I2C串行接口技术
TWI,IIC总线

采用串行总线技术可以使系统的硬件设计大大简
化、系统的体积减小、可靠性提高。同时,系统 的更改和扩充极为容易。 常用的串行扩展总线有: I2C (Inter IC BUS) 总线、单总线(1-WIRE BUS)、SPI(Serial Peripheral Interface)总线及Microwire/PLUS 等。
c、在传送过程中,当需要改变传送方向时, 起始信号和从机地址都被重复产生一次,但两 次读/写方向位正好反相。
4、总线的寻址
I2C总线协议有明确的规定:采用7位的寻址字节 (寻址字节是起始信号后的第一个字节)。 (1)寻址字节的位定义
D7~D1位组成从机的地址。D0位是数据传送方向位, 为“0”时表示主机向从机写数据,为“1”时表示主机由从 机读数据。
每一个字节必须保证是8位长度。数据传送时,先传 送最高位(MSB),每一个被传送的字节后面都必须跟 随一位应答位(即一帧共有9位)。
由于某种原因从机不对主机寻址信号应答时(如从机 正在进行实时性的处理工作而无法接收总线上的数据), 它必须将数据线置于高电平,而由主机产生一个终止信号 以结束总线的数据传送。 如果从机对主机进行了应答,但在数据传送一段时间后 无法继续接收更多的数据时,从机可以通过对无法接收的 第一个数据字节的“非应答”通知主机,主机则应发出终 止信号以结束数据的继续传送。 当主机接收数据时,它收到最后一个数据字节后,必须 向从机发出一个结束传送的信号。这个信号是由对从机的 “非应答”来实现的。然后,从机释放SDA线,以允许主 机产生终止信号。
两线串行总线概述
两线串行总线采用TWI协议。对外只有两根线。一根数据线SDA,一根时 钟线SCL。可与128个从设备连接。连接方式如图所示:
I2C总线接口详解

应用领域拓展
智能家居
i2c总线接口在智能家居领域的应用不断拓展,如智能照明、智 能安防等。
工业控制
i2c总线接口在工业控制领域的应用也越来越广泛,如传感器数 据采集、电机控制等。
医疗设备
随着医疗技术的进步,i2c总线接口在医疗设备领域的应用也在 逐步增加,如医疗监测设备、医疗机器人等。
未来展望
标准化
i2c总线接口详解
• i2c总线接口概述 • i2c总线接口工作原理 • i2c总线接口硬件设计 • i2c总线接口软件编程 • i2c总线接口常见问题及解决方案 • i2c总线接口发展趋势与展望
01
i2c总线接口概述
i2c总线接口定义
I2C总线是一种串行总线,用于连接微控制器和各种外围设 备。它由两条线组成:一条是数据线(SDA),另一条是 时钟线(SCL)。
I2C总线允许多个主设备 同时工作,提高了系统
的灵活性。
I2C总线具有强大的寻址 能力,可以连接多个外
围设备。
i2c总线接口应用场景
传感器接口
I2C总线可以方便地连接各种传 感器,如温度传感器、光传感 器等。
存储器接口
I2C总线可以连接各种类型的存 储器,如EEPROM、RAM等。
实时时钟
I2C总线的实时时钟(RTC)外 围设备可以用于提供系统时间。
根据设备地址的寻址方式,选择合适的寻址模式, 以实现正确的设备寻址。
寻址操作
发送设备地址
在开始数据传输之前,主设备需要发送目标设备的地址,以标识 要与之通信的设备。
接收应答信号
主设备发送地址后,等待从设备返回的应答信号,以确认从设备已 准备好进行数据传输。
发送操作指令
主设备根据需要发送相应的操作指令,如读或写,以指示接下来的 数据传输方向。
I2C总线原理及应用实例

I2C总线原理及应用实例I2C总线是一种串行通信总线,全称为Inter-Integrated Circuit,是Philips(飞利浦)公司在1982年推出的一种通信协议。
它可以用于连接各种集成电路(Integrated Circuits,ICs),如处理器、传感器、存储器等。
I2C总线的原理是基于主从架构。
主设备(Master)负责生成时钟信号,并发送和接收数据,从设备(Slave)通过地址识别和响应主设备的命令。
I2C总线使用两根线来传输数据,一根是时钟线(SCL),用于主设备生成的时钟信号;另一根是数据线(SDA),用于双向传输数据。
1. 主设备发送起始位(Start)信号,将SDA线从高电平拉低;然后通过SCL线发送时钟信号,用于同步通信。
2.主设备发送从设备的地址,从设备通过地址识别确定是否响应。
3.主设备发送要传输的数据到从设备,从设备响应确认信号。
4. 主设备可以继续发送数据,或者发送停止位(Stop)信号结束通信。
停止位是将SDA线从低电平拉高。
1.温度监测器:I2C总线可以连接到温度传感器上,通过读取传感器的输出数据,进行温度的监测和控制。
主设备可以设置警报阈值,当温度超过阈值时,可以触发相应的措施。
2.显示屏:很多智能设备上的显示屏都采用了I2C总线,如液晶显示屏(LCD)或有机发光二极管(OLED)等。
主设备通过I2C总线发送要显示的信息,并控制显示效果,如亮度、对比度、清晰度等参数。
3.扩展存储器:I2C总线可以用于连接外部存储器,如电子存储器(EEPROM)。
通过I2C总线,可以读取和写入存储器中的数据,实现数据的存储和传输。
4.触摸屏控制器:许多触摸屏控制器也使用了I2C总线,主要用于将触摸信号传输给主设备,并接收主设备的命令。
通过I2C总线,可以实现对触摸屏的操作,如单击、滑动、缩放等。
5.电源管理器:一些电源管理器也采用了I2C总线,用于控制和监测电池电量、充电状态、电压、电流等参数。
i2c的基本工作原理

