理数7答案
2020-2021七年级数学试卷有理数解答题专题练习(附答案)
2020-2021七年级数学试卷有理数解答题专题练习(附答案)一、解答题1.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.2.在数轴上,点A,点B分别表示数,则线段AB的长度可以用表示.例如:在数轴上点A表示5,点B表示2,则线段AB的长表示为 .(1)若线段AB的长表示为6, ,则ab的值等于________;(2)已知数轴上的任意一点P表示的数是x,且的最小值是4,若,则b=________;(3)已知点A在点B的右边,且,若,,试判断的符号,说明理由.3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.5.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:6.如图,在数轴上点A表示数a,点B表示数b,a、b满足|a﹣20|+(b+10)2=0,O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)t为何值时,BQ=2AQ.(3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=6?若存在,求出所有符合条件的t值,若不存在,请说明理由.7.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且 .(1)a=________,b=________;(2)在数轴上是否存在一点P,使,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿的路径运动,在路径的速度是每秒2个单位,在路径上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?8.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.9.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值10.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)11.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果: =________.12.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.13.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
人教版七年级数学上册第一章有理数试题七(含答案) (60)
人教版七年级数学上册第一章有理数复习试题七(含答案)(1)请根据下列计算,把解题过程补充完整,并把解题过程中用到的运算律写在题后的横线上:①711145438248⎛⎫⎛⎫⎛⎫⎛⎫-+++-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解:原式711145438248=-+--7(4543)(8=-+--+- )= + 364=-.运算律: .②122121128733⎛⎫⎛⎫-÷-⨯÷-÷ ⎪ ⎪⎝⎭⎝⎭.解:原式21(=-⨯)23378⎛⎫⨯⨯-⨯ ⎪⎝⎭ (21=-⨯ )⨯( 338⨯⨯)=- ⨯6=-运算律: . (2)计算下列各题: ①131211442⎛⎫---+-- ⎪⎝⎭ ②2112246(8)43125⎛⎫⎛⎫-⨯+-÷-÷ ⎪ ⎪⎝⎭⎝⎭ ③2211210.6245⎡⎤⎛⎫---+-⨯÷ ⎪⎢⎥⎝⎭⎣⎦【答案】(1) ①111248--、6-、34-、结合律;②89-、27、89、6、1、交换律.(2)①72;②295-;③397100-【解析】【分析】(1)①根据结合律进行有理数的混合运算即可; ②根据交换律进行有理数的乘除运算即可;(2)①根据交换律进行有理数的加减混合运算即可; ②根据乘法分配律和有理数的混合运算即可;③根据有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:(1)①原式711145438248=-+--7111(4543)8248⎛⎫=-+--+-+-- ⎪⎝⎭336644⎛⎫=-+-=- ⎪⎝⎭运算律为结合律.②原式823213978⎛⎫⎛⎫=-⨯-⨯⨯-⨯ ⎪ ⎪⎝⎭⎝⎭283213798⎛⎫⎛⎫=-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭616=-⨯=-运算律为交换律、结合律;(2)①原式13121442=++- 1312=+-72=; ②原式32111622584=-+⨯⨯ 165=-+295=-;③原式113414455⎡⎤⎛⎫=---+-⨯÷ ⎪⎢⎥⎝⎭⎣⎦13414425⎡⎤⎛⎫=---+-÷ ⎪⎢⎥⎝⎭⎣⎦122144254⎛⎫=---+⨯ ⎪⎝⎭1114450⎛⎫=---+ ⎪⎝⎭34100⎛⎫=--- ⎪⎝⎭34100=-+ 397100=- 【点睛】本题考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.92.观察下列等式: 第1个等式:1111(1)1323a ==⨯-⨯ 第2个等式:21111()35235a ==⨯-⨯ 第3个等式:31111()57257a ==⨯-⨯ ……请解答下列问题:(1)按以上规律列出第5个等式:________;(2)用含有n 的代数式表示第n 个等式:________(n 为正整数) (3)求1232019a a a a ++++的值.【答案】(1)51111()9112911a ==⨯-⨯;(2)1111()(21)(21)22121n a n n n n ==⨯--+-+;(3)20194039【解析】 【分析】(1)根据已知等式的规律即可写出第5个等式;(2)由(1)中总结规律即可写出第n 个等式; (3)根据等式的变形规律和乘法分配律计算即可. 【详解】解:(1)第1个等式:()()11111111(1)()13232112112211211a ==⨯-==⨯-⨯⨯-⨯⨯+⨯-⨯+第2个等式:()()211111111()()352352************a ==⨯-==⨯-⨯⨯-⨯⨯+⨯-⨯+ 第3个等式:()()311111111()()572572312312231231a ==⨯-==⨯-⨯⨯-⨯⨯+⨯-⨯+ ∴第5个等式:()()51111()2512512251251a ==⨯-⨯-⨯⨯+⨯-⨯+整理得:51111()9112911a ==⨯-⨯ 故答案为:51111()9112911a ==⨯-⨯; (2)由(1)中总结规律第n 个等式:1111()(21)(21)22121n a n n n n ==--+-+故答案为:1111()(21)(21)22121n a n n n n ==--+-+;(3)解:1232019++++a a a a11111111=⨯-+⨯-++⨯-(1)()()23235240374039111111=⨯-+-++-(1)23354037403911=⨯-(1)2403914038=⨯240392019=4039【点睛】此题考查的是探索有理数的运算规律题,掌握已知等式的变形规律并归纳公式是解决此题的关键.93.一农民经纪人出售10袋大豆给粮油批发市场,按规定,每袋应为100千克,在过磅时,误差记录如下(单位:千克):−4,+3,+1,0,0,+2,+1,−1,0,−1.计算这位经纪人共出售了多少千克大豆?【答案】这位经纪人共出售了1001千克大豆.【解析】【分析】分别求出每袋的实际重量,再求和即可.【详解】解:()()()()()()()()()( 10041003100110001000100210011001100010 -+++++++++++++-+++=1001答:这位经纪人共出售了1001千克大豆.【点睛】此题考查的是有理数加法的应用,掌握实际问题中正负数的意义和有理数的加法法则是解决此题的关键.94.计算:20182815()(4)(8)5-+-⨯---÷-【答案】-7 【解析】 【分析】根据有理数的运算顺序和各个运算法则计算即可. 【详解】解:原式815()16(8)5=-+⨯--÷-182=--+ 7=- 【点睛】此题考查的是有理数的混合运算,掌握有理数的运算顺序和各个运算法则是解决此题的关键.95.把下列各数的相反数在数轴上表示出来并用“<”把他们连接起来:4-,3--,0,()2++.【答案】-2<0<3<4,详见解析. 【解析】 【分析】先将各数化简求得相反数,再表示在数轴上,再从左到右用“<”连接即可.【详解】∵33--=-, ()2++=2, ∴3,04,2,的相反数依次为:4、3、0、-2表示在数轴上为:∴-2<0<3<4【点睛】此题考察有理数的大小比较,再确定各数在数轴上的位置时需先将数化为最简,再确定在数轴上的位置.96.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,5-2,-3.观察数轴,与点A 的距离为3的点表示的数是,A,B两点之间的距离为。
