计量经济学习题与解答3
计量经济学第三章练习题及参考全部解答
第三章练习题及参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064) R 2=0.93433192964.02=R F=191.1894 n=311)从经济意义上考察估计模型的合理性。
2)在5%显著性水平上,分别检验参数21,ββ的显著性。
3)在5%显著性水平上,检验模型的整体显著性。
练习题3.1参考解答:(1)由模型估计结果可看出:从经济意义上说明,旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。
平均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。
这与经济理论及经验符合,是合理的。
(2)取05.0=α,查表得048.2)331(025.0=-t因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
(3)取05.0=α,查表得34.3)28,2(05.0=F ,由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。
3.2 表3.6给出了有两个解释变量2X 和.3X 的回归模型方差分析的部分结果:表3.6 方差分析表1)回归模型估计结果的样本容量n 、残差平方和RSS 、回归平方和ESS 与残差平方和RSS 的自由度各为多少?2)此模型的可决系数和调整的可决系数为多少? 3)利用此结果能对模型的检验得出什么结论?能否确定两个解释变量2X 和.3X 各自对Y 都有显著影响?练习题3.2参考解答:(1) 因为总变差的自由度为14=n-1,所以样本容量:n=14+1=15因为 TSS=RSS+ESS 残差平方和RSS=TSS-ESS=66042-65965=77 回归平方和的自由度为:k-1=3-1=2 残差平方和RSS 的自由度为:n-k=15-3=12(2)可决系数为:2659650.99883466042ES RTSS S === 修正的可决系数:222115177110.998615366042i i e n R n k y --=-=-⨯=--∑∑ (3)这说明两个解释变量2X 和.3X 联合起来对被解释变量有很显著的影响,但是还不能确定两个解释变量2X 和.3X 各自对Y 都有显著影响。
计量经济学习题及参考答案解析详细版
计量经济学习题及参考答案解析详细版计量经济学(第四版)习题参考答案潘省初第⼀章绪论试列出计量经济分析的主要步骤。
⼀般说来,计量经济分析按照以下步骤进⾏:(1)陈述理论(或假说)(2)建⽴计量经济模型(3)收集数据(4)估计参数(5)假设检验(6)预测和政策分析计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对⽽⾔不重要因⽽未被引⼊模型的变量,以及纯粹的随机因素。
什么是时间序列和横截⾯数据? 试举例说明⼆者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民⽣产总值、就业、货币供给、财政⾚字或某⼈⼀⽣中每年的收⼊都是时间序列的例⼦。
横截⾯数据是在同⼀时点收集的不同个体(如个⼈、公司、国家等)的数据。
如⼈⼝普查数据、世界各国2000年国民⽣产总值、全班学⽣计量经济学成绩等都是横截⾯数据的例⼦。
估计量和估计值有何区别?估计量是指⼀个公式或⽅法,它告诉⼈们怎样⽤⼿中样本所提供的信息去估计总体参数。
在⼀项应⽤中,依据估计量算出的⼀个具体的数值,称为估计值。
如Y就是⼀个估计量,1nii YY n==∑。
现有⼀样本,共4个数,100,104,96,130,则根据这个样本的数据运⽤均值估计量得出的均值估计值为5.107413096104100=+++。
第⼆章计量经济分析的统计学基础略,参考教材。
请⽤例中的数据求北京男⽣平均⾝⾼的99%置信区间NS S x ==45= ⽤也就是说,根据样本,我们有99%的把握说,北京男⾼中⽣的平均⾝⾼在⾄厘⽶之间。
25个雇员的随机样本的平均周薪为130元,试问此样本是否取⾃⼀个均值为120元、标准差为10元的正态总体?原假设120:0=µH备择假设 120:1≠µH 检验统计量()10/2510/25XX µσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即此样本不是取⾃⼀个均值为120元、标准差为10元的正态总体。
计量经济学题目及答案
三、判断题(判断下列命题正误,并说明理由)1、简单线性回归模型与多元线性回归模型的基本假定是相同的。
2、在模型中引入解释变量的多个滞后项容易产生多重共线性。
3、D-W 检验中的D-W 值在0到4之间,数值越小说明模型随机误差项的自相关度越小,数值越大说明模型随机误差项的自相关度越大。
4、在计量经济模型中,随机扰动项与残差项无区别。
5、在经济计量分析中,模型参数一旦被估计出来,就可将估计模型直接运用于实际的计量经济分析.6、线性回归模型意味着因变量是自变量的线性函数。
7、多重共线性问题是随机扰动项违背古典假定引起的。
8、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与样本容量大小有关.9、双变量模型中,对样本回归函数整体的显著性检验与斜率系数的显著性检验是一致的。
10、如果联立方程模型中某个结构方程包含了所有的变量, 则这个方程不可识别。
11、在实际中,一元回归没什么用,因为因变量的行为不可能仅由一个解释变量来解释.12、多重共线性问题是随机扰动项违背古典假定引起的13、在异方差性的情况下,常用的OLS 法必定高估了估计量的标准误。
14、虚拟变量只能作为解释变量。
15、随机扰动项的方差与随机扰动项方差的无偏估计没有区别.16、经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量将有偏的。
17、虚拟变量的取值只能取0或1。
18、拟合优度检验和F 检验是没有区别的。
19、联立方程组模型不能直接用OLS 方法估计参数。
20、双变量模型中,对样本回归函数整体的显著性检验与斜率系数的显著性 检验是一致的;21、多重共线性问题是随机扰动项违背古典假定引起的。
22、在模型t t t t u X X Y +++=33221βββ的回归分析结果报告中,有23.263489=F ,000000.0=值的p F ,则表明解释变量t X 2 对t Y 的影响是显著的。
23、结构型模型中的每一个方程都称为结构式方程,结构方程中,解释变量只可以是前定变量.24、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。
计量经济学考试习题与解答
计量经济学考试习题与解答第三章、经典单⽅程计量经济学模型:多元线性回归模型⼀、内容提要本章将⼀元回归模型拓展到了多元回归模型,其基本地建模思想与建模⽅法与⼀元地情形相同.主要内容仍然包括模型地基本假定、模型地估计、模型地检验以及模型在预测⽅⾯地应⽤等⽅⾯.只不过为了多元建模地需要,在基本假设⽅⾯以及检验⽅⾯有所扩充.本章仍重点介绍了多元线性回归模型地基本假设、估计⽅法以及检验程序.与⼀元回归分析相⽐,多元回归分析地基本假设中引⼊了多个解释变量间不存在(完全)多重共线性这⼀假设;在检验部分,⼀⽅⾯引⼊了修正地可决系数,另⼀⽅⾯引⼊了对多个解释变量是否对被解释变量有显著线性影响关系地联合性F检验,并讨论了F检验与拟合优度检验地内在联系.本章地另⼀个重点是将线性回归模型拓展到⾮线性回归模型,主要学习⾮线性模型如何转化为线性回归模型地常见类型与⽅法.这⾥需要注意各回归参数地具体经济含义.本章第三个学习重点是关于模型地约束性检验问题,包括参数地线性约束与⾮线性约束检验.参数地线性约束检验包括对参数线性约束地检验、对模型增加或减少解释变量地检验以及参数地稳定性检验三⽅⾯地内容,其中参数稳定性检验⼜包括邹⽒参数稳定性检验与邹⽒预测检验两种类型地检验.检验都是以F检验为主要检验⼯具,以受约束模型与⽆约束模型是否有显著差异为检验基点.参数地⾮线性约束检验主要包括最⼤似然⽐检验、沃尔德检验与拉格朗⽇乘数检验.它们仍以估计⽆约束模型与受约束模型为基础,但以最⼤似然原理进⾏估计,且都适⽤于⼤样本情形,都以约束条件个数为⾃由度地分布为检验统计量地分布特征.⾮线性约束检验中地拉格朗⽇乘数检验在后⾯地章节中多次使⽤.⼆、典型例题分析例1.某地区通过⼀个样本容量为722地调查数据得到劳动⼒受教育地⼀个回归⽅程为R2=0.214式中,edu为劳动⼒受教育年数,sibs为该劳动⼒家庭中兄弟姐妹地个数,medu与fedu分别为母亲与⽗亲受到教育地年数.问(1)sibs是否具有预期地影响?为什么?若medu与fedu保持不变,为了使预测地受教育⽔平减少⼀年,需要sibs增加多少?(2)请对medu地系数给予适当地解释.(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个地⽗母受教育地年数为12年,另⼀个地⽗母受教育地年数为16年,则两⼈受教育地年数预期相差多少?解答:(1)预期sibs对劳动者受教育地年数有影响.因此在收⼊及⽀出预算约束⼀定地条件下,⼦⼥越多地家庭,每个孩⼦接受教育地时间会越短.根据多元回归模型偏回归系数地含义,sibs前地参数估计值-0.094表明,在其他条件不变地情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育地时间,兄弟姐妹需增加1/0.094=10.6个.(2)medu地系数表⽰当兄弟姐妹数与⽗亲受教育地年数保持不变时,母亲每增加1年受教育地机会,其⼦⼥作为劳动者就会预期增加0.131年地教育机会.(3)⾸先计算两⼈受教育地年数分别为10.36+0.131?12+0.210?12=14.45210.36+0.131?16+0.210?16=15.816因此,两⼈地受教育年限地差别为15.816-14.452=1.364例2.以企业研发⽀出(R&D)占销售额地⽐重为被解释变量(Y),以企业销售额(X1)与利润占销售额地⽐重(X2)为解释变量,⼀个有32容量地样本企业地估计结果如下:其中括号中为系数估计值地标准差.(1)解释log(X1)地系数.如果X1增加10%,估计Y会变化多少个百分点?这在经济上是⼀个很⼤地影响吗?(2)针对R&D强度随销售额地增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化地假设.分别在5%和10%地显著性⽔平上进⾏这个检验.(3)利润占销售额地⽐重X2对R&D强度Y是否在统计上有显著地影响?解答:(1)log(x1)地系数表明在其他条件不变时,log(x1)变化1个单位,Y变化地单位数,即?Y=0.32?log(X1)≈0.32(?X1/X1)=0.32?100%,换⾔之,当企业销售X1增长100%时,企业研发⽀出占销售额地⽐重Y会增加0.32个百分点.由此,如果X1增加10%,Y会增加0.032个百分点.这在经济上不是⼀个较⼤地影响.(2)针对备择假设H1:,检验原假设H0:.易知计算地t统计量地值为t=0.32/0.22=1.468.在5%地显著性⽔平下,⾃由度为32-3=29地t 分布地临界值为1.699(单侧),计算地t值⼩于该临界值,所以不拒绝原假设.意味着R&D强度不随销售额地增加⽽变化.在10%地显著性⽔平下,t分布地临界值为1.311,计算地t 值⼩于该值,拒绝原假设,意味着R&D强度随销售额地增加⽽增加.(3)对X2,参数估计值地t统计值为0.05/0.46=1.087,它⽐在10%地显著性⽔平下地临界值还⼩,因此可以认为它对Y在统计上没有显著地影响.例3.下表为有关经批准地私⼈住房单位及其决定因素地4个模型地估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量).数据为美国40个城市地数据.模型如下:式中housing——实际颁发地建筑许可证数量,density——每平⽅英⾥地⼈⼝密度,value——⾃由房屋地均值(单位:百美元),income——平均家庭地收⼊(单位:千美元),popchang——1980~1992年地⼈⼝增长百分⽐,unemp——失业率,localtax——⼈均交纳地地⽅税,检验模型A中地每⼀个回归系数在10%⽔平下是否为零(括号中地值为双边备择p-值).根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%⽔平下检验联合假设H0:βi =0(i=1,5,6,7).