I2C(Inter-Integrated Circuit)是一种串行通信协议,用于在芯片之间进行数据传输。
它由飞利浦半导体(现在的恩智浦半导体)于1982年开发,并广泛应用于各种电子设备中。
I2C具有简单、高效和可靠的特点,成为众多芯片和模块之间常用的通信接口之一。
本文将详细介绍I2C的基本工作原理。
一、总线架构I2C采用了主从结构的总线架构,其中主设备(Master)负责发起数据传输请求,而从设备(Slave)则在接收到请求后进行响应。
一个I2C总线上可以连接多个从设备,每个从设备都有一个唯一的地址。
主设备通过发送起始信号(Start)来启动通信,然后选择要与之通信的从设备地址,最后发送停止信号(Stop)结束通信。
二、物理层I2C使用双线制进行数据传输,包括数据线(SDA)和时钟线(SCL)。
数据线上的信号是双向的,用于传输数据。
时钟线则由主设备控制,用于同步数据传输。
三、起始和停止信号I2C通信以起始信号(Start)和停止信号(Stop)来标识通信的开始和结束。
起始信号由主设备产生,它表示将要发起一次新的通信。
停止信号同样由主设备产生,表示一次通信的结束。
四、数据传输格式I2C采用了基于字节的数据传输格式。
每个字节都由8位二进制数据组成,包括7位数据位和1位数据方向位。
数据方向位为0表示发送数据,为1表示接收数据。
在每个字节的传输过程中,都会先发送数据方向位,然后再发送数据位。
五、时钟同步I2C使用时钟同步机制来确保通信的准确性。
时钟线由主设备产生,并控制整个数据传输过程的时序。
在每个时钟周期中,数据线上的数据必须稳定,并且只有在时钟线为低电平时才能改变。
六、地址传输在I2C通信中,每个从设备都有一个唯一的7位地址。
主设备通过发送地址来选择要与之通信的从设备。
地址由8个位组成,最高位是固定的0或1,用于表示读(1)或写(0)操作。
其余的7位用于指定从设备的地址。
七、数据传输流程I2C通信的数据传输流程如下:1. 主设备发送起始信号(Start)。
linux系统i2c协议详解

linux系统i2c协议详解I2C总线概述I2C(两线接口)是一种串行通信协议,用于连接嵌入式系统中的集成电路(IC)。
它以其低成本、低功耗和高可靠性著称。
I2C总线需要两条双向信号线:串行数据线(SDA)和串行时钟线(SCL)。
这些信号线由一个主设备控制,可以与多个从设备通信。
I2C通信I2C通信由以下步骤组成:起始条件:主设备将SDA线下拉至低电平,同时保持SCL线为高电平。
设备地址:主设备发送7位或10位从设备地址,后跟一个读/写位。
数据传输:主设备和从设备交换数据。
停止条件:主设备将SDA线拉至高电平,同时保持SCL线为高电平。
主设备和从设备I2C总线上的设备分为两种:主设备和从设备。
主设备:发起通信并控制总线。
通常是主微控制器或处理器。
从设备:响应主设备请求并提供或接收数据。
可以是传感器、执行器或其他外围设备。
I2C寻址从设备通过唯一的7位或10位地址进行寻址。
地址的最高位表示是否可读/写,0表示写,1表示读。
I2C模式I2C协议支持以下模式:主写从读:主设备向从设备写入数据,然后从从设备读取数据。
主读从写:主设备从从设备读取数据,然后向从设备写入数据。
从读从写:两个从设备在主设备的监督下进行通信。
I2C传输速率I2C传输速率通常在10kbps到400kbps之间。
速率由主设备设置。
I2C错误检测I2C协议包含几个错误检测机制,例如校验和和超时。
这些机制有助于确保数据的可靠传输。
I2C应用I2C总线用于各种应用,包括:传感器和执行器接口EEPROM和闪存编程LED和LCD控制模拟-数字转换器(ADC)和数字-模拟转换器(DAC)接口电源管理时钟同步I2C优点I2C协议的优点包括:低成本:无需额外的硬件接口低功耗:仅使用两根信号线高可靠性:错误检测机制确保数据完整性容易使用:简单的协议易于实施广泛采用:支持广泛的设备和库I2C缺点I2C协议的缺点包括:数据速率低:与其他串行接口相比,数据速率较低主机限制:总线上只能有一个主设备总线无仲裁:在总线冲突的情况下,没有内置的仲裁机制有限的寻址范围:仅支持有限数量的设备地址I2C技术演进I2C协议正在不断发展,以满足新应用的需求。
SPI、I2C、UART三种串行总线协议的区别和SPI接口介绍(转)

SPI、I2C、UART三种串⾏总线协议的区别和SPI接⼝介绍(转)SPI、I2C、UART三种串⾏总线协议的区别第⼀个区别当然是名字:SPI(Serial Peripheral Interface:串⾏外设接⼝);I2C(INTER IC BUS)UART(Universal Asynchronous Receiver Transmitter:通⽤异步收发器)第⼆,区别在电⽓信号线上:SPI总线由三条信号线组成:串⾏时钟(SCLK)、串⾏数据输出(SDO)、串⾏数据输⼊(SDI)。
SPI总线可以实现多个SPI设备互相连接。
提供SPI串⾏时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。
主从设备间可以实现全双⼯通信,当有多个从设备时,还可以增加⼀条从设备选择线。
如果⽤通⽤IO⼝模拟SPI总线,必须要有⼀个输出⼝(SDO),⼀个输⼊⼝(SDI),另⼀个⼝则视实现的设备类型⽽定,如果要实现主从设备,则需输⼊输出⼝,若只实现主设备,则需输出⼝即可,若只实现从设备,则只需输⼊⼝即可。
I2C总线是双向、两线(SCL、SDA)、串⾏、多主控(multi-master)接⼝标准,具有总线仲裁机制,⾮常适合在器件之间进⾏近距离、⾮经常性的数据通信。
在它的协议体系中,传输数据时都会带上⽬的设备的设备地址,因此可以实现设备组⽹。
如果⽤通⽤IO⼝模拟I2C总线,并实现双向传输,则需⼀个输⼊输出⼝(SDA),另外还需⼀个输出⼝(SCL)。
(注:I2C资料了解得⽐较少,这⾥的描述可能很不完备)UART总线是异步串⼝,因此⼀般⽐前两种同步串⼝的结构要复杂很多,⼀般由波特率产⽣器(产⽣的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,⼀根⽤于发送,⼀根⽤于接收。
显然,如果⽤通⽤IO⼝模拟UART总线,则需⼀个输⼊⼝,⼀个输出⼝。
第三,从第⼆点明显可以看出,SPI和UART可以实现全双⼯,但I2C不⾏;第四,看看⽜⼈们的意见吧!wudanyu:I2C线更少,我觉得⽐UART、SPI更为强⼤,但是技术上也更加⿇烦些,因为I2C需要有双向IO的⽀持,⽽且使⽤上拉电阻,我觉得抗⼲扰能⼒较弱,⼀般⽤于同⼀板卡上芯⽚之间的通信,较少⽤于远距离通信。
串口和I2c总线简介

