方向是()A .南偏东 30°B.南偏东 60°30°C.北偏西 30°D.北偏西 60°B西02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线南平行;④平行于同一条直线的两直线垂直.其中的真命题的有()A.1个B.2 个C.3 个D.4 个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A .第一次向左拐 30°,第二次向右拐 30°B .第一次向右拐50°,第二次向左拐 130°C.第一次向左拐 50°,第二次向右拐 130 ° D .第一次向左拐 60°,第二次向左拐 120°04.下列命题中,正确的是()A .对顶角相等B.同位角相等C.内错角相等 D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的 [ 如图⑴—⑷ ]P.P.P.P.从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B .②③C.③④ D .①④06.在 A 、B 两座工厂之间要修建一条笔直的公路,从 A 地测得 B 地的走向是南偏东 52° .现 A 、B 两地要同时开工,若干天后,公路准确对接,则 B 地所修公路的走向应该是()A.北偏东52°B.南偏东52°C.西偏北52° D .北偏西38°东07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2 种C.3 种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置 .平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()⑴⑵⑶⑷10.如图, AD ∥ BC ,AB ∥ CD ,AE ⊥BC,现将△ ABE 进行平移 . 平移方向为射AD 的方向 . 平移距离段BC 的,平移得到的三角形是中()的阴影部分 .DA DADAB E AC B E B C BE C C B E11.判断下列命是真命是假命,如果是假命,出一个反例 . ⑴ 角是相等的角;⑵相等的角是角;⑶两个角的和是角;⑷同旁内角互,两直平行.12.把下列命改写成“如果⋯⋯那么⋯⋯”的形式,并指出命的真假.⑴互的角是角;⑵两个角的和是角;⑶直角都相等.13.如,在湖修一条公路.如果第一个拐弯∠ A = 120 °,第二个拐弯∠B =150°,第三个拐弯∠ C,道路 CE 恰好和道路 AD 平行,∠ C 是多少度?并明理由 .湖E D120°150°CBD CE DE 点,与两岸B、14.如,一条河流两岸是平行的,当小船行到河中D 成 64°角 . 当小船行到河中 F 点,看 B 点和 D 点的 FB 、FD 恰好有∠1=∠ 2,∠ 3=∠ 4 的关系 . 你能出此点 F 与 B、D 所形成的角∠ BFD 的度数?AB12F E3C4D15.如, AB ∥CD ,∠ 1=∠ 2,明∠ E 和∠ F 的关系 .A B13EF42C PD培升·奥A01.如,等△ ABC 各都被分成五等分,在D F△ ABC 内能与△ DEF 完成重合的小三角形共有25 个,那么在△ ABC 内由△ DEF 平移得到的三角形共有EB C()个02.如,一足球运在球上点 A 看到足球从 B 点沿着 BO 方向匀速来,运立即从 A 以匀速直奔跑前去截足球.若足球的速度与运奔跑的速度相同,出运的平移方向及最快能截住足球的位置.(运奔跑于足球点的平移). D A03.如,方体的 AB = 4cm, BC =3cm,高 AA1 = 2cm. 将 AC 平移到 A1C1 的位置上,平移的距离是 ___________,平移的方向是___________..A .B04.如是形的操作程(五个矩形水平方向O D1B的均 a,直方向的 b );将段A1A2 向右平移 1 个位得到 B1B2 ,得到封A1B1形 A1A2B2B1 [即阴影部分如⑴]; 将折 A1A2A3 向右平移 1 个位得到 B1B2B3 ,得到封形A1A2 A3B3B2B1 [即阴影部分如⑵ ];⑴在⑶中,你似地画出一条有两个折点的直,同的向右平移 1 个位,从而得到 1 个封形,并画出阴影 .⑵ 你分写出上述三个阴影部分的面S1= ________, S2= ________, S3=________.⑶ 想与探究:如⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平度都是1个位),你猜想空白部分草地面是1A1B1A11A1B BA2草地BA B A3222B3草地2A3B3 A BA B2⑶⑷44⑴⑵⑸多少?05.一位模型手遥控一,先前一半,然后原地逆旋α°( 0°<α°< 180 °),被称一次操作,若 5 次后回到出点,α°角()A. 720° B .108°或 144°C. 144° D . 720°或 144°06.两条直 a、b 互相平行,直 a 上次有 10 个点 A1 、A2 、⋯、 A10 ,直b 上次有 10个点 B1 、B2 、⋯、 B9 ,将 a 上每一点与 b 上每一点相可得段 .若没有三条段相交于同一点,些段的交点个数是()C A .90B. 1620C. 6480D. 200607.如,已知 AB ∥ CD ,∠ B = 100 °, EF 平分∠ BEC ,EG⊥ EF. 求∠BEG 和∠ DEG.C1AB100°G FD E C08.如, AB ∥ CD ,∠ BAE = 30°,∠ DCE= 60°,EF、EG 三等分∠ AEC .:EF 与 EG 中有没有与AB 平行的直?什么?A BFEGC D09.如,已知直 CB ∥ OA ,∠ C=∠ OAB = 100 °, E、 F 在 CB 上,且足∠ FOB=∠ AOB , OE 平分∠ COF.⑴求∠ EOB 的度数;⑵若平行移AB ,那么∠ OBC:∠ OFC 的是否随之生化?若化,找出变化规律;若不变,求出这个比值.⑶在平行移动 AB 的过程中,是否存在某种情况,使∠OEC=∠ OBA ?若存在,求出其度数;若不存在,说明理由.C FE 若x2= a(a≥ 0)则 x 叫做 a 的平方根,记为: a 的平方根为x=± a ,其中a的平B方根为 x=a叫做a的算术平方根.若 x3= a,则 x 叫做 a 的立方根.记为: a 的立方根为x=3a.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一O10.平面上有 5 条直线,其中任意两条都不平行,那么在这 5 条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由 .11.如图,正方形 ABCD 的边长为 5,把它的对角线 AC 分成 n 段,以每一小段为对角线作小正方形,这 n 个小正方形的周长之和为多少? AD12.如图将面积为a2 的小正方形和面积为b2 的大正方形放在一起,用添补法如pA一对应.任何有理数都可以表示为分数q( p、q 是两个互质的整数,且q≠ 0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a>0,a2 n≥ 0( n 为正整数),a≥0(a≥0).B经典·考题·赏析【例 1】若 2m- 4 与 3m- 1 是同一个数的平方根,求m 的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m -4 与3m-l 是同一个数的平方根,∴ 2m-4 + 3m-l = 0, 5m= 5, m= l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____.C2的最大整数,则m 的平方根是 ____.02.已知 m 是小于159的立方根是 ____.何求出阴影部分面积?F A03.04.如图,有一个数值转化器,当输入的x 为 64 时,输出的 y 是 ____ .是无理数输入 x输出 y取算术平方根第06讲实数B考点·方法·破译E1.平方根与立方根:C D是有理数【例2】(全国竞赛)已知非零实数 a 、b满足2a 4 b 2 a 3 b24 2a,则 a+ b 等于 ( )A.-1B. 0C.1D. 2【解法指导】若a 3 b2有意义,∵ a、 b为非零实数,∴ b2>0 ∴a- 3≥ 0 a ≥ 3∵2a4b2 a 3 b2 4 2a∴2a 4 b 2 a 3 b2 4 2a b 2 a 3 b20,∴.b20a3∴a 3 b20,∴b2,故选 C.【变式题组】0l .在实数范围内,等式2a a 2b 3= 0 成立,则 ab= ____.2a02.若a9b30,则b的平方根是 ____.2009x03.(天津)若 x、 y 为实数,且x 2y 2 0,则y的值为()A . 1B.- 1C. 2D.- 2x xx104.已知 x 是实数,则的值是 ()111111A .B.C.D.无法确定【例 3】若 a、 b 都为有理效,且满足ab b 1 23.求 a+b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵a b b 1 23 ,a b1 a b1a13∴ b 2 3 即b12 ,∴b12 ,a + b= 12+ 13= 25.∴ a+b 的平方根为: a b25 5 .【变式题组】01.(西安市竞赛题)已知m、 n 是有理数,且(5+ 2) m+(3 -25)n+ 7= 0求 m、 n.1102.(希望杯试题)设 x、y 都是有理数,且满足方程(23)x+(32)y-4-= 0,则 x-y = ____.【例 4】若 a 为17- 2 的整数部分, b-1 是 9 的平方根,且 a b b a ,求a+ b 的值.【解法指导】一个实数由小数部分与整数部分组成,17- 2=整数部分+小数部分.整数部分估算可得2,则小数部分=17-2-2 =17- 4.∵ a= 2,b-1=± 3 ,∴ b=- 2 或 4∵ a bb a.∴ a<b ,∴ a = 2, b = 4,即 a + b = 6.【 式 】01.若 3+5的小数部分是 a ,3-5的小数部分是 b , a + b 的 ____.02. 5的整数部分a ,小数部分b , (5+ a )· b = ____ .演 巩固 反 提高0l .下列 法正确的是 ( )A .- 2 是 (- 2)2 的算 平方根B .3 是- 9 的算 平方根C . 16 的平方根是± 4D .27 的立方根是± 3c502.a3, b = -2,2 , a 、 b 、c 的大小关系是 ( )A . a<b<cB . a<c<bC . b<a<cD . c<a<b03.下列各 数中,互 相反数的是 ()A .-9 与 81 的平方根B .4 与364C .4 与 3 64D .3 与93 82 ? ?16 , ? ?125 中无理数有 ()04.在 数1.414, ,0.1 ,5-, 3.1 ,54A .2个B .3 个C .4个D . 5个05. 数 a 、 b 在数 上表示的位置如 所示,( )A . b>aabB .C . -a < bD .- b>a06. 有四个无理数5,6 ,7 ,8 ,其中在 2 +1 与 3+1 之 的有 ( )A . 1个B .2 个C . 3个D .4个3207. m 是. m , n 的关系是 ( )9的平方根, n =A. m =± nB.m = nC .m =- nm nD.08.(烟台)如 ,数 上 A 、B 两点表示的数分 - 1 和3,点B 关于点 A的 称点 C , 点 C 所表示的数 ( )A .- 2 3B .-13C .-2 +3D . l +309.点 A 在数 上和原点相距5个 位,点 B 在数 上和原点相距 3 个 位,且点 B 在点 A 左 , A 、 B 之 的距离 ____.111 10.用 算器探索:已知按一定 律排列的一 数:1, 2,3 ⋯,19 ,120.如果从中 出若干个数,使它的和大于3,那么至少要 ____个数.a b11. 于任意不相等的两个数a 、b ,定 一种运算※如下: a ※ b =ab ,如 33 2※ 2=3 2= 5.那么 12.※ 4= ____.12.( 沙中考 )已知a 、b 两个 整数,且a<7<b , a + b = ____.a2b a≥ b13.对实数 a、 b,定义运算“ * ”,如下 a*b=ab2a<b,已知 3*m= 36,则实数 m= ____.a22a114.设 a 是大于 1 的实数.若 a, 3 ,3在数轴上对应的点分别是 A 、B、C,则三点在数轴上从左自右的顺序是____ .15.如图,直径为 1 的圆与数轴有唯一的公共点P.点 P 表示的实数为- 1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点 P′所表示的数是 ____.16.已知整数x、 y 满足x+2y=50,求x、y.17.已知 2a-1 的平方根是± 3,3a+ b-1 的算术平方根是4,求 a+ b+ 1 的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为 1 个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当 B 点恰好落在数轴上时,(1)求此时 B 点所对的数;(2)求圆心 O 移动的路程.19.若 b=3a 15+153a+ 3l ,且 a+ 11 的算术平方根为m, 4b+ 1 的立方根为 n,求( mn-2 ) (3mn+ 4)的平方根与立方根.20.若 x、y 为实数,且( x-y + 1)2 与5x 3y 3互为相反数,求x2y2的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a+1 与 a-3 ,则 a 值为 ( )A. 2B.- 1C. 1 D . 002.(黄冈竞赛)代数式x +x 1+x2的最小值是 ( )A. 0B.1+2C. 1 D . 203.代数式53x- 2的最小值为____.04.设 a 、b 为有理数,且 a 、b 满足等式 a2+ 3b + b 3= 21-5 3,则 a + b = ____.05.若a b= 1,且 3 a= 4 b,则在数轴上表示09.(北京市初 二 年级竞赛试题)已知0<a<1 , 并 且a 、b 两数对应点的距离为____.1 2328 29a a06.已知实数 a 满足2009aa 2010a,则 a- 20092 =_______.aggg aa303030303018 ,求 [10a] 的值[其中 [x] 表示不超过 x 的最大整数 ].m 满足关系式 3x 5y2 mx 3 y mx 199 y g 199 xy ,试确定 m 的值.10.(北京竞赛试题)已知实数a 、b 、 x 、 y 满足 x3 1 a 2y +,x 3 y 1 b 2 ,求 2x y 2a b 的值.08.(全国联赛)若 a 、 b 满足 3 a 5 b = 7,S = 2 a 3 b,求 S 的取值范围.第 14 讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例 1】在坐标平面内描出下列各点的位置.A(2 , 1), B(1, 2), C(-1, 2), D( - 2,- 1), E(0, 3), F(- 3, 0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足 |x|= 5,2x+ |y|= 1,则点 P 得坐标是 _____________ .02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在 ____________象限 .03.指出下列各点所在的象限或坐标轴.11A( -3, 0), B( -2,-3) ,C(2,2), D(0,3) , E(π- 3.14, 3.14-π )【例 2】若点 P(a, b)在第四象限,则点Q(― a, b― 1)在()A.第一象限 B .第二象限C.第三象限 D .第四象限【解法指导】∵ P(a,b)在第四象限,∴ a>0,b< 0,∴- a< 0, b-1< 0,故选C.【变式题组】01.若点 G(a,2- a)是第二象限的点,则 a 的取值范围是()A. a< 0B. a<2C. 0< a< 2 B . a< 0 或 a> 2 02.如果点P(3x-2,2- x)在第四象限,则x 的取值范围是____________.03.若点 P(x, y)满足 xy > 0,则点 P 在第 ______________象限.04.已知点P(2a- 8, 2- a)是第三象限的整点,则该点的坐标为___________.【例3】已知 A 点与点 B(- 3, 4)关于 x 轴对称,求点 A 关于 y 轴对称的点的坐标.【解法指导】关于x 轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于 y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标 (y)相等.【变式题组】01.P(- 1, 3)关于 x 轴对称的点的坐标为____________ .02.P(3,- 2)关于 y 轴对称的点的坐标为____________ .03.P(a, b)关于原点对称的点的坐标为____________ .04.点A( - 3 , 2m-1 ) 关于原点对称的点在第四象限,则m 的取值范围是____________ .05.如果点M (a+b, ab)在第二象限内,那么点N(a, b) 关于 y 轴对称的点在第______象限.【例4】 P(3,- 4),则点 P 到 x 轴的距离是 ____________.【解法指导】 P(x,y)到 x 轴的距离是 | y|,到 y 轴的距离是 |x|.则 P 到轴的距离是|-4|=4【变式题组】01.已知点P(3, 5), Q(6,-5 ),则点 P、 Q 到 x 轴的距离分别是_________ ,__________.P 到 y 轴的距离是点Q 到 y 轴的距离的 ________倍.02.若 x 轴上的点P到y 轴的距离是3,则 P 点的坐标是 __________.03.如果点B(m + 1, 3m- 5) 到 x 轴的距离与它到y 轴的距离相等,求m 的值.04.若点 (5-a, a- 3)在一、三象限的角平分线上,求 a 的值.05.已知两点 A( -3, m), B(n ,4) ,AB ∥ x 轴,求 m 的值,并确定 n 的取值范围.【例5】如图,平面直角坐标系中有A、B 两点.(1)它们的坐标分别是 ___________,___________;(2)以 A 、 B 为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点 C、D 的坐标.【解法指导】平行x 轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行 y 轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1 , y1),B(x2 , y2),若 AB ∥ x 轴,则 |AB| = |x1- x2|;若 AB ∥ y,则 |AB| = |y1-y2|,则 (1)A(2 ,2) ,B(2 ,- 1); (2)3; (3)C(5 , 2),D(5 ,- 1)或 C(- 1, 2), D(- 1,-1).【变式题组】01.如图,四边形 ACBD 是平行四边形,且 AD ∥ x 轴,说明, A、D 两点的 ___________坐标相等,请你依据图形写出 A 、 B 、 C、 D 四点的坐标分别是_________ 、_________、 ____________ 、____________ .02.已知: A(0 ,4), B( -3, 0), C(3, 0)要画出平行四边形 ABCD ,请根据 A 、 B 、C 三点的坐标,写出第四个顶点 D 的坐标,你的答案是唯一的吗?03.已知: A(0 ,4),B(0 ,- 1),在坐标平面内求作一点,使△ ABC 的面积为 5,请写出点 C 的坐标规律.【例 6】平面直角坐标系,已知点 A( -3,- 2),B(0 ,3), C(- 3, 2),求△ ABC 的面积.1【解法指导】(1)三角形的面积= 2 ×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△11ABC =S△ ABD =S△ BCD =2·3·5-2·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ ABC三个顶点的坐标分别为 A( ― 3,― 1), B(1, 3), C(2,- 3),△ ABC 的面积.02.如图,已知 A( -4, 0), B( - 2, 2), C,0,- 1), D(1 , 0),求四边形 ABDC 的面积.03.已知: A( - 3,0),B(3 , 0), C(- 2,2),若 D 点在 y 轴上,且点 A 、B、C、D 四点所组成的四边形的面积为 15,求 D 点的坐标.。