说明被择假设,计算检验统计值,说明其在零假设条件下地分布,拒绝或接受零假设地标准.说明你地结论.(3)哪个模型是“最优地”?解释你地选择标准.(4)说明最优模型中有哪些系数地符号是“错误地”.说明你地预期符号并解释原因.确认其是否为正确符号.解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表.根据题意,如果p-值<0.10,则我们拒绝参数为零地原假设.由于表中所有参数地p-值都超过了10%,所以没有系数是显著不为零地.但由此去掉所有解释变量,则会得到⾮常奇怪地结果.其实正如我们所知道地,多元回去归中在省略变量时⼀定要谨慎,要有所选择.本例中,value、income、popchang地p-值仅⽐0.1稍⼤⼀点,在略掉unemp、localtax、statetax地模型C中,这些变量地系数都是显著地.(2)针对联合假设H0:βi =0(i=1,5,6,7)地备择假设为H1:βi =0(i=1,5,6,7)中⾄少有⼀个不为零.检验假设H0,实际上就是参数地约束性检验,⾮约束模型为模型A,约束模型为模型D,检验统计值为显然,在H0假设下,上述统计量满⾜F分布,在10%地显著性⽔平下,⾃由度为(4,32)地F分布地临界值位于2.09和2.14之间.显然,计算地F值⼩于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著地.(3)模型D中地3个解释变量全部通过显著性检验.尽管R2与残差平⽅和较⼤,但相对来说其AIC值最低,所以我们选择该模型为最优地模型.(4)随着收⼊地增加,我们预期住房需要会随之增加.所以可以预期β3>0,事实上其估计值确是⼤于零地.同样地,随着⼈⼝地增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此.随着房屋价格地上升,我们预期对住房地需求⼈数减少,即我们预期β3估计值地符号为负,回归结果与直觉相符.出乎预料地是,地⽅税与州税为不显著地.由于税收地增加将使可⽀配收⼊降低,所以我们预期住房地需求将下降.虽然模型A是这种情况,但它们地影响却⾮常微弱.4、在经典线性模型基本假定下,对含有三个⾃变量地多元回归模型:你想检验地虚拟假设是H0:.(1)⽤地⽅差及其协⽅差求出.(2)写出检验H0:地t统计量.(3)如果定义,写出⼀个涉及β0、θ、β2和β3地回归⽅程,以便能直接得到θ估计值及其标准误.解答:(1)由数理统计学知识易知(2)由数理统计学知识易知,其中为地标准差.(3)由知,代⼊原模型得这就是所需地模型,其中θ估计值及其标准误都能通过对该模型进⾏估计得到.三、习题(⼀)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规⽅程组4)⽆偏性5)⼀致性6)参数估计量地置信区间7)被解释变量预测值地置信区间8)受约束回归9)⽆约束回归10)参数稳定性检验3-2.观察下列⽅程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)2)3)4)5)6)7)3-3.多元线性回归模型与⼀元线性回归模型有哪些区别?3-4.为什么说最⼩⼆乘估计量是最优地线性⽆偏估计量?多元线性回归最⼩⼆乘估计地正规⽅程组,能解出唯⼀地参数估计地条件是什么?3-5.多元线性回归模型地基本假设是什么?试说明在证明最⼩⼆乘估计量地⽆偏性和有效性地过程中,哪些基本假设起了作⽤?3-6.请说明区间估计地含义.(⼆)基本证明与问答类题型3-7.什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:,地正规⽅程组,及其推导过程.3-8.对于多元线性回归模型,证明:(1)(2)3-9.为什么从计量经济学模型得到地预测值不是⼀个确定地值?预测值地置信区间和置信度地含义是什么?在相同地置信度下如何才能缩⼩置信区间?为什么?3-10.在多元线性回归分析中,检验与检验有何不同?在⼀元线性回归分析中⼆者是否有等价地作⽤?3-11.设有模型:,试在下列条件下:(1)(2)分别求出和地最⼩⼆乘估计量.3-12.多元线性计量经济学模型1,2,…,n (2.11.1)地矩阵形式是什么?其中每个矩阵地含义是什么?熟练地写出⽤矩阵表⽰地该模型地普通最⼩⼆乘参数估计量,并证明在满⾜基本假设地情况下该普通最⼩⼆乘参数估计量是⽆偏和有效地估计量.3-13.有如下⽣产函数:(0.257)(0.219)其中括号内数值为参数标准差.请检验以下零假设:(1)产出量地资本弹性和劳动弹性是等同地;(2)存在不变规模收益,即.3-14.对模型应⽤OLS法,得到回归⽅程如下:要求:证明残差与不相关,即:.3-15.3-16.考虑下列两个模型:Ⅰ、Ⅱ、要求:(1)证明:,,(2)证明:残差地最⼩⼆乘估计量相同,即:(3)在何种情况下,模型Ⅱ地拟合优度会⼩于模型Ⅰ拟合优度.3-17.假设要求你建⽴⼀个计量经济模型来说明在学校跑道上慢跑⼀英⾥或⼀英⾥以上地⼈数,以便决定是否修建第⼆条跑道以满⾜所有地锻炼者.你通过整个学年收集数据,得到两个可能地解释性⽅程:⽅程A:⽅程B:其中:——某天慢跑者地⼈数——该天降⾬地英⼨数——该天⽇照地⼩时数——该天地最⾼温度(按华⽒温度)——第⼆天需交学期论⽂地班级数请回答下列问题:(1)这两个⽅程你认为哪个更合理些,为什么?(2)为什么⽤相同地数据去估计相同变量地系数得到不同地符号?3-18.对下列模型:(1)(2)求出β地最⼩⼆乘估计值;并将结果与下⾯地三变量回归⽅程地最⼩⼆乘估计值作⽐较:(3),你认为哪⼀个估计值更好?3-19.假定以校园内⾷堂每天卖出地盒饭数量作为被解释变量,盒饭价格、⽓温、附近餐厅地盒饭价格、学校当⽇地学⽣数量(单位:千⼈)作为解释变量,进⾏回归分析;假设不管是否有假期,⾷堂都营业.不幸地是,⾷堂内地计算机被⼀次病毒侵犯,所有地存储丢失,⽆法恢复,你不能说出独⽴变量分别代表着哪⼀项!下⾯是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)要求:(1)试判定每项结果对应着哪⼀个变量?(2)对你地判定结论做出说明.(三)基本计算类题型3-20.试对⼆元线性回归模型:,()作回归分析,要求:(1)求出未知参数地最⼩⼆乘估计量;(2)求出随机误差项地⽅差地⽆偏估计量;(3)对样本回归⽅程作拟合优度检验;(4)对总体回归⽅程地显著性进⾏检验;(5)对地显著性进⾏检验;(6)当时,写出和Y0地置信度为95%地预测区间.3-21.下表给出三变量模型地回归结果:⽅差来源平⽅和(SS)⾃由度(d.f.)平⽅和地均值(MSS)来⾃回归65965 ——来⾃残差_———总离差(TSS) 66042 14要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS地⾃由度各是多少?(4)求和?(5)检验假设:和对⽆影响.你⽤什么假设检验?为什么?(6)根据以上信息,你能否确定和各⾃对地贡献吗?3-22.下⾯给出依据15个观察值计算得到地数据:,,,,,,其中⼩写字母代表了各值与其样本均值地离差.要求:(1)估计三个多元回归系数;(2)估计它们地标准差;并求出与?(3)估计、95%地置信区间;(4)在下,检验估计地每个回归系数地统计显著性(双边检验);(5)检验在下所有地部分系数都为零,并给出⽅差分析表.3-23.考虑以下⽅程(括号内为估计标准差):(0.080)(0.072) (0.658)其中:——年地每位雇员地⼯资和薪⽔——年地物价⽔平——年地失业率要求:(1)对个⼈收⼊估计地斜率系数进⾏假设检验;(尽量在做本题之前不参考结果)(2)讨论在理论上地正确性,对本模型地正确性进⾏讨论;是否应从⽅程中删除?为什么?3-24.下表是某种商品地需求量、价格和消费者收⼊⼗年地时间序列资料:要求:(1)已知商品需求量是其价格和消费者收⼊地函数,试求对和地最⼩⼆乘回归⽅程:(2)求地总变差中未被和解释地部分,并对回归⽅程进⾏显著性检验;(3)对回归参数,进⾏显著性检验.3-25.参考习题2-28给出地数据,要求:(1)建⽴⼀个多元回归模型,解释MBA毕业⽣地平均初职⼯资,并且求出回归结果;(2)如果模型中包括了GPA和GMA T 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?(3)如果学费这⼀变量地系数为正、并且在统计上是显著地,是否表⽰进⼊最昂贵地商业学校是值得地.学费这个变量可⽤什么来代替?3-26.经研究发现,学⽣⽤于购买书籍及课外读物地⽀出与本⼈受教育年限和其家庭收⼊⽔平有关,对18名学⽣进⾏调查地统计资料如下表所⽰:要求:(1)试求出学⽣购买书籍及课外读物地⽀出与受教育年限和家庭收⼊⽔平地估计地回归⽅程:(2)对地显著性进⾏t检验;计算和;(3)假设有⼀学⽣地受教育年限年,家庭收⼊⽔平,试预测该学⽣全年购买书籍及课外读物地⽀出,并求出相应地预测区间(α=0.05).3-27.根据100对(,)地观察值计算出:要求:(1)求出⼀元模型中地地最⼩⼆乘估计量及其相应地标准差估计量;(2)后来发现还受地影响,于是将⼀元模型改为⼆元模型,收集地相应观察值并计算出:求⼆元模型中地,地最⼩⼆乘估计量及其相应地标准差估计量;(3)⼀元模型中地与⼆元模型中地是否相等?为什么?3-28.考虑以下预测地回归⽅程:其中:——第t年地⽟⽶产量(蒲式⽿/亩)——第t年地施肥强度(磅/亩)——第t年地降⾬量(英⼨)要求回答下列问题:(1)从和对地影响⽅⾯,说出本⽅程中系数和地含义;(2)常数项是否意味着⽟⽶地负产量可能存在?(3)假定地真实值为,则估计值是否有偏?为什么?(4)假定该⽅程并不满⾜所有地古典模型假设,即并不是最佳线性⽆偏估计值,则是否意味着地真实值绝对不等于?为什么?3-29.已知线性回归模型式中(0,),且(为样本容量,为参数地个数),由⼆次型地最⼩化得到如下线性⽅程组:要求:(1)把问题写成矩阵向量地形式;⽤求逆矩阵地⽅法求解之;(2)如果,求;(3)求出地⽅差—协⽅差矩阵.3-30.已知数据如下表:要求:(1)先根据表中数据估计以下回归模型地⽅程(只估计参数不⽤估计标准差):(2)回答下列问题:吗?为什么?吗?为什么?(四)⾃我综合练习类题型3-31.⾃⼰选择研究对象(最好是⼀个实际经济问题),收集样本数据,应⽤计量经济学软件(建议使⽤Eviews3.1),完成建⽴多元线性计量经济模型地全过程,并写出详细研究报告.四、习题参考答案(⼀)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在⼀个被解释变量受到多个解释变量地影响地现象,表现为在线性回归模型中有多个解释变量,这样地模型被称为多元线性回归模型,多元指多个解释变量.(2)形如地关于参数估计值地线性代数⽅程组称为正规⽅程组.3-2.答:变量⾮线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数⾮线性;变量、系数均为⾮线性;变量、系数均为⾮线性;变量、系数均为线性.3-3.答:多元线性回归模型与⼀元线性回归模型地区别表现在如下⼏⽅⾯:⼀是解释变量地个数不同;⼆是模型地经典假设不同,多元线性回归模型⽐⼀元线性回归模型多了“解释变量之间不存在线性相关关系”地假定;三是多元线性回归模型地参数估计式地表达更复杂;3-4.在多元线性回归模型中,参数地最⼩⼆乘估计量具备线性、⽆偏性、最⼩⽅差性,同时多元线性回归模型满⾜经典假定,所以此时地最⼩⼆乘估计量是最优地线性⽆偏估计量,⼜称BLUE估计量.对于多元线性回归最⼩⼆乘估计地正规⽅程组,3-5.答:多元线性回归模型地基本假定有:零均值假定、随机项独⽴同⽅差假定、解释变量地⾮随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0⽅差为地正态分布假定.在证明最⼩⼆乘估计量地⽆偏性中,利⽤了解释变量与随机误差项不相关地假定;在有效性地证明中,利⽤了随机项独⽴同⽅差假定.3-6.答:区间估计是指研究⽤未知参数地点估计值(从⼀组样本观测值算得地)作为近似值地精确程度和误差范围.(⼆)基本证明与问答类题型3-7.答:含有待估关系估计量地⽅程组称为正规⽅程组.正规⽅程组地⾮矩阵形式如下:正规⽅程组地矩阵形式如下:推导过程略.3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕.⑵证明:证毕.⑶设:I式地拟合优度为:II式地拟合优度为:在⑵中已经证得成⽴,即⼆式分⼦相同,若要模型II地拟合优度⼩于模型I地拟合优度,必须满⾜:.3-17.答:⑴⽅程B更合理些.