串口和I2c总线简介串口和2I C总线1.串口串口是串行接口(Serial Interface)的简称,是指数据一位一位地顺序传送,其特点是通信线路简单,只要一对传输线就可以实现双向通信(可以直接利用电话线作为传输线),从而大大降低了成本,特别适用于远距离通信,但传送速度较慢。
一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。
串行通讯的特点是:数据位的传送,按位顺序进行,最少只需一根传输线即可完成;成本低但传送速度慢。
串行通讯的距离可以从几米到几千米;根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。
串口通信的两种最基本的方式:同步串行通信方式和异步串行通信方式。
同步串行是指SPI(Serial Peripheral interface)的缩写,顾名思义就是串行外围设备接口。
SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息,TRM450是SPI接口。
异步串行是指UART(Universal Asynchronous Receiver/Transmitter),通用异步接收/发送。
UART是一个并行输入成为串行输出的芯片,通常集成在主板上。
UART包含TTL电平的串口和RS232电平的串口。
TTL电平是3.3V的,而RS232是负逻辑电平,它定义+5~+12V为低电平,而-12~-5V为高电平,MDS2710、MDS SD4、EL805等是RS232接口,EL806有TTL接口。
串行接口按电气标准及协议来分包括RS-232-C、RS-422、RS485等。
RS-232-C、RS-422与RS-485标准只对接口的电气特性做出规定,不涉及接插件、电缆或协议。
2. 2I C总线2I C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。
是微电子通信控制领域广泛采用的一种总线标准。
i2c 级联 上拉电阻

i2c 级联上拉电阻I2C(Inter-Integrated Circuit)是一种串行通信接口,用于在电路板上的多个设备之间进行通信。
I2C是一种双线制的接口,由时钟线(SCL)和数据线(SDA)组成。
它通过使用主从架构,允许多个设备在同一总线上进行通信。
在I2C总线上连接多个设备时,通常需要用到上拉电阻来确保信号正常传输。
本文将详细介绍I2C级联和上拉电阻的原理和应用。
I2C通信协议由NXP(前身为飞利浦)于1982年开发,旨在简化电子设备之间的通信。
它是一种主从架构,其中一个设备(称为主设备)控制总线,而其他设备(称为从设备)则响应主设备的命令。
主设备发送一系列的字节给从设备,然后从设备返回一些处理的数据。
I2C总线上有两个信号线: SCL(时钟线)和SDA(数据线)。
SCL信号线由主设备控制,用于同步从设备的时钟。
SDA信号线是一个双向的数据线,用于在主设备和从设备之间传输数据。
I2C可以级联多个设备,以便在一个总线上进行通信。
级联是通过将多个设备连接到同一I2C总线上来实现的。
每个设备都有一个唯一的I2C地址,主设备通过发送设备地址来与特定的设备进行通信。
级联设备的一个常见示例是液晶显示屏和传感器。
通过I2C总线,主设备可以从传感器读取数据,并将其显示在液晶屏上。
在I2C级联中使用上拉电阻是非常重要的。
上拉电阻通常连接在I2C总线的SCL和SDA线上,以确保信号在非活动状态时保持高电平。
由于I2C总线是双线制的,它不会自动提供高电平信号。
因此,上拉电阻通过提供固定电压源来保持总线上的高电平状态。
当总线上没有数据传输时,I2C设备的SCL和SDA线将通过上拉电阻上升到高电平。
上拉电阻的大小是一个重要的参数。
如果上拉电阻的电阻值太大,可能会导致电平上升和下降的速度过慢,从而限制通信速度。
反之,如果上拉电阻的电阻值太小,可能会消耗过多的电流。
通常,上拉电阻的电阻值在1kΩ到10kΩ之间是比较常见的。
I2C的原理与应用

I2C的原理与应用I2C(Inter-Integrated Circuit)是一种串行通信协议,由飞利浦公司于1980年代开发,用于在数字电子系统中连接各个芯片。
它主要使用两根线进行通信,即SDA(Serial Data Line,串行数据线)和SCL (Serial Clock Line,串行时钟线),同时支持多主机和多从机的通信方式。
I2C协议被广泛应用于各种数字设备的互连,包括传感器、存储器、协处理器等。
I2C的通信原理如下:1.总线结构:I2C总线包含一个主机和多个从机。
主机负责控制总线,并发起数据传输请求;从机等待主机发送命令,并根据命令执行相应操作。
2.时序:I2C总线上的通信需要依靠时钟信号进行同步。
主机通过时钟信号SCL驱动数据传输。
数据线SDA上的数据在时钟信号的上升沿或下降沿进行采样和发送。
3.起始和停止位置:数据传输始于主机发送一个起始信号,结束于主机发送一个停止信号。
起始信号通知所有从机总线上的数据传输即将开始;停止信号表示数据传输已经结束。
4.地址与数据传输:在起始信号之后,主机发送一个地址帧给从机。
地址帧的最高位表示读写操作,从机通过地址帧判断自身是否为数据传输的对象,并相应地进行操作。
主机可以在同一个传输过程中多次发送数据,并且可以从一个从机读取多个字节的数据。
I2C的应用广泛,以下是一些常见的应用领域:1.传感器:I2C通信协议在许多传感器和芯片中得到应用,例如加速度计、陀螺仪、温度传感器和压力传感器等。
这些传感器通过I2C协议与主处理器进行通信,并将采集到的数据传输到主处理器进行处理。
2. 存储器:I2C接口也广泛应用于存储器设备,如EEPROM (Electrically Erasable Programmable Read-Only Memory)和FRAM (Ferroelectric Random Access Memory)。
这些存储器设备可以通过I2C总线进行读写操作,从而存储和检索数据。
I2C串行通信原理及代码演示