人教版八年级数学几何培优讲义设计第6讲夹半角模型无答案

人教版八年级数学几何培优讲义设计第6讲夹半角模型无答案

第6讲夹半角模型知识目标模块一夹半角的模型例1例2、例3难度:★★★模块二夹半角的应用例4、例5、例6难度:★★★模块一夹半角的模型★知识导航夹半角,顾名思义,是一个大角夹着一个大小只有其一半的角,如下图所示。

这类题目有其固定的做法,当「取不同的值的时候,也会有类似的结论,下面我们就来看一看这一类问题。

夹半角的常见分类:(1)90度夹45度(2)120度夹60度(3) 2 a夹a题型一90度夹45度【例1】如图,正方形ABCD中,E在BC上,F在CD上,且/ EAF = 45° 求证:(1) BE + DF = EF (2)Z AEB =Z AEF【练习】在例1的条件下,若E在CB延长线上,F在DC延长线上,其余条件不变,证明:(1) DF —BE = EF(2) / AEB +Z AEF = 180°夹边角和勾股定理结合会产生很多有趣的结论,比如:(1)已知△ ABC为等腰三角形,/ ACB = 90° M、N是AB上的点,/ MCN = 45°求证:AM2+ BN2=MN2(2)如图,正方形ABCD中,F为CD中点,点E在BC上,且/ EAF = 45°求证:点E为线段BC靠近B的三等分点.题型二120度夹60度【例2】已知如图,△ ABC为等边三角形,/ BDC = 120° DB = DC , M、N分别是AB、AC上的动点,且 / MDN =60° 求证:MB + CN= MN.【练习】如图,四边形ABCD中,/ A =Z BCD = 90° / ADC = 60° AB = BC, E、F分别在AD、DC延长线上,且/ EBF = 60° 求证:AE = EF + CF.A£真题演练在等边△ ABC的两边AB、AC所在直线上分别有两点M、N. D为厶ABC外一点,且/ MDN = 60° / BDC =120° BD = DC .探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系以及△ AMN的周长Q与等边△ ABC的周长L的关系..VB(1)当点M、N在边AB、AC上,且DM = DN时,BM、NC、MN之间的数量关系是 ______________________Q此时—= _____________________;(不必证明)L(2)当点M、N在边AB、AC上,且当DM羽N时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)________________________________________________________________ 当M、N分别在边AB、CA的延长线上时,若AN= 2,贝U Q = ____________________________________________ (用含有L的式子表示)题型二2 a 夹a【例3】如图,在四边形 ABDC 中,M 、N 分别为AB 、AC 上的点,若/ BAC +Z BDC = 180° BD = DC ,1/ MDNBDC ,求证:BM + CN = MN .2模块二夹半角模型的应用【例4】如图,在直角坐标系中,A 点的坐标为(bfa —1440,若D ( 0, 4), EB 丄OB 于B ,且满足/ EAD = 45。

人教版数学八年级培优竞赛 双曲线偶遇特殊四边形 专题课件

人教版数学八年级培优竞赛 双曲线偶遇特殊四边形 专题课件

若反比例函数 y k(k≠0)的图象过点 C,则该反比例函数的表达式为( A )
x
A.y 3
x
B.y 4
x
C.y 5
x
D.y 6
x
4.在平面直角坐标系 xOy 中,将一块含有 45°角的直角三角板如图放置,其
中∠ACB=90°,点 B 坐标为(1,0),点 A 的坐标为(2,3),现将直角三角板
上,OB 在 x 轴上,∠ABO=90°,点 B 的坐标为(2,4),将矩形 OABC 绕点
B 逆时针旋转 90°,点 O 的对应点 E 恰好落在双曲线 y k (x>0)上,则 k 的
x
值为( A )
A.12
B.10
C.8
D.6
3. 如图,正方形 ABCD 的边长为 5,点 A 的坐标为(﹣4,0),点 B 在 y 轴上,
a
- 2 2 ),∴PQ=8.
谢谢观赏
例 2. 如图,平面直角坐标系 xOy 中,矩形 OABC 的边 OA、OC 分别落在 x、y 轴上,点 B 坐标为(6,4),反比例函数 y 6 的图象与 AB 边交于点 D,与
x
BC 边交于点 E,连结 DE,将△BDE 沿 DE 翻折至△B'DE 处,点 B'恰好落在
正比例函数 y=kx 图象上,求 k 的值.
绕点 A 顺时针旋转 45°得△ABC,直线 AB 与 y 轴交于点 E,若线段 EC 中点 G
恰好落在反比例函数 y k 上,则 k 的值为( B )
x
A. 1.5
B.2.25
C.2.5 D.3
第 4 题图
第 5 题图
第 6 题图
5.如图,点 A 是双曲线 y 8 在第二象限上的一动点,连接 AO 并延长交另