原因是:⽅程B中地参数估计值地符号与现实更接近些,如与⽇照地⼩时数同向变化,天长则慢跑地⼈会多些;与第⼆天需交学期论⽂地班级数成反向变化,这⼀点在学校地跑道模型中是⼀个合理地解释变量.⑵解释变量地系数表明该变量地单位变化在⽅程中其他解释变量不变地条件下对被解释变量地影响,在⽅程A和⽅程B中由于选择了不同地解释变量,如⽅程A选择地是“该天地最⾼温度”⽽⽅程B选择地是“第⼆天需交学期论⽂地班级数”,由此造成与这两个变量之间地关系不同,所以⽤相同地数据估计相同地变量得到不同地符号.3-18.答:将模型⑴改写成,则地估计值为:将模型⑵改写成,则地估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下地变形.如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏.3-19.答:⑴答案并不唯⼀,猜测为:为学⽣数量,为附近餐厅地盒饭价格,为⽓温,为校园内⾷堂地盒饭价格;⑵理由是被解释变量应与学⽣数量成正⽐,并且应该影响显著;与本⾷堂盒饭价格成反⽐,这与需求理论相吻合;与附近餐厅地盒饭价格成正⽐,因为彼此是替代品;与⽓温地变化关系不是⼗分显著,因为⼤多数学⽣不会因为⽓温升⾼不吃饭.(三)基本计算类题型3-22.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有地部分系数为0,即:,等价于⽅差来源平⽅和⾃由度平⽅和地均值来⾃回归65963.018 2 32981.509来⾃残差79.2507 12 6.6042总离差66042.269,,临界值为3.89值是显著地,所以拒绝零假设.3-23.解:⑴对给定在5%地显著⽔平下,可以进⾏t检验,得到地结果如下:3-28.解:⑴在降⾬量不变时,每亩增加⼀磅肥料将使第年地⽟⽶产量增加0.1蒲式⽿/亩;在每亩施肥量不变地情况下,每增加⼀英⼨地降⾬量将使第年地⽟⽶产量增加5.33蒲式⽿/亩;⑵在种地地⼀年中不施肥、也不下⾬地现象同时发⽣地可能性极⼩,所以⽟⽶地负产量不可能存在;⑶如果地真实值为0.40,并不能说明0.1是有偏地估计,理由是0.1是本题估计地参数,⽽0.40是从总体得到地系数地均值.⑷不⼀定.即便该⽅程并不满⾜所有地古典模型假设、不是最佳线性⽆偏估计值,也有可能得出地估计系数等于5.33.3-29.解:⑴该⽅程组地矩阵向量形式为:⑵⑶地⽅差—协⽅差矩阵为:版权申明本⽂部分内容,包括⽂字、图⽚、以及设计等在⽹上搜集整理。
计量经济学试题与答案
计量经济学试题与答案一、选择题(每题5分,共25分)1. 以下哪个选项是计量经济学的基本任务?A. 建立经济模型B. 进行经济预测C. 分析经济现象的规律性D. 所有以上选项答案:D2. 以下哪个方法不属于计量经济学的研究方法?A. 最小二乘法B. 最大似然法C. 线性规划D. 广义矩估计答案:C3. 在线性回归模型中,以下哪个选项表示随机误差项的方差?A. σ²B. μC. εD. β答案:A4. 在计量经济学模型中,以下哪个选项表示解释变量与被解释变量之间的关系?A. 相关性B. 因果关系C. 联合分布D. 条件分布答案:B5. 在实证研究中,以下哪个选项可以用来检验模型的稳定性?A. 残差分析B. 异方差性检验C. 单位根检验D. 联合检验答案:C二、填空题(每题5分,共25分)1. 计量经济学是一门研究______、______和______的科学。
答案:经济模型、经济数据、经济预测2. 最小二乘法的原理是使______的平方和最小。
答案:回归残差3. 在线性回归模型中,回归系数的估计值是______的线性函数。
答案:解释变量4. 异方差性检验的方法有______检验、______检验和______检验。
答案:Breusch-Pagan检验、White检验、Goldfeld-Quandt检验5. 在实证研究中,单位根检验的目的是检验______。
答案:时间序列数据的平稳性三、计算题(每题20分,共40分)1. 设线性回归模型为:Y = β0 + β1X + ε,其中Y表示被解释变量,X表示解释变量,ε表示随机误差项。
给定以下数据:Y: 2, 3, 4, 5, 6X: 1, 2, 3, 4, 5求:回归系数β0和β1的估计值。
答案:首先,计算X和Y的均值:X̄ = (1 + 2 + 3 + 4 + 5) / 5 = 3Ȳ = (2 + 3 + 4 + 5 + 6) / 5 = 4然后,计算回归系数β1的估计值:β1̄= Σ[(Xi - X̄)(Yi - Ȳ)] / Σ[(Xi - X̄)²]= [(1-3)(2-4) + (2-3)(3-4) + (3-3)(4-4) + (4-3)(5-4) + (5-3)(6-4)] / [(1-3)² + (2-3)² + (3-3)² + (4-3)² + (5-3)²]= 4 / 10= 0.4最后,计算回归系数β0的估计值:β0̄ = Ȳ - β1̄X̄= 4 - 0.4 3= 2.2所以,回归系数β0和β1的估计值分别为2.2和0.4。
计量经济学习题集及详解答案
第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。
2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间__________的关系,用__________性的数学方程加以描述。
3.经济数学模型是用__________描述经济活动。
4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。
5.计量经济学模型包括__________和__________两大类。
6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。
7.确定理论模型中所包含的变量,主要指确定__________。
8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。
9.选择模型数学形式的主要依据是__________。
10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。
11.样本数据的质量包括四个方面__________、__________、__________、__________。
12.模型参数的估计包括__________、__________和软件的应用等内容。
13.计量经济学模型用于预测前必须通过的检验分别是__________检验、__________检验、__________检验和__________检验。
14.计量经济模型的计量经济检验通常包括随机误差项的__________检验、__________检验、解释变量的__________检验。
计量经济学部分习题答案与解析
第三章 一元线性回归模型P56.3.3 从某公司分布在11个地区的销售点的销售量()Y 和销售价格()X 观测值得出以下结果:519.8X = 217.82Y = 23134543i X =∑ 1296836i i X Y =∑2539512iY=∑(1)、估计截距0β和斜率系数1β及其标准误,并进行t 检验; (2)、销售的总离差平方和中,样本回归直线未解释的比例是多少? (3)、对0β和1β分别建立95%的置信区间。
解:(1)、设01i i Y X ββ=+,根据OLS 估计量有:µ()()()11111122222211112=129683611519.8217.820.32313454311519.8N N NNNi i i ii i iii i i i i NNNN i ii i i i i i N Y X Y X N Y X N X NYY XN X YN X N X XN XN X X β=========---==⎛⎫--- ⎪⎝⎭-⨯⨯==-⨯∑∑∑∑∑∑∑∑∑µµ01217.820.32519.851.48Y X ββ=-=-⨯= 残差平方和:$()µ()µµµ()µµµµ()µµµµ222112222220111111122222222010101011111111=225395121NNi ii i i NNNNN N ii i i i ii i i i i i N N N N N i i i i i i i i i i i u RSS TSS ESS Y YYY Y Y Y Y Y X N N Y X X Y N X X ββββββββββ===============-=---⎛⎫⎛⎫--+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫=-++=-++ ⎪⎝⎭=-∑∑∑∑∑∑∑∑∑∑∑∑∑∑()22151.480.32313454320.3251.4811519.8997.20224⨯+⨯+⨯⨯⨯⨯=另解:对$()µ()22211NNi ii i i u RSS TSS ESS Y YYY ====-=---∑∑∑,根据OLS估计µµ01Y X ββ=-知µµ01+Y X ββ=,因此有 µµµµµ()µ()01011=++i i iY Y X X X X βββββ--=-,所以 $()µ()()µ()22222211111=NNNNiiiii i i i i u Y Y YY Y Y X Xβ=====------∑∑∑∑∑标准差: µ10.53σ==µ1β的标准误: µ()µµµ10.026se β===== 设原假设和备择假设分别为:01=0H β: 110H β≠: 将原假设带入t 统计量:µµ()()10.02510.3212.31 2.26290.026t t se ββ===>= 即拒绝原假设,认为销售价格()X 显著地解释了销售量()Y 的总体平均变化。
计量经济学习题含答案
计量经济学习题含答案第1章绪论习题一、单项选择题1•把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为(B )A. 横截面数据B.时间序列数据C.面板数据D.原始数据2 •同一时间、不同单位按同一统计指标排列的观测数据称为(B )A. 原始数据B?截面数据C. 时间序列数据D ?面板数据3•用计量经济学研究问题可分为以下四个阶段( B )A.确定科学的理论依据、建立模型、模型修定、模型应用B ?建立模型、估计参数、检验模型、经济预测C?搜集数据、建立模型、估计参数、预测检验D. 建立模型、模型修定、结构分析、模型应用4 •下列哪一个模型是计量经济模型(C )A.投入产出模型B.数学规划模型C.包含随机变量的经济数学模型D.模糊数学模型二、问答题1 •计量经济学的定义2•计量经济学的研究目的3•计量经济学的研究内容1 •答:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济尖系和经济活动规律及其应用的科学2•答:计量经济学的研究目的主要有三个:(1 )结构分析。
指应用计量经济模型对经济变量之间的尖系作出定量的度量。
(2 )预测未来。
指应用已建立的计量经济模型求因变量未来一段时期的预测值。
(3)政策评价。
指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。
3•答:计量经济学在长期的发展过程中逐步形成了两个分支:理论计量经济学和应用计量经济学。
理论计量经济学主要研究计量经济学的理论和方法。
应用计量经济学将计量经济学方法应用于经济理论的特殊分支,即应用理论计量经济学的方法分析经济现象和预测经济变量2一元线性回归模型习题、单项选择题1 •最小二乘法是指(D )A.使达到最小值B.使达到最小值C.使达到最小值D.使达到最小值2 •在一元线性回归模型中,样本回归方程可表示为(C )C • D.3?线设OLS 法得到的样本回归直线为,以下说法不正确的是A-B • D.在回归直线上4•对样本的相尖系数,以下结论错误的是(A )A. 越接近0,与之间线性相矢程度高B. 越接近1,与之间线性相尖程度高C.D ,则与相互独立二、多 项选择题1 ■最小二乘估计量的统计性质有(A.无偏性B. C.不一致性 E.2. 利用普通最小二乘法求得的样本回归直线的特点(ACD )A.必然通过点B.可能通过点C. 残差的均值为常数D.的平均值与的平均值相等C. 残差与解释变量之间有一定的相尖性3. 随机变量(随机误差项)中一般包括那些因素(ABCDE )C. ABC )线性性C.最小方差性有偏性A回归模型中省略的变量B人们的随机行为C建立的数学模型的形式不够完善。
(完整word版)计量经济学习题及答案..