I2C串行通信原理及代码演示I2C串行通信标准的从属模式和多主控模式,串行接口仅由两条信号线组成:串行时钟(SCL)和串行数据(SDA)。
串行数据(SDA)SDA引脚是一个开漏极双向输入/输出引脚,用于在设备之间连续传输数据。
SDA引脚必须使用外部向上拉式电阻拉动(值不超过10 kΩ),并且可以与同一母线上其他设备的任意数量的其他开漏或开路集电器引脚相连。
串行时钟(SCL)SCL引脚用于为设备提供一个时钟,并控制进出设备的数据流。
SDA引脚上的命令和输入数据总是锁定在SCL的上升边缘上,而SDA引脚上的输出数据则锁定在SCL的下降边缘上。
当串行总线空闲时,SCL必须被强制高或使用外部上拉电阻拉高。
SCL引脚用于接收来自主的的时钟信号,而双向SDA引脚用于接收来自主机的的命令和数据信息,并将数据发送回主机。
数据总是被锁定在SCL上升边缘的中,并且总是从SCL下降边缘的设备输出。
在总线通信期间,每个时钟周期传输一个数据比特,在传输8位(1字节)数据之后,接收设备必须在主设备生成的第9个时钟周期(ACK/NACK时钟周期)中以确认(ACK)或不确认(NACK)响应比特进行响应。
因此,传输的数据每一个字节需要9个时钟周期。
在数据传输期间,SDA引脚上的数据只能在SCL低时改变,并且当SCL高时数据必须保持稳定。
如果当SCL较高时,SDA销上的数据发生变化,则将发生开始或停止条件。
启动和停止条件用于启动和结束主设备和从设备之间的所有串行总线通信。
在开始和停止条件之间传输的数据字节数不受限制,并由主节点决定。
为了使串行总线空闲,SCL和SDA引脚必须同时处于逻辑高状态。
时钟和数据转换要求SDA引脚是一个开漏端,因此必须用外部的拉式电阻拉高。
SCL是一个输入端,可以驱动高或拉高使用外部拉上电阻。
SDA引脚上的数据只能在SCL的低时间段内发生变化。
SCL高电平期间的数据变化将定义的开始或停止条件。
1、启动条件启动条件当SDA引脚发生“高到低”的转变,而SCL引脚处于稳定的逻辑“1”状态,将使设备脱离待机状态。
i2c参数

i2c参数I2C(Inter-Integrated Circuit)是一种串行通信协议,用于连接微控制器和外部设备。
它是一种双线制通信协议,包括一个数据线(SDA)和一个时钟线(SCL),可以同时连接多个设备。
1. I2C的基本原理和工作方式:I2C协议由两根线组成:数据线(SDA)和时钟线(SCL)。
数据通过SDA线传输,时钟信号在SCL线上传输。
通信始终由主设备(通常是微控制器)控制,它生成时钟信号并发送或接收数据。
从设备被动地响应主设备的命令。
2. I2C的物理层和电气特性:I2C使用开漏输出(open-drain)架构,这意味着总线上的设备可以将线拉低(逻辑0),但无法将其拉高(逻辑1)。
线上有一个上拉电阻来提供默认的逻辑高电平。
因此,在总线空闲状态时,线上均为逻辑高电平。
3. I2C的地址格式和设备选择:I2C设备有7位或10位地址,其中7位地址是最常见的。
每个设备必须有唯一的地址。
主设备通过发送设备地址来选择特定的从设备进行通信。
4. I2C的数据传输模式:I2C支持两种数据传输模式:字节传输模式和块传输模式。
字节传输模式下,每次传输只发送一个字节的数据。
块传输模式下,可以发送多个字节的数据,最多达到32字节。
5. I2C的起始和停止条件:通信开始时,主设备发送起始条件(start condition),即在SCL为高电平时,SDA从高电平下跳到低电平。
通信结束时,主设备发送停止条件(stop condition),即在SCL为高电平时,SDA从低电平上跳到高电平。
起始和停止条件用于标识通信的开始和结束。
6. I2C的速度选择:I2C支持不同的速度选择,可根据实际需求进行配置。
常用的速度包括标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps)。
7. I2C的应用:I2C广泛用于连接各种外部设备,如传感器、显示屏、存储器、扩展模块等。
它也被用于构建复杂的系统,如工业自动化系统、嵌入式系统和消费电子产品等。
I2C总线串行扩展技术

二、80C51单主系统虚拟I2C总线软件包
80C51只能采用虚拟I2C总线方式,并且只能用 于单主系统,虚拟 I2C 总线接口可用通用 I/O 口中 任一端线充任,数据线定义为 VSDA ,时钟线定义 为VSCL。
§8-3 I2C总线串行扩展技术
一、I2C总线串行扩展概述
1、扩展连接方式
具有I2C总线结构的器件,不论SRAM、E2PROM、 ADC/DAC、I/O口或MCU,均可通过SDA、SCL连接 (同名端相连)。 无I2C总线结构的器件,如LED/LCD显示器、 键盘、码盘、打印机等也可通过具有I2C总线结 构的I/O接口电路成为串行扩展器件。
;取接收数据字节数N(存在内RAM NUMB单元) ;启动I2C总线 ;读接收寻址字节(存在内RAM SLA单元) ;发送接收寻址字节 ;检查应答位 ;应答不正常,返回重新开始 ;应答(A)正常,取接收数据存储区首址 ;接收一个字节数据 ;存一个字节数据 ;判N个数据接收完毕否?未完转发送应答位 ;N个数据接收完毕,发送应答非位(A) ;发送终止信号 ;子程序结束返回 ;发送应答位(A) ;指向下一接收数据存储单元地址 ;转接收下一字节数据
3、虚拟I2C总线软件包VIIC小结
⑴ VIIC软件包共有9个归一化子程序组成。 ⑵ VIIC 软件包仅适用单主系统即主方式下 I2C 总线外围扩 展。且应fosc≤6MHz ,若 fosc > 6MHz ,则应相应调整 NOP指令个数,以满足I2C总线数据传送时序要求。 ⑶ VIIC软件包可嵌入到80C51 ROM中任一空间,作为I2C总 线扩展应用程序设计的软件支持平台。 ⑷ 在应用VIIC软件包初始化中,应对软件包中标记符号用 伪指令定义。 ⑸ VIIC软件包占用资源: F0、Cy、Acc、R1、R1、R3。在 调用VIIC软件包之前,若涉及这些存储单元中原有数据 尚需保存,应采取保护现场措施,在调用结束后恢复现 场。
远距离传输的I2C总线通信接口电路