人教版七年级数学《有理数》计算题专项练习(含答案)
人教版七年级数学《有理数》计算题专项练习学校:班级:姓名:得分:1、计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).2、计算:12﹣(﹣18)+(﹣7)﹣15;3、计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.4、计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)5、计算:(﹣﹣)×366、计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)7、计算:(﹣+)×(﹣24)8、计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).9、计算:﹣14÷(﹣5)2×(﹣)10、计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).11、计算:23×(1﹣)×0.5.12、计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.13、计算:4+(﹣2)2×2﹣(﹣36)÷4.14、计算:﹣33+(﹣1)2016÷+(﹣5)2.15、计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)16、计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].17、计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.18、计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)19、计算:(﹣2)3÷+3×|1﹣(﹣2)2|.20、计算:(﹣)2÷()3﹣12×(﹣)21、计算:.22、计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].23、计算:(﹣28)÷(﹣6+4)+(﹣1)×5.人教版七年级数学《有理数》计算题专项练习参考答案与试题解析1.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣172.计算:12﹣(﹣18)+(﹣7)﹣15;【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;3.计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.【解答】解:原式=4﹣54=﹣50.4.计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.5、计算:(﹣﹣)×36【解答】解:(﹣﹣)×36=8﹣9﹣2=﹣3;6.计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)【解答】解:(﹣1)4﹣36÷(﹣6)+3×(﹣)=1+6+(﹣1)=6.7.计算:(﹣+)×(﹣24)【解答】解:原式=﹣8+18﹣20=﹣10;8.计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).【解答】解:原式=﹣9+2×9﹣(﹣6)×(﹣)=﹣9+18﹣9=0.9.计算:﹣14÷(﹣5)2×(﹣)【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;10.计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).【解答】解:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1)=﹣125×(﹣)+32×(﹣)×(﹣)=75+10=85.11.计算:23×(1﹣)×0.5.【解答】解:原式=8××=3.12.计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣49+18﹣5413.计算:4+(﹣2)2×2﹣(﹣36)÷4.【解答】解:原式=4+4×2﹣(﹣9)=4+8+9=21.14.计算:﹣33+(﹣1)2016÷+(﹣5)2.【解答】解:﹣33+(﹣1)2016÷+(﹣5)2=﹣27+1×6+25=﹣27+6+25=4.15.计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.16.计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].【解答】解:原式=﹣4÷1﹣×(﹣21)=﹣4+7=3.17.计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.【解答】解:原式=16÷+×(﹣)﹣=﹣﹣=.18.计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.19.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,20.计算:(﹣)2÷()3﹣12×(﹣)【解答】解:原式=×27﹣9+2=3﹣9+2=﹣4.21.计算:.【解答】解:原式=﹣×﹣×=×(﹣﹣)=﹣.22.计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.【解答】解:原式=﹣28÷(﹣2)﹣5=14﹣5=9.。
有理数认识习题及答案
有理数认识习题及答案有理数是我们学习数学的基础,它包括整数和分数两部分。
在学习有理数的过程中,我们经常会遇到一些认识习题。
本文将介绍一些常见的有理数认识习题及其答案,帮助大家更好地理解和掌握有理数的概念。
1. 问题:判断下列数是否为有理数:-2,3/4,√2,π。
答案:-2是整数,属于有理数;3/4是分数,也属于有理数;√2是无理数,不属于有理数;π是无理数,不属于有理数。
2. 问题:将下列数按从小到大的顺序排列:-5,0,-2/3,1/2。
答案:首先,我们可以将-5和0转化为分数形式,即-5/1和0/1。
然后,将-5/1,0/1,-2/3,1/2按大小排列,即-5/1 < -2/3 < 0/1 < 1/2。
3. 问题:求下列数的相反数和绝对值:-7,2/5,0,-√3。
答案:-7的相反数是7,绝对值是7;2/5的相反数是-2/5,绝对值是2/5;0的相反数仍然是0,绝对值是0;-√3的相反数是√3,绝对值是√3。
4. 问题:判断下列数的正负性:-1/2,0,5,-√2。
答案:-1/2是负数;0既不是正数也不是负数,它是零;5是正数;-√2是负数。
5. 问题:计算下列数的倒数:2,-3/4,0,√5。
答案:2的倒数是1/2;-3/4的倒数是-4/3;0没有倒数,因为任何数乘以0都等于0;√5的倒数是1/√5。
6. 问题:计算下列数的平方:-3,2/5,0,√7。
答案:-3的平方是9;2/5的平方是4/25;0的平方仍然是0;√7的平方是7。
通过以上习题,我们可以更深入地理解有理数的概念和性质。
有理数包括整数和分数,可以是正数、负数或零。
而无理数则不能用两个整数的比值表示,如开方后为无限不循环小数的数。
有理数的大小可以通过比较绝对值来判断,绝对值越大,数值越大。
另外,有理数的相反数即为其绝对值相等但符号相反的数,而有理数的倒数是指与其相乘等于1的数。
有理数的平方是将其乘以自身得到的结果。
七年级数学有理数与无理数易错题含答案
一、选择1.实数π是( )A.整数B.分数C.有理数D.无理数【考点】无理数.【分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【解答】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【点评】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.2.在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为( )A.3 B.4 C.5 D.6【考点】有理数.【分析】分别根据实数的分类及有理数、无理数的概念进行解答.【解答】解:在数0,,,﹣(﹣),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的是0,,﹣(﹣),,0.3,.故选D.【点评】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.3.下列语句正确的是( )A.0是最小的数B.最大的负数是﹣1C.比0大的数是正数D.最小的自然数是1【考点】有理数.【分析】根据正数、自然数、负数、0的定义与特点分别对每一项进行分析即可.【解答】解:A、没有最小的数,故本选项错误;B、最大的负整数是﹣1,故本选项错误;C、比0大的数是正数,故本选项正确;D、最小的自然数是0,故本选项错误;故选:C.