2022-2023学年初二数学第二学期培优专题17 正方形之半角模型

2022-2023学年初二数学第二学期培优专题17 正方形之半角模型

2022-2023学年初二数学第二学期培优专题17 正方形之半角模型【例题讲解】如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)在图1中,若G 在AD 上,且45GCE ∠=︒,则GE BE GD =+成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题:①如图2,在直角梯形ABCD 中,()//AD BC BC AD >,90B ,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.②如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥,2BD =,3CD =,则ABC 的面积为____(直接写出结果,不需要写出计算过程)解:(1)证明:在正方形ABCD 中 CB =CD ,∠B =∠CDA =90°,∴∠CDF =∠B =90°.在△BCE 和△DCF 中,CB CDB CDF BE DF⎧⎪∠∠⎨⎪⎩===,∴△BCE ≌△DCF(SAS ). ∴CE =CF .(2)解:GE =BE +GD 成立.理由如下:∵∠BCD =90°,∠GCE =45°, ∴∠BCE +∠GCD =45°.∵△BCE ≌△DCF (已证),∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°.∴∠ECG =∠FCG =45°.在△ECG 和△FCG 中,CE CFECG FCG CG CG ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ).∴GE =FG .∵FG =GD +DF ,∴GE =BE +GD . 32由(2)和题设知:DE =DG +BE , 设DG =x ,则AD =12-x ,DE =x +4, 在Rt △ADE 中,由勾股定理,得:AD 2+AE 2=DE 2∴(12-4)2+(12-x )2=(x +4)2解得x =6.∴DE =6+4=10;②将△ABD 沿着AB 边折叠,使D 与E 重合,△ACD 沿着AC 边折叠,使D 与G 重合, 可得∠BAD =∠EAB ,∠DAC =∠GAC ,∴∠EAG =∠E =∠G =90°,AE =AG =AD ,BD =EB =2,DC =CG =3,∴四边形AEFG 为正方形,设正方形的边长为x ,可得BF =x -2,CF =x -3,在Rt △BCF 中,根据勾股定理得:BF 2+CF 2=BC 2, 即(x -2)2+(x -3)2=(2+3)2,解得:x =6或x =-1(舍去),∴AD =6, 则S △ABC =12BC •AD =15.【综合演练】1.如图,在四边形纸片 ABCD 中,∠B =∠D =90°,点 E ,F 分别在边 BC ,CD 上,将 AB ,AD 分别沿 AE ,AF 折叠,点 B ,D 恰好都和点 G 重合,∠EAF =45°.(1)求证:四边形 ABCD 是正方形; (2)若 EC =FC =1,求 AB 的长度.2.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.连结DM 并延长交AE 的延长线于N ,求证:45AND ∠=︒.3.已知正方形ABCD,∠EAF=45°,将∠EAF绕顶点A旋转,角的两边始终与直线CD交于点E,与直线BC交于点F,连接EF.(1)如图①,当BF=DE时,求证:△ABF≌△ADE;(2)若∠EAF旋转到如图②的位置时,求证:∠AFB=∠AFE;(3)若BC=4,当边AE经过线段BC的中点时,在AF的右侧作以AF为腰的等腰直角三角形AFP,直接写出点P到直线AB的距离.4.已知正方形ABCD,点E,F分别是边AB,BC上的动点.(1)如图1,点E,F分别是边AB,CD上的中点,证明DE=DF;(2)如图2,若正方形ABCD的边长为1,△BEF的周长为2.①试证明∠EDF=45°;②请你进一步探究图形的其它重要性质,并将如下A,B,C,D四个结论中,正确的代号直接填写在横线上(不必写出推理过程):_________.A.△DEF一定是等腰三角形.B.EF=AE+CF.C.△DEF中,EF边上的高为定值.5.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.②若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高.6.(1)如图①,在正方形ABCD 中,E 、F 分别是BC 、DC 上的点,且45EAF ∠=︒,连接EF ,探究BE 、DF 、EF 之间的数量关系,并说明理由;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、DC 上的点,且12EAF BAD ∠=∠,此时(1)中的结论是否仍然成立?请说明理由.7.已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系 (3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.8.已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由; (3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长. 9.如图正方形ABCD 的边OA 、OC 在坐标轴上,已知点()3,3B .将正方形ABCO 绕点A 顺时针旋转一定的角度(小于90︒),得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连接AP 、AG .(1)求PAG ∠的度数.(2)当OAG CPG ∠=∠时,求点P 的坐标.(3)在(2)的条件下,直线PE 上是否存在点M ,使以M 、A 、G 为顶点的三角形是等腰三角形?若存10.如图,已知AD∥BC,AB⊥BC,AB=BC=12,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D.(1)如图1,当P为AB的中点时,求出AD的长;(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°;(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.当QG=2时,求QH的值.11.分层探究(1)问题提出:如图1,点E、F别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF,解题思路:把△ABE绕点A逆时针旋转度至△ADG,可使AB与AD重合.由∠FDG=ADG+∠ADC =180°,则知F、D、G三点共线,从而可证△AFG≌(),从而得EF=BE+DF,阅读以上内容并填空.(2)类比引申:如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°.探究:若∠B、∠D都不是直角,当∠B、∠D满足什么数量关系时,仍有EF=BE+DF?(3)联想拓展:如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,并且∠DAE=45°.猜想BD、CE、DE的数量关系,并给出理由.12.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,(3)如图3,∠PDG =45°,DH ⊥PG 于H ,PH =2,HG =4.直接写出DH 的长.13.已知一次函数()134502y kx k k =++≠, (1)无论k 为何值,函数图像必过定点,求该点的坐标;(2)如图1,当k =-12时,该直线交x 轴,y 轴于A ,B 两点,直线l 2:y =x +1交AB 于点P ,点Q 是l 2上一点,若S ∆ABQ =6,求Q 点的坐标;(3)如图2,在第2问的条件下,已知D 点在该直线上,横坐标为1,C 点在x 轴负半轴,∠ABC =45︒,动点M 的坐标为(a ,a ),求CM+MD 的最小值.14.问题背景:如图1,在正方形ABCD 中,点E F 、分别在边BC CD 、上,45EAF ∠=︒,求证:EF BE DF =+.洋洋同学给出了部分证明过程,请你接着完成剩余的证明过程.正方形ABCD ,90AB AD ADP ABE ∴∠∠︒=,==,在Rt ABE △和Rt ADP △中,AB AD ABE ADP BE DP =⎧⎪∠=∠⎨⎪=⎩ ()Rt ABE Rt ADP SAS ∴△≌△迁移应用:如图2,在正方形ABCD 中,QA QB 、交CD 于点G H 、,若45AQB ∠=︒,31CH GH ==,,求AG 的长.联系拓展:如图3,在矩形ABCD 中,点E F 、分别在边BC CD 、上,45EAF ∠=︒,若::1:2:4DF AD AB =,探究BE 与EC 的数量关系,并给出证明.15.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.(1)求证:B ,M 关于AE 对称;(2)若EFC ∠的平分线交AE 的延长线于G ,求证:2AG =.16.已知A (m ,n ),且满足|m ﹣2|+(n ﹣2)2=0,过A 作AB ⊥y 轴,垂足为B . (1)求A 点坐标.(2)如图1,分别以AB ,AO 为边作等边△ABC 和△AOD ,试判定线段AC 和DC 的数量关系和位置关系,并(3)如图2,过A作AE⊥x轴,垂足为E,点F、G分别为线段OE、AE上的两个动点(不与端点重合),满足∠FBG=45°,设OF=a,AG=b,FG=c,试探究2ca b﹣a﹣b的值是否为定值?如果是求此定值;如果不是,请说明理由.答案与解析【例题讲解】如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)在图1中,若G 在AD 上,且45GCE ∠=︒,则GE BE GD =+成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题:①如图2,在直角梯形ABCD 中,()//AD BC BC AD >,90B ,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.②如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥,2BD =,3CD =,则ABC 的面积为____(直接写出结果,不需要写出计算过程)解:(1)证明:在正方形ABCD 中 CB =CD ,∠B =∠CDA =90°,∴∠CDF =∠B =90°.在△BCE 和△DCF 中,CB CDB CDF BE DF⎧⎪∠∠⎨⎪⎩===,∴△BCE ≌△DCF(SAS ). ∴CE =CF .(2)解:GE =BE +GD 成立.理由如下:∵∠BCD =90°,∠GCE =45°, ∴∠BCE +∠GCD =45°.∵△BCE ≌△DCF (已证),∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°.∴∠ECG =∠FCG =45°.在△ECG 和△FCG 中,CE CFECG FCG CG CG ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ).∴GE =FG .∵FG =GD +DF ,∴GE =BE +GD . 32由(2)和题设知:DE=DG+BE,设DG=x,则AD=12-x,DE=x+4,在Rt△ADE中,由勾股定理,得:AD2+AE2=DE2∴(12-4)2+(12-x)2=(x+4)2解得x=6.∴DE=6+4=10;②将△ABD沿着AB边折叠,使D与E重合,△ACD沿着AC边折叠,使D与G重合,可得∠BAD=∠EAB,∠DAC=∠GAC,∴∠EAG=∠E=∠G=90°,AE=AG=AD,BD=EB=2,DC=CG=3,∴四边形AEFG为正方形,设正方形的边长为x,可得BF=x-2,CF=x-3,在Rt△BCF中,根据勾股定理得:BF2+CF2=BC2,即(x-2)2+(x-3)2=(2+3)2,解得:x=6或x=-1(舍去),∴AD=6,则S△ABC=12BC•AD=15.【综合演练】1.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.(1)求证:四边形ABCD是正方形;(2)若EC=FC=1,求AB的长度.【答案】(1)见解析;(2)212AB=+.【分析】(1)由题意得,∠BAE=∠EAG,∠DAF=∠FAG,于是得到∠BAD=2∠EAF=90°,推出四边形ABCD是矩形,根据正方形的判定定理即可得到结论;(2)根据EC=FC=1,得到BE=DF,根据勾股定理得到EF的长,即可求解.【解答】(1)由折叠性质知:∠BAE=∠EAG,∠DAF=∠FAG,∵∠EAF=45°,∴∠BAD=2∠EAF=2⨯45°=90°,又∵∠B=∠D=90°,由折叠性质知:AB =AG ,AD =AG ,∴AB =AD ,∴四边形ABCD 是正方形;(2)∵EC =FC =1,∴BE =DF ,EF =2222112EC FC +=+=,∵EF =EG +GF =BE +DF ,∴BE =DF =12EF =22, ∴AB =BC =BE +EC =212+. 【点评】本题考查了翻折变换的性质,勾股定理的应用,正方形的判定和性质,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边、对应角相等.2.如图所示,正方形ABCD 中,点E ,F 分别为BC ,CD 上一点,点M 为EF 上一点,D ,M 关于直线AF 对称.连结DM 并延长交AE 的延长线于N ,求证:45AND ∠=︒.【答案】见解析【分析】连结AM ,由对称的性质可知DAF MAF ∆≅∆,进而可证BAE MAE ∆≅∆,即可得45EAF ∠=︒,由∠AON =90°,可得45AND ∠=︒.【解答】证明:连结AM ,D 、M 关于AF 对称,AF ∴垂直平分DM ,ADF AMF ∴∆∆≌,90AMF ADF AME ∴∠=∠=︒=∠,AM AD AB ==.在Rt ABE ∆和Rt AME ∆中AE=AE AM=AB ⎧⎨⎩ABE Rt R AME t ∴∆∆≌,BAE MAE ∴∠=∠,又DAF MAF ∠=∠,45EAF ∴∠=︒,45AND ∴∠=︒.【点评】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,勾股定理,三角形的面积等知识,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45︒角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.3.已知正方形ABCD ,∠EAF =45°,将∠EAF 绕顶点A 旋转,角的两边始终与直线CD 交于点E ,与直线BC 交于点F ,连接EF .(1)如图①,当BF =DE 时,求证:△ABF ≌△ADE ;(2)若∠EAF 旋转到如图②的位置时,求证:∠AFB =∠AFE ;(3)若BC =4,当边AE 经过线段BC 的中点时,在AF 的右侧作以AF 为腰的等腰直角三角形AFP ,直接写出点P 到直线AB 的距离.【答案】(1)见解析;(2)见解析;(3)163或4 【分析】(1)利用SAS 定理判定即可;(2)延长CB 到G ,使BG DE =,连接AG ,易证ABG ADE ∆≅∆,则AG AE =,BAG DAE ∠=∠;再证明AGF AEF ∆≅∆即可得出结论; (3)分两种情形:①90AFP ∠=︒,②90PAF ∠=︒;①过点F 作FG AE ⊥于点G ,过点P 作PH BF ⊥,交CB 延长线于点H ,利用三角形的面积公式和勾股定理列出方程组求得线段BF ;利用PHF FBA ∆≅∆,可得44则点P 到直线AB 的距离为PH ,结论可得.【解答】解:(1)证明:四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒.在ABF ∆和ADE ∆中,90AB AD B D BF DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABF ADE SAS ∴∆≅∆.(2)延长CB 到G ,使BG DE =,连接AG ,如图,四边形ABCD 为正方形,AB AD ∴=,90B D ∠=∠=︒.90ABG D ∴∠=∠=︒.在ABG ∆和ADE ∆中,90AB AD ABG D BG DE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABG ADE SAS ∴∆≅∆.AG AE ∴=,BAG DAE ∠=∠.90DAE BAE ∠+∠=︒,90BAG BAE ∴∠+∠=︒.即90GAE ∠=︒.45EAF ∠=︒,45EAF GAF ∴=∠=∠︒.在GAF ∆和EAF ∆中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()GAF EAF SAS ∴∆≅∆.AFB AFE ∴∠=∠.(3)点P 到直线AB 的距离为143或4,理由: 当①90AFP ∠=︒时,AF PF =;过点F 作FG AE ⊥于点G ,过点P 作PH BF ⊥,交CB 延长线于点H ,如图,四边形ABCD 为正方形,4AB BC ∴==,90ABC ∠=︒.点E 是BC 的中点,122BE CB ∴==, 22224225AE AB BE ∴=+=+=.设BF x =,AF y =,FG AE ⊥,45FAE ∠=︒,22FG AG y ∴==. 1122AEF S EF AB AE FG ∆=⨯⨯=⨯, EF AB AE FG ∴⋅=⋅.2(2)4252x y ∴+⨯=⨯⨯. 在Rt ABF 中,222AB BF AF +=,2224x y ∴+=.222104(2)4y x ⎧=+⎪解得:11434103x y ⎧=⎪⎪⎨⎪=⎪⎩,2212410x y =-⎧⎪⎨=-⎪⎩(不合题意,舍去). 43BF ∴=. 90AFP ∠=︒,90PFH AFB ∴∠+∠=︒,90ABC ∠=︒,90AFB FAB ∴∠+∠=︒,PFH FAB ∴∠=∠.在PHF ∆和FAB ∆中,90PHF ABF PFH FABPF FA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()PHF FBA AAS ∴∆≅∆.4FH AB ∴==,P ∴到直线AB 的距离为416433HB HF FB =+=+=. ②当90PAF ∠=︒,PA AF =时,过P 作PH AB ⊥,交BA 的延长线于点H ,如图,则点P 到直线AB 的距离为PH ,90PAF ∠=︒,90PAH FAB ∴∠+∠=︒,90ABC ∠=︒,90AFB FAB ∴∠+∠=︒,PAH AFB ∴∠=∠.90PHA ABF PAH AFBPA AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()PHA ABF AAS ∴∆≅∆.4PH AB ∴==.∴点P 到直线AB 的距离为4PH =.综上,点P 到直线AB 的距离为163或4. 【点评】本题是四边形的综合题,主要考查了三角形全等的判定与性质,正方形的性质,三角形的面积,勾股定理,二元二次方程组的解法,根据正方形的特殊性质构造全等三角形是解题的关键.4.已知正方形ABCD ,点E ,F 分别是边AB ,BC 上的动点.(1)如图1,点E ,F 分别是边AB ,CD 上的中点,证明DE =DF ;(2)如图2,若正方形ABCD 的边长为1,△BEF 的周长为2.①试证明∠EDF =45°;②请你进一步探究图形的其它重要性质,并将如下A ,B ,C ,D 四个结论中,正确的代号直接填写在横线上(不必写出推理过程):_________.A .△DEF 一定是等腰三角形.B .EF =AE +CF .C .△DEF 中,EF 边上的高为定值.D .△DEF 的面积存在最小值. 【答案】(1)见解析;(2)①见解析;②BCD【分析】(1)根据正方形性质及中点定义可得∠A =∠C =90°,AD =CD =AB =BC ,AE =12AB ,CF =12BC ,进而得出AE =CF ,利用SAS 证得△ADE ≌△CDF ,即可得出结论;(2)①延长BC 至G ,使CG =AE ,如图2,根据正方形性质得出BE +BF +FG =2,根据△BEF 的周长为2,得出BE +BF +EF =2,可得EF =FG ,利用SAS 证明△DCG ≌△DAE ,得出DG =DE ,再证明△DEF ≌△DGF (SSS ),②如图2,设AE =x ,则BE =1﹣x ,BF =1+x ﹣FG =1+x ﹣EF ,得出EF =211x x ++,DE =21x +,DF =2221x x++,可判断A 不正确,由①可判断B 、C 正确,如图3,连接BD ,延长DA 至G ,延长DC 至H ,使DG =DH =DB =2,连接GH ,交AB 于点E ',交BC 于点F ',证得A E '+C F '=E F '',得出∠E DF ''=45°,此时,E F ''最小,即△DEF 的面积存在最小值,可判断D 正确.【解答】解:(1)∵四边形ABCD 是正方形,∴∠A =∠C =90°,AD =CD =AB =BC ,∵点E ,F 分别是边AB ,CD 上的中点,∴AE =12AB ,CF =12BC ,∴AE =CF ,在△ADE 和△CDF 中, AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDF (SAS ),∴DE =DF ;(2)如图2,①延长BC 至G ,使CG =AE ,∵四边形ABCD 是正方形,∴∠A =∠BCD =∠ADC =90°,AD =CD =AB =BC =1,∴BE +AE +BF +CF =BE +CG +BF +CF =2,即BE +BF +FG =2,∵△BEF 的周长为2,∴BE +BF +EF =2,∴EF =FG ,∴∠DCG =∠A ,在△DCG 和△DAE 中,CD AD DCG A CG AE =⎧⎪∠=∠⎨⎪=⎩,∴△DCG ≌△DAE (SAS ),∴DG =DE ,∠CDG =∠ADE ,∵∠ADE +∠EDC =90°,∴∠CDG +∠EDC =90°,∴∠EDG =90°,在△DEF 和△DGF 中,DE DG EF FG DF DF =⎧⎪=⎨⎪=⎩,∴△DEF ≌△DGF (SSS ),∴∠EDF =∠FDG ,∵∠EDF +∠FDG =90°,∴∠EDF =∠FDG =45°;②如图2,设AE =x ,则BE =1﹣x ,BF =1+x ﹣FG =1+x ﹣EF ,∵BE 2+BF 2=EF 2,∴(1﹣x )2+(1+x ﹣EF )2=EF 2, 解得:EF =211x x++, 在Rt △ADE 中,DE =21x +,∵CF =11x -,∴DF =2211()1x x -++=2221x x ++, ∴△DEF 不一定是等腰三角形,故结论A 不正确;由①知,EF =FG =CF +CG =CF +AE ,故结论B 正确;由①知,△DEF ≌△DGF ,∴EF 边上的高=GF 边上的高=1,故结论C 正确;如图3,连接BD ,延长DA 至G ,延长DC 至H ,使DG =DH =DB =2,连接GH ,交AB 于点E ',交BC 于点F ',则∠DGH =∠DHG =45°,A E '=AG =C F '=CH =2﹣1,∴B E '=B F '=AB ﹣AE ′=2﹣2,由勾股定理得:E F ''=2(2﹣2)=22﹣2,又∵AE'+C F '=22﹣2,∴A F '+C F '=E F '',根据①可知∠E DF ''=45°,此时,E F ''最小,即△DEF 的面积存在最小值,故结论D 正确;故答案为:BCD .