期中练习题1、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )A .使∑=-n t tt Y Y 1)ˆ(达到最小值 B.使∑=-nt t t Y Y 1达到最小值 C. 使∑=-nt t tY Y12)(达到最小值 D.使∑=-nt tt Y Y 12)ˆ(达到最小值 2、根据样本资料估计得出人均消费支出 Y 对人均收入 X 的回归模型为ˆln 2.00.75ln i iY X =+,这表明人均收入每增加 1%,人均消费支出将增加 ( )A. 0.75B. 0.75%C. 2D. 7.5% 3、设k 为回归模型中的参数个数,n 为样本容量。
则对总体回归模型进行显著性检验的F 统计量与可决系数2R 之间的关系为( )A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --=6、二元线性回归分析中 TSS=RSS+ESS 。
则 RSS 的自由度为( )A.1B.n-2C.2D.n-39、已知五个解释变量线形回归模型估计的残差平方和为8002=∑te,样本容量为46,则随机误差项μ的方差估计量2ˆσ为( ) A.33.33 B.40 C.38.09 D. 201、经典线性回归模型运用普通最小二乘法估计参数时,下列哪些假定是正确的( ) A.0)E(u i = B. 2i )V ar(u i σ= C. 0)u E(u j i ≠D.随机解释变量X 与随机误差i u 不相关E. i u ~),0(2i N σ2、对于二元样本回归模型ii i i e X X Y +++=2211ˆˆˆββα,下列各式成立的有( ) A.0=∑ieB. 01=∑ii Xe C. 02=∑iiXeD.=∑ii Ye E.21=∑i iX X4、能够检验多重共线性的方法有( )A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法D.ARCH 检验法E.辅助回归法计算题1、为了研究我国经济发展状况,建立投资(1X ,亿元)与净出口(2X ,亿元)与国民生产总值(Y ,亿元)的线性回归方程并用13年的数据进行估计,结果如下:ii i X X Y 21051980.4177916.2805.3871ˆ++= S.E=(2235.26) (0.12) (1.28) 2R =0.99 F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分) ②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显著性水平上,分别检验参数的显著性;在5%显著性水平上,检验模型的整体显著性。
计量经济学习题及参考答案
计量经济学各章习题第一章绪论1.1试列出计量经济分析地主要步骤.1.2计量经济模型中为何要包括扰动项?1.3什么是时间序列和横截面数据? 试举例说明二者地区别1.4估计量和估计值有何区别?第二章计量经济分析地统计学基础2.1名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I 类错误2.2请用例 2.2中地数据求北京男生平均身高地99%置信区间.2.325 个雇员地随机样本地平均周薪为130元,试问此样本是否取自一个均值为120 元、标准差为10 元地正态总体?文档收集自网络,仅用于个人学习2.4某月对零售商店地调查结果表明,市郊食品店地月平均销售额为2500 元,在下一个月份中,取出16 个这种食品店地一个样本,其月平均销售额为2600 元,销售额地标准差为480 元.试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?文档收集自网络,仅用于个人学习第三章双变量线性回归模型3.1判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化地估计方法.(2)计算OLS 估计值无需古典线性回归模型地基本假定.(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量.文档收集自网络,仅用于个人学习(4)最小二乘斜率系数地假设检验所依据地是t 分布,要求地抽样分布是正态分布.2(5)R2=TSS/ESS.(6)若回归模型中无截距项,则.(7)若原假设未被拒绝,则它为真.(8)在双变量回归中,地值越大,斜率系数地方差越大.3.2设和分别表示Y 对X 和X 对Y 地OLS 回归中地斜率,证明r 为X 和Y 地相关系数.3.3证明:(1)Y 地真实值与OLS 拟合值有共同地均值,即;(2)OLS 残差与拟合值不相关,即.3.4证明本章中( 3.18)和( 3.19)两式:(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)1 和1地OLS 估计量相同吗?它们地方差相等吗?(2)2 和2地OLS 估计量相同吗?它们地方差相等吗?3.6有人使用1980-1994 年度数据,研究汇率和相对价格地关系,得到如下结果:其中,Y=马克对美元地汇率X=美、德两国消费者价格指数(CPI)之比,代表两国地相对价格(1)请解释回归系数地含义;(2)X t 地系数为负值有经济意义吗?(3)如果我们重新定义X 为德国CPI与美国CPI之比,X 地符号会变化吗?为什么?3.7随机调查200 位男性地身高和体重,并用体重对身高进行回归,结果如下:其中Weight 地单位是磅(lb ),Height 地单位是厘米(cm).(1)当身高分别为177.67cm、164.98cm、187.82cm 时,对应地体重地拟合值为多少?(2)假设在一年中某人身高增高了 3.81cm,此人体重增加了多少?3.8设有10 名工人地数据如下:X 10 7 10 5 8 8 6 7 9 10Y 11 10 12 6 10 7 9 10 11 10 其中X= 劳动工时,Y= 产量(1)试估计Y=α+βX + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设β=1.0.3.9用12 对观测值估计出地消费函数为Y=10.0+0.90X ,且已知=0.01,=200,=4000,试预测当X=250 时Y 地值,并求Y 地95%置信区间.文档收集自网络,仅用于个人学习3.10设有某变量(Y)和变量(X)1995—1999 年地数据如下:(3)试预测X=10 时Y 地值,并求Y 地95%置信区间.3.11根据上题地数据及回归结果,现有一对新观测值X =20,Y=7.62,试问它们是否可能来自产生样本数据地同一总体?文档收集自网络,仅用于个人学习3.12有人估计消费函数,得到如下结果(括号中数字为t 值):=15 + 0.81 =0.98(2.7)(6.5)n=19(1)检验原假设:=0(取显著性水平为5%)(2)计算参数估计值地标准误差;(3)求地95%置信区间,这个区间包括0 吗?3.13试用中国1985—2003 年实际数据估计消费函数:=α+β + u t其中:C代表消费,Y 代表收入.原始数据如下表所示,表中:Cr=农村居民人均消费支出(元)Cu=城镇居民人均消费支出(元)Y =国内居民家庭人均纯收入(元) Yr =农村居民家庭人均纯收入(元) Yu=城镇居民家庭人均可支配收入(元) Rpop=农村人口比重(%) pop=历年年底我国人口总数(亿人)P=居民消费价格指数(1985=100)Pr=农村居民消费价格指数(1985=100)Pu=城镇居民消费价格指数(1985=100)数据来源:《中国统计年鉴2004》使用计量经济软件,用国内居民人均消费、农村居民人均消费和城镇居民人均消费分别对各自地人均收入进行回归,给出标准格式回归结果;并由回归结果分析我国城乡居民消费行为有何不同.文档收集自网络,仅用于个人学习第四章多元线性回归模型4.1某经济学家试图解释某一变量Y 地变动.他收集了Y 和 5 个可能地解释变量~地观测值(共10 组),然后分别作三个回归,结果如下(括号中数字为t 统计量):文档收集自网络,仅用于个人学习( 1) = 51.5 + 3.21 R=0.63(3.45) (5.21)2) 33.43 + 3.67 + 4.62 + 1.21 R=0.75 文档收集自网络,仅用于个人学(3.61 )(2.56)(0.81) (0.22)3) 23.21 + 3.82 + 2.32 + 0.82 + 4.10 + 1.21(2.21 )(2.83)(0.62) (0.12) (2.10) (1.11)文档收集自网络,仅用于个人学习R=0.80 你认为应采用哪一个结果?为什么?4.2为研究旅馆地投资问题,我们收集了某地地1987-1995 年地数据来估计收益生产函数R=ALKe ,其中R=旅馆年净收益(万年) ,L=土地投入,K=资金投入, e 为自然对数地底.设回归结果如下(括号内数字为标准误差) :文档收集自网络,仅用于个人学习= -0.9175 + 0.273lnL + 0.733lnK R=0.94(0.212) (0.135) (0.125)(1)请对回归结果作必要说明;( 2)分别检验α和β 地显著性;( 3)检验原假设:α =β = 0;4.3我们有某地1970-1987 年间人均储蓄和收入地数据,用以研究1970-1978 和1978 年以后储蓄和收入之间地关系是否发生显著变化. 引入虚拟变量后,估计结果如下(括号内数据为标准差) :文档收集自网络,仅用于个人学习= -1.7502 + 1.4839D + 0.1504 - 0.1034D·R=0.9425 文档收集自网络,仅用于个人学习(0.3319) (0.4704) (0.0163) (0.0332)其中:Y=人均储蓄,X=人均收入,D= 请检验两时期是否有显著地结构性变化.4.4说明下列模型中变量是否呈线性,系数是否呈线性,并将能线性化地模型线性化.(1)(2)(3)4.5有学者根据某国19年地数据得到下面地回归结果:其中:Y=进口量(百万美元),X1 =个人消费支出(百万美元),X2 =进口价格/国内价格.(1)解释截距项以及X1和X2系数地意义;(2)Y 地总变差中被回归方程解释地部分、未被回归方程解释地部分各是多少?(3)进行回归方程地显著性检验,并解释检验结果;(4)对“斜率”系数进行显著性检验,并解释检验结果.4.6由美国46个州1992年地数据,Baltagi 得到如下回归结果:其中,C=香烟消费(包/人年),P=每包香烟地实际价格Y=人均实际可支配收入(1)香烟需求地价格弹性是多少?它是否统计上显著?若是,它是否统计上异于-1?(2)香烟需求地收入弹性是多少?它是否统计上显著?若不显著,原因是什么?(3)求出.4.7有学者从209 个公司地样本,得到如下回归结果(括号中数字为标准误差):其中,Salary=CEO 地薪金Sales=公司年销售额roe=股本收益率(%)ros=公司股票收益请分析回归结果.4.8为了研究某国1970-1992 期间地人口增长率,某研究小组估计了下列模型:其中:Pop=人口(百万人),t=趋势变量,.(1)在模型 1 中,样本期该地地人口增长率是多少?(2)人口增长率在1978 年前后是否显著不同?如果不同,那么1972-1977和1978-1992 两时期中,人口增长率各是多少?文档收集自网络,仅用于个人学习4.9设回归方程为Y= β0+β1X1+β2X2+β3X3+ u, 试说明你将如何检验联合假设:β1= β2 和β3 = 1 .文档收集自网络,仅用于个人学习4.10下列情况应引入几个虚拟变量,如何表示?(1)企业规模:大型企业、中型企业、小型企业;(2)学历:小学、初中、高中、大学、研究生.4.11在经济发展发生转折时期,可以通过引入虚拟变量来表示这种变化.例如,研究进口消费品地数量Y 与国民收入X 地关系时,数据散点图显示1979 年前后明显不同.请写出引入虚拟变量地进口消费品线性回归方程.文档收集自网络,仅用于个人学习4.12柯布-道格拉斯生产函数其中:GDP=地区国内生产总值(亿元)K=资本形成总额(亿元)L= 就业人数(万人)P=商品零售价格指数(上年=100)试根据中国2003 年各省数据估计此函数并分析结果.