【点评】此题考查了有理数,用到的知识点是正数、自然数、负数、0的定义与特点,是一道基础题.4.下列各数中无理数的个数是( ),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数,由此即可判定选择项.【解答】解:下列各数中,0.1234567891011…(省略的为1),0,2π.无理数是2π,共1个.故选A.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列说法中,正确的是( )A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数【考点】有理数.【分析】根据有理数的定义和特点进行判断.【解答】解:A、有理数包括正数、负数和0,故A错误;B、零是自然数,但不是正数,故B错误;C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;D、零是整数,不是分数,故D错误.故选C.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A.1 B.2 C.3 D.4【考点】有理数.【分析】利用分数的定义判断即可.【解答】解:在,3.14,0,0.313 113 111.…,0.43五个数中分数有3.14,0.43,故选B.【点评】此题考查了实数,熟练掌握分数的定义是解本题的关键.二、填空7.最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0.【考点】有理数.【分析】根据正整数的定义,可得答案;根据负整数的定义,可得答案;根据非负数的定义,可得答案.【解答】解:最小的正整数是1,最大的负整数是﹣1,最小的非负整数是0,故答案为:1,﹣1,0.【点评】本题考查了有理数,利用了有理数的分类,注意没有最小的整数,没有最大的整数.8.有理数中.是整数而不是正数的数是0和负整数;是整数而不是负数的数是0和正整数.【考点】有理数.【专题】常规题型.【分析】解答本题的关键是理解掌握有理数定义,以及有理数包括整数和分数,零既不是正数也不是负数.【解答】解:零既不是正数也不是负数故在理数中,是整数而不是正数的数是(0和负整数);是整数而不是负数的数是:(0和正整数).【点评】本题主要考查的是有理数的定义以及零既不是正数也不是负数,题型比较容易.9.若一个正方形的面积为5,则其边长可能是无理数.【考点】算术平方根;无理数.【分析】直接利用正方形面积公式以及算术平方根和无理数的概念得出即可.【解答】解:∵一个正方形的面积为5,∴其边长是:,它是无理数.故答案为:无理.【点评】此题主要考查了正方形面积以及算术平方根和无理数的概念,正确求出正方形边长是解题关键.10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14.【考点】有理数.【分析】根据小于零的数是负数,可得答案;根据整数的定义,可得答案;根据小于零的分数是负分数,可得答案.【解答】解:负数有﹣18,﹣,﹣0.14,整数有﹣18,0,2001,负分数有﹣0.14,故答案为:﹣18,﹣,﹣0.14;﹣18,0,2001;﹣0.14.【点评】本题考查了有理数,利用了有理数的分类,注意分数的分子分母都是整数.11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=6.【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定无理数x的值,根据整数的定义非负数的定义即可判定y、z的值,然后即可求解.【解答】解:无理数有:﹣2π,0.1020020002…共2个,则x=2;没有整数:则y=0;非负数有:0.123,3.1416,,0.1020020002…共4个;则z=4.则x+y+z=6.【点评】本题主要考查实数的分类.无理数和有理数统称实数.有一定的综合性.12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1)1,﹣2,4,﹣8,16,﹣32.64,﹣128,256…(2)4,3,2,1,0,﹣1,﹣2.﹣3,﹣4,﹣5…(3)1,2,﹣3,4,5,﹣6,7,8,﹣9,10,11,﹣12…【考点】规律型:数字的变化类.【分析】(1)利用已知数是(﹣2)的次数变化得到,进而得出答案;(2)利用已知数据可得出后面是连续的负数进而得出答案;(3)利用已知数绝对值是连续正整数,每三个中最后一个是负数,进而得出答案.【解答】解:(1)∵1,(﹣2)1,(﹣2)2=4,(﹣2)3=﹣8,(﹣2)4=16,(﹣2)5=﹣32.∴(﹣2)6=64,(﹣2)7=﹣128,(﹣2)8=256;故答案为:64,﹣128,256;(2)∵4,3,2,1,0,﹣1,﹣2,∴后面三个数是:﹣3,﹣4,﹣5;故答案为:﹣3,﹣4,﹣5;(3)∵1,2,﹣3,4,5,﹣6,7,8,﹣9,∴后面三个数是:10,11,﹣12.故答案为:10,11,﹣12.【点评】此题主要考查了数字变化规律,根据题意得出数字变化规律是解题关键.三、解答13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.【考点】实数.【分析】根据圆的面积公式得出圆的半径长,进而得出答案.【解答】解:x不是有理数,理由:因为x2=5,故x=,则x既不是整数,也不是分数,而是无限不循环小数.【点评】此题主要考查了实数有关定义,得出半径长是解题关键.14.把下列各数填在相应的大括号内:,0,,314,﹣,,,﹣0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.【考点】实数.【分析】分别利用正数以及负数、有理数和无理数的定义分析得出即可.【解答】解:正数集合:{,,314,,,8,1.121 221 222 1…(两个1之间依次多一个2),0.211,201,999,…};负数集合:{﹣,一0.55,…};有理数集合:{,0,314,,,﹣,﹣0.55,8,0.2111,201,999,…};无理数集合:{,1,121 221 222 1…(两个1之间依次多一个2)…}.【点评】此题主要考查了实数有关定义,正确把握相关定义是解题关键.15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={﹣2,﹣3,﹣8,6,7},B={﹣3,﹣5,1,2,6},C={﹣1,﹣3,﹣8,2,5},请把这些数填在图中相应的位置.【考点】有理数.【分析】根据每个集合中的元素,可得答案.【解答】解:如图所示..【点评】本意考察了有理数,利用了韦恩图法表示集合,注意各集合的公共元素.16.“十•一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单位:万人+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)9月30日外出旅游人数记为a,用a的代数式表示10月2日外出旅游的人数;(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?【考点】列代数式.【专题】应用题.【分析】(1)10月2日外出旅游的人数=9月30日外出旅游人数+10月1日增加的人数+10月2日增加的人数.(2)易得最多的是10月3日,最少的是10月7日.算出的人数相减即可求得相差人数.把10月3日的人数=3即可算出9月30日出去旅游的人数有多少.【解答】解:(1)由题意可知10月2日外出旅游的人数为:a+1.6+0.8=a+2.4(万人);(2)最多的是10月3日,人数为a+1.6+0.8+0.4=a+2.8(万人).最少的是10月7日,人数为a+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2=a+0.6(万人).它们相差为a+2.8﹣a﹣0.6=2.2万人.如果最多一天有出游人数3万人,即a+2.8=3,a=0.2万人,故9月30日出去旅游的人数有0.2万人.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,列出代数式.。
1.2有理数 七年级数学上课后答案