【点评】本题是四边形综合题,考查了正方形性质,全等三角形判定和性质,等腰三角形判定和性质,勾股定理等,添加辅助线构造全等三角形是解题关键.5.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .①试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.②若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高. 【答案】(1)证明见解析;(2)①EF BE DF =-,证明见解析;②25【分析】(1)延长CB 到G ,使BG=DF ,连接AG ,根据正方形性质得出AD=AB ,∠D=∠ABG ,根据全等三角形的判定推出即可;(2)①EF=BE -DF ,理由是:在BC 上取BG=DF ,连接AG ,证△ABG ≌△ADF ,△FAE ≌△EAG 即可;②过F 作FH ⊥AE 于H ,设正方形ABCD 的边长是x ,则BC=CD=x ,EF=GE=BC-BG+CE=x+4,在Rt △FCE 中,由勾股定理得出方程(x+4)2=(x+2)2+62,求出x 后再求出FH 即可.【解答】(1)证明:如图1,延长CB 到G ,使BG=DF ,连接AG ,∵四边形ABCD 是正方形,∴∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB ,在△ADF 和△ABG 中,AD AB D ABG DF BG ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△ABG (SAS ),∵∠EAF=45°,∴∠EAG=∠EAB+∠BAG=∠EAB+∠DAF=45°,∴∠EAF=∠EAG ,∵AE=AE ,∴△EAF ≌△EAG ,∴EF=EG=EB+BG=EB+DF .(2)①三线段EF 、DF 、BE 的数量关系是:EF BE DF =-,理由如下:如图2,在BC 上取一点G ,使BG DF =连接AG ,同(1)可证ABG ADF ∆∆≌,∴AG=AF ,∠DAF=∠BAG ,∵AMN ∆是等腰直角三角形,∴45MNA N ∠=∠=︒,∴45FAD DAE ∠+∠=︒,∴45DAE BAG ∠+∠=︒,∵90DAB ∠=︒,∴904545GAE FAE ∠=︒-︒=︒=∠,在FAE ∆和GAE ∆中,AF AG FAE GAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴()FAE GAE SAS ∆∆≌,∴EF EG BE BG ==-,∵BG DF =,∴EF BE DF =-.②如图2,过F 作FH ⊥AE 于H ,∵CE=6,DF=BG=2,∴EF=GE=CG+CE=BC-BG+CE=x-2+6=x+4,在Rt △FCE 中,由勾股定理得:EF 2=FC 2+CE 2,∴(x+4)2=(x+2)2+62,解得:x=6, ∴AG=AF=2262210+=, ∵∠FAM=45°,∴FH=22AF=22102⨯=25,, 即△AEF 中AE 边上的高为25.【点评】本题考查旋转综合题、正方形的性质、全等三角形的性质和判定、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(1)如图①,在正方形ABCD 中,E 、F 分别是BC 、DC 上的点,且45EAF ∠=︒,连接EF ,探究BE 、DF 、EF 之间的数量关系,并说明理由;(2)如图②,在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E 、F 分别是BC 、DC 上的点,且12EAF BAD ∠=∠,此时(1)中的结论是否仍然成立?请说明理由.【答案】(1)EF BE DF =+,理由见解析;(2)成立,理由见解析【分析】(1)典型的“夹半角模型”,延长CB 到M 使得BM DF =,先证ADF ABM ≌,再证EAM EAF ≌,最后根据边的关系即可证明;(2)图形变式题可以参考第一问的思路,延长CB 到M 使得BM DF =,先证ADF ABM ≌,再证EAM EAF ≌,最后根据边的关系即可证明;【解答】解:(1)EF BE DF =+证明:延长CB 到M ,使得BM DF =连接AM∵四边形ABCD 是正方形∴AB AD =,D ABM ∠=∠又∵BM DF =∴()ADF ABM SAS ≌∴AF AM =,12∠=∠∵45EAF ∠=︒∴1345∠+∠=︒∴2345MAE EAF ∠+∠=∠=︒=∠又∵AE AE =∴()EAM EAF SAS ≌∴EF EM BE BM ==+又∵BM DF =∴EF EB DF =+(2)EF BE DF =+证明:延长CB 到M ,使得BM DF =连接AM∵180ABC D ∠+∠=︒,4180ABC ∠+∠=︒∴4D ∠=∠∴()ADF ABM SAS ≌∴AF AM =,12∠=∠∵12EAF BAD ∠=∠∴13EAF ∠+∠=∠∴23MAE EAF ∠=∠+∠=∠又∵AE AE =∴()EAM EAF SAS ≌∴EF EM BE BM ==+又∵BM DF =∴EF EB DF =+【点评】本题考查了全等三角形的判定和性质,正确的根据“夹半角模型”作出辅助线是解题的关键.7.已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【解答】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∴45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:∵四边形ABCD 是正方形,∴AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∴GAB GAD DAN GAD ∠+∠=∠+∠,∴90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∵BM BG GM -=,BG DN =,∴BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∵四边形ABCD 是正方形,∴AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG △中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩,()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∴MAB BAG GAD BAG ∠+∠=∠+∠,∴90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩,()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∵6CN =,8MC =,∴1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,∵DC BC =,∴48x x +=-,2∴6AB BC CD CN ====,∵//AB CD ,∴BAP CNP ∠=∠,在ABP 与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABP NCP AAS ∴△≌△,132CP BP BC ∴===, ∴CP 的长为3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,能够作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的的关键.8.已知正方形ABCD ,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、DC 于点M 、N ,AH MN ⊥于点H .(1)如图①,当BM DN =时,可以通过证明≌ADN ABM ,得到AH 与AB 的数量关系,这个数量关系是___________;(2)如图②,当BM DN ≠时,(1)中发现的AH 与AB 的数量关系还成立吗?说明理由;(3)如图③,已知AMN 中,45MAN ∠=︒,AH MN ⊥于点H ,3MH =,7=NH ,求AH 的长.【答案】(1)AB AH =;(2)AB AH =成立,理由见解析;(3)5+46AH =【分析】(1)由“SAS ”可证Rt △ABM ≌Rt △ADN ,从而可证∠BAM =∠MAH =22.5°,由AAS 可证Rt △ABM ≌Rt △AHM ,即可得AB =AH ;(2)延长CB 至E ,使BE =DN ,由Rt △AEB ≌Rt △AND 得AE =AN ,∠EAB =∠NAD ,从而可证△AEM ≌△ANM ,根据全等三角形对应边上的高相等即可得AB =AH ;(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,分别延长BM 和DN 交于点C ,可证四边形【解答】解:(1)∵正方形ABCD , ∴AB =AD ,∠B =∠D =∠BAD =90°, 在Rt △ABM 和Rt △ADN 中, AB AD B D BM DN ⎧⎪∠∠⎨⎪⎩===∴Rt △ABM ≌Rt △ADN (SAS ), ∴∠BAM =∠DAN ,AM =AN , ∵∠MAN =45°,∴∠BAM +∠DAN =45°,∴∠BAM =∠DAN =22.5°,∵∠MAN =45°,AM =AN ,AH ⊥MN , ∴∠MAH =∠NAH =22.5°, ∴∠BAM =∠MAH ,在Rt △ABM 和Rt △AHM 中, BAM MAH B AHM AM AM ∠∠⎧⎪∠∠⎨⎪⎩===∴Rt △ABM ≌Rt △AHM (AAS ), ∴AB =AH ,故答案为:AB =AH ;(2)AB =AH 成立,理由如下: 延长CB 至E ,使BE =DN ,如图:∵四边形ABCD 是正方形,在Rt △AEB 和Rt △AND 中,AB AD ABE D BE DN ⎧⎪∠∠⎨⎪⎩===∴Rt △AEB ≌Rt △AND (SAS ),∴AE =AN ,∠EAB =∠NAD ,∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =45°,∴∠EAM =45°,∴∠EAM =∠NAM =45°,在△AEM 和△ANM 中,AE AN EAM MAN AM AM ⎧⎪∠∠⎨⎪⎩===∴△AEM ≌△ANM (SAS ),∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH .(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,分别延长BM 和DN 交于点C ,如图:∵沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴AB =AH =AD ,∠BAD =2∠MAN =90°,∠B =∠AHM =90°=∠AHN =∠D ,∴四边形ABCD 是正方形,∴AH =AB =BC =CD =AD .37设AH =AB =BC =CD =x ,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴()()()2227+3=37x x -+-,解得546x =+或546x =-(舍去),∴5+46AH =.【点评】本题考查全等三角形的判定和性质,正方形性质及应用,勾股定理等知识,解题的关键是作辅助线,构造全等三角形.9.如图正方形ABCD 的边OA 、OC 在坐标轴上,已知点()3,3B .将正方形ABCO 绕点A 顺时针旋转一定的角度(小于90︒),得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连接AP 、AG .(1)求PAG ∠的度数.(2)当OAG CPG ∠=∠时,求点P 的坐标.(3)在(2)的条件下,直线PE 上是否存在点M ,使以M 、A 、G 为顶点的三角形是等腰三角形?若存在,请直接写出M 点的坐标,若不存在,请说明理由. 【答案】(1)∠PAG =45°(2)P 点坐标为:(3,333- );(3)M 1(0,-3)、M 2(23,3).【分析】(1)由AD =AB ,AP =AP ,根据斜边和一条直角边对应相等的两个直角三角形全等,易证Rt △ADP ≌Rt △ABP ,同理易证Rt △AOG ≌Rt △ADG ,继而可得∠DAP =∠BAP ,∠OAG =∠DAG ;然后根据∠OAG +∠DAG +∠DAP +∠BAP =90°,求出∠PAG 的度数;(2)根据题意易得:∠OAG +∠AGO =90°, ∠CPG +∠PGC =90°,继而可得∠AGO +∠AGD +∠PGC =180°,∠AGO =∠AGD =∠PGC =60°,∠OAG =∠CPG =30°,在Rt △AOG 中,3OG =,,CG =3﹣3,在Rt △CPG 中,可得333PC =-,继而即可求解;(3)根据题意,分两种情况:①当点M 在为直线PE 与y 轴交点时;②当点M 为直线EP 与直线AB 的交点时;根据以M 、A 、G 为顶点的三角形是等腰三角形,求出M 点坐标即可.1又∵∠AOG=∠MOG=90°,OG=OG,∴△AOG≌△MOG,∴AG=MG,OM=OA=3,∴点M坐标为(0,﹣3).②如图2,当点M为直线EP与直线AB的交点时,∵AB//CO,∴∠AMG=∠PGC=60°,又∵∠AGP=60°,∴∠AMG=∠AGP=60°,∴△AGM是等边三角形,∴AM=AG=23,∴M的横坐标是23,纵坐标是3,∴点M坐标为(23,3).综上,可得点M坐标为(0,﹣3)或(23,3).【点评】本题考查几何变换综合题,涉及到全等三角形的判定和性质,等腰三角形的判定及其性质,解直角三角形,解题的关键是综合运用所学知识,利用数形结合的思想,学会分类讨论.10.如图,已知AD∥BC,AB⊥BC,AB=BC=12,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D.(1)如图1,当P为AB的中点时,求出AD的长;(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°;(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、2【答案】(1)3AD =;(2)证明过程见解析;(3)24=5QH . 【分析】(1)如图1,根据平行线的性质得到∠A =∠B =90°,由折叠的性质得到∠CEP =∠B =90°,PB =PE ,∠BPC =∠EPC ,根据全等三角形Rt PAD Rt PED ≅的性质得到DA DE =.作DT BC ⊥于T ,设AD x =,根据AB =BC =12,得到12DC x =+,12CT x =-,根据勾股定理求出AD 的长;(2)如图2,过C 作CK ⊥AD 交AD 的延长线于K ,推出四边形ABCK 是正方形,求得CK =CB ,根据折叠的性质得到∠CEP =∠B =90°,BC =CE ,∠BCP =∠ECP ,得到CE= CB= CK ,根据全等三角形Rt CEF Rt CKF ≅的性质即可得到结论;(3)如图3,将△OQG 沿OM 翻折至△OUG ,将△OQH 沿ON 翻折至△OWH ,延长UG ,WH 交于V ,根据已知条件和折叠的性质,利用有三个角是直角的四边形是矩形和邻边相等的矩形是正方形,推出四边形UOWV 是正方形,设QH =y ,在Rt GVH 中,根据勾股定理即可得到结论.【解答】解:(1)如图1,连结PD ,∵AD ∥BC ,AB ⊥BC ,∴∠A =∠B =90°∵将△BPC 沿PC 翻折至△EPC ,∴∠CEP =∠B =90°,PB =PE ,∠BPC =∠EPC ,∴∠DEP =90°∵当P 为AB 的中点,∴AP =BP∴PA =PE∵PD =PD∴()Rt PAD Rt PED HL ≅,∴DA DE =121212由勾股定理得222(12)12(12)x x -+=+,解得3x =,∴3AD =(2)如图2,作CK AD ⊥交延长线于K ,∴90A B K ∠=∠=∠=︒∴四边形ABCK 为矩形又∵AB =BC∴矩形ABCK 为正方形∴CK =CB ,∠BCK =90°∵将△BPC 沿PC 翻折至△EPC ,∴∠FED =90°,CE= CB= CK ,又∵CF =CF∴()Rt CEF Rt CKF HL ≅,∴∠ECF =∠KCF∴∠BCP +∠KCF =∠PCE +∠FCE =45°∴∠PCF =45°(3)如图3,将△OQG 沿OM 翻折至△OUG ,将△OQH 沿ON 翻折至△OWH ,延长UG ,WH 交于V ,∴∠UOG =∠QOG ,∠WOH =∠QOH ,OU =OQ =OW =8,UG =QG =2,设QH =WH =y∴ ∠UOW =2∠MON =90°,∵GH ⊥OQ∴∠OQG=∠OQH =90° . ∴∠U =∠W =90°=∠UOW ,∴四边形UOWV 是正方形∴UV =WV =8,∠V =90°,∴GV =6,HV =8-y ,GH =y +2∴222GV HV GH +=∴()()22268+2y y +-=解得245y =,即24=5QH .【点评】本题考查了折叠的性质,全等三角形的判定和性质,正方形的判定和性质,正确的作出辅助线是解题的关键.11.分层探究(1)问题提出:如图1,点E 、F 别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,连接EF .求证:EF =BE +DF ,解题思路:把△ABE 绕点A 逆时针旋转 度至△ADG ,可使AB 与AD 重合.由∠FDG =ADG +∠ADC =180°,则知F 、D 、G 三点共线,从而可证△AFG ≌ ( ),从而得EF =BE +DF ,阅读以上内容并填空.2245°.探究:若∠B 、∠D 都不是直角,当∠B 、∠D 满足什么数量关系时,仍有EF =BE +DF ?(3)联想拓展:如图3,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,并且∠DAE =45°.猜想BD 、CE 、DE 的数量关系,并给出理由.【答案】(1)90,△AFE ,SAS ;(2)∠B +∠D =180°;(3)EF 2=BE 2+FD 2,理由见解析【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,再证明△AFG ≌△AFE 进而得到EF =FG ,即可得EF =BE +DF ;(2)∠B +∠D =180°时,EF =BE +DF ,与(1)的证法类同;(3)把△AFD 绕点A 顺时针旋转90°得到△ABE ′,连接EE ′,根据旋转的性质,可知△AFD ≌△ABE ′得到BE ′=FD ,AE ′=AF ,∠D =∠ABE ′,∠EAD =∠E ′AB ,在Rt △ABD 中的,AB =AD ,可求得∠E ′BD =90°,所以E ′B 2+BE 2=E ′E 2,证△AE ′E ≌△AE ′F ,利用FE =EE ′得到EF 2=BE 2+FD 2.【解答】解:(1)∵AB =AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合.∴∠BAE =∠DAG ,∵∠BAD =90°,∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠EAF =∠FAG ,∵∠ADC =∠B =90°,∴∠FDG =180°,∴点F 、D 、G 共线,在△AFE 和△AFG 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ),∴EF =FG ,故答案为:90,△AFE ,SAS ;(2)当∠B +∠D =180°时,EF =BE +DF ,如图2∵AB =AD ,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,∴∠BAE =∠DAG ,∵∠BAD =90°,∠EAF =45°,∴∠BAE +∠DAF =45°,∴∠EAF =∠FAG ,∵∠ADC +∠B =180°,∴∠FDG =180°,∴点F 、D 、G 共线,在△AFE 和△AFG 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△AFG (SAS ),∴EF =FG ,即EF =BE +DF ,故答案为:∠B +∠D =180°;(3)猜想:EF 2=BE 2+FD 2,证明:把△AFD 绕点A 顺时针旋转90°得到△ABE ′,连接EE ′,如图3,∴△AFD ≌△ABE ′,∴BE ′=FD ,AE ′=AF ,∠D =∠ABE ′,∠EAD =∠E ′AB ,∵AB =AD ,∴∠ABD =∠ADB =45°,∴∠ABD +∠ABE ′=90°,即∠E ′BD =90°,∴E ′B 2+BE 2=E ′E 2,又∵∠FAE =45°,∴∠BAE +∠EAD =45°,∴∠E ′AB +∠BAE =45°,即∠E ′AE =45°,在△AEE ′和△AEF 中, AE AE E AE FAE AE AF ⎧=⎪'∠=∠⎨⎪'=⎩, ∴△AEE ′≌△AEF (SAS ),∴EE ′=FE ,∴EF 2=BE 2+DF 2.【点评】本题主要考查了几何变换综合,结合全等三角形的性质与判定计算是关键.12.已知在正方形ABCD 和正方形CEFG 中,直线BG ,DE 交于点H .(1)如图1,当B ,C ,E 共线时,求证:BH ⊥DE .(2)如图2,把正方形CEFG 绕C 点顺时针旋转α度(0<α<90),M ,N 分别为BG ,DE 的中点,探究HM ,HN ,CM 之间的数量关系,并证明你的结论.(3)如图3,∠PDG =45°,DH ⊥PG 于H ,PH =2,HG =4.直接写出DH 的长.【答案】(1)见解析;(2)MH2+HN2=2CM2,理由见解析;(3)3+17.【分析】(1)根据正方形的性质得到BC=CD,CG=CE,∠BCG=∠DCE=90°,根据全等三角形的性质得到∠CBG=∠CDE,根据余角的性质即可得到结论;(2)根据正方形的性质得到BC=CD,CG=CE,∠BCD=∠GCE=90°,由全等三角形的性质得到∠CBG=∠CDE,BG=DE,求得∠MHN=90°,得到BM=DN,根据全等三角形的性质得到CM=CN,∠BCM=∠DCN,根据勾股定理即可得到结论;(3)根据折叠的性质得到AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH=∠GDC,AP=PH =2,CG=HG=4,根据正方形的性质得到∠B=90°,设DH=AD=AB=BC=x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BH⊥DE;(2)解:MH2+HN2=2CM2,理由:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,BG=DE,∵∠DPH=∠CPM,∴∠DHP=∠BCP=90°,。