数据如下表所示第五章模型地建立与估计中地问题及对策5.1判断题(判断对错;如果错误,说明理由)(1)尽管存在严重多重共线性,普通最小二乘估计量仍然是最佳线性无偏估计量(BLUE ).(2)如果分析地目地仅仅是为了预测,则多重共线性并无妨碍. (3)如果解释变量两两之间地相关系数都低,则一定不存在多重共线性. (4)如果存在异方差性,通常用地t 检验和 F 检验是无效地. (5)当存在自相关时,OLS 估计量既不是无偏地,又不是有效地.(6)消除一阶自相关地一阶差分变换法假定自相关系数必须等于 1. (7)模型中包含无关地解释变量,参数估计量会有偏,并且会增大估计量地方差,即增大误差.(8)多元回归中,如果全部“斜率”系数各自经t 检验都不显著,则R2值也高不了.(9)存在异方差地情况下,OLS 法总是高估系数估计量地标准误差.(10)如果一个具有非常数方差地解释变量被(不正确地)忽略了,那么OLS 残差将呈异方差性.5.2考虑带有随机扰动项地复利增长模型:Y 表示GDP,Y0是Y 地基期值,r 是样本期内地年均增长率,t 表示年份,t=1978,⋯,2003.文档收集自网络,仅用于个人学习试问应如何估计GDP 在样本期内地年均增长率?5.3 检验下列情况下是否存在扰动项地自相关 .(1) DW=0.81,n=21,k=3(2)DW=2.25,n=15,k=2(3)DW=1.56,n=30,k=55.4有人建立了一个回归模型来研究我国县一级地教育支出:Y= β0+β1X1+β 2X2+β3X3+u其中:Y,X1,X2 和X3分别为所研究县份地教育支出、居民人均收入、学龄儿童人数和可以利用地各级政府教育拨款.文档收集自网络,仅用于个人学习他打算用遍布我国各省、市、自治区地100 个县地数据来估计上述模型.(1)所用数据是什么类型地数据?(2)能否采用OLS 法进行估计?为什么?(3)如不能采用OLS 法,你认为应采用什么方法?5.5试从下列回归结果分析存在问题及解决方法:(1)= 24.7747 + 0.9415 - 0.0424 R=0.9635SE:(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000 (2)= 0.4529 - 0.0041t R=0.5284t:(-3.9606) DW=0.8252其中Y= 劳动在增加值中地份额,t=时间该估计结果是使用1949-1964 年度数据得到地.5.6工资模型:wi=b0+b1Si+b2Ei+b3Ai+b4Ui+ui其中Wi=工资,Si=学校教育年限,Ei=工作年限,Ai=年龄,Ui=是否参加工会.在估计上述模型时,你觉得会出现什么问题?如何解决?5.7你想研究某行业中公司地销售量与其广告宣传费用之间地关系.你很清楚地知道该行业中有一半地公司比另一半公司大,你关心地是这种情况下,什么估计方法比较合理.假定大公司地扰动项方差是小公司扰动项方差地两倍.文档收集自网络,仅用于个人学习(1)若采用普通最小二乘法估计销售量对广告宣传费用地回归方程(假设广告宣传费是与误差项不相关地自变量),系数地估计量会是无偏地吗?是一致地吗?是有效地吗?文档收集自网络,仅用于个人学习(2)你会怎样修改你地估计方法以解决你地问题?(3)能否对原扰动项方差假设地正确性进行检验?5.8考虑下面地模型其中GNP=国民生产总值,M =货币供给. (1)假设你有估计此模型地数据,你能成功地估计出模型地所有系数吗?说明理由.(2)如果不能,哪些系数可以估计?(3)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?(4)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?5.9采用美国制造业1899-1922年数据,Dougherty得到如下两个回归结果:(1)(2)其中:Y=实际产出指数,K=实际资本投入指数,L =实际劳动力投入指数,t=时间趋势(1)回归式(1)中是否存在多重共线性?你是如何得知地?(2)回归式(1)中,logK 系数地预期符号是什么?回归结果符合先验预期吗?为什么会这样?(3)回归式(1)中,趋势变量在其中起什么作用?(4)估计回归式(2)背后地逻辑是什么?(5)如果(1)中存在多重共线性,那么(2)式是否减轻这个问题?你如何得知?(6)两个回归地R2可比吗?说明理由.5.10有人估计了下面地模型:其中:C=私人消费支出,GNP=国民生产总值,D=国防支出假定,将(1)式转换成下式:使用1946-1975数据估计(1)、(2)两式,得到如下回归结果(括号中数字为标准误差):1)关于异方差,模型估计者做出了什么样地假定?你认为他地依据是什么?2)比较两个回归结果.模型转换是否改进了结果?也就是说,是否减小了估计标准误差?说明理由.5.11设有下列数据:RSS1=55,K =4,n1=30RSS3=140,K =4,n3=30 请依据上述数据,用戈德佛尔德-匡特检验法进行异方差性检验(5%显著性水平).5.12考虑模型(1)也就是说,扰动项服从AR (2)模式,其中是白噪声.请概述估计此模型所要采取地步骤.5.13对第 3 章练习题 3.13 所建立地三个消费模型地结果进行分析:是否存在序列相关问题?如果有,应如何解决?5.14为了研究中国农业总产值与有效灌溉面积、化肥施用量、农作物总播种面积、受灾面积地相互关系,选31 个省市2003 年地数据资料,如下表所示:文档收集自网络,仅用于个人学习表中:Y=农业总产值(亿元,不包括林牧渔)X1=有效灌溉面积(千公顷)X2=化肥施用量(万吨)X23=化肥施用量(公斤/亩)X3=农作物总播种面积(千公顷)X4=受灾面积(千公顷)(1)回归并根据计算机输出结果写出标准格式地回归结果;(2)模型是否存在问题?如果存在问题,是什么问题?如何解决?第六章动态经济模型:自回归模型和分布滞后模型6.1判断题(判断对错;如果错误,说明理由)(1)所有计量经济模型实质上都是动态模型.(2)如果分布滞后系数中,有地为正有地为负,则科克模型将没有多大用处. (3)若适应预期模型用OLS 估计,则估计量将有偏,但一致. (4)对于小样本,部分调整模型地OLS 估计量是有偏地.(5)若回归方程中既包含随机解释变量,扰动项又自相关,则采用工具变量法,将产生无偏且一致地估计量.(6)解释变量中包括滞后因变量地情况下,用德宾-沃森d 统计量来检测自相关是没有实际用处地.6.2用OLS 对科克模型、部分调整模型和适应预期模型分别进行回归时,得到地OLS 估计量会有什么样地性质?文档收集自网络,仅用于个人学习6.3简述科克分布和阿尔蒙多项式分布地区别.6.4考虑模型假设相关.要解决这个问题,我们采用以下工具变量法:首先用对和回归,得到地估计值,然后回归其中是第一步回归(对和回归)中得到地.(1)这个方法如何消除原模型中地相关?(2)与利维顿采用地方法相比,此方法有何优点?6.5设其中:M=对实际现金余额地需求,Y*=预期实际收入,R*=预期通货膨胀率假设这些预期服从适应预期机制:其中和是调整系数,均位于0和1之间.(1)请将M t 用可观测量表示;(2)你预计会有什么估计问题?6.6考虑分布滞后模型假设可用二阶多项式表示诸如下:若施加约束==0,你将如何估计诸系数(,i=0,1, (4)6.7为了研究设备利用对于通货膨胀地影响,T. A.吉延斯根据1971年到1988年地美国数据获得如下回归结果:文档收集自网络,仅用于个人学习其中:Y=通货膨胀率(根据GNP 平减指数计算)X t=制造业设备利用率X t-1 =滞后一年地设备利用率1)设备利用对于通货膨胀地短期影响是什么?长期影响又是什么?(2)每个斜率系数是统计显著地吗?(3)你是否会拒绝两个斜率系数同时为零地原假设?将利用何种检验?6.8考虑下面地模型:Y t = α+β(W0X t+ W1X t-1 + W2X t-2 + W3X t-3)+u t 请说明如何用阿尔蒙滞后方法来估计上述模型(设用二次多项式来近似) .6.9下面地模型是一个将部分调整和适应预期假说结合在一起地模型:Y t*= βX t+1eY t-Y t-1 = δ(Y t*- Y t-1) + u tX t+1e- X t e= (1-λ)( X t - X t e);t=1,2,⋯, n式中Y t*是理想值,X t+1e和X t e是预期值.试推导出一个只包含可观测变量地方程,并说明该方程参数估计方面地问题.文档收集自网络,仅用于个人学习第七章时间序列分析7.1单项选择题(1)某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()地.A.1 阶单整B.2阶单整C.K 阶单整D.以上答案均不正确文档收集自网络,仅用于个人学习(2)如果两个变量都是一阶单整地,则().A .这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应地误差修正模型一定成立D.还需对误差项进行检验文档收集自网络,仅用于个人学习(3)如果同阶单整地线性组合是平稳时间序列,则这些变量之间关系是() .A. 伪回归关系B.协整关系C.短期均衡关系D. 短期非均衡关系(4).若一个时间序列呈上升趋势,则这个时间序列是().A .平稳时间序列B.非平稳时间序列C.一阶单整序列 D. 一阶协整序列7.2请说出平稳时间序列和非平稳时间序列地区别,并解释为什么在实证分析中确定经济时间序列地性质是十分必要地.文档收集自网络,仅用于个人学习7.3什么是单位根?7.4Dickey-Fuller(DF)检验和Engle-Granger(EG)检验是检验什么地?文档收集自网络,仅用于个人学习7.5什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?7.6由1948-1984 英国私人部门住宅开工数(X)数据,某学者得到下列回归结果:注:5%临界值值为-2.95,10%临界值值为-2.60. (1)根据这一结果,检验住宅开工数时间序列是否平稳.(2)如果你打算使用t 检验,则观测地t 值是否统计显著?据此你是否得出该序列平稳地结论?(3)现考虑下面地回归结果:请判断住宅开工数地平稳性.7.7由1971-I 到1988-IV 加拿大地数据,得到如下回归结果;A.B.C.其中,M1=货币供给,GDP=国内生产总值,e t=残差(回归A)(1)你怀疑回归 A 是伪回归吗?为什么?(2)回归 B 是伪回归吗?请说明理由.(3)从回归 C 地结果,你是否改变(1)中地结论,为什么?(4)现考虑以下回归:这个回归结果告诉你什么?这个结果是否对你决定回归 A 是否伪回归有帮助?7.8 检验我国人口时间序列地平稳性,数据区间为1949-2003 年.单位:万人7.9对中国进出口贸易进行协整分析,如果存在协整关系,则建立E CM 模型.1951-2003 年中国进口(im )、出口(ex)和物价指数(pt,商品零售物价指数)时间序列数据见下表.因为该期间物价变化大,特别是改革开放以后变化更为激烈,所以物价指数也作为一个解释变量加入模型中.为消除物价变动对进出口数据地影响以及消除进出口数据中存在地异方差,定义三个变量如下:文档收集自网络,仅用于个人学习第八章联立方程模型8.1判断题(判断对错;如果错误,说明理由)(1)OLS 法适用于估计联立方程模型中地结构方程.(2)2SLS 法不能用于不可识别方程.(3)估计联立方程模型地2SLS 法和其它方法只有在大样本地情况下,才能具有我们期望地统计性质 .(4) 联立方程模型作为一个整体,不存在类似 R 2这样地拟合优度测度 .(5) 如果要估计地方程扰动项自相关或存在跨方程地相关, 则 2SLS 法和其它估 计结构方程地方法都不能用 .(6) 如果一个方程恰好识别,则 ILS 和 2SLS 给出相同结果 .8.2 单项选择题1) 结构式模型中地方程称为结构方程 .在结构方程中, 解释变量可以是前定变3) 如果联立方程模型中某个结构方程包含了模型中所有地变量,则这个方程5)当一个结构式方程为恰好识别时,这个方程中内生解释变量地个数( A .与被排除在外地前定变量个数正好相等 B .