远距离传输的I2C总线通信接口电路近年来,随着物联网技术的发展,远距离传输的I2C(Inter-Integrated Circuit)总线通信接口电路得到了广泛应用。
I2C总线通信是一种串行通信协议,具有简单、高效、灵活的特点,适用于各种不同领域的应用。
本文将介绍远距离传输的I2C总线通信接口电路的原理、设计和应用。
一、远距离传输的I2C总线通信接口电路原理I2C总线通信是一种基于主从结构的串行通信协议,通常由一个主设备(主控器)和多个从设备(从机)组成。
主设备通过两根线路(SDA和SCL)与从设备进行通信。
其中,SDA线是数据线,用于传输数据;SCL线是时钟线,用于传输时钟信号。
在传统的I2C总线通信中,由于通信距离较短,通常在几米以内,可以直接使用标准的I2C总线设计。
然而,在某些应用中,由于设备之间的距离较远,传统的I2C总线通信无法满足需求。
此时,需要使用一些特殊的电路设计和扩展方案来实现远距离传输的I2C总线通信。
远距离传输的I2C总线通信接口电路采用了一系列的技术手段来解决通信距离限制,具体包括:1. 信号放大:使用信号放大器或驱动器来增强信号传输的能力,以解决信号衰减问题。
通过增大信号的幅度和电流,可以使信号能够在较长距离传输。
2. 串行扩展器:使用串行扩展器将I2C总线信号转换为光电信号或无线信号,然后再将信号转换回I2C总线信号。
这样可以实现更长距离的传输。
3. 中继器:使用中继器将I2C总线信号进行放大和恢复,增强信号的传输能力。
中继器可以将信号在不同的物理层之间进行转换,使信号能够传输更远的距离。
4. 数据缓冲器:使用数据缓冲器来缓存数据,以解决信号传输速率不匹配的问题。
数据缓冲器可以实现不同数据速率的设备之间的通信。
通过使用上述技术手段,远距离传输的I2C总线通信接口电路可以实现在几百米乃至数千米的距离范围内进行可靠的数据传输。
二、远距离传输的I2C总线通信接口电路设计设计远距离传输的I2C总线通信接口电路时,需要考虑以下几个关键因素:1. 信号传输距离:根据实际需求确定通信距离,从而选择合适的电路设计和扩展方案。
I2C总线接口电路设计

I2C总线接口电路设计I2C(Inter-Integrated Circuit)是一种串行通信总线协议,常用于连接各种集成电路之间的通信。
在I2C总线接口电路设计中,需要考虑电气接口、时序要求、硬件电路等方面的设计。
下面将从这些方面详细介绍I2C总线接口电路的设计。
一、电气接口设计1.电平转换:I2C总线上使用的信号线通常是5V或3.3V,而有些器件可能只支持3.3V电平,因此需要在总线接口电路中进行电平转换,以确保信号的兼容性。
2.上拉电阻:I2C总线上的SCL和SDA线需要使用上拉电阻,以确保信号线在空闲状态时保持在高电平状态。
通常建议使用4.7kΩ的上拉电阻。
二、时序要求设计1.起始信号:I2C总线通信的起始信号由主设备发送,它是一个从高电平切换到低电平的下降沿。
为了确保起始信号的准确性,可以使用RC 滤波电路对SCL和SDA信号进行滤波处理。
2.时钟频率:I2C总线的时钟频率通常为100kHz或400kHz。
在设计时需要考虑主设备和从设备的时钟频率能否匹配,并进行合适的时钟频率选择。
3.数据传输:每个字节的数据传输由主设备控制,数据在SCL时钟的上升沿到来时,SDA线上的数据应该保持稳定。
在设计时需要保证数据线上的电平变化满足I2C总线的要求。
三、硬件电路设计1.电源电路:I2C总线接口电路需要提供适当的电源电压,以供主设备和从设备工作。
需要注意电源稳定性和电源电压的合适选择。
2.ESD保护:考虑到I2C总线接口电路可能会面临静电等外部干扰,建议在接口电路中添加ESD保护电路,以保护电路免受ESD击穿的影响。
3.器件选择:在设计I2C总线接口电路时,需要选择合适的I2C驱动器和接收器器件,以确保电路的稳定性和可靠性。
4.PCB布局:良好的PCB布局是确保I2C总线接口电路稳定性的关键。
在布局时应注意信号线的走线规划、地线的布置以及滤波电容的选择等方面,以减小信号干扰和提高抗干扰能力。
总之,设计一套稳定可靠的I2C总线接口电路需要综合考虑电气接口、时序要求和硬件电路等方面的设计。
SPI和I2C接口技术在单片机系统中的比较与选择

SPI和I2C接口技术在单片机系统中的比较与选择概述:在单片机系统中,SPI(Serial Peripheral Interface)和I2C(Inter-Integrated Circuit)是两种常用的串行通信接口技术。
它们被广泛应用于各种嵌入式系统中,包括传感器、设备和外设之间的通信。
本文将对SPI和I2C接口技术进行比较,并探讨在不同情景下的选择。
一、SPI接口技术SPI是一种同步串行通信协议,允许单片机与多个外围设备进行双向通信。
SPI 接口使用了四条信号线:SCLK(时钟线)、MOSI(主机数据输出从机数据输入线)、MISO(主机数据输入从机数据输出线)和SS/CS(片选/使能信号线)。
使用SPI接口的主要优点如下:1. 高速:SPI接口能够达到很高的传输速率,有助于实现实时数据传输和高速操作。
2. 简单:SPI接口的硬件和软件实现相对简单,易于使用和调试。
3. 多从机支持:SPI支持主机与多个从机之间的通信,可以控制多个外围设备。
4. 数据传输可靠性:SPI接口在传输数据时具有很高的可靠性和稳定性。
然而,SPI接口也有一些限制和缺点:1. 连接数限制:SPI接口对于从机数量有一定限制,通常只能连接少量的外围设备。
2. 复杂性:虽然SPI接口的硬件实现比较简单,但在多从机情况下,软件实现可能更加复杂。
3. 电线数量:SPI接口需要四条信号线,这可能限制了系统设计的灵活性。
4. 电线长度:SPI接口的传输距离受限于电线长度并且容易受到传输信号的干扰。
二、I2C接口技术I2C接口是一种串行双向通信协议,也被称为TWI(Two Wire Interface)。
它使用了两条信号线:SCL(时钟线)和SDA(数据线)。
I2C接口可以实现多个从机与单个主机之间的通信。
I2C接口的优点包括:1. 简单:I2C接口的硬件和软件实现相对简单,易于集成和调试。
2. 多从机支持:I2C接口允许连接多个从机,方便实现复杂的系统。
i2c的原理及应用