1.2有理数P6练习1. 所有正数组成整数集合,所有负数组成负数集合,把下面的有理数填入它属于的集合圈内:15;— 19 ;—5;215 ;—138 ;0.1;—5.32;—80;123;2.333答案:正数集合: 15;215 ;0.1;123;2.333负数集合: — 19 ;—5;—138 ;—5.32;—802. 指出下列个数中的正数,负数,正数,分数—15;+6;-2;-0.9; 1; 35 ;0;314 ;0.63;-4.95答案:正数:+6;1;35 ;314 ;0.63负数:—15;-0.9;-4.95整数:-15;+6;-2;1;0分数: 35 ;314P9练习.答案解析: 1、A:0 B:-2 C:1 D:2.5 E:-3 2.3. 负;正P10练习答案解析:1. (1)(2)错误,(3)(4)正确2. —6、8、3.9、—52 、211 、—100、03. a=-a ,所以2a=0,a=0.故表示a 的点在数轴上的原点4. 68、-0.75、35 、-3.8P11练习2.解:(1),相反数的定义为:只有符号不同的两数叫做互为相反数.其特征“符号不同,绝对值相同.若符号不同,但绝对值也不同的话,就不是互为相反数.故这个说法是错误的.(2),若一个负数的绝对值大的时候,它在数轴上越靠左.故这个说法是错误.(3),正确.(4),正确.故答案为:(1)错误;(2)错误;(3)正确;(4)正确.4. (1)正确、(2)错误、(3)错误P13练习P14习题1.2答案解析:1、正数:15;0.15;225 ;+20负数:—38 ;-30;-12.8;-602、3、B 表示-7或者14、5、125;23;3.5;0;23 ;32 ;0.05最大的绝对值的数-125,最小的06、7、广州13.1>武汉3.8>南京2.4>北京-4.6>哈尔滨-19.48、第四个球,此题比绝对值大小9、某年我国人均水资源比上年的增幅是-5.6%.后续三年各年比上年的增幅分别是-4.0%,13.0 %,-9.6%.这些增幅中哪个最小?增幅是负数说明什么?10、在数轴上,表示那个数的点与表示-2和4的点的距离相等 答:1答案解析:11题:12题:。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
2020年人教版七年级数学上册 课时作业本07 有理数-有理数的乘方(含答案)
2020年人教版七年级数学上册课时作业本07有理数-有理数的乘方一、选择题1.75表示( )A.5个7连乘B.7个5连乘C.7与5的乘积D.5个7连加的和2.下列各组算式计算结果相等的是( )A.(﹣4)3与﹣43B.32与23C.﹣42与﹣4×2D.(﹣2)2与﹣223.下列各数中,负数有()A.2个 B.3个 C.4个 D.5个4.一个数的偶数次幂是正数,这个数是()A.正数 B.负数 C.正数或负数 D.有理数5.下列结论正确的是( )A..若a2=b2,则a=b;B.若a>b,则a2>b2;C.若a,b不全为零,则a2+b2>0;D.若a≠b,则 a2≠b2.6.在(-1)3,(-1)2024,-22,(-3)2这四个数中,最大的数与最小的数的差等于( )A.10B.8C.5D.137.a是任意有理数,下面式子中:①a2>0;②a2=(-a)2;③a3=(-a)3;④(-a)3=- a3.一定成立的个数是()A.1个B.2个C.3个D.4个8.下列各组中运算结果相等的是( )A.23与32B.(﹣2)4与﹣24C.(﹣2)3与﹣23D.与9.-x n与(-x)n的正确关系是( )A.相等B.互为相反数C.当n为奇数时它们互为相反数,当n为偶数时相等D.当n为奇数时相等,当n为偶数时互为相反数10.若x、y为有理数,下列各式成立的是( )A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)311.某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个,两个裂成4个…),若这种细菌由1个分裂成128个,那么这个过程需要经过()小时。
A.2B.3C.3.5D.412.若(x﹣2)2+|y+1|+z2=0,则x3﹣y3+z3+3xyz=()A.7 B.8 C.9 D.10二、填空题13.计算:-32-(-3)3=__________.14.若,则a3= 。
人教版七年级数学上册第1章《有理数》解答题专项训练
人教版七年级数学上册第1章《有理数》解答题专项训练1.(2020春•通州区期末)对于一个数x ,我们用(x ]表示小于x 的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9. (1)填空:(﹣2020]= ,(﹣2.4]= ,(0.7]= ;(2)如果a ,b 都是整数,且(a ]和(b ]互为相反数,求代数式a 2﹣b 2+4b 的值; (3)如果|(x ]|=3,求x 的取值范围. 2.(2019秋•北京期末)小华的体重是35kg ,小刚比小华重15.(1)画线段图表示两人体重之间的关系; (2)求出小刚的体重是多少kg ? 3.(2019秋•密云区期末)初一某班6名男生测量身高,以160cm 为标准,超过的记作正数,不足的记作负数.测量结果记录如下:学生序号1 2 3 4 5 6 身高(cm )165158164 163 157 168 差值(cm )+5 m +4+3﹣3+8(1)求m 值.(2)计算这6名同学的平均身高.4.(2019秋•顺义区期末)A 表示一个数,若把数A 写成形如a 0+1a 1+1a 2+1a 3+1⋯的形式,其中a 0、a 1、a 2、a 3、…都为整数.则我们称把数A 写成连分数形式. 例如:把2.8写成连分数形式的过程如下: 2.8﹣2=0.8,10.8=1.25,1.25﹣1=0.25,10.25=4,4﹣4=0.∴2.8=2+11+14(1)把3.245写成连分数形式不完整的过程如下: 3.245﹣3=0.245,10.245=4.082, 4.082﹣4=0.082,10.082=12.25, 12.250﹣12=0.25,10.25=4,4﹣4=0.∴3.245=a 0+14+1a 2+14则a 0= ;a 2= ; (2)请把97写成连分数形式;(3)有这样一个问题:如图是长为47,宽为10的长方形纸片.从中裁剪出正方形,若长方形纸片无剩余,则剪出的正方形最少是几个?小明认为这个问题和“把一个数化为连分数形式”有关联,并把4710化成连分数从而解决了问题.你可以参考小明的思路解决上述问题,请直接写出“剪出的正方形最少”时,正方形的个数.5.(2019秋•通州区期末)在数轴上,我们把表示数2的点定为核点,记作点C ,对于两个不同的点A 和B ,若点A ,B 到点C 的距离相等,则称点A 与点B 互为核等距点.如图,点A 表示数﹣1,点B 表示数5,它们与核点C 的距离都是3个单位长度,我们称点A 与点B 互为核等距点.(1)已知点M 表示数3,如果点M 与点N 互为核等距点,那么点N 表示的数是 ; (2)已知点M 表示数m ,点M 与点N 互为核等距点, ①如果点N 表示数m +8,求m 的值;①对点M 进行如下操作:先把点M 表示的数乘以2,再把所得数表示的点沿着数轴向左移动5个单位长度得到点N ,求m 的值. 6.(2019秋•通州区期末)计算:(1)3×(﹣4)+18÷(﹣6)﹣(﹣2); (2)﹣14﹣16÷(﹣2)3+|﹣2|×(﹣1).7.(2019秋•房山区期末)规定|a a a a |=ad ﹣bc ,例如|1203|=1×3﹣2×0=3.(1)计算|3243|的值;(2)若|2a −32a +24|=−4,求x 的值.8.(2019秋•海淀区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3); (2)﹣3×(﹣2)2﹣1+(−12)3.9.(2019秋•平谷区期末)我们规定,有理数的整数部分就是取其最接近的两个整数中的最小整数,小数部分就是用原数减去整数部分,比如,小数3.25,最接近的两个整数就是3和4,则整数部分取3,小数部分就是3.25﹣3=0.25,(1)6.14的整数部分是 ,小数部分是 ; (2)﹣3.6的整数部分是 ,小数部分是 ; (3)如果一个数的整数部分比小数部分大88.11,且整数部分的值恰好是小数部分的100倍,求这个数. 10.(2019秋•平谷区期末)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3 ﹣2 ﹣1.5 0 1 2.5 筐 数2 4 23 3 6 (1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 11.(2019秋•怀柔区期末)计算:﹣6﹣(﹣13)+(﹣9). 12.(2019秋•怀柔区期末)计算:(﹣1)2020+|−12|÷(﹣4)×8.13.(2019秋•顺义区期末)如图所示,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2,BC =1.设点A ,B ,C 所对应的数之和是m ,点A ,B ,C 所对应的数之积是n .(1)若以B 为原点,写出点A ,C 所对应的数,并计算m 的值;若以C 为原点,m 又是多少? (2)若原点O 在图中数轴上点C 的右边,且CO =4,求n 的值.14.(2019秋•延庆区期末)计算: (1)(−13+56−38)×(﹣24);(2)﹣32+(﹣12)×|−12|﹣6÷(﹣1). 15.(2019秋•石景山区期末)对数轴上的点P 进行如下操作:先把点P 表示的数乘以m (m ≠0),再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P '.称这样的操作为点P 的“倍移”对数轴上的点A ,B ,C ,D 进行“倍移”操作得到的点分别为A ',B ',C ',D '.(1)当m =12,n =1时,①若点A 表示的数为﹣4,则它的对应点A '表示的数为 . 