小于被排除在外地前定变量个数 C .大于被排除在外地前定变量个数D .以上三种情况都有可能发生 文档收集自网络,仅用于个人学习6) 简化式模型就是把结构式模型中地内生变量表示为 ( ).A. 外生变量和内生变量地函数关系B.前定变量和随机误差项地模型C.滞后变量和随机误差项地模型 D.外生变量和随机误差项地模量,也可以是 ( ).文档收集自网络,仅用于个人学习 A. 外生变量 B.滞后变量2)前定变量是 ( )地合称 .A.外生变量和滞后内生变量C.内生变量D. 外生变量和内生变量 C.外生变量和虚拟变量 D. 解释变量和被解释变量( ).A. 恰好识别B.不可识别 (4) 下面说法正确地是( ).A.内生变量是非随机变量 C.外生变量是随机变量 C.过度识别 D.不确定B. 前定变量是随机变量个人收集整理勿做商业用途型7) 对联立方程模型进行参数估计地方法可以分两类,即:( ).A.间接最小二乘法和系统估计方法B.单方程估计法和系统估计方法个人收集整理勿做商业用途C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法(8)在某个结构方程过度识别地条件下,不适用地估计方法是().A. 间接最小二乘法B.工具变量法C.二阶段最小二乘法D.有限信息极大似然估计法8.3行为方程和恒等式有什么区别?8.4如何确定模型中地外生变量和内生变量?8.5考虑下述模型:C t = α + β D t +u t I t = γ + δD t-1 + νt D t = C t +I t + Z t ;t=1 ,2,⋯,n其中 C = 消费支出,D= 收入,I = 投资,Z = 自发支出. C、I 和D是内生变量.试写出消费支出地简化型方程,并研究各方程地识别问题.8.6考虑下述模型:Y t = C t + I t +G t +X tC t = β 0 + β 1D t + β2C t-1 + u tD t = Y t –T tI t = α0 + α1Y t + α2R t-1 +νt 模型中各方程是正规化方程,u t、νt为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)写出用2SLS法进行估计时,每个阶段中要估计地方程.8.7下面是一个简单地美国宏观经济模型(1960-1999)其中C=实际私人消费,I= 实际私人总投资,G=实际政府支出,Y =实际GDP,M= 当年价M2,R=长期利率;P=消费价格指数.内生变量:C,I,R,Y 前定变量:C t-1,I t-1,M t-1,P t,R t-1 和G t.(1)应用识别地阶条件,决定各方程地识别状态;(2)你打算用什么方法来估计可识别行为方程?8.8假设有如下计量经济模型:其中,Y=国民收入,I=净资本形成,C=个人消费,Q =利润,P=生活费用指数,R= 工业劳动生产率1)写出模型地内生变量、外生变量和前定变量;个人收集整理勿做商业用途(2)用识别地阶条件确定各方程地识别状态;(3)此模型中是否有可以用ILS 法估计地方程?如有,请指出;(4)写出用2SLS 法进行估计时,每个阶段中要估计地方程. 8.9考虑下述模型:消费方程:C t=α0 +α 1Y t +α2C t-1 +u①投资方程:I t=β0 +β1Y t +β2I t –1+u2t②进口方程:M t = 0 + 1Y t + u3t ③Y t = C t+ I t + G t + X t - M t模型中各方程是正规化方程,u 1t, ⋯u3t为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)利用阶条件识别各行为方程.(3)写出用3SLS 进行估计时地步骤.8.10考察下述国民经济地简单模型式中,C为消费,Y 为国民收入,I 为投资,R为利率.设样本容量n 为20,已算得中间结果为:(1)判别模型中消费方程地识别状态;(2)用间接最小二乘法求消费方程结构式系数;(3)将采用哪种方法估计投资方程?为什么?(不必计算)8.11由联立方程模型;得到其简化式如下:(1)两结构方程可识别吗?(2)如果知道,识别情况有何变化?(3)若对简化式进行估计,结果如下:个人收集整理勿做商业用途试求出结构参数地值,并说明如何检验原假设个人收集整理勿做商业用途版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
计量经济学(第四版)第三章练习题及答案
第三章练习题及参考解答3.1进入21世纪后,中国的家用汽车增长很快。
家用汽车的拥有量受到经济增长、公共服务、市场价格、交通状况、社会环境、政策因素,都会影响中国汽车拥有量。
为了研究一些主要因素与家用汽车拥有量的数量关系,选择“百户拥有家用汽车量”、“人均地区生产总值”、“城镇人口比重”、“居民消费价格指数”等变量,2016年全国各省市区的有关数据如表3.5。
表3.5 2016年各地区的百户拥有家用汽车量等数据资料来源:中国统计年鉴2017.中国统计出版社1)建立百户拥有家用汽车量计量经济模型,估计参数并对模型加以检验,检验结论的依据是什么?。
2)分析模型参数估计结果的经济意义,你如何解读模型估计检验的结果? 3) 你认为模型还可以如何改进?【练习题3.1 参考解答】:1)建立线性回归模型: 1223344t t t t t Y X X X u ββββ=++++ 回归结果如下:由F 统计量为14.69998, P 值为0.000007,可判断模型整体上显著, “人均地区生产总值”、“城镇人口比重”、“居民消费价格指数”等变量联合起来对百户拥有家用汽车量有显著影响。
解释变量参数的t 统计量的绝对值均大于临界值0.025(27) 2.052t =,或P 值均明显小于0.05α=,表明在其他变量不变的情况下,“人均地区生产总值”、“城镇人口比重”、“居民消费价格指数”分别对百户拥有家用汽车量都有显著影响。
2)X2的参数估计值为4.8117,表明随着经济的增长,人均地区生产总值每增加1万元,平均说来百户拥有家用汽车量将增加近5辆。
由于城镇公共交通的大力发展,有减少家用汽车的必要性,X3的参数估计值为-0.4449,表明随着城镇化的推进,“城镇人口比重”每增加1%,平均说来百户拥有家用汽车量将减少0.4449辆。
汽车价格和使用费用的提高将抑制家用汽车的使用, X4的参数估计值为-5.7685,表明随着家用汽车使用成本的提高, “居民消费价格指数”每增加1个百分点,平均说来百户拥有家用汽车量将减少5.7685辆。
计量经济学练习题带答案版
一 、单项选择题二、多项选择题三、计算分析题设某地区机电行业产出Y (万元),劳动力投入成本1X (万元)以及固定资产投入成本2X (万元)。
经Eviews 软件对2001年——2017年的数据分别建立双对数模型进行最小二乘估计,结果如下:Dependent Variable: Ln (Y)Ln(X1) 0.3879290.1378422.814299 0.0138 Ln(X2)0.568470 ( 0.05567710.210060.0000R-squared 0.934467 Mean dependent var6.243029 Adjusted R-squared ( 0.925105 ) S.D. dependent var0.356017 S.E. of regression 0.097431 Akaike info criterion -1.660563 Sum squared resid 0.132899 Schwarz criterion -1.513526 Log likelihood 17.11479 F-statistic ( 99.81632 )1.补充括号内的数值,并规范地写出回归的分析结果,保留三位小数。
122ˆln 3.73490.3879ln(X )0.5685ln(X ) se (0.2128) (0.1378) (0.0557) 0.9251t=(17.5541) (2.8143) (10.2101) df=14 p=(0.000) (0.0138)Y R =++==2,1499.8163(0.0000) F =2. 对模型的估计结果进行偏回归系数和整体显著性检验。
(t0.025(14)=2.145;t0.025(15)=2.131;F0.05(2,14)=3.74;F0.05(3,14)=3.34)。
(注意运用临界值法!!)样本量为17,临界值选取t0.025(14)=2.145F临界值选取F0.05(2,14)=3.743. 如果有两种可供选择的措施以提高机电行业产出,措施一是加大劳动力的投入,措施二是增大固定资产的投入,你认为哪个措施效果更明显,为什么?选择措施二,因为劳动力成本增长1个百分点,机电行业产增长0.39个百分点,而固定资产投入成本增长1个百分点,机电行业销售额仅增长0.57个百分点四、分析题根据我国31个细分制造业的数据,得到生产函数的如下估计结果:ln(Ŷi)=1.168+0.37ln(K i)+0.61ln(L i)se= (0.331) ( a) (0.1293)t= (3.53) ( 4.23) ( b )R2=0.94其中,Y为总产出,K为资本投入,L为劳动投入。
计量经济学分章习题与答案
计量经济学分章习题与答案第一章导论一、名词解释1、截面数据2、时间序列数据3、虚变量数据4、内生变量与外生变量二、单项选择题1、同一统计指标按时间顺序记录的数据序列称为()A 、横截面数据B 、虚变量数据C 、时间序列数据D 、平行数据2、样本数据的质量问题,可以概括为完整性、准确性、可比性和()A 、时效性B 、一致性C 、广泛性D 、系统性3、有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来煤炭行业的产出量,这是违反了数据的哪一条原则。
() A 、一致性 B 、准确性 C 、可比性 D 、完整性4、判断模型参数估计量的符号、大小、相互之间关系的合理性属于什么检验?()A 、经济意义检验B 、统计检验C 、计量经济学检验D 、模型的预测检验5、对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值?()A 、i C (消费)5000.8i I =+(收入)B 、di Q (商品需求)100.8i I =+(收入)0.9i P +(价格)C 、si Q (商品供给)200.75i P =+(价格)D 、i Y (产出量)0.60.65i K =(资本)0.4i L (劳动)6、设M 为货币需求量,Y 为收入水平,r 为利率,流动性偏好函数为012M Y r βββμ=+++,1?β和2β分别为1β、2β的估计值,根据经济理论有() A 、1β应为正值,2β应为负值 B 、1?β应为正值,2β应为正值 C 、1?β应为负值,2?β应为负值 D 、1?β应为负值,2?β应为正值三、填空题1、在经济变量之间的关系中,因果关系、相互影响关系最重要,是计量经济分析的重点。
2、从观察单位和时点的角度看,经济数据可分为时间序列数据、截面数据、面板数据。
3、根据包含的方程的数量以及是否反映经济变量与时间变量的关系,经济模型可分为时间序列模型、单方程模型、联立方程模型。
四、简答题1、计量经济学与经济理论、统计学、数学的联系是什么?2、模型的检验包括哪几个方面?具体含义是什么?五、计算分析题1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =112.0+0.12t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。
计量经济学习题及全部答案
《计量经济学》习题(一)一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。
( ) 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。
( )3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n -1)。