夹半角模型

夹半角模型

夹半角模型夹半角模型是八年级全等三角形这一章中非常重要的模型,在武汉市的期中期末和月考考试中经常出现,他的特征是90°里面夹着45°,120°里面夹着60°,60°里面夹着30°,等等,类似这样的2倍角度或者一半的角度,通常会借助截长补短的方法,构造相等的角度构造全等三角形求解,谢老师通过多年的教学经验总结出以下典型例题供大家巩固提高。

1、如图,四边形ABCD 为正方形,∠MAN=45°,求证:DN+BM=MN解答:延长 CB 到 G,使 BG=DN,连接 AG ,∵AD=AB∠ADN=∠ABG=90°BG=DN ∴△ADN≅△ABG(SAS)∴AG=AN,∠GAB=∠DAN∴∠NAG=∠BAG+∠BAN=∠DAN+∠B AN=90°∴∠MAN=∠GAM=45°,DN=BGAG=AM ∴△AMN≅AGM(SAS)∴MN=GM∴DN+BM=MN2、四边形 ABCD 为正方形,∠MAN=45°,求证:DN-BM=MN解答:在 DN 上截取 DG,使 DG=BM,连接 AG∵AD=AB∠ADG=∠ABM=90°DG=BM ∴△ADG≅△ABM(SAS)∴AG=AM,∠DAG=∠BAM∴∠MAG=∠BAM+∠BAG=∠DAG+∠BAG =∠BAD=90°∠MAN=∠GAN=45°∵AG=AM∴△AMN≅△AGN(SAS)∴MN=GN=DN-BM3、如图,四边形ABCD 为正方形,DN+BM=MN,求证:∠MAN=45°解答:延长 CB 到 G,使 BG=DN,连接 AG ,∵AD=AB ,∠ADN=∠ABG=90°BG=DN∴△ADN≅△ABG(SAS)∴AG=AN,∠GAB=∠DAN∴∠NAG=∠BAG+∠BAN=∠DAN+∠BAN=90°∵DN+BM=MN∴BG+BM=MN=GM在△AMN与AGM中,AG=ANAM=AMMN=GM∴△AMN≅AGM(SSS)∴∠MAN=∠GAM=1/2X90°=45°4、四边形 ABCD 为正方形,DN-BM=MN,,求证:∠MAN=45°解答:在 DN 上截取 DG,使 DG=BM,连接 AG∵AD=AB ,∠ADG=∠ABM=90°DG=BM∴△ADG≅△ABM(SAS)∴AG=AM,∠DAG=∠BAM∴∠ MAG=∠BAM+∠BAG=∠DAG+∠BAG=∠BAD=90°∵DN-BM=MN ∴MN=GN在△AMN与AGM中,AG=AMAN=ANMN=GN∴△AMN≅AGN(SSS)∴∠MAN=∠GAN=1/2X90°=45°练习题:1、△ABD 中AB=AD,∠BAD=120°,∠MAN=60°,△BCD 为等边三角形,求证:DN+BM=MN2、△ABD 中AB=A D,∠BAD=120°,∠MAN=60°,△BCD 为等边三角形,求证:DN-BM=MN3、(2017秋·武昌月考)问题背景:“半角问题”(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究此“半角问题”的方法是:延长FD到点G.使DG =BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是________;(直接写结论,不需证明)探索延伸:当聪明的你遇到下面的问题该如何解决呢?(2)若将(1)中“∠BAD=120°,∠EAF=60°”换为∠EAF=1/2∠BAD.其它条件不变.如图1,试问线段EF、BE、FD具有怎样的数量关系,并证明.(3)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=1/2∠BAD,请直接写出线段EF、BE、FD它们之间的数量关系.(不需要证明)(4)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=1/2∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.日期:2019/10/8 19:00:07;用户:王小帅;邮箱:*************************;学号:33475答案:1、解答:延长 CB 到 G,使 BG=DN,连接 AG;∵AD=AB ,∠ADN=∠ABG, BG=DN∴△ADN≅△ABG(SAS)∴AG=AN,∠GAB=∠DAN∴∠NAG=∠BAD=120°∴AG=AN,∠MAN=∠GAM=60°∴△AMN≅AGM(SAS)∴MN=GM∴DN+BM=MN2、解答:在 DN 上截取 DG,使 DG=BM,连接 AG ,∵AD=AB ,∠ADG=∠ABM,DG=BM∴△ADG≅△ABM(SAS)∴AG=AM,∠DAG=∠BAM∴∠MAG=∠BAD=120°∴∠MAN=∠GAN=60°∵AG=AM∠MAN=∠GAN=60°∴△AMN≅AGN(SAS)∴MN=GN∴DN-BM=MN3、【解答】(1)答案为:EF=BE+DF;(2)如图1,延长EB到G,使BG=DF,连接AG.∵在△ABG与△ADF中,AB =AD,∠ABG=∠A DF ,BG =DF,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=1/2∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,易证△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(3)(1)中的结论EF=BE+FD仍然成立.理由是:如图2,延长EB到G,使BG=DF,连接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,AB =AD,∠ABG=∠D,BG =DF,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(4)结论EF=BE+FD不成立,应当是EF=BE﹣FD.证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG与△ADF中,AB =AD,∠ABG=∠A DF ,BG =DF,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=1/2∠BAD.∴∠GAE=∠EAF.∵AE=AE,易证△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.更多的几何模型学习欢迎扫码加谢老师微信:。