i2c的原理及应用1. 什么是i2ci2c(Inter-Integrated Circuit)是一种通信协议,用于在集成电路之间进行数据传输。
它是一种串行通信协议,通常用于连接多个集成电路芯片,如传感器、显示屏等。
2. i2c的工作原理i2c协议使用两根信号线进行通信:主机发送数据的SDA线和控制信号的SCL 线。
通信是通过主机发起传输并选择从机设备进行通信。
下面是i2c传输的步骤:1.主机发送起始位:主机将SDA线从高电平拉低,然后拉低SCL线。
2.主机发送设备地址和读写位:主机将设备地址和读写位发送到SDA线上,并拉高SCL线。
3.主机等待从机响应:主机等待从机设备响应,响应由SDA线上的电平状态决定。
4.传输数据:主机和从机设备之间可以传输数据,每次传输都由主机提供时钟信号。
5.主机发送停止位:主机将SDA线从低电平拉高,然后拉高SCL线,表示传输结束。
3. i2c的应用领域i2c通信协议在许多电子设备中被广泛应用,以下是一些常见的应用领域:3.1 传感器i2c协议非常适合连接各种类型的传感器,包括温度传感器、湿度传感器、压力传感器等。
它能够提供高速、可靠的数据传输,方便将传感器模块集成到各种电子设备中。
3.2 显示屏i2c协议也可以用于连接显示屏,如液晶显示屏和OLED显示屏等。
通过i2c总线,可以通过发送指令和数据,控制显示屏的亮度、对比度、内容等。
3.3 存储设备i2c协议还可以用于连接存储设备,如EEPROM、Flash存储器等。
通过i2c总线,可以读取和写入存储设备中的数据,方便进行配置和数据存储。
3.4 工业自动化i2c通信协议在工业自动化领域也有广泛的应用。
它可以用于传输传感器数据、控制器之间的通信、参数配置等。
3.5 嵌入式系统i2c协议在嵌入式系统中也被广泛使用。
它可以用于连接各种外设,如键盘、鼠标、音频设备等,实现嵌入式系统的功能扩展。
4. i2c的优点i2c通信协议具有以下几个优点:•多设备连接i2c支持多个设备通过同一条总线进行通信,简化了设备之间的连接,降低了硬件成本。
几种最常用的串行数据传输总线(2)-I2C

⼏种最常⽤的串⾏数据传输总线(2)-I2C我第⼀次知道I2C总线是1995年,项⽬中⽤到电视机⾼频头(也叫调谐器、Tuner),能够⽅便买到的⾼频头要么是飞利浦(Philips)的,要么是⽇系⼚商的,但⽇系⼚商联系起来⽐较费劲。
Tuner其实就是通过I2C总线送控制字来改变其本振频率(LO)选择你需要的频段,当时知道I2C的⿐祖就是飞利浦半导体(NXP-恩智浦半导体的前⾝),也是第⼀次使⽤MC34063这颗后来如同555⼀样扑街的开关稳压芯⽚,⽤来产⽣⾼频头所需要的12V DC。
典型的电视机调谐器,采⽤I2C来进⾏调谐板⼦上的器件之间也需要Talk器件和器件之间的也需要沟通信息,尤其是需要MCU/DSP等对其它外设进⾏控制的时候。
⼯程界的⼤神们基于MCU/DSP开发了⼀系列的协议⽐如UART、USART、SPI、I2C、CAN等. . . .每种协议都有各⾃擅长的地⽅,也有其局限性,因此要做系统设计的硬件⼯程师就应该对每种接⼝协议有⼤概的认识(即便没有机会吃猪⾁,也要知道各种猪是如何跑的),这样才能够帮助你在做⽅案选择的时候能够选⽤最合适的协议接⼝⽅式,这也是你需要阅读我写的⽂章的原因。
在同⼀个PCB板⼦上的不同器件之间进⾏通信最常⽤的有三种形式 - SPI、I2C和UART,上篇⽂章我们简单介绍了SPI,今天就来看看I2C,我们先看⼀下I2C最基本的⼀些特性,然后再跟其它的通信协议⽅式进⾏⼀下⽐较。
两条通过上拉电阻吊在电源的线,上⾯可以挂多个器件进⾏通信简约⽽不简单的I2C总线I2C来⾃于英⽂inter–integrated circuit,有时也写为IIC,字⾯意思也可以理解为IC之间进⾏交流⽤的,跟SPI对⽐,I2C没有天⽣的主、从之分,也就是说挂在两根线(数据线SDA和时钟线SCL)上的所有器件都是⽣⽽平等的。
这个协议最早由飞利浦半导体推出来,⼏年后Intel⼜弄了⼀个SMBus(系统管理总线)协议,其实基本跟I2C⼀模⼀样,算是其扩展吧,⼀丢丢的差别⽽已。
I2C串行接口技术