若点B '表示的数是3,则点B 表示的数为 ;①数轴上的点M 表示的数为1,若CM =3C 'M ,则点C 表示的数为 ;(2)当n =3时,若点D 表示的数为2,点D '表示的数为﹣5,则m 的值为 ; (3)若线段A 'B '=2AB ,请写出你能由此得到的结论. 16.(2019秋•朝阳区期末)判断一个正整数能被3整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的. 17.(2019秋•东城区期末)计算:(1)3×(﹣2)+(﹣5)﹣(﹣20) (2)﹣23÷(−16)−14×(﹣2)218.(2019秋•朝阳区期末)阅读材料,并回答问题钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然10+4=14,但在表盘上看到的是2点钟,如果用符号“①”表示钟表上的加法,则10①4=2.若问2点钟之前4小时几点钟,就得到钟表上的减法概念,用符号“㊀”表示钟表上的减法.(注:我用0点钟代替12点钟)由上述材料可知:(1)9①6= ;2㊀4= .(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是 ,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立. (3)规定在钟表运算中也有0<1<2<3<4<5<6<7<8<9<10<11,对于钟表上的任意数字a ,b ,c ,若a <b ,判断a ①c <b ①c 是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,并结合反例加以说明. 19.(2019秋•西城区期末)计算: (1)(﹣5)+12﹣(﹣8)﹣21 (2)14×(−16)÷(−135) 20.(2019秋•西城区期末)计算: (1)(134−78+712)×(−87)(2)[(−3)2−(−0.75)×83−19]×(−4)21.(2019秋•丰台区期末)小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点Q 1处;第2步,从点Q 1继续运动2t 个单位长度至点Q 2处;第3步,从点Q 2继续运动3t 个单位长度至点Q 3处….例如:当t =3时,点Q 1,Q 2,Q 3,的位置如图2所示.解决如下问题:(1)如果t =4,那么线段Q 1Q 3= ;(2)如果t <4,且点Q 3表示的数为3,那么t = ; (3)如果t ≤2,且线段Q 2Q 4=2,那么请你求出t 的值. 22.(2019秋•丰城市期末)已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意一点,其对应的数为x .(1)MN 的长为 ;(2)如果点P 到点M 、点N 的距离相等,那么x 的值是 ; (3)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.23.(2019秋•门头沟区期末)计算: (1)(14+16−12)×12.(2)(﹣1)10÷2+(−12)3×16.24.(2019秋•顺义区期末)计算:−23÷(−43)﹣24×(23−34−112)25.(2019秋•昌平区期末)计算:−2.5÷58×(−14). 26.(2019秋•顺义区期末)计算:54+[−73−(74−53)].27.(2018秋•密云区期末)已知数轴上两点A 、B ,其中A 表示的数为﹣2,B 表示的数为2,若在数轴上存在一点C ,使得AC +BC =n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC +BC =2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题: (1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为﹣4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为 ; (3)若点E 在数轴上(不与A 、B 重合),满足BE =12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.28.(2018秋•延庆区期末)计算: ①36×(19−16−34).①(−2)3×[−7+(3−1.2×56)].29.(2018秋•石景山区期末)在质量检测中,从每盒标准质量为125克的酸奶中,抽取6盒,结果如表:编号1 2 3 4 5 6 质量(克)126127124126123125差值(克)+1 (1)补全表格中相关数据;(2)请你利用差值列式计算这6盒酸奶的质量和. 30.(2018秋•平谷区期末)金秋十月小鹏家的苹果园喜获丰收,共采摘苹果20筐,经过称重这20筐苹果的质量如下:(单位:千克) 48,46,53,50,60, 49,51,36,45,47,56,50,57,48,44,52,49,53,49,54在没带计算器的情况下,小鹏想帮父亲快速算出苹果的总质量.(1)小鹏通过观察发现,如果以千克为标准,把超出的质量记为正,不足的质量记为负,将得到的数字填入下表:可以得到上表中各数之和为;(2)因此,这20筐苹果的总质量为.31.(2018秋•西城区期末)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M=;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.32.(2018秋•大兴区期末)在同一平面内的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).如图,等腰直角三角形ABC的一条直角边AB垂直数轴于点D,斜边AC与数轴交于点E,数轴上点O 表示的有理数是0,若AB=BC=8,AD=6,OD=2.点O到边BC的距离与线段DB的长相等.(1)求d(点O,点E);(2)求d(点O,△ABC).33.(2018秋•怀柔区期末)如图,小明、小英、小丽和小华的家都在同一条街的同侧居民住宅的一排住宅楼内居住,四个家庭的住址位于同一直线上.小明家到小英家的距离约为480米,小丽家到小英家的距离约为320米,小华家在小明家和小丽家之间线段的中点的位置.请你通过所学图形知识建立数学模型,画出图形,求出小明家和小华家的距离.参考答案与试题解析一.解答题(共33小题) 1.【解答】解:(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0; (2)∵a ,b 都是整数,且(a ]和(b ]互为相反数, ∴a ﹣1+b ﹣1=0, ∴a +b =2, ∴a 2﹣b 2+4b =(a ﹣b )(a +b )+4b =2(a ﹣b )+4b =2(a +b ) =2×2 =4;(3)当x <0时, ∵|(x ]|=3, ∴x >﹣3,∴﹣3<x ≤﹣2; 当x >0时, ∵|(x ]|=3, ∴x >3, ∴3<x ≤4.故x 的范围取值为﹣3<x ≤﹣2或3<x ≤4. 故答案为:﹣2021,﹣3,0. 2.【解答】解:(1)线段图如下:;(2)由题意可得:35×(1+15)=35×65=42(kg ). 答:小刚的体重是42kg . 3.【解答】解:(1)m =158﹣160=﹣2; (2)这6名同学的平均身高为: 160+(5﹣2+4+3﹣3+8)÷6 =160+15÷6 =160+2.5 =162.5.答:这6名同学的平均身高是162.5cm . 4.【解答】解:(1)由题意得:a 0=3,a 2=12; 故答案为:3,12;(2)∵97−1=27,127=72,72−3=12,112=2,2﹣2=0,∴97=1+13+12; (3)∵4710−4=710,1710=107,107−1=37,137=73,73−2=13,113=3,3﹣3=0,∴4710=4+11+12+13, ∴4+1+2+3=10, 答:“剪出的正方形最少”时,正方形的个数10. 5.【解答】解:(1)∵点M 表示数3, ∴MC =1,∵点M 与点N 互为核等距点, ∴N 表示的数是1, 故答案为1;(2)①因为点M 表示数m ,点N 表示数m +8, ∴MN =8.∴核点C 到点M 与点N 的距离都是4个单位长度. ∵点M 在点N 左侧, ∴m =﹣2.①根据题意得2m ﹣5=4﹣m , 解得m =3. 6.【解答】(1)解:3×(﹣4)+18÷(﹣6)﹣(﹣2) =﹣12﹣3+2 =﹣13;(2)﹣14﹣16÷(﹣2)3+|﹣2|×(﹣1) =﹣1﹣16÷(﹣8)+2×(﹣1) =﹣1+2﹣2 =﹣1. 7.【解答】解:(1)根据题中的新定义得:原式=9﹣8=1;(2)根据题中的新定义化简得:4(2x ﹣3)﹣2(x +2)=﹣4, 去括号得:8x ﹣12﹣2x ﹣4=﹣4, 解得:x =2. 8.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3) =7+6+12 =25; (2)﹣3×(﹣2)2﹣1+(−12)3 =﹣3×4﹣1+(−18) =﹣12﹣1+(−18) =﹣1318.9.