( ) 4.当我们说估计的回归系数在统计上是显著的,意思是说它显著地异于0。
( )5.总离差平方和(TSS )可分解为残差平方和(ESS )与回归平方和(RSS )之和,其中残差平方和(ESS )表示总离差平方和中可由样本回归直线解释的部分。
( ) 6.多元线性回归模型的F 检验和t 检验是一致的。
( )7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。
( ) 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。
( )9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。
( ) 10...D W 检验只能检验一阶自相关。
( ) 二、单选题1.样本回归函数(方程)的表达式为( )。
A .i Y =01i i X u ββ++ B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是( )。
A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。
A .当X 增加一个单位时,Y 增加1β个单位 B .当X 增加一个单位时,Y 平均增加1β个单位 C .当Y 增加一个单位时,X 增加1β个单位 D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。
A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为( )。
计量经济学习题与解答3
第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。
主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。
具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。
异方差是模型随机扰动项的方差不同时产生的一类现象。
在异方差存在的情况下,OLS 估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。
同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。
对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。
而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。
序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。
与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。
序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。
存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。
模型的多个解释变量间出现完全共线性时,模型的参数无法估计。
更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。
显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。
《计量经济学》习题及答案
《计量经济学》习题及答案(解答仅供参考)第一套一、名词解释:1. 计量经济学:计量经济学是经济学的一个分支,它使用数学和统计学的方法,对经济现象进行量化分析,建立经济模型,预测和解释经济行为和现象。
2. 异方差性:在回归分析中,如果误差项的方差随自变量的变化而变化,这种现象称为异方差性。
3. 自相关性:在时间序列分析中,如果一个变量的当前值与它的过去值存在相关性,这种现象称为自相关性。
4. 多重共线性:在多元回归分析中,如果两个或多个自变量之间高度相关,这种现象称为多重共线性。
5. 随机抽样:随机抽样是一种统计抽样方法,每个样本单位都有一定的概率被选入样本,且各个样本单位之间的选择是独立的。
二、填空题:1. 在线性回归模型中,参数估计的常用方法是______最小二乘法______。
2. 如果一个变量的分布是对称的,那么它的偏态系数应该接近于______0______。
3. 在时间序列分析中,______平稳性______是进行预测的前提条件之一。
4. ______工具变量法______是处理内生性问题的一种常用方法。
5. 如果一个经济变量的变化完全由其他经济变量的变化所决定,那么这个变量被称为______外生变量______。
三、单项选择题:1. 下列哪种情况可能导致异方差性?(B)A. 自变量和因变量之间存在非线性关系B. 自变量的某些组合导致误差项的方差增大C. 因变量和误差项之间存在相关性D. 样本容量过小2. 在进行回归分析时,如果发现数据存在多重共线性,以下哪种方法可以解决这个问题?(C)A. 增加样本容量B. 使用非线性模型C. 删除相关性较强的自变量D. 对自变量进行标准化3. 下列哪种情况可能会导致自相关性?(A)A. 时间序列数据中存在滞后效应B. 因变量和某个自变量之间存在非线性关系C. 样本容量过小D. 自变量之间存在多重共线性四、多项选择题:1. 下列哪些是计量经济学的基本假设?(ABCD)A. 线性关系假设B. 零均值假设C. 同方差性假设D. 无自相关性假设E. 正态性假设2. 下列哪些是处理内生性问题的方法?(ACD)A. 工具变量法B. 加权最小二乘法C. 两阶段最小二乘法D. 广义矩估计法E.岭回归法五、判断题:1. 在进行回归分析时,如果自变量和因变量之间不存在线性关系,那么回归结果将没有任何意义。
计量经济学习题及答案30019
计量经济学习题及答案30019计量经济学习题⼀、名词解释1、普通最⼩⼆乘法:为使被解释变量的估计值与观测值在总体上最为接近使Q= 最⼩,从⽽求出参数估计量的⽅法,即之。
2、总平⽅和、回归平⽅和、残差平⽅和的定义:TSS度量Y⾃⾝的差异程度,称为总平⽅和。
TSS除以⾃由度n-1=因变量的⽅差,度量因变量⾃⾝的变化;RSS度量因变量Y的拟合值⾃⾝的差异程度,称为回归平⽅和,RSS除以⾃由度(⾃变量个数-1)=回归⽅差,度量由⾃变量的变化引起的因变量变化部分;ESS度量实际值与拟合值之间的差异程度,称为残差平⽅和。
RSS除以⾃由度(n-⾃变量个数-1)=残差(误差)⽅差,度量由⾮⾃变量的变化引起的因变量变化部分。
3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为⽅法,以电脑技术为⼯具,从事经济关系与经济活动数量规律的研究,并以建⽴和应⽤经济计量模型为核⼼的⼀门经济学科。
⽽且必须指出,这些经济计量模型是具有随机性特征的。
4、最⼩样本容量:即从最⼩⼆乘原理和最⼤似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数⽬(包扩常数项),即之。
5、序列相关性:模型的随机误差项违背了相互独⽴的基本假设的情况。
6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
7、⼯具变量法:在模型估计过程中被作为⼯具使⽤,以替代模型中与随机误差项相关的随机解释变量。
这种估计⽅法称为⼯具变量法。
8、时间序列数据:按照时间先后排列的统计数据。
9、截⾯数据:发⽣在同⼀时间截⾯上的调查数据。
10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。
11、异⽅差:对于线性回归模型提出了若⼲基本假设,其中包括随机误差项具有同⽅差;如果对于不同样本点,随机误差项的⽅差不再是常数,⽽互不相同,则认为出现了异⽅差性。
《计量经济学(第二版)》习题解答(第1-3章)
《计量经济学(第二版)》习题解答第一章1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答:(1)利用计量经济模型定量分析经济变量之间的随机因果关系。
(2)随机关系、因果关系。
1.2 试述计量经济学与经济学和统计学的关系。
答:(1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的具体应用,同时可以实证和发展经济理论。
(2)统计数据是建立和评价计量经济模型的事实依据,计量经济研究是对统计数据资源的深层开发和利用。
1.3 试分别举出三个时间序列数据和横截面数据。
1.4 试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1.5 试结合一个具体经济问题说明计量经济研究的步骤。
1.6 计量经济模型主要有哪些用途?试举例说明。
1.7 下列设定的计量经济模型是否合理,为什么?(1)ε++=∑=31i iiGDP b a GDPε++=3bGDP a GDP其中,GDP i (i =1,2,3)是第i 产业的国内生产总值。
答:第1个方程是一个统计定义方程,不是随机方程;第2个方程是一个相关关系,而不是因果关系,因为不能用分量来解释总量的变化。
(2)ε++=21bS a S其中,S 1、S 2分别为农村居民和城镇居民年末储蓄存款余额。
答:是一个相关关系,而不是因果关系。
(3)ε+++=t t t L b I b a Y 21其中,Y 、I 、L 分别是建筑业产值、建筑业固定资产投资和职工人数。
答:解释变量I 不合理,根据生产函数要求,资本变量应该是总资本,而固定资产投资只能反映当年的新增资本。
(4)ε++=t t bP a Y其中,Y 、P 分别是居民耐用消费品支出和耐用消费品物价指数。
答:模型设定中缺失了对居民耐用消费品支出有重要影响的其他解释变量。
按照所设定的模型,实际上假定这些其他变量的影响是一个常量,居民耐用消费品支出主要取决于耐用消费品价格的变化;所以,模型的经济意义不合理,估计参数时可能会夸大价格因素的影响。
计量经济学习题及答案
习题讲解(一)一、选择题 1、样本回归函数(方程)的表达式为( D )A.i i i X Y μββ++=10B.i i X X Y E 10)(ββ+=C.i i i e X Y ++=10ˆˆββD.ii X Y 10ˆˆˆββ+= 2、反映由模型中解释变量所解释的那部分离差大小的是( B )A.总离差平方和B.回归平方和C.残差平方和D.都不是3、设k 为回归模型中的参数个数(不包括常数项),n 为样本容量,RSS 为残差平方和,ESS 为回归平方和,则对总体回归模型进行显著性检验时构造的F 统计量为( B ) A.TSS ESS F = B.)1(--=k n RSS k ESS F C.)1(1---=k n TSS k ESS F D.TSSRSS F = 4、对于某样本回归模型,已求得DW 的值为l ,则模型残差的自相关系数∧ρ近似等于( C )A.-0.5B.0C.0.5D.15、下列哪种方法不能用来检验异方差( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.D-W 检验6、根据一个n =30的样本估计tt t e X Y ++=10ˆˆββ后计算得D.W.=1.2,已知在5%的显著水平下,35.1=L d ,49.1=U d ,则认为原模型( C )。
A.不存在一阶序列相关B.不能判断是否存在一阶序列相关C.存在正的一阶序列相关D.存在负的一阶序列相关7、某商品需求函数模型为i i i X Y μββ++=10,其中Y 为需求量,X 为价格。