初中数学几何模型之半角模型

初中数学几何模型之半角模型

数学模型-----半角模型几何是初中数学中非常重要的内容,在数学的学习过程中,若能抓住基本图形,举一反三,定能引领学生领略到“一图一世界”的风采.下面先给大家介绍一种常见的数学模型---半角模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,有助于理清思路、节省大量时间,遇到这一类题型,都是可以迎刃而解的.一、模型类别二、相关结论的运用(一)等边三角形中120︒含60︒半角模型条件:△ABC是等边三角形,∠CDB =120︒,∠EDF=60︒,BD=CD,旋转△BDE至△CDG结论1:△FDE △FDG结论2:EF=BE+CF结论3:∠DEB =∠DEF典例精讲:已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:+=.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.【思路点拨】(1)证明△ABE≌△CBF且△BEF是等边三角形即可;(2)根据“半角”模型1,先证△BAE≌△BCG,再根据“半角”模型1中的结论2得出△GBF≌△EBF,再根据“半角”模型1中的结论3即可;(3)根据“半角”模型1,先证△BAH≌△BCF,再根据“手拉手”模型1中的结论2得出△EBF≌△EBH即可.【详解】解:(1)如图1,△ABE 和△CBF 中,AE CF BAE BCF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴∠CBF =∠EBA ,BE =BF ,∵∠ABC =120°,∠EBF =60°,∴△BEF 是等边三角形,CF =12B ,AE =12BE , ∴EF =BE =BF =AE+CF ;(2)如图2,延长FC 至G ,使AE =CG ,连接BG ,在△BAE 和△BCG 中,BA BC BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△BCG (SAS ),∴∠ABE =∠CBG ,BE =BG ,∵∠ABC =120°,∠EBF =60°,∴∠ABE+∠CBF =60°,∴∠CBG+∠CBF =60°,∴∠GBF =∠EBF ,在△GBF 和△EBF 中,BG BE GBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△GBF ≌△EBF (SAS ),∴EF =GF =CF+CG =CF+AE ;(3)不成立,但满足新的数量关系.如图3,在AE 上截取AH =CF ,连接BH ,在△BAH 和△BCF 中,BA BC BAH BCF AH CF =⎧⎪∠=∠⎨⎪=⎩,∴△BAH ≌△BCF (SAS ),∴BH =BF ,∠ABH =∠CBF ,∵∠EBF =60°=∠FBC+∠CBE∴∠ABH+∠CBE =60°,∵∠ABC =120°,∴∠HBE =60°=∠EBF ,在△EBF 和△HBE 中,BH BF HBE EBF BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△EBH (SAS ),∴EF =EH ,∴AE =EH+AE =EF+CF .【解题技法】本题典型的利用“半角”模型1,其基本思路是“旋转补短”,从而构造全等三角形.实战演练:1. 如图1,在菱形ABCD 中,AC =2,BD =AC ,BD 相交于点O .(1)求边AB 的长;(2)求∠BAC 的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A 左右旋转,其中三角板60°角的两边分别与边BC ,CD 相交于点E ,F ,连接EF .判断△AEF 是哪一种特殊三角形,并说明理由.【答案】(1)2;(2)60︒ ;(3)见详解【解析】【分析】(1)由菱形的性质得出OA=1,,根据勾股定理可得出答案; (2)得出△ABC 是等边三角形即可;(3)由△ABC 和△ACD 是等边三角形,利用ASA 可证得△ABE△△ACF ;可得AE=AF ,根据有一个角是60°的等腰三角形是等边三角形推出即可.【详解】解:(1)△四边形ABCD 是菱形,△AC△BD ,△△AOB 为直角三角形,且111,22OA AC OB BD ====△2AB ===;(2)△四边形ABCD 是菱形,△AB=BC ,由(1)得:AB=AC=BC=2,△△ABC 为等边三角形,△BAC=60°;(3)△AEF 是等边三角形,△由(1)知,菱形ABCD 的边长是2,AC=2,△△ABC 和△ACD 是等边三角形,△△BAC=△BAE+△CAE=60°,△△EAF=△CAF+△CAE=60°,△△BAE=△CAF ,在△ABE 和△ACF 中,BAE CAF AB ACEBA FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABE△△ACF (ASA ),△AE=AF ,△△EAF=60°,△△AEF 是等边三角形.【点睛】本题考查了菱形的性质,全等三角形的性质和判定,等边三角形的性质以及图形的旋转.解题的关键是熟练掌握菱形的性质.2. 在平行四边形ABCD 中,点E ,F 分别在边AD ,AB 上(均不与顶点重合),且∠BCD =120°,∠ECF =60°.(1)如图1,若AB =AD ,求证:AEC BFC ≅;(2)如图2,若AB =2AD ,过点C 作CM ⊥AB 于点M ,求证:①AC ⊥BC ;②AE =2FM ;(3)如图3,若AB =3AD ,试探究线段CE 与线段CF 的数量关系.【答案】(1)证明见解析;(2)①证明见解析;②证明见解析;(3)3CE CF =,证明见解析.【解析】【分析】(1)先根据菱形的判定与性质可得60CAE ACB B ∠=∠=∠=︒,再根据等边三角形的判定与性质可得AC BC =,然后根据角的和差可得ACE BCF ∠=∠,最后根据三角形全等的判定定理即可得证;(2)①先根据平行四边形的性质可得60B ∠=︒,BC AD =,从而可得1cos 2BC B AB ==,再根据直角三角形的性质即可得证;②先根据平行线的性质、直角三角形的性质可得90,30CAE ACB BAC ∠=∠=︒∠=︒,2AC MC=,再根据角的和差可得60ACM ECF ∠=∠=︒,从而可得ACE MCF ∠=∠,然后根据相似三角形的判定与性质可得2AE AC FM MC==,由此即可得证; (3)如图(见解析),先根据平行四边形的性质可得60D B ∠=∠=︒,BC AD =,AB CD =,再根据等边三角形的判定与性质可得60BGC BCG ∠=∠=︒,BC CG =,从而可得3CD CG=,然后根据角的和差可得DCE GCF ∠=∠,最后根据相似三角形的判定与性质可得3CE CD CF CG==,由此即可得出答案. 【详解】(1)四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,120BCD ∠=︒,60,CAE ACB B AB BC ∴∠=∠=∠=︒=,ABC ∴是等边三角形,AC BC ∴=,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,又60ACB ∠=︒,即60BCF ACF ∠+∠=︒,ACE BCF ∴∠=∠,在AEC 和BFC △中,CAE B AC BC ACE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEC BFC ASA ∴≅;(2)①四边形ABCD 是平行四边形,120BCD ∠=︒,60B ∴∠=︒,BC AD =,//BC AD ,1cos cos 602B ∴=︒=, 2AB AD =,2AB BC ∴=,即12BC AB =, ∴在ABC 中,1cos 2BC B AB ==, ABC ∴是直角三角形,且90ACB ∠=︒,即AC BC ⊥;②90,60,//ACB B BC AD ∠=︒∠=︒,90,30CAE ACB BAC ∴∠=∠=︒∠=︒,∴在Rt ACM △中,2AC MC =,即2AC MC=, CM AB ⊥,90,60CMF ACM ∴∠=︒∠=︒,60MCF ACF ∴∠+∠=︒,60ECF =︒∠,60ACE ACF ∴∠+∠=︒,ACE MCF ∴∠=∠,在ACE 和MCF △中,90CAE CMF ACE MCF ∠=∠=︒⎧⎨∠=∠⎩, ACE MCF ∴~,2AE AC FM MC∴==, 即2AE FM =;(3)3CE CF =,证明如下:如图,在AB 上取一点G ,使得BG BC =,连接CG ,四边形ABCD 是平行四边形,120BCD ∠=︒,60D B ∴∠=∠=︒,BC AD =,AB CD =,BCG ∴是等边三角形,BC CG ∴=,60BGC BCG ∠=∠=︒,3AB AD =,33CD BC CG ∴==,即3CD CG=, 120,60BCD ECF ∠=︒∠=︒,60DCE BCF ∴∠+∠=︒,60BCF ∴∠<︒,即BCF BCG ∠<∠,∴点G 一定在点F 的左侧,60GCF BCF BCG ∴∠+∠=∠=︒,DCE GCF ∴∠=∠,在CDE △和CGF △中,60D FGC DCE GCF ∠=∠=︒⎧⎨∠=∠⎩, CDE CGF ∴~,3CE CD CF CG∴==, 即3CE CF =.【点睛】本题考查了三角形全等的判定定理、菱形的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(3),通过作辅助线,构造相似三角形是解题关键.(二)等腰直角三角形中90︒含45︒半角模型条件:△ABC是等腰直角三角形,∠CAB =90︒,AB=AC,∠DAE=45︒,旋转△BDE至△CDG(△BDE沿AD翻折到△ADF)结论1:△ADE≅△AFE(△ACE≅△AFE)结论2:DE2=BD2+EC2结论3:C∆CEF=BC(C∆DEF=BC)典例精讲:已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】(1)将△ACM沿直线CE对折,得△DCM,连DN,根据“半角”模型2,证明出△CDN≌△CBN,再根据“半角”模型2的结论2即可;(2)将△ACM沿直线CE对折,得△GCM,连GN,根据“半角”模型2,证明△CGN≌△CBN,再根据“半角”模型2的结论2即可;【详解】(1)证明:将△ACM沿直线CE对折,得△DCM,连DN,则△DCM≌△ACM.有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.又由CA=CB,得CD=CB.由∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM,∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM,得∠DCN=∠BCN.又CN=CN,∴△CDN≌△CBN.∴DN=BN,∠CDN=∠B.∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.∴在Rt△MDN中,由勾股定理,得MN2=DM2+DN2.即MN2=AM2+BN2.(2)关系式MN2=AM2+BN2仍然成立.证明:将△ACM沿直线CE对折,得△GCM,连GN,则△GCM≌△ACM.有CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM.又由CA=CB,得CG=CB.由∠GCN=∠GCM+∠ECF=∠GCM+45°,∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM.得∠GCN =∠BCN .又CN =CN ,∴△CGN ≌△CBN .有GN =BN ,∠CGN =∠B =45°,∠CGM =∠CAM =180°﹣∠CAB =135°,∴∠MGN =∠CGM ﹣∠CGN =135°﹣45°=90°.∴在Rt △MGN 中,由勾股定理,得MN 2=GM 2+GN 2.即MN 2=AM 2+BN 2.【解题技法】利用“半角”模型2,正确作出辅助线,构造直角三角形是解题的关键. 实战演练:3. 在等腰ABC 中,CA =CB ,点D ,E 在射线AB 上,不与A ,B 重合(D 在E 的左边),且∠DCE =12∠ACB . (1)如图1,若∠ACB =90°,将CAD 沿CD 翻折,点A 与M 重合,求证:MCE BCE ≅;(2)如图2,若∠ACB =120°,且以AD 、DE 、EB 为边的三角形是直角三角形,求AD EB的值; (3)∠ACB =120°,点D 在射线AB 上运动,AC =3,则AD 的取值范围为 .【答案】(1)证明见解析;(2)12或2;(3)0AD <<【解析】【分析】(1)先根据翻折的性质可得,CA CM ACD MCD =∠=∠,从而可得CM CB =,再根据角的和差可得MCE BCE ∠=∠,然后根据三角形全等的判定定理即可得证; (2)如图(见解析),先根据等腰三角形的性质可得30A B ==︒∠∠,再根据翻折的性质可得,30DF AD CFD A =∠=∠=︒,然后根据三角形全等的判定定理与性质可得,30EF EB CFE B =∠=∠=︒,从而可得60DFE ∠=︒,最后根据直角三角形的定义分90EDF ∠=︒和90DEF ∠=︒两种情况,分别利用余弦三角函数即可得; (3)先判断出AD 取得最大值时点D 的位置,再利用余弦三角函数求解即可得.【详解】(1)由翻折的性质得:,CA CM ACD MCD =∠=∠,CA CB =,CM CB ∴=,190,2ACB DCE ACB ∠=︒∠=∠, 45MCD MCE DCE ∴∠+∠=∠=︒,45ACD BCE ACB DCE ∠+∠=∠-∠=︒, MCE BCE ∠=∠∴,在MCE 和BCE 中,CM CB MCE BCE CE CE =⎧⎪∠=∠⎨⎪=⎩,()MCE BCE SAS ≅∴;(2)如图,将ACD △沿CD 翻折,点A 与F 重合,连接EF ,,120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,由翻折的性质得:,30DF AD CFD A =∠=∠=︒,同(1)的方法可证:FCE BCE ≅,,30EF EB CFE B ∴=∠=∠=︒,60CFD DFE CFE =∠+∴=∠∠︒,以AD 、DE 、EB 为边的三角形是直角三角形,∴以DF 、DE 、EF 为边的三角形是直角三角形,即DEF 是直角三角形, 因此分以下两种情况:①当90EDF ∠=︒时,在Rt DEF △中,1cos 2cos 60DF DFE EF ∠==︒=, 则12AD DF EB EF ==, ②当90DEF ∠=︒时,在Rt DEF △中,1cos 2cos 60EF DFE DF ∠==︒=, 则12EB EF AD DF ==, 即2AD EB =, 综上,AD EB 的值为12或2;(3),120ACB CA CB ∠==︒,30A B ∴∠=∠=︒,如图,当点D 在射线AB 上运动至CA CD ⊥的位置时,在Rt ACD △中,cos AC A AD =,即3cos302AD ︒==, 解得AD =120ACB ∠=︒,1209030BCD ACB ACD ∴∠=∠-∠=︒-︒=︒,1602DCE ACB ∠=∠=︒, 30BCE DCE BCD ∴∠=∠-∠=︒,30BCE B ∴∠=∠=︒,//∴AB CE ,要使点E 在射线AB 上,且点D 在E 的左边,则AD <即AD 的取值范围为0AD <<,故答案为:0AD <<.【点睛】本题考查了翻折的性质、三角形全等的判定定理与性质、等腰三角形的性质、余弦三角函数等知识点,较难的是题(3),正确判断出AD 取得最大值时点D 的位置是解题关键.(三)正方形中90︒含45︒半角模型条件:正方形ABCD 中,∠MAN =45︒ ,旋转△ABF 至△AND ;结论1:△AFM ≅△AMN结论2: MN=BM+DN(MN=DN-BM)结论3:C ∆MCN =2AB ;结论4: AMN ABM ADN S S S =+(AMN ADN ABM S S S =-)典例精讲:(1)(发现证明)如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且∠EAF =45°,求证:EF =DF+BE .小明发现,当把△ABE 绕点A 顺时针旋转90°至△ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)(类比引申)①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)(联想拓展)如图1,若正方形ABCD的边长为6,AE=AF的长.【思路点拨】(1)(发现证明)根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;(2)(类比引申)①根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;②根据“半角”模型3,证明△AFE≌△ANE,再根据“半角”模型3的结论2即可得证;(3)(联想拓展)求出DG=2,设DF=x,则根据“半角”模型3的结论2得出EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出关于x的方程,解出x则可得解.【详解】(1)(发现证明)证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)(类比引申)①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)(联想拓展)解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴3DG===∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=DG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF==【解题技法】“半角”模型3,常与旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,将分散的条件集中起来,将隐秘的关系显现出来.实战演练:4. 思维探索:在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是;(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;拓展提升:如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.【答案】思维探索:(1)8;(2)12;拓展提升:CE﹣1.【解析】【分析】思维探索:(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF 即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∠CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∠EAC=∠F AG,∠ADF=∠ADE=30°,解直角三角形得到DE=DF=4,BE=CE=x,则GF=CE=x,BC=BG=﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将△ADF绕点A顺时针旋转90°得到△ABG,∴GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中AG AFGAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE,∴△CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,∵BD⊥BC,∠ACB=90°,∴∠ACB=∠CBG=∠G=90°,∴四边形ACBG是矩形,∵AC=BC,∴矩形ACBG是正方形,∴AC=AG,∠CAG=90°,在BG上截取GF=CE,∴△AEC≌△AGF(SAS),∴AE=AF,∠EAC=∠F AG,∵∠EAD=∠BAC=∠GAB=45°,∴∠DAF=∠DAE=45°,∵AD=AD,∴△ADE≌△ADF(SAS),∴∠ADF=∠ADE=30°,∴∠BDE=60°,∵∠DBE=90°,BD=2,∴DE=DF=4,BE=设CE=x,则GF=CE=x,BC=BG=x,∴DG=x,∴DG﹣FG=DF,即x﹣x=4,∴x﹣1,∴CE1.【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.5. (1)如图,在正方形ABCD 中,∠FAG=45°,请直接写出DG,BF 与FG 的数量关系,不需要证明.(2)如图,在Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分别是BC 上两点,∠EAF=45°,①写出BE,CF,EF 之间的数量关系,并证明.②若将(2)中的△AEF 绕点A 旋转至如图所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.S(3)如图,△AEF 中∠EAF=45°,AG⊥EF 于G,且GF=2,GE=3,则AEF= .【答案】(1)FG=BF+DG;(2)①EF2=BE2+FC2,理由见解析;②仍然成立;(3)15【解析】【分析】(1)把△AGD绕点A逆时针旋转90°至△ABP,可使AD与AB重合,再证明△AFG≌△AFP进而得到PF=FG,即可得FG=BF+DG;(2)①根据△AFC绕点A顺时针旋转90°得到△AGB,根据旋转的性质,可知△ACF≌△ABG得到BG=FC,AG=AF,∠C=∠ABG,∠FAC=∠GAB,根据Rt△ABC中的AB=AC得到∠GBE=90°,所以GB2+BE2=GE2,证△AGE≌△AFE,利用EF=EG得到EF2=BE2+FC2;②将△ABE绕点A逆时针旋转使得AB与AD重合,点E的对应点是G,同上的方法证得GC2+CF2=FG2,再设法利用SAS证得△AFG≌△AFE即可求解;(3)将△AEG沿AE对折成△AEB,将△AFG沿AF对折成△AFD,延长BE、DF相交于C,构成正方形ABCD,在Rt△EFC中,利用勾股定理求得正方形的边长,即可求得AG的长,从而求得答案.【详解】(1)∵四边形ABCD为正方形,∴AB=AD,∠ADC=∠ABC=90°,∴把△AGD绕点A逆时针旋转90°至△ABP,使AD与AB重合,∴∠BAP=∠DAG ,AP= AG ,∵∠BAD=90°,∠FAG=45°,∴∠BAF+∠DAG=45°,∴∠PAF=∠FAG=45°,∵∠ADC=∠ABC=90°,∴∠FBP=180°,点F 、B 、P 共线,在△AFG 和△AFP 中,AG AP FAG FAP AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFP (SAS ),∴PF=FG ,即:FG=BF+DG ;(2)①FC 2+BE 2=EF 2,证明如下:∵AB=AC ,∠BAC=90°,∴∠C=∠ABC=45°,将△AFC 绕点A 顺时针旋转90°得到△AGB ,∴△ACF ≌△ABG ,∴BG=FC ,AG=AF ,∠C=∠ABG=45°,∠FAC=∠GAB ,∴∠GBE=∠ABG +∠ABC =90°,∴GB 2+BE 2=GE 2,又∵∠EAF=45°,∴∠BAE+∠FAC=45°,∴∠GAB+∠BAE=45°,即∠GAE=45°,在△AGE 和△AFE 中,GA FA EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AGE ≌△AFE (SAS ),∴GE=EF ,∴FC 2+BE 2=EF 2;②仍然成立,理由如下:如图,将△ABE 绕点A 逆时针旋转使得AB 与AD 重合,点E 的对应点为点G ,∴△ACG ≌△ABE ,∴CG=BE ,AG=AE ,∠ACG=∠ABE=45°,∠BAE=∠CAG ,∴∠GCB=∠ACB +∠ACG =90°,即∠GCF=90°,∴GC 2+CF 2=FG 2,∵∠BAE+∠EAC=∠BAC=90°,∴∠CAG+∠EAC=90°,又∵∠EAF=45°,∴∠GAF=90°-∠EAF=45°,∴∠GAF=∠EAF=45°,在△AFG 和△AFE 中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△AFE (SAS ),∴GF=EF ,∴FC 2+BE 2=EF 2;(3)将△AEG 沿AE 对折成△AEB ,将△AFG 沿AF 对折成△AFD ,延长BE 、DF 相交于C ,∴△AEG ≅△AEB ,△AFG ≅△AFD ,∴AB=AG=AD ,BE=EG=3,DF=FG=2,∠EAG=∠EAB ,∠FAG=∠FAD ,∠B=∠D=90°,∵∠EAF=45°,∴∠EAB+∠FAD=∠EAG+∠FAG=∠EAF=45°,∴∠BAD=90°,∴四边形ABCD 为正方形,设AG =x ,则AB=BC=CD=x ,在Rt △EFC 中,EF=3+2=5,EC=BC-BE=3x -,FC=CD-DF= 2x -, ∴222FC EC EF +=,故()()2222?35x x -+-=, 解得:11x =-(舍去),26x =,∴AG=6,∴AEF 115615 22S EF AG==⨯⨯=.故答案为:15.【点睛】本题主要考查了旋转的性质,折叠的性质,正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积等知识,同时考查了学生的阅读理解能力与知识的迁移能力,综合性较强,难度适中.(四)等边三角形中60︒含30︒半角模型条件:△ABC是等边三角形,∠DAE =30︒,旋转△ABD至△ACF;结论1:△ADE≅△AFE结论2:∠ECF =120︒结论3:C∆ECF=AB;典例精讲:转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1所示,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2所示,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A 作AM⊥BC于点M,连接MN,求线段MN的长度.【思路点拨】(一)(1)(发现证明)根据“半角”模型4,证明出△AEF≌△AE′F,进而根据线段的和差关系得出结论;(2)先在BE上截取BG=DF,连接AG,根据“半角”模型4,判定△GAE≌△FAE,根据线段的和差关系得出结论;(二)先根据“半角”模型4,判定△AEE′是等边三角形,进而得到AN AMAE AB=和∠BAE=∠MAN,最后判定△BAE∽△MAN,并根据相似三角形对应边成比例,列出比例式求得MN的长.解:(一)(1)将△ABE绕点A逆时针旋转60°后得到△A′B′E′,则∠BAE=∠DAE',BE=DE′,AE=AE′,∵∠BAD=60°,∠EAF=30°,∴∠BAE+∠DAF=30°,∴∠DAE'+∠DAF=30°,即∠FAE′=30°∴∠EAF=∠FAE′,在△AEF和△AE′F中,AE AEEAF E AF AF AF''⎧=⎪∠=∠⎨⎪=⎩,∴△AEF≌△AE′F(SAS),∴EF=E′F,即EF=DF+DE′,∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,故答案为:30,BE+DF=EF;(2)如图3,BE上截取BG=DF,连接AG,在△ABG和△ADF中,AB ADABE ADF BG DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,且AG=AF,∵∠DAF+∠DAE=30°,∴∠BAG+∠DAE=30°,∵∠BAD=60°,∴∠GAE=60°﹣30°=30°,∴∠GAE=∠FAE,在△GAE和△FAE中,AG AFGAE FAE AE AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAE≌△FAE(SAS),∴GE=FE,又∵BE﹣BG=GE,BG=DF,∴BE﹣DF=EF,即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;(二)如图4,将△ABE绕点A逆时针旋转60°得到△A′B′E′,则AE=AE′,∠EAE′=60°,∴△AEE′是等边三角形,又∵∠EAF=30°,∴AN平分∠EAE',∴AN⊥EE′,∴RtANE中,ANAE=∵在等边△ABC中,AM⊥BC,∴∠BAM =30°,∴AM AB =BAE+∠EAM =30°, ∴AN AM AE AB=, 又∵∠MAN+∠EAM =30°,∴∠BAE =∠MAN ,∴△BAE ∽△MAN ,∴MN AN BE AB =,即MN 1=,∴MN 【解题技法】根据“半角”模型,对图形进行分解、组合,抓住图形旋转前后的对应边相等,一般解题方法为作辅助线构造全等三角形或相似三角形.实战演练:6. (1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明ABE ADG ≅△△,再证明AEF AGF ≅△△,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B+∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论 仍然成立(填“是”或“否”); (3)结论应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.(4)能力提高:如图4,等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,则MN 的长为 .【答案】(1)BE FD EF +=;(2)是;(3)210海里;(4【解析】【分析】(1)先根据三角形全等的判定定理与性质可得,,BE DG AE AG BAE DAG ==∠=∠,再根据角的和差可得EAF GAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF GF =,最后根据线段的和差、等量代换即可得;(2)如图(见解析),先根据三角形全等的判定定理与性质可得,,BE DM AE AM BAE DAM ==∠=∠,再根据角的和差可得EAF MAF ∠=∠,然后根据三角形全等的判定定理与性质可得EF MF =,最后根据线段的和差、等量代换即可得;(3)先根据方位角的定义、角的和差分别求出140,70,180AOB EOF A OBC ∠=︒∠=︒∠+∠=︒,从而可得12EOF AOB ∠=∠,再根据航行速度与时间分别求出90AE =海里,120BF =海里,然后利用题(2)的结论即可得;(4)过点C 作CE ⊥BC,垂足为点C ,截取CE,使CE=BM.连接AE 、EN,根据(2)中的结论计算即可.【详解】(1)在ABE △和ADG 中,90AB AD B ADG BE DG =⎧⎪∠=∠=︒⎨⎪=⎩()ABE ADG SAS ∴≅,,BE DG AE AG BAE DAG ∴==∠=∠120,60BAD EAF ∠=︒∠=︒60BAE DAF ∴∠+∠=︒60DAG DAF ∴∠+∠=︒,即60GAF =︒∠60EAF GAF ∴∠=∠=︒在AEF 和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AGF SAS ∴≅EF GF ∴=DG FD GF +=BE FD EF ∴+=故答案为:BE FD EF +=;(2)是,证明如下:如图,延长CD 至点M ,使得DM BE =180B ADF ∠+∠=︒,180ADM ADF ∠+∠=︒B ADM ∴∠=∠在ABE △和ADM △中,AB AD B ADM BE DM =⎧⎪∠=∠⎨⎪=⎩()ABE ADM SAS ∴≅,,BE DM AE AM BAE DAM ∴==∠=∠12EAF BAD ∠=∠ 12BAE DAF BAD EAF BAD ∴∠+∠=∠-∠=∠ 12DAM DAF BAD ∴∠+∠=∠,即12MAF BAD ∠=∠ EAF MAF ∴∠=∠在AEF 和AMF 中,AE AM EAF MAF AF AF =⎧⎪∠=∠⎨⎪=⎩()AEF AMF SAS ∴≅EF MF ∴=DM FD MF +=BE FD EF ∴+=故答案为:是;(3)如图,延长AE 、BF ,相交于点C ,连接EF ,过点B 作BN x ⊥轴于点N 由题意得:30,907020,,70AOG BOD OA OB EOF ∠=︒∠=︒-︒=︒=∠=︒ 309020140AOB AOG DOG BOD ∴∠=∠+∠+∠=︒+︒+︒=︒,70OBN ∠=︒12∴∠=∠EOF AOB 舰艇甲从A 处向正东方向以45海里/小时的速度航行2小时至E 处//AE x ∴轴,45290AE =⨯=(海里)90AGO ∴∠=︒9060A AOG ∴∠=︒-∠=︒舰艇乙从B 处沿北偏东50︒的方向以60海里/小时的速度航行2小时至F 处 50NBD ∴∠=︒,602120BF =⨯=(海里)120OBC OBN NBD ∴∠=∠+∠=︒60120180A OBC ∴∠+∠=︒+︒=︒则由(2)的结论可得:90120210EF AE BF =+=+=(海里)故此时两舰艇之间的距离为210海里;(4)过点C 作CE ⊥BC,垂足为点C,截取CE ,使CE=BM.连接AE 、EN,由(2)可知,CE=BM=1, NE=MN,= .∴MN=,故答案为:【点睛】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.。