【解答】解:(1)由题意可得,6.14的整数部分是6,小数部分是6.14﹣6=0.14, 故答案为:6,0.14; (2)由题意可得,﹣3.6的整数部分是﹣4,小数部分是﹣3.6﹣(﹣4)=0.4, 故答案为:﹣4,0.4;(3)解:设这个数的小数部分为x ,则整数部分为100x , 100x ﹣x =88.11 解得,x =0.89则100x =89,答:这个数是89.89. 10.【解答】解:(1)最重的一筐比最轻的一筐多重2.5﹣(﹣3)=2.5+3=5.5(千克), 答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)﹣3×2+(﹣2)×4+(﹣1.5)×2+0×3+1×3+2.5×6=1(千克), 答:20筐白菜总计超过1千克; (3)(25×20+1)×1.6=501×1.6≈802(元),答:白菜每千克售价1.6元,则出售这20筐白菜可卖802元. 11.【解答】解:﹣6﹣(﹣13)+(﹣9) =﹣6+13﹣9 =7﹣9 =﹣2 12.【解答】解:原式=1+12×(−14)×8=1+(﹣1) =0. 13.【解答】解:(1)以B 为原点,点A ,C 所对应的数分别是﹣2,1, m =﹣2+0+1=﹣1,以C 为原点,点A ,B 所对应的数分别是﹣3,﹣1, m =﹣3+(﹣1)+0=﹣4,(2)由题意得:A 表示﹣7,B 表示﹣5,C 表示﹣4, n =﹣7×(﹣5)×(﹣4)=﹣140. 14.【解答】解:(1)(−13+56−38)×(﹣24) =−13×(﹣24)+56×(﹣24)−38×(﹣24) =8﹣20+9 =﹣3;(2)﹣32+(﹣12)×|−12|﹣6÷(﹣1) =﹣9+(﹣12)×12+6 =﹣9﹣6+6 =﹣9. 15.【解答】解:(1)①∵点A 表示的数为﹣4, ∴﹣4×12+1=﹣1,∴它的对应点A '表示的数为﹣1, 设点B 表示的数为x , ∵点B '表示的数是3, ∴x ×12+1=3, 解得:x =4,故答案为:﹣1,4;①设点C 表示的数为a ,则C ′表示的数为a 2+1,∵CM =3C ′M , ∴|a ﹣1|=3|a 2+1﹣1|,解得:a =﹣2或a =25, 故答案为:﹣2或25;(2)由题意得:2m +3=﹣5, 解得:m =﹣4,故答案为:﹣4;(3)设点A 表示的数为a ,点B 表示的数为b ,则点A ′表示的数为am +n ,点B ′表示的数为bm +n , ∴|bm +n ﹣am ﹣n |=2|b ﹣a |, ∴|m (b ﹣a )|=2|b ﹣a |, 解得:m =±2,∴若线段A 'B '=2AB ,m =±2. 16.【解答】证明:设这个两位正整数是10a +b . 10a +b =9a +a +b可以看出,9a 必定能被3整除,所以判断10a +b 能否被3整除,就看a +b 能否被3整除,也就是看它的各位数字之和能否被3整除. 所以,把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.这个判断方法都是正确的. 17.【解答】解:(1)3×(﹣2)+(﹣5)﹣(﹣20) =﹣6﹣5+20 =9 (2)﹣23÷(−16)−14×(﹣2)2=﹣8÷(−16)−14×4=48﹣1 =47 18.【解答】解:(1)由 题意可知,9①6表示9点以后6小时的时间,从钟表面看为3点; 2㊀4表示2点以前4小时的时间,从钟表面看为10点. 故答案为:3,10.(2)∵用0点钟代替12点钟 ∴5①7=0故答案为:7.有理数减法法则在钟表运算中仍然成立. 举例如下:∵5㊀7=10,5①5=10, ∴5㊀7=5①5即减去一个数等于加上这个数的相反数. (3)不一定成立, 一组反例如下:取a =3,b =5,c =7.∵3①7=10,5①7=0,10>0, ∴当3<5时,3+7>5+7. 19.【解答】解:(1)(﹣5)+12﹣(﹣8)﹣21 =7+8﹣21 =15﹣21 =﹣6 (2)14×(−16)÷(−135)=(﹣4)÷(−85) =52 20.【解答】解:(1)(134−78+712)×(−87) =134×(−87)−78×(−87)+712×(−87)=﹣2+1−23=﹣123(2)[(−3)2−(−0.75)×83−19]×(−4)=(9+2﹣19)×(﹣4) =(﹣8)×(﹣4) =32 21.【解答】解:(1)当t =4时,Q 1表示的数为4, Q 1Q 2=4×2=8,Q 2表示的数为4+8=12, Q 2Q 3=4×3=12,Q 3所表示的数为0, ∴Q 1Q 3=4, 故答案为:4.(2)①当Q 3未到点N 返回前,有t +2t +3t =3,解得:t =12, ①当Q 3点到达N 返回再到表示3的位置,t +2t +3t +3=12×2,解得:t =72,故答案为:12或72;(3)①当Q 4未到点N ,有3t +4t =2,解得:t =27;①当Q 4到达点N 返回且在Q 2的右侧时,有24﹣10t ﹣3t =2,解得:t =2213; ①当Q 4到达点N 返回且在Q 2的左侧时,有3t ﹣(24﹣10t )=2,解得:t =2;答:t 的值为27或2213或2.22.【解答】解:(1)MN 的长为3﹣(﹣1)=4; (2)根据题意得:x ﹣(﹣1)=3﹣x , 解得:x =1;(3)①当点P 在点M 的左侧时. 根据题意得:﹣1﹣x +3﹣x =8. 解得:x =﹣3.①P 在点M 和点N 之间时,则x ﹣(﹣1)+3﹣x =8,方程无解,即点P 不可能在点M 和点N 之间. ①点P 在点N 的右侧时,x ﹣(﹣1)+x ﹣3=8. 解得:x =5.∴x 的值是﹣3或5;(4)设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN . 点P 对应的数是﹣t ,点M 对应的数是﹣1﹣2t ,点N 对应的数是3﹣3t . ①当点M 和点N 在点P 同侧时,点M 和点N 重合, 所以﹣1﹣2t =3﹣3t ,解得t =4,符合题意. ①当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧), 故PM =﹣t ﹣(﹣1﹣2t )=t +1.PN =(3﹣3t )﹣(﹣t )=3﹣2t . 所以t +1=3﹣2t ,解得t =23,符合题意. 综上所述,t 的值为23或4. 23.【解答】解:(1)(14+16−12)×12=14×12+16×12−12×12=3+2﹣6 =﹣1(2)(﹣1)10÷2+(−12)3×16=1÷2﹣2=0.5﹣2=﹣1.524.【解答】解:原式=23×34−24×23+24×34+24×112 =12−16+18+2=92.25.【解答】解:原式=−52×85×(−14)=1.26.【解答】解:原式=54+[−73−74+53]=5 4−73−74+53=−12−2 3=−76.27.【解答】解:(1)∵A表示的数为﹣2,B表示的数为2,点C在数轴上表示的数为﹣4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AD+BD=5,∵AB=4,∴D在点A的左侧或在点A的右侧,设点D表示的数为x,则AD+BD=5,∴﹣2﹣x+2﹣x=5或x﹣2+x﹣(﹣2)=5,x=﹣2.5或2.5,∴点D表示的数为2.5或﹣2.5;故答案为:﹣2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;①当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;①当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.28.【解答】解:①原式=36×19−36×16−36×34=4﹣6﹣27=﹣29;①(−2)3×[−7+(3−1.2×56)]=(−8)×[−7+(3−1.2×56)]=(﹣8)×[﹣7+(3﹣1)]=(﹣8)×(﹣5)=40.29.【解答】解:(1)补全表格中相关数据如下:编号123456质量(克)126127124126123125差值(克)+1+2﹣1+1﹣20故答案为:+2,﹣1,+1,﹣2,0;(2)这6盒酸奶的质量和:6×125+(1+2﹣1+1﹣2+0)=751(克),答:这6盒酸奶的质量和是751克;30.【解答】解:(1)如果以50千克为标准,把超出的质量记为正,不足的质量记为负,将得到的数字填入下表(不唯一);﹣2﹣43010﹣11﹣14﹣5﹣3607﹣2﹣62﹣13﹣14可以得到上表中各数之和为﹣3;(2)因此,这20筐苹果的总质量为:50×20+(﹣2﹣4+3+0+10﹣1+1﹣14﹣5﹣3+6+0+7﹣2﹣6+2﹣1+3﹣1+4)=997,故答案为:50,﹣3,997.31.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B 上的数字y.32.【解答】解:(1)∵等腰直角三角形ABC,AB=BC=8,∴∠C=∠A=45°∠ABC=90°.∵AB垂直数轴于点D,∴∠ADE=∠ABC=90°.∴BC∥DE∴∠AED=∠C=∠A=45°.∴AD=DE.∵AD=6,∴DE=AD=6,∵OD=2,∴OE=4.∴d(点O,点E)=4.(2)过点O作OF⊥AC于点F,∵∠AED=45°,OE=4,∴∠AED=∠FOE=45°∴OF=FE,设OF=FE=x,在Rt△OEF中,x2+x2=16x2=8,a=±2√2(负值舍去),a=2√2,∴点O到边AC距离OF是2√2,∵AB=8,AD=6,∴DB=AB﹣AD=2.∵点O到边BC的距离与线段DB的长相等.∴点O到边BC距离是2,∵点O到边AB距离OD是2,∴对于△ABC三边上任意一点Q,O,Q两点间的距离的最小值为2.∴d(点O,△ABC)=2.33.【解答】解:设小明家为点A、小英家为点B、小丽家为点C、小华家为点Q.∵小明、小英、小丽和小华的家都在同一条街的东侧居民住宅的一排住宅楼内居住,且四个家庭的住址位于同一直线上,根据题意AB=480m,BC=320m,∵AB>BC,∴先确定直线上A、B的位置,AB=480m,B、C两点位于A点的同侧,C点的位置分两种情况:第一种情况:当点C在点B的左侧时(如图1),AB=480m,BC=320m,∴AC=160m,∵点Q是AC的中点,∴AQ=12AC=80m;第二种情况:当点C在点B的右侧时(如图2),∵AB=480m,BC=320m,∴AC=800m.∵点Q是AC的中点,∴AQ=12AC=400m.∴综上所述,小明家和小华家的距离为80m或400m.。