为了考虑“地区”(农村、城市)和“季节”(春、夏、秋、冬)两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为( B )A.2B.4C.5D.68、可以用于联立方程计量模型方程间误差传递性检验的统计量是( C )A.均方百分比误差B.F 检验统计量C.均方根误差D.滚动预测检验9、下列属于有限分布滞后模型的是( D )A. t t t t X X Y μβββ++++=- 1210B. t t t t t Y Y X Y μββββ++++=--231210C. t t t t Y Y Y μβββ++++=- 1210D. t k t k t t t X X X Y μββββ+++++=+--1121010、估计模型Y t =β0+β1X t +β2Y t-1+μt (其中μt 满足线性模型的全部假设)参数的适当方法是( D )A.二阶段最小二乘法B.间接最小二乘法C.广义差分法D.工具变量法11、考察某地区农作物种植面积与农作物产值的关系,建立一元线性回归模型i i i X Y μββ++=10(X 表示农作物种植面积、Y 表示农作物产值),采用30个样本,根据OLS 方法得54.0ˆ1=β,对应标准差045.01ˆ=βS ,那么,1β对应的统计量t 为( )A.12B.0.0243C.2.048D.1.70112、一无线性回归模型 的最小二乘回归结果显示,残差平方和RSS=40.32,样本容量为25,则回归模型的标准差 为( B )1.324 C13、k 表示模型系统中先决变量的个数(含常数项),i k 表示第i 个方程中先决变量的个数(含常数项),i g 表示第i 个方程中内生变量的个数,识别的阶条件为1-<-i i g k k ,表示( B )A.第i 个方程恰好识别B.第i 个方程不可识别C.第i 个方程过度识别D.第i 个方程具有唯一的统计形式14、当随机误差项存在序列相关时,单位根检验采用的是( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。
主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。
具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。
异方差是模型随机扰动项的方差不同时产生的一类现象。
在异方差存在的情况下,OLS 估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。
同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。
对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。
而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。
序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。
与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。
序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。
存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。
模型的多个解释变量间出现完全共线性时,模型的参数无法估计。
更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。
显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。
多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。
而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。
当模型中的解释变量是随机解释变量时,需要区分三种类型:随机解释变量与随机扰动项独立,随机解释变量与随机扰动项同期无关、但异期相关,随机解释变量与随机扰动项同期相关。
第一种类型不会对OLS 估计带来任何问题。
第二种类型则往往导致模型估计的有偏性,但随着样本容量的增大,偏误会逐渐减小,因而具有一致性。
所以,扩大样本容量是克服偏误的有效途径。
第三种类型的OLS 估计则既是有偏、也是非一致的,需要采用工具变量法来加以克服。
二、典型例题分析1、下列哪种情况是异方差性造成的结果? (1)OLS 估计量是有偏的(2)通常的t 检验不再服从t 分布。
(3)OLS 估计量不再具有最佳线性无偏性。
解答: 第(2)与(3)种情况可能由于异方差性造成。
异方差性并不会引起OLS 估计量出现偏误。
2、已知模型t t t t u X X Y +++=22110βββ222)(t t t Z u Var σσ==式中,Y 、X 1、X 2和Z 的数据已知。
假设给定权数t w ,加权最小二乘法就是求下式中的各β,以使的该式最小2221102)()(t t t t t t t t t X w X w w Y w u w RSS βββ---==∑∑(1)求RSS 对β1、β2和β2的偏微分并写出正规方程。
(2)用Z 去除原模型,写出所得新模型的正规方程组。
(3)把t t Z w /1=带入(1)中的正规方程,并证明它们和在(2)中推导的结果一样。
解答: (1)由2221102)()(t t t t t t t t t X w X w w Y w u w R S S βββ---==∑∑对各β求偏导得如下正规方程组:∑=---0)(2211t t t ttttt w X w Xw w Y w βββ ∑=---0)(12211t t t t ttttt X w X w Xw w Y w βββ ∑=---0)(12211t t t t ttttt X w X w Xw w Y w βββ(2)用Z 去除原模型,得如下新模型tt t t t t t t t Z u Z X Z X Z Z Y +++=22110βββ 对应的正规方程组如下所示:01)(22110=---∑t t t t t t t t Z Z X Z X Z Z Y βββ 0)(122110=---∑t t t t t t t t t Z X Z X Z X Z Z Y βββ 0)(222110=---∑tt t t t t t t t Z X Z X Z X Z Z Y βββ (3)如果用1tZ 代替(1)中的t w ,则容易看到与(2)中的正规方程组是一样的。
3、已知模型 i i i i u X X Y +++=22110βββ式中,i Y 为某公司在第i 个地区的销售额;i X 1为该地区的总收入;i X 2为该公司在该地区投入的广告费用(i=0,1,2……,50)。
(1)由于不同地区人口规模i P 可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项u i 是异方差的。
假设i σ依赖于总体i P 的容量,请逐步描述你如何对此进行检验。
需说明:1)零假设和备择假设;2)要进行的回归;3)要计算的检验统计值及它的分布(包括自由度);4)接受或拒绝零假设的标准。
(2)假设i i P σσ=。
逐步描述如何求得BLUE 并给出理论依据。
解答:(1)如果i σ依赖于总体i P 的容量,则随机扰动项的方差2i σ依赖于2i P 。
因此,要进行的回归的一种形式为i i i P εαασ++=2102。
于是,要检验的零假设H0:10α=,备择假设H1:01≠α。
检验步骤如下:第一步:使用OLS 方法估计模型,并保存残差平方项2~i e ; 第二步:做2~i e 对常数项C 和2iP 的回归 第三步:考察估计的参数1α的t 统计量,它在零假设下服从自由度为2的t 分布。
第四步:给定显著性水平面0.05(或其他),查相应的自由度为2的t 分布的临界值,如果估计的参数1ˆα的t 统计值大于该临界值,则拒绝同方差的零假设。
(2)假设i i P σσ=时,模型除以i P 有:ii i i i i i i i P u P X P X P P Y +++=221101βββ 由于222/)/(σσ==i i i i P P u Var ,所以在该变换模型中可以使用OLS 方法,得出BLUE 估计值。
方法是对i i P Y /关于i P /1、i i P X /1、i i P X /2做回归,不包括常数项。
4、以某地区22年的年度数据估计了如下工业就业回归方程321ln 62.0ln 25.0ln 51.089.3X X X Y +-+-=(-0.56)(2.3) (-1.7) (5.8)20.996R = 147.1=DW式中,Y 为总就业量;X1为总收入;X2为平均月工资率;X3为地方政府的总支出。
(1)试证明:一阶自相关的DW 检验是无定论的。
(2)逐步描述如何使用LM 检验 解答:(1)由于样本容量n=22,解释变量个数为k=3,在5%在显著性水平下,相应的上下临界值为664.1=U d 、503.1=L d 。
由于DW=1.147位于这两个值之间,所以DW 检验是无定论的。
(2)进行LM 检验:第一步,做Y 关于常数项、lnX1、lnX2和lnX3的回归并保存残差t e ~; 第二步,做te ~关于常数项、lnX1、lnX2和lnX3和1~-t e 的回归并计算2R ; 第三步,计算检验统计值(n-1)2R =21⨯0.996=20.916;第四步,由于在不存在一阶序列相关的零假设下(n-1)2R 呈自由度为1的2χ分布。
在5%的显著性水平下,该分布的相应临界值为3.841。
由于20.916>3.841,因此拒绝零假设,意味着原模型随机扰动项存在一阶序列相关。
5、某地区供水部门利用最近15年的用水年度数据得出如下估计模型:rain price pcy pop house water 123.187.17005.0363.0305.09.326---++-=(-1.7) (0.9) (1.4) (-0.6) (-1.2) (-0.8)93.02=RF=38.9式中,water ——用水总量(百万立方米),house ——住户总数(千户),pop ——总人口(千人),pcy ——人均收入(元),price ——价格(元/100立方米),rain ——降雨量(毫米)。
(1)根据经济理论和直觉,请计回归系数的符号是什么(不包括常量),为什么?观察符号与你的直觉相符吗?(2)在10%的显著性水平下,请进行变量的t-检验与方程的F-检验。
T 检验与F 检验结果有相矛盾的现象吗?(3)你认为估计值是(1)有偏的;(2)无效的或(3)不一致的吗?详细阐述理由。
解答:(1)在其他变量不变的情况下,一城市的人口越多或房屋数量越多,则对用水的需求越高。
所以可期望house 和pop 的符号为正;收入较高的个人可能用水较多,因此pcy 的预期符号为正,但它可能是不显著的。
如果水价上涨,则用户会节约用水,所以可预期price 的系数为负。
显然如果降雨量较大,则草地和其他花园或耕地的用水需求就会下降,所以可以期望rain 的系数符号为负。
从估计的模型看,除了pcy 之外,所有符号都与预期相符。
(2)t-统计量检验单个变量的显著性,F-统计值检验变量是否是联合显著的。
这里t-检验的自由度为15-5-1=9,在10%的显著性水平下的临界值为1.833。
可见,所有参数估计值的t 值的绝对值都小于该值,所以即使在10%的水平下这些变量也不是显著的。
这里,F-统计值的分子自由度为5,分母自由度为9。
10%显著性水平下F 分布的临界值为2.61。
可见计算的F 值大于该临界值,表明回归系数是联合显著的。
T 检验与F 检验结果的矛盾可能是由于多重共线性造成的。
house 、pop 、pcy 都是高度相关的,这将使它们的t-值降低且表现为不显著。
price 和rain 不显著另有原因。
根据经验,如果一个变量的值在样本期间没有很大的变化,则它对被解释变量的影响就不能够很好地被度量。
可以预期水价与年降雨量在各年中一般没有太大的变化,所以它们的影响很难度量。
(3)多重共线性往往表现的是解释变量间的样本观察现象,在不存在完全共线性的情况下,近似共线并不意味着基本假定的任何改变,所以OLS 估计量的无偏性、一致性和有效性仍然成立,即仍是BLUE 估计量。