中考数学常见几何模型专题02 全等模型-半角模型(解析版)

中考数学常见几何模型专题02 全等模型-半角模型(解析版)

专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。

模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==DCM ∴是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE ==,∴200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN ∴+=+=+Rt CMB △中,BM =)50501EN EB BN EC =+=+==ECN ∴是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明∠AEF EAF ='E AF ∠先利用圆内接四边形的性质证明为等腰直角三角形,等量代换即得结论.AD 重合,点ADE=180°知,BAD,∠∠BAF=∠EAF=∠,∠EF=E F'∠ABE绕点【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.正方形Rt EFC中,2CF CE+解得:2x=.2DF∴=,226AF AD DF=+=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.又AH=AN,AB=AD,∠∠ABH∠∠ADN(SAS),∠DN=BH,∠ABH=∠ADN,∠∠B=60°,且∠EAF=60°.∠∠BAD=120°,∠∠DAF+∠BAE=∠EAF=60°,∠∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∠∠AMH∠∠AMN(SAS),∠MN=MH,∠AMN=∠AMH,∠菱形ABCD,∠B=60°,∠∠ABD=∠ADB=30°,∠∠HBD=∠ABH+∠ABD=60°,∠∠DAF=15°,∠EAF=60°,∠∠ADM中,∠DAM=∠AMD=75°,∠∠AMN=∠AMH=75°,∠∠HMB=180°-∠AMN-∠AMH=30°,∠∠BHM=90°,∠BH2+MH2=BM2,∠DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE∠∠ADG,再证明△AEF∠∠AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.证得ABE ADG ≌,得出证得AEF AGF ≌,之间的数量关系;(2)同(1)②即可得出,证得ABD ACM ≌,同(证得AEF AGF ≌,在Rt ECM 中,由勾股定理可解得90BAD B D =∠=∠=︒,ABCD 是矩形,又∠AB AD ,∠矩形CD 至点G ,使得DG=BE 90ADG ADF =∠=︒,∠∠,∠ABE ADG ≌,DG ,BAE DAG ∠=∠BAD ∠,∠BAE DAF ∠+∠∠AEF AGF ≌,∠EF DG EF =∠BE FD +在ABC 中,B ACB ∠=∠∠ABD ACM ≌,同(1)②的证明方法得DE ME =, 2BD =,22+BC AB AC ==DE ME =x -,Rt ECM 中,2EM ,2(2)(32+【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =∠ADC =∠B =90°∠则DAG ∠∠F AG =∠F AD理由:AB AD==∠BAE DAG∠=︒,BAD90∠+∠=ADC B在∠AFE和∠AFG∴=EF FG()3将∠ACE∠=BAC又∠∠F AB=∠则在∠ADF∠∠ADF∠∠∠∠C+∠ABD4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BMMN -=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论; (1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+,DN BM MN ∴+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ),DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ),MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △∠ANM ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △∠ABM ,同(2)的方法,即可得出结论.(1)证明:如图1,∠把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=,BM DN =,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=. (3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴∠()ABM SAS ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴∠()AQN SAS ,MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得∠ABE ∠∠ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得∠AEF ∠∠AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得∠ABE ∠∠ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得∠AEF ∠∠AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∠90ABC ADC∠=∠=︒,∠∠ADG=∠ABC=90°,∠AB=AD,∠∠ABE∠∠ADG,∠AE=AG,∠BAE=∠DAG,∠100BAD∠=︒,50EAF∠=︒,∠∠BAE+∠DAF=50°,∠∠F AG=∠EAF=50°,∠AF=AF,∠∠AEF∠∠AGF,∠EF=FG,∠FG=DG+DF,∠EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,∠180ABC ADC∠+∠=︒,∠ADC+∠ADH=180°,∠∠ADH=∠ABC,∠AB=AD,∠∠ABE∠∠ADH,∠AE=AH,∠BAE=∠DAH,∠2BAD EAF∠∠=∠∠EAF=∠BAE+∠DAF=∠DAF+∠DAH,∠∠EAF=∠HAF,∠AF=AF,∠∠AEF∠∠AHF,∠EF=FH,∠FH=DH+DF,∠EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得:∠AOB=20°+90°+40°=150°,∠OBD=60°+50°=110°,∠COD=75°,∠OAM=90°-20°=70°,OA=OB,∠∠AOB=2∠COD,∠OAM+∠OBM=70°+110°=180°,∠OA=OB,∠由(2)【迁移推广】得:CD=AC+BD,∠AC=80×0.5=40,BD=90×0.5=45,∠CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD 绕点A 按逆时针方向旋转90º,得到∠ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ∠△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,FG =DG +FD =BE +按逆时针方向旋转90º,得到∠ACF ∠ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=在Rt FCE 中,BD 2EF CF ∴=+(2)猜想:EF =BE 如图,将∠ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN=,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∠45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∠GAB GAD DAN GAD ∠+∠=∠+∠,∠90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM BG GM -=,BG DN =,∠BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∠四边形ABCD 是正方形,∠AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∠MAB BAG GAD BAG ∠+∠=∠+∠,∠90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∠6CN =,8MC =,∠1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-, ∠DC BC =,∠48x x +=-,解得:2x =,∠6AB BC CD CN ====,∠//AB CD ,∠BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∠AD∠CP,DF=DE,∠CE=CF,∠∠DCF=∠DCE=45°,∠∠ACB=90°,∠∠ACD+∠ECB=45°,∠∠DCA+∠ACF=∠DCF=45°,∠∠FCA=∠ECB,在∠ACF和∠BCE中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠BCE (SAS ),∠AF =BE ,∠AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。

八年级数学上册:夹半角模型及应用

八年级数学上册:夹半角模型及应用

八年级数学上册:夹半角模型及应用知识导航 一、认识夹半角夹半角:指的是一个大角夹着一个大小只有它的一半的角.如图所示:这类题目规律性较强,当α取不同值时,可找到通性通法. 二、常见类型有(1)90°夹45°;(2)120°夹60°;(3)2α夹α.【板块一】90°角夹45°角【例1】正方形ABCD 中,E ,F 分别是BC ,CD 上的点,∠EAF =45°. 求证:(1)EF =BE +DF :(2)AE 平分∠BEF ,AF 平分∠DFE .FED CB A针对练习11.在例1的条件下,若E 在BC 的延长线上,F 在CD 的延长线上,其余条件不变. (1)问:EF 和BE ,DF 三条线段之间有何数量关系?写出关系式井证明; (2)问:∠AFD 与∠AFE 之间有何数量关系?写出关系式并证明.FEDCBA2.如图,四边形ABCD 中,AB =AD ,∠BAD =∠C =90°,E ,F 分别为BC ,CD 上的点,∠EAF =45°问:EF ,BE ,DF 之间有何数量关系?写出关系式并证明.FEDCBA【板块二】120°角夹60°角【例2】如图,四边形ABCD 中,BC =CD ,∠BCD =120°,E ,F 分别为AB ,AD 上的点,∠ECF =∠A =60°. (1)求证:EF =BE +DF ;(2)求证;点C 在∠BAD 的平分线上.FE DCBA针对练习21.(1)如图1,将例2中点E 移至BA 延长线上,点下移至AD 延长线上,其余条件不变,写出EF 和BE ,DF 之间的数量关系并证明;(2)如图2,将例2中点E 移至AB 延长线上,点F 移至DA 延长线上,其余条件不变,写出EF 和BE ,DF 之间的数量关系并证明.FE DCBAFEDCBA【板块三】2a 度角夹a 度角从特珠到一般,揭示夹半角横型本质:条件:如图1,四边形ABCD 中,点E 为AB 上一点,点F 为AD 上一点,具备以下三个条件:①CB =CD ;②∠BCD =2∠EC ;③∠B +∠D =180°(或∠A +∠BCD =180°).结论:①EF =BE +DF :②CE 平分∠BEF ,CF 平分∠DFE .当点E ,F 分别移到AB ,AD 延长线或反向延长线上时,EF =BE -DF 或EF =DF -BE .21FEDC BAGABC DEF123FEDCBAG证法: 方法技巧第一步;延长AD 至G (若是E ,F 在延长线上一般在长线段上截取),使DG =BE ,连接CG .第二步:证明△BCE ≌△DCG (SAS ),全等条件:∠B +∠ADC =180°得∠CDG =∠B ,CB =CD ,DG =BE ;得到:CG =CE ,∠3=∠1;第三步:证明△ECF ≌△GCF (SAS ).由∠3=∠1得∠ECG =∠BCD =2∠ECF ,得∠ECF =∠GCF ,又CE =CG,CF公共,∴△ECF≌△GCF(SAS),得EF=FG=DG+DF=BE+DF.由△ECF≌△GCF得∠CFE=∠CFD,得CF平分∠DFE;∠BEC=∠G=∠CEF得CE平分∠BEF.本质:(1)等腰三角形腰的旋转;(2)通过旋转对剩余半角进行拼凑;(3)产生一组旋转全等和一组对称全等;(4)旋转全等的旋转角度为2 ;(5)对角互补使夹半角模型产生一组“截长补短”的相应结论针对练习31.已知如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°.求证:(1)AD平分∠CDE;(2)∠BAE=2∠CAD.AEDBC2.如图,B(4,4),BC⊥y轴于C,BA⊥x轴于A,E为BC上一动点(不与B,C重合),F为AB上一动点,且满足∠OEF=∠AOE,在运动过程中,△BEF的周长变吗?若不变求其值;若变化求其变化范围.3.如图,平面直角坐标系中,A (15,0),B (0,15),取点D (0,10)并连接AD ,将△AOD 沿直线AD 折叠得到△ADE ,过点B 作y 轴的垂线BF 交DE 的延长线于F 点,连接AF ,DF =13.求BF 的长.4.如图,平面直角坐标系中,点A (1,4),B (3,0),N (1,0),R (4,3),点P 为线段AN 上的一动点,连接PR ,以PR 为一边作∠PRM =45°,交轴于点M ,连PM ,请问点P 在运动的过程中,线段PM ,PA ,BM 之间有怎样的数量关系?证明你的结论.5.在等边△ABC 的两边AB ,AC 所在直线上分别有两点M ,N ,点D 为△ABC 外一点,且∠MDN =60°,∠BDC =120°,BD =DC .探究:当M ,N 分别在直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及△AMN 的周长Q 与等边△ABC 的周长L 的关系.(1)如图1,当M ,N 分别在边AB ,AC 上,且DM =DN 时,BM ,NC ,MN 之间的数量关系是 ;此时_______QL; (2)如图2,当点M ,N 分别在边AB ,AC 上,且DM DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;(3)如图3,当点M ,N 分别在边AB ,CA 的延长线上时,若AN x ,则Q = (用x ,L 表示)NCD M BA图3图2图1ABM D CN N CD M BA6.如图,正方形ABOC ,点M ,N 分别在 AB ,AC 上.(1)若∠NMO =∠MOC ,问△AMN 的周长是否变化,若不变,求出其值;(2)若点M 在AB 延长线上,点N 在CA 的延长线上,其它条件不变,问:CN ,MN ,BM 三者存在怎样的关系?试证明.。

人教版八年级数学上册 几何模型专题复习讲义(PDF版,无答案)

人教版八年级数学上册 几何模型专题复习讲义(PDF版,无答案)