发送应答信号子程序
MACK: CLR SDA NOP NOP SETB SCL NOP NOP NOP NOP NOP CLR SCL NOP NOP RET ;将SDA置0 (由接收器发送,SDA稳定后)
;保持数据时间,即SCL为高时间大于4.7s
发送非应答信号
MNACK: SETB SDA ;将SDA置1 NOP NOP SETB SCL NOP NOP ;保持数据时间,即SCL为高时间大于4.7s NOP NOP NOP CLR SCL NOP NOP RET
是近距离的通信。
♣.iic串行总线:仅有两根线:SDA(数据线)和SCL(时钟线)。
♣.iic总线的特点:半双工、同步、多主总线、串行。 ♣.iic串行总线的连接电路:
节点1 节点2
iic总线
♣.SDA(数据线)和SCL(时钟线)都是集电极开路或漏极开路结构 的,只能输出“0”,不能输出“1”,都必须接上拉电阻。
第8章单片机系统扩展及接口技术
在主控器发送数据时,被控器接收完一个数据字节后都要向主控器发回一个 应答信号(A),主控器据此便可进行下一字节的发送。但如果被控器由于某 种原因需要进行其他处理而无法继续接收SDA线上数据时,便可向SDA线输出 一个非应答信号(A),使SDA线保持高电平,主控器据此便可产生一个停止 信号来终止SDA线上的数据传输。 当主控器作为接收器接收被控器送来的最后一个数据时,必须给被控器发送
回一个应答信号。但与应答信号相对应的时钟仍由主控器在SCL线上产生,因 此主控发送器必须在被控接收器发送应答信号前,预先释放对SDA线的控制, 以便主控器对SDA线上应答信号的检测。
应答信号在第9个时钟位上出现,接收器在SDA线上输出低电平为应答信号 (A),输出高电平为非应答信号(A)。时钟信号以及应答和非应答信号间 的关系如图8-14所示。
I2C详细介绍及编程

I2C详细介绍及编程I2C(Inter-Integrated Circuit)是一种串行通信协议,常用于连接微控制器、传感器、存储器等设备,以实现数据通信。
本文将详细介绍I2C的原理、特点以及编程。
一、I2C的原理和特点I2C协议由飞利浦(Philips)公司于1982年开发,旨在简化数字电路上周边设备的通信。
I2C使用两条线(SCL和SDA)进行数据传输,其中SCL是时钟线,SDA是数据线。
这种双线式的通信使得I2C可以同时进行数据传输和电源供给,极大地简化了设备之间的连接。
在I2C通信中,主设备(通常是微控制器)发起通信,而从设备被动应答。
主设备通过在SCL线上产生时钟信号来控制通信节奏,并通过SDA 线实现数据传输。
数据的传输可以是单向的(主设备向从设备发送数据)或双向的(主设备与从设备之间的双向数据传输)。
I2C协议中的从设备通过一个唯一的地址来识别和寻址。
主设备可以选择与一个或多个从设备进行通信,只需发送相应的地址即可。
在开始通信前,主设备会发送一个开始信号,然后跟着从设备地址和读写位,然后才是数据或命令。
从设备在收到自己地址后会发出应答信号,主设备接收到应答信号后才会继续发送数据。
通信结束后,主设备会发送停止信号。
I2C的特点包括:1.双向通信:主设备和从设备之间可以进行双向的数据传输,减少通信线的需求和复杂度。
2.主-从结构:I2C通信中有一个主设备控制通信的发起和终止,而从设备被动应答。
3.多从结构:主设备可以与多个从设备进行通信,只需要发送不同的地址。
4.低速传输:I2C通信的时钟频率相对较低,一般在100kHz或400kHz。
二、I2C的编程实现在进行I2C编程之前,需要确保硬件上有I2C接口。
常见的I2C接口引脚包括SCL(时钟线)和SDA(数据线),同时需要进行相应的电源连接。
I2C编程的具体实现会有所差异,根据不同的硬件平台和编程语言而有所不同。
以下是一个基于Arduino平台的简单示例:```cpp#include <Wire.h>#define DEVICE_ADDRESS 0x50void setuWire.begin(;Serial.begin(9600);void loo//发送命令Wire.beginTransmission(DEVICE_ADDRESS);Wire.write(0x00); // 使用写入地址0x00Wire.write(0x01); // 写入数据0x01Wire.endTransmission(;delay(100);//读取数据Wire.requestFrom(DEVICE_ADDRESS, 1);if (Wire.available()int data = Wire.read(;Serial.print("Received: ");Serial.println(data);}delay(1000);```上述示例代码中,我们使用Wire库来实现I2C通信。
I2C总线原理介绍AT24C02内部原理介绍