2022-2023学年浙江七年级上学期数学重难题型精炼专题03 有理数的运算 重难点题型(含详解)
专题03 有理数的运算 重难点题型题型1 有理数加减法乘除再认识解题技巧:该类题型的实质是有理数加减乘除法的计算,通过理解题干条件,利用有理数加减乘除法运算规律逐一判别即可。
1.(2022·浙江杭州市·七年级期末)在数轴上,四个不同的点A ,B ,C ,D 分别表示有理数a ,b ,c ,d ,且,则这四个点在数轴上的大致位置表示不正确的是( )A .B .C .D .2.(2022·长沙市开福区七年级月考)在数轴上有a 、b 两个有理数的对应点,则下列结论中,正确的是( ) A .0a b +> B .0ab > C .0a b -< D .0a b > 3.(2021·北京二中七年级期末)有理数a 、b 在数轴上的位置如图所示,则下列说法正确的是( )A .0a b +>B .0ab >C .0b a -> D .0b a -> 4.(2022·吉林白城市·七年级期末)已知数,a b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b ->C .10b +<D .0⋅<a b5.(2022·广东省初一期中)已知 , ,且 ,则 的值是( ) A .7 B .3 C .―3或-7 D .3或76.(2022·广东省初一月考)如果是有理数,则下列各式子成立的是( )A .如果,那么B .如果,那么C .若,则D .若,且,则题型2 有理数加、减法运算的实际应用解题技巧:与利用正负数求平均数方法类似。
(1)选择合适的标准数,超过标准数的记为正数,不足的记为负数;(2)对处理后的正负数进行加法运算;(3)最后还需要将处理后的正负数还原为实际数。
(4)根据题意列出算式;(5)进行有理数加减法运算,可利用运算律进行简算;(6)比较结果,得出结论。
人教版七年级数学上册《有理数的概念》专题训练-附带答案
人教版七年级数学上册《有理数的概念》专题训练-附带答案知识点一:有理数1.(2021秋•江阴市校级月考)把下列各数填在相应的大括号里:π2﹣2 −123.020020002 0227﹣(﹣3) 0.333整数集合:{ …}; 分数集合:{ …}; 有理数集合:{ …}; 无理数集合:{ …}.思路引领:根据实数的分类 即可解答. 解:整数集合:{﹣2 0 ﹣(﹣3)…}; 分数集合:{−122270.333…};有理数集合:{﹣2 −12227﹣(﹣3) 0.333…};无理数集合:{π23.020020002……}; 故答案为:﹣2 0 ﹣(﹣3); −122270.333;﹣2 −12227﹣(﹣3) 0.333;π23.020020002….解题秘籍:本题考查了实数 熟练掌握实数的分类是解题的关键. 2.(2019秋•天山区校级期中)下列说法中不正确的是( ) A .最小的自然数是1 B .最大的负整数是﹣1 C .没有最大的正整数D .没有最小的负整数思路引领:根据自然数、负整数、正整数的相关意义判断即可. 解:A 、最小的自然数是0 说法错误 故本选项符合题意; B 、最大的负整数是﹣1 说法正确 故本选项不符合题意; C 、没有最大的正整数 说法正确 故本选项不符合题意; D 、没有最小的负整数 说法正确 故本选项不符合题意. 故选:A .解题秘籍:本题主要考查自然数、负整数、正整数的定义 学生要做好这类题必须对其定义理解透彻.3.(2021秋•靖江市期中)下列说法中 正确的是( )A .正有理数和负有理数统称有理数B .正分数、零、负分数统称分数C .零不是自然数 但它是有理数D .一个有理数不是整数就是分数 思路引领:根据有理数分类判断即可.解:A .正有理数 零和负有理数统称有理数 故本选项不合题意; B .正分数和负分数统称分数 故本选项不合题意; C .零是自然数 也是有理数 故本选项不合题意;D .一个有理数不是整数就是分数 说法正确 故本选项符合题意. 故选:D .解题秘籍:本题考查了有理数 整数和分数统称有理数;有理数也可以分为正有理数、0和负有理数. 4.数0.3⋅21⋅−π3124﹣|﹣5| ﹣0.5中 分数有 个.思路引领:按照有理数的分类填写: 有理数{整数{正整数0负整数分数{正分数负分数 注意化简后加以判断.解:分数包括小数和无限循环小数 所以0.3⋅21⋅、﹣0.5是分数.答案:2.解题秘籍:注意先化简 再判断是整数还是分数.考查分数的定义和对分数的认识 注意分数与整数的区别.知识点二:数轴1.(2022•玉林模拟)如图所示的图形为四位同学画的数轴 其中正确的是( ) A .B .C .D .思路引领:根据数轴的概念判断所给出的四个数轴哪个正确. 解:A ﹣1、﹣2位置错误 故此选项错误 不符合题意; B 、单位长度不统一 没有正方向 故此选项错误 不符合题意; C 、没有正方向 数字顺序也有问题 故此选项错误; D 、符合数轴三要素 故此选项正确.故选:D.解题秘籍:本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.2.(1)在数轴上到原点距离等于2的点所表示的数是;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是;(3)点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是.思路引领:(1)在数轴上到原点距离等于2的点有两个这两个点所表示的数互为相反数;(2)(3)根据数轴上的平移规律:左减右加进行计算即可.解:(1)在数轴上到原点距离等于2的点所表示的数是±2;故答案为:±2;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是0+1﹣5=﹣4;故答案为:﹣4;(3)当点A表示5时5﹣2+6=9当点A表示﹣5时﹣5﹣2+6=﹣1∴点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是﹣1或9.故答案为:﹣1或9.解题秘籍:本题考查了有理数的加减混合运算、数轴的定义掌握其运算法则是解决此题的关键.3.某数的绝对值小于2 在数轴上这个数表示的点到﹣0.6所表示的点的距离是1.5 则这个数是.思路引领:先求出到表示﹣0.6的点的距离是1.5的点表示的数再由绝对值小于2即可得到答案.解:在数轴上到表示﹣0.6的点的距离是1.5的点表示的数是:﹣0.6+1.5=0.9或﹣0.6﹣1.5=﹣2.1∵绝对值小于2∴符合条件的点表示的数是0.9故答案为:0.9.解题秘籍:本题考查数轴上的点表示的数掌握数轴上到表示﹣0.6的点的距离是1.5的点有两个是解题得关键.4.(2019秋•赵县期中)在数轴上表示下列各数并按从大到小的顺序用“>”号把这些数连接起来4 ﹣4 2.5 0 ﹣2 ﹣1.6 13−230.5.思路引领:有理数大小比较可以在数轴上找到各数从左到右依次增大进而得出答案.解:如图所示:故4>2.5>0.5>13>0>−23>−1.6>﹣2>﹣4.解题秘籍:此题主要考查了有理数大小比较的方法正确画出数轴是解题关键.5.(2021秋•泗水县校级月考)如图.A、B、C三点在数轴上A表示的数为﹣10 B表示的数为14 点C在点A与点B之间且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动甲的速度是1个单位长度/s乙的速度是2个单位长度/s求相遇点D对应的数.思路引领:(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x然后列出方程求解即可;(3)设相遇的时间是t秒根据相遇问题列出方程求解得到x的值然后根据点A表示的数列式计算即可得解.解:(1)14﹣(﹣10)=14+10=24;(2)设点C对应的数是x则x﹣(﹣10)=14﹣x解得x=2;(3)设相遇的时间是t秒则t+2t=24解得t=8所以点D表示的数是﹣10+8=﹣2.解题秘籍:本题考查了数轴主要利用了数轴上两点间的距离的求法相遇问题的等量关系.知识点三:相反数1.