1 / 8八上几何模型归纳【例1(1)如图1,若,则AC 和BD 的数量关系是________________,AC 和BD 的位置关系是________________;(2)如图2,若,AC 和BD 相交于点P ,求证:OP 平分.(3)如图3所示,则AC 与BD 的数量关系为________________,试用表示直线AC 和BD 所形成的夹角,则夹角为______________.(不写证明)90α=︒60α=︒BPC ∠α图1图2图3ABCDOPABCDPO DCB A“手拉手”模型“帽子”模型常见辅助线做法: ⑴作平行线构造全等 ⑵作垂直构造全等【例2(2) 如图2,连接AB ,若(0,6)D -,DE ⊥AB 于点E ,B 、C关于y 轴对称,M 是线段DE 上的一点,且DM =AB , 连接AM ,试判断线段AC 与AM 之间的位置和数量关系,并证明你的结论;(3) 如图3,在(2)的条件下,若N 是线段DM 上的一个动点,P 是MA 延长线上的一点,且DN =AP ,连接PN 交y 轴于点Q ,过点N 作NH ⊥y 轴于点H ,当N 点在线段DM 上运动时,△MQH 的面积是否为定值?若是,请求出这个值;若不是,请说明理由.帽子模型xx【例3(1)如图1,求△AOB的面积(2)如图2,点C在线段AB上(不与A、B重合)移动,AB⊥BD,且∠COD=45°,猜想线段AC、BD、CD之间的数量关系并证明你的结论.(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90°至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中,请判断哪一条线段长为定值,并求出该定值夹半角模型3 / 8【例4】如图,在ABC △中,90ABC ∠=︒,AB BC =,0()4,A -,()0,2B .(1)如图1,求点C 的坐标.(2)如图2,BC 交x 轴于点M ,AC 交y 轴于点N ,且BM CM =,求证:AMB CMN ∠=∠.(3)如图3,若点A 不动,点B 在y 轴的正半轴上运动时,分别以OB 、AB 为直角边在第一、第二象限作等腰直角三角形BOF △与等腰直角三角形ABE △,连接EF 交y 轴于P 点,问当点B 在y 轴正半轴上移动时,BP 的长度是否变化?若变化说理由,若不变求其值.中点垂线模型5 / 8【例5】在平面直角坐标系中,,B为x 轴正半轴上一动点,AE 、BF 平分OAB ∠、OBA ∠,AE 、BF 交于点P .(1)求BPA ∠的度数;(2)过P 作PQ BF ⊥交x 轴于点M 交y 轴于点Q ,求证:12OFM OAB ∠=∠;(3)若B 运动到()4,0,点T 为二象限内一点()2-且TA TB ⊥,过O 作OS BT ⊥于S ,求S 点坐标.三垂直模型【例6】(2015部分学校月考)如图,△ACB为等腰三角形,∠ABC=90°,点P在线段BC上(不与B,C重合),以AP为腰长作等腰直角△P AQ,QE⊥AB与E(1)求证:△P AB≌△AQE(2)连CQ交AB于M,若PC=2PB,求PCBM的值.(3)如图2,过Q作QF⊥AQ交AB的延长线于点F,过P点作DP⊥AP交AC于D,连DF,当点P在线段BC上运动时(不与B,C重合),式子QF PDFD-的值会发生变化吗?若不变,求出该值;若变化,【例7】2(1)直接写出A、B、C各点的坐标:A_________、B_________、C_________(2)过B作直线MN⊥AB,P为线段OC上的一动点,AP⊥PH交直线MN于点H,证明:P A=PH(3)在(1)的条件下,若在点A处有一个等腰Rt△APQ绕点A旋转,且AP=PQ,∠APQ=90°,连接BQ,点G为BQ的中点,试猜想线段OG与线段PG的数量关系与位置关系,并证明你的结论脚拉脚模型ABCEPQM7 / 8【例8(1)如图,若30OAD ∠=︒,OBC ∠的度数;(2)点M 、N 分别是BC 、AD 的中点,连OM 、ON ,判断OM 、ON 的关系;(3)在(2)的条件下,连AM 、BN ,取BN 的中点P ,连OP .当点C 、点D 分别以相同的速度沿着y 轴、x 轴向原点O 运动过程中,求证:MAO POAMON∠+∠∠为定值.婆罗摩笈多模型【例9,AB ⊥y 轴于B ,AC ⊥x 轴于C . (1)求△AOC 的面积;(2)如图,E 为线段OB 上一点,连AE ,过A 作AF ⊥AE 交x 轴于F ,连EF ,ED 平分∠OEF 交OA 于D,过D 作DG ⊥EF 于G ,求的值;(3)如图,D 为x 轴上一点,CD =CA ,E 为线段OB 上一动点,连DA 、CE ,F 是线段CE 的中点,若 BF ⊥FK 交AD 于K ,请问∠KBF 的大小是否变化?若不改变,请求其值;若改变,求出变化的范围.12DG EF +xy内心直角三角形xy。

2022年初中数学突破中考压轴题几何模型之正方形的半角模型教案(6

2022年初中数学突破中考压轴题几何模型之正方形的半角模型教案(6

2022年初中数学突破中考压轴题几何模型之正方形的半角模型教案(5正方形角含半角模型提升例1.如图,折叠正方形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,使AD?2,求AG.例2 .如图,P为正方形ABCD内一点,PA?PB?10,并且P点到CD边的距离也等于10,求正方形ABCD的面积?例3. 如图,E、F分别为正方形ABCD的边BC、CD上的一点,AM?EF,?垂足为M,AM?AB,那么有EF?BE?DF,为什么?例4. 如图,在正方形ABCD的BC、CD边上取E、F两点,使?EAF?45,AG?EF于G. 求证:AG?AB例5.(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,?AOF?90. 求证:BE?CF.(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点?O,?FOH?90?,EF?4.求GH的长.图2【双基训练】1. 如图6,点A在线段BG上,四边形ABCD与DEFG都是正方形,?其边长分别为3cm和5cm,那么?CDE的面积为________cm.2(6) (7)2.你可以依次剪6张正方形纸片,拼成如图7所示图形.?如果你所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③的面积相等,?那么正方形⑤的面积为________.3.如图9,正方形ABCD的面积为35平方厘米,E、F分别为边AB、BC上的点.AF、CE相交于G,并且?ABF的面积为14平方厘米,?BCE的面积为5平方厘米,?那么四边形BEGF的面积是________.4. 如图,A、B、C三点在同一条直线上,AB?2BC。

分别以AB、BC为边作正方形ABEF和正方形BCMN,连接FN, EC。

求证:FN?EC。

5.如图,ABCD是正方形.G是BC上的一点,DE?AG于 E,BF?AG于 F.〔1〕求证:△ABF≌△DAE;A D 〔2〕求证:DE?EF?FB.EFC BG【纵向应用】16. 在正方形ABCD中,?1??2.求证:OF?BE27. 在正方形ABCD中,?1??2.AE?DF,求证:OG?BAE21FGDC12GHEOCF8. 如图13,点E为正方形ABCD对角线BD上一点, EF?BC, EG?CD 求证:AE?FGA DEGB C F131CE 2ADB9.:点E、F分别正方形ABCD中AB和BC的中点,连接AF和DE相交于点G, GH?AD于点H.〔1〕求证:AF?DE ;AH〔2〕如果AB?2,求GH的长;〔3〕求证:CG?CDEGBF例1. :如图,P是正方形ABCD内点,?PAD??PDA?15.?DC 求证:?PBC是正三角形.A DP C B例2. 如图,分别以?ABC的AC和BC为一边,在?ABC的外侧作正方形ACDE和正方形CBFG,点P是EFD 的中点.求证:点P到边AB的距离等于AB的一半.GC EPA B Q例4. 如图,四边形ABCD为正方形,DE∥AC,AE?AC,AE与CD相交于F.求证:CE?CF.D AF EB C F例6. 设P是正方形ABCD一边BC上的任一点,PF?AP,CF平分?DCE.求证:PA?PF.A D FB PC E例7. :P是边长为1的正方形ABCD内的一点,求PA?PB?PC的最小A 值.例8. P为正方形ABCD内的一点,并且PA?a,PB?2a,PC?3a,求正方形的边长.A P DBC PD 【双基训练】B C 1.如图,四边形ABCD是正方形,对角线AC、BD相交于O,四边形BEFD 是菱形,假设正方形的边长为6,那么菱形的面积为________.2.如图,ABCD是正方形,E为BF上一点,四边形AFEC?恰是一个菱形,?那么?EAB=________.【纵向应用】3.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,?AEF?90,且EF交正方形外角的平分线CF于点F.〔1〕证明:?BAE??FEC;〔2〕证明:?AGE??ECF;〔3〕求?AEF的面积.?【横向拓展】4.如图,四边形ABCD是正方形,?ABE是等边三角形,M为对角线BD〔不含B 点〕上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. ⑴求证:?AMB??ENB;⑵①当M点在何处时,AM?CM的值最小;②当M点在何处时,AM?BM?CM的值最小,并说明理由;⑶当AM?BM?CM的最小值为3?1时,求正方形的边长.?A DN E M B C【纵向应用】3.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,?AEF?90,且EF交正方形外角的平分线CF于点F.〔1〕证明:?BAE??FEC;〔2〕证明:?AGE??ECF;〔3〕求?AEF的面积.?【横向拓展】4.如图,四边形ABCD是正方形,?ABE是等边三角形,M为对角线BD〔不含B 点〕上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. ⑴求证:?AMB??ENB;⑵①当M点在何处时,AM?CM的值最小;②当M点在何处时,AM?BM?CM的值最小,并说明理由;⑶当AM?BM?CM的最小值为3?1时,求正方形的边长.?A DN E M B C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6 讲夹半角模型
知识目标
模块一夹半角的模型例1、例2、例3难度:★★★
模块二夹半角的应用例4、例5、例6难度:★★★

模块一夹半角的模型
知识导航
夹半角,顾名思义,是一个大角夹着一个大小只有其一半的角,如下图所示。

这类题目有其固定的做法,当 取不同的值的时候,也会有类似的结论,下面我们就来看一看这一类问题。

夹半角的常见分类:
(1)90 度夹45 度
(2)120 度夹60 度
(3)2α夹α
题型一90 度夹45 度
【例1】如图,正方形ABCD 中,E 在BC 上,F 在CD 上,且∠EAF=45°,求证:(1)BE+DF=EF (2)∠AEB=∠AEF
【练习】在例1 的条件下,若E 在CB 延长线上,F 在DC 延长线上,其余条件不变,证明:
(1)DF-BE=EF
(2)∠AEB+∠AEF=180°
夹边角和勾股定理结合会产生很多有趣的结论,比如:
(1)已知△ABC 为等腰三角形,∠ACB=90°,M、N 是AB 上的点,∠MCN=45°,求证:AM2+BN2=MN2
(2)如图,正方形ABCD 中,F 为CD 中点,点E 在BC 上,且∠EAF=45°,求证:点E 为线段BC 靠近B 的三等分点.
题型二120 度夹60 度
【例2】已知如图,△ABC 为等边三角形,∠BDC=120°,DB=DC,M、N 分别是AB、AC 上的动点,且∠MDN=60°,求证:MB+CN=MN.
【练习】如图,四边形ABCD 中,∠A=∠BCD=90°,∠ADC=60°,AB=BC,E、F 分别在AD、DC 延长线上,且∠EBF=60°,求证:AE=EF+CF.
真题演练
在等边△ABC 的两边AB、AC 所在直线上分别有两点M、N.D 为△ABC 外一点,且∠MDN=60°,∠BDC =120°,BD=DC.探究:当M、N 分别在直线AB、AC 上移动时,BM、NC、MN 之间的数量关系以及△AMN 的周长Q 与等边△ABC 的周长L 的关系.
(1)当点M、N 在边AB、AC 上,且DM=DN 时,BM、NC、MN 之间的数量关系是;
Q
此时=;(不必证明)
L
(2)当点M、N 在边AB、AC 上,且当DM≠DN 时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;
(3)当M、N 分别在边AB、CA 的延长线上时,若AN=2,则Q=(用含有L 的式子表示)
题型三 2α夹α
【例 3】如图,在四边形 ABDC 中,M 、N 分别为 AB 、AC 上的点,若∠BAC +∠BDC =180°,BD =DC , 1 ∠MDN = 2
∠BDC ,求证:BM +CN =MN .
【练习】如图,在例 3 的条件下,若 M 、N 分别为 BA 延长线、AC 延长线上的点,∠BAC +∠BDC 1 =180°,BD =DC ,∠MDN = 2
∠BDC ,探究:线段 BM 、CN 、MN 的数量关系.
模块二 夹半角模型的应用
【例 4】 如图,在直角坐标系中,A 点的坐标为( a ,0),B 点的坐标为( b ,0),且 a 、 b 满足
= a +12
0,若 D (0,4),EB ⊥OB 于 B ,且满足∠EAD =45°,试求线段 EB 的长度.
a -
b + a 2 -144
a + 1 【例 5】点 A ( a ,0)、B (0,
b )分别在 x 轴、 y 轴上,且 a - b + a 2
- 6a + 9 = 0. (1)求 a , b 的值
(2)如图 1,若线段 AB 的长为3 2 ,点 C 为 y 轴负半轴上的一点,且射线 CA 平分△AOB 的外角∠BA x , 求点 C 的坐标.
(3)如图 2,取点 D (0,2)并连接 AD ,将△AOD 沿直线 AD 折叠得到△ADE ,过点 B 作 y 轴的垂线 BF 交射线 DE 的延长线于 F 点,连接 AF ,求 BF 的长.
【例 6】如图,在平面直角坐标系中,点 A (0, b ),点 B ( a ,0),点 D ( d ,0),且 a 、b 、 d 满
足 + b - 3 + (2 - d )2 = 0 ,DE ⊥ x 轴且∠BED =∠ABD ,BE 交 y 轴于点 C ,AE 交 x 轴于点 F .
(1)求点 A 、点 B 、点 D 的坐标;
(2)求点 E 、点 F 的坐标;
(3)如图,过 P (0,-1)作 x 轴的平行线,在该平行线上有一点 Q (点 Q 在点 P 的右侧)使∠QEM = 45°,QE 交 x 轴于点 N ,ME 交 y 轴的正半轴于点 M ,确定 AM - MQ
的值.
PQ
第 6 讲【课后作业】夹半角
1.如图,E是正方形ABCD 中CD 边上的任意一点,以点A 为中心,把△ADE 顺时针旋转90°得△AB E1 ,的平分线交BC 边于点F,求证:△CFE 的周长等于正方形ABCD 的周长的一半.
∠EA E
1
2.如图△ABC 是边长为3 的等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB、AC 于M、N,连接MN,则△AMN 的周长为.
3.已知如图,五边形ABCDE 中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°.
求证:(1)AD 平分∠CDE;(2)∠BAE=2∠CAD.
4.如图,平面直角坐标系中,已知A(a,4)、B(b ,0),且满足
a -1
+b2 - 6b + 9 = 0
(1)求A、B 两点的坐标
(2)若点C 在第一象限内,且△ABC 为等腰直角三角形,求点C 的坐标.
(3)如图,点N(1,0)、R(4,3),点P 为线段AN 上的一动点,连接PR,以PR 为一边作∠PRM=45°,交x 轴于点M,连PM,请问点P 在运动的过程中,线段PM、AM、BM 直线有怎样的数量关系,证明你的结论.。

相关文档
最新文档