I2C总线原理介绍AT24C02内部原理介绍I2C(Inter-Integrated Circuit)是一种串行通信总线,由Philips公司于1980年代初开发。
它是一种简单而高效的串行通信协议,能够在多个设备之间进行通信。
I2C总线由两根线组成,分别是SCL(时钟线)和SDA(数据线)。
SCL由主设备产生并控制通信速度,SDA用于数据的传输。
每个设备都有一个唯一的地址,以便其他设备可以通过地址找到它并与其通信。
I2C总线使用了主从结构,其中主设备是指负责发起通信的设备,从设备则是被动接受通信的设备。
在I2C总线上,可以连接多个从设备,但只能有一个主设备。
主设备负责发起通信并控制通信的过程,从设备在收到主设备的请求后回应,并传输数据。
在I2C总线上,通信的过程可以分为以下几个步骤:1.主设备将起始信号发送到总线上,通知其他设备开始通信。
2.主设备发送从设备地址和读写标志位,指示通信的目标设备和读写操作。
3.从设备根据接收到的地址判断是否为自己,如果是则回应ACK信号。
4.主设备根据ACK信号判断是否有设备应答,如有应答则继续通信,否则终止通信。
5.主设备发送数据或请求数据,并接收从设备的应答。
6.数据传输完成后,主设备发送停止信号,终止本次通信。
1.双向传输:I2C总线上的数据传输是双向的,主设备既可以发送数据给从设备,也可以从从设备读取数据。
2.多从设备:I2C总线可以连接多个从设备,每个从设备都有唯一的地址,主设备通过地址选择通信的目标设备。
3.速度可变:I2C总线的通信速度可以通过改变时钟频率来调整,可以根据实际需求选择合适的速度。
4.硬件简单:I2C总线只需要两根线即可完成通信,硬件接口简单,成本低廉。
AT24C02内部原理介绍:AT24C02是一种8位串行电子可擦除可编程只读存储器(EEPROM),由Atmel公司生产。
它具有2K字节的存储容量,可以存储2048个8位字节的数据。
AT24C02采用了I2C总线通信接口,可以与其他I2C设备进行通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I2C总线的SDA和SCL是双向的 均通过上拉电阻接正电源
如图所示,当总线空闲时,两根线均为高电平。连到总线上的器件(相当于结点)的 输出级必须是漏极或集电极开路的,任一器件输出的低电平,都将使总线的信号变低, 即各器件的SDA及SCL都是线“与”关系。SCL线上的时钟信号对SDA线上各器件间 数据的传输起同步作用。SDA线上数据的起始、终止及数据的有效性均要根据SCL线 上的时钟信号来判断。
串行接口技术
I2C串行总线 I2C串行总线是Philips公司提出的一种板内芯片间 串行总线。它用两根连线即可方便地实现外围器件 扩展。I2C总线上数据传送的基本单位为字节,采 用高位在前的格式。主从器件之间一次传输的数据 称为一帧,由启动信号、若干个数据字节和应答位 以及停止信号组成。
第6章 串行接口技术
I2C总线的数据传送
• 数据位的有效性规定 • 起始和终止信号 • 数据传送格式 • I2C总线的时序特性 • I2C总线的寻址
数据位的有效性规定
I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必 须保持稳定。只有在时钟线上的信号为低电平期间,数据线上的高电 平或低电工状态才允许变化,如图所示。
TBUF THD:STA TLOW THIGH TSU:STA TSU:DAT
TF TSU:STO
最小值
4.7 4.0 4.7 4.0 4.0 250 — 4.7
最大值
— — — — — — 300 —
单位
s s s s s ns ns s
I2C总线的寻址
I2C总线协议有明确的规定:采用7位的寻址字节(寻址字节是起始 信号后的第一个字节)。
上拉电阻接正电源 • I2C总线的总线仲裁
I2C串行总线只有两根双向信号线
一根是数据线SDA,另一根是时钟线SCL。所有连接到I2C总线上的 器件的数据线都接到SDA线上,各器件的时钟线均接到SCL线上。 I2C总线的基本结构如图所示。
I2C总线是一个多主机总线
总线上可以有一个或多个主机,总线运行由主机控制。这 里所说的主机是指启动数据的传送(发起始信号)、发出 时钟信号、传送结束时发出终止信号的器件。通常,主机 由各种单片机或其他微处理器充当。被主机寻访的器件叫 从机,它可以是各种单片机或其他微处理器,也可以是其 他器件,如存储器、LED或LCD驱动器、A/D或D/A转换 器、时钟日历器件等。
在标准I2C普通模式下,数据的 传输率为100Kbps,高速模式下 可达400Kbps。连接的器件越多, 电容值越大,总线上允许的器件 数以总线上的电容量不超过 400pF为限。
I2C总线的总线仲裁
在多主机系统中,可能同时有几个主机企图启动总线传送数 据。为了避免混乱,I2C总线要通过总线仲裁,以决定由哪一 台主机控制总线。首先,不同主器件(欲发送数据的器件) 分别发出的时钟信号在SCL线上“线与”产生系统时钟:其 低电平时间为周期最长的主器件的低电平时间,高电平时间 则是周期最短主器件的高电平时间。仲裁的方法是:各主器 件在各自时钟的高电平期间送出各自要发送的数据到SDA线 上,并在SCL的高电平期间检测SDA线上的数据是否与自己 发出的数据相同。
1. I2C串行总线原理与应用 2. 串行单总线原理与应用 3. 串行模/数转换器 4. I2C总线键盘/显示器接口芯片ZLG7290 5. I2C总线串行8位数/模转换器MAX517 6. 基于I2C总线的ADS1100型16位模/数转换器
I2C串行总线原理与应用
• I2C串行总线的组成与工作原理 • I2C串行总线的接口设计 • I2C串行总线器件 • 应用举例 • 实践与思考
典型信号时序图
I2C总线的时序特性
下表为I2C总线的时序特性。由表可见,除了SDA、SCL线的信号下降时间为最大 值外,其他参数只有最小值。这表明在I2C总线的数据传送中,可以利用时钟同步 机制展宽低电平周期,迫使主器件处于等待状态,使传送速率降低。
参数说明
符号
新的起始信号前总线必须的空闲时间 起始信号保持时间 时钟的低电平时间 时钟的高电平时间 起始信号建立时间(仅对重复起始信号) 数据建立时间 SDA、SCL线的信号下降时间 终止信号建立时间
I2C串行总线的组成与工作原理
• I2C串行总线的基本特性 • I2C总线的数据传送
I2C串行总线的基本特性
I2C总线是Philips公司推出的一种串行总线,是具备多主机系统所需的 包括总线仲裁和高低速器件同步功能的高性能串行总线。它具有如下 基本特性。
• I2C串行总线只有两根双向信号线 • I2C总线是一个多主机总线 • I2C总线的SDA和SCL是双向的,均通过
应答时序图
数据传送格式
(2)数据帧格式
在总线的一次数据传送过程中,可以有以下几种组合方式: • 主机向从机发送数据,数据传送方向在整个传送过程中不变。
S 从机地址 0 A 数据 A 数据 A P
注:有阴影部分表示数据 由主机向从机传送,无阴 影部分则表示数据由从机 向主机传送。 A表示应答,表示非应答 (高电平)。S表示起始 信号,P表示终止信号。
起始和终止信号
根据I2C总线协议的规定,SCL线为高电平期间,SDA线由高电平 向低电平的变化表示起始信号;SCL线为高电平期间,SDA线由低 电平向高电平的变化表示终止信号。起始和终止信号如图所示。
数据传送格式
(1)字节传送与应答
利用I2C总线进行数据传送时,传送的字节数是没有限制的,但是每一个字 节必须保证是8位长度。数据传送时,先传送最高位(MSB),每一个被传 送的字节后面都必须跟随一位应答位(即一帧共有9位),如图所示:
• 主机在第一个字节后,立即由从机读数据。
S 从机地址 1 A 数据 A 数据 A P
• 在传送过程中,当需要改变传送方向时,起始信号和从机地址都被重复产生一次, 但两次读/写方向位正好反向。
S
从机 地址
0
A
数据
从机 A S 地址
1
A 数据 A
Pபைடு நூலகம்
I2C总线的时序特性
为了保证数据传送的可靠性,标准I2C总线的数据传送有严格的时序要求。I2C总线的 起始信号、终止信号、发送“0”及发送“1”的模拟时序如图所示。