(2021•元阳县模拟)若一个数的相反数是﹣7 则这个数为.思路引领:根据相反数的定义即可得出答案.解:﹣7的相反数是7故答案为:7.解题秘籍:本题考查了相反数的定义掌握只有符号不同的两个数互为相反数是解题的关键.2.(2021秋•邹城市校级月考)如果多项式2x﹣3与x+7互为相反数那么x的值是()A.−43B.43C.34D.0思路引领:根据相反数的性质列出方程求出方程的解即可得到x的值.解:根据题意得:2x﹣3+x+7=0移项合并得:3x=﹣4解得:x=−4 3.故选:A.解题秘籍:此题考查了解一元一次方程以及相反数熟练掌握相反数的性质及方程的解法是解本题的关键.3.在数轴上若点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8 则这两点所表示的数分别是.思路引领:直接利用相反数的定义进而得出答案.解:∵点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8∴这两点所表示的数分别是:﹣6.4 6.4.故答案为:﹣6.4 6.4.解题秘籍:此题主要考查了相反数的定义正确把握定义是解题关键.知识点四:绝对值1.(2022秋•射阳县月考)若|a﹣2020|+(﹣3)=10 则a=.思路引领:根据有理数的运算先求出|a﹣2020|的值再利用绝对值的意义求出a的值.解:∵|a﹣2020|+(﹣3)=10∴|a﹣2020|=13.∴a﹣2020=13或a﹣2020=﹣13.解得a=2033或2007.故答案为:2033或2007.解题秘籍:本题考查了绝对值的意义与有理数的运算正确理解绝对值的意义是解题的关键.2.(2022春•通川区期末)已知|a﹣1|+|b+2|=0 则(a+2b)(a﹣2b)=.思路引领:先根据非负数的性质求出a b的值再代入代数式进行计算即可.解:∵|a﹣1|+|b+2|=0∴a﹣1=0且b+2=0解得:a=1 b=﹣2∴(a+2b)(a﹣2b)=(1﹣4)(1+4)=﹣15.故答案为:﹣15.解题秘籍:本题考查的是非负数的性质熟知几个非负数的和为0时每一项必为0是解答此题的关键.3.(2022春•东台市期中)|x﹣2|+9有最小值为.思路引领:根据绝对值的非负性即可得出答案.解:∵|x﹣2|≥0∴|x﹣2|+9≥9∴|x﹣2|+9有最小值为9.故答案为:9.解题秘籍:本题考查了绝对值的非负性掌握|a|≥0是解题的关键.4.(2021秋•吉州区期末)|a﹣3|=5 且a在原点左侧则a=.思路引领:根据数轴上到3的距离等于5的数有两个并且在原点的左侧即可求得a.解:∵|a﹣3|=5∴a﹣3=5或﹣5∴a=8或﹣2∵a在原点左侧∴a<0∴a=﹣2.解题秘籍:本题考查了绝对值的几何意义掌握绝对值的性质是解题的关键难度不是很大.5.(2021秋•龙泉市期末)若实数a b满足|a|=2 |4﹣b|=1﹣a则a+b=.思路引领:根据绝对值的定义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2当a=2时|4﹣b|=1﹣2=﹣1 此时b不存在;当a=﹣2时|4﹣b|=3所以4﹣b=3或4﹣b=﹣3即b=1或b=7当a=﹣2 b=1时a+b=﹣1;当a=﹣2 b=7时a+b=5故答案为:﹣1或5.解题秘籍:本题考查绝对值理解绝对值的定义是正确解答的前提求出a、b的值是正确解答的关键.6.(2021秋•乳山市期末)若|a|=2 |b|=1 且a<b则a﹣3b=.思路引领:根据绝对值的意义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2∵|b|=1∴b=±1又∵a<b∴a=﹣2 b=1或a=﹣2 b=﹣1当a=﹣2 b=1时a﹣3b=﹣5;当a=﹣2 b=﹣1时a﹣3b=1故答案为:﹣5或1.解题秘籍:本题考查绝对值掌握“一个正数的绝对值等于它本身一个负数的绝对值等于它的相反数0的绝对值等于0”是正确计算的前提求出a、b的值是正确解答的关键.【课堂练习】1.(2022•睢阳区二模)若m与−(−13)互为相反数则m的值为()A.﹣3B.−13C.13D.3思路引领:先求出﹣(−13)的值再求它的相反数即可.解:﹣(−13)=13∵m与−(−13)互为相反数∴m=−1 3.故选:B.解题秘籍:本题考查了相反数掌握只有符号不同的两个数互为相反数是解题的关键.2.如果一个数的相反数是非负数那么这个数是()A.正数B.负数C.非正数D.非负数思路引领:根据只有符号不同的两个数叫做互为相反数解答. 解:∵一个数的相反数是非负数 ∴这个数是非正数. 故选:C .解题秘籍:本题考查了相反数的定义 熟记概念是解题的关键. 3.(2015秋•无锡校级月考)下列说法中正确的是( ) A .负有理数是负分数 B .﹣1是最大的负数C .正有理数和负有理数组成全体有理数D .零是整数思路引领:根据有理数和无理数的定义 以及有理数的分类进行判断. 解:A 、负有理数包括负分数和负整数 故本选项说法错误; B 、﹣1是最大的负整数 故本选项说法错误;C 、正有理数、负有理数和0组成全体有理数 故本选项说法错误;D 、正整数、负整数和零组成整数 所以零是整数 故本选项说法正确; 故选:D .解题秘籍:本题考查了有理数的分类:有理数{整数{正整数0负整数分数{正分数负分数. 4.(2014秋•资中县期中)如图 点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3 则点C 位于( )A .点O 的左边B .点O 与点A 之间C .点B 的右边D .点A 与点B 之间思路引领:由数轴上点的位置 找出离A 距离为1的点 再由到B 的距离小于3判断即可确定出C 的位置.解:∵点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3∴点C 表示的数为2.5 位于点A 与点B 之间 故选:D .解题秘籍:此题考查了数轴熟练掌握数轴上的点与实数之间的一一对应关系是解本题的关键.5.(2020秋•平山区校级期中)①﹣a 一定是负数;②若|a |=|b | 则a =b ;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有( ) A .1个B .2个C .3个D .4个思路引领:根据有理数的分类和有理数的有关定义解答即可. 解:①﹣a 不一定是负数 原说法错误; ②若|a |=|b | 则a =b 或a =﹣b 原说法错误; ③一个有理数不是整数就是分数 原说法正确;④一个有理数不是正数就是负数 也可能是0 原说法错误. 上述说法错误的有3个 故选:C .解题秘籍:此题考查有理数 解题的关键是根据有理数的分类和绝对值判断. 6.(2015秋•海陵区校级月考)|a |=a 则有理数a 为( ) A .正数B .负数C .正数和0D .负数和0思路引领:根据绝对值的性质可得. 解:∵|a |=a ∴a 为正数或0 故选:C .解题秘籍:本题主要考查绝对值的性质 熟练掌握绝对值性质是解题的关键. 7.(2021秋•启东市校级月考)已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则|a|a+|b|b+|c|c的值为 .思路引领:根据绝对值的定义解决此题. 解:∵abc >0 a +b +c <0∴a 、b 与c 中有两个负数 一个正数. 假设a <0 b <0 c >0 则|a|a+|b|b+|c|c=−a a+−b b+c c=−1+(−1)+1=−1.故答案为:﹣1.解题秘籍:本题主要考查绝对值 熟练掌握绝对值的定义是解决本题的关键.《有理数概念复习》配套作业1.下列几种说法中 正确的是( ) A .最小的自然数是1B .在一个数前面加上“﹣”号所得的数是负数C .任意有理数a 的倒数是1aD.任意有理数a的相反数是﹣a思路引领:根据自然数的定义求相反数的方法倒数的定义可得答案.解:A、最小的自然数是0 故A错误;B、在一个数前面加上“﹣”号所得的数是负数故B错误;C、0没有倒数故C错误;D、任意有理数a的相反数是﹣a故D正确;故选:D.解题秘籍:本题考查了有理数注意带符号的数不一定是负数小于零的数是负数.2.下列几种说法中不正确的()A.任意有理数a的相反数是﹣aB.在一个数前面加上“﹣”号所得的数是负数C.一个非0有理数a的倒数是1aD.最小的自然数是0思路引领:根据选项将不正确的选项举出反例即可解答本题.解:∵﹣(﹣1)=1∴在一个数前面加上“﹣”号所得的数是负数的说法是错误的;故选:B.解题秘籍:本题考查有理数解题的关键是明确负数的定义和有理数的相关知识.3.(2019秋•定襄县校级月考)一个数的绝对值等于它本身这个数是比其相反数小的数是一个数的倒数等于它本身这个数是.思路引领:根据绝对值的性质:当a是正有理数时a的绝对值是它本身a;当a是零时a的绝对值是零可得绝对值是它本身的数是非负数;根据相反数的概念可得比其相反数小的数是负数;根据倒数的概念可得一个数的倒数等于它本身这个数是±1.解:一个数的绝对值等于它本身这个数是非负数比其相反数小的数是负数一个数的倒数等于它本身这个数是±1.故答案为:非负数负数±1.解题秘籍:此题主要考查了倒数、相反数、绝对值关键是熟练掌握倒数、相反数、绝对值的概念和性质.4.在数轴上在原点左侧且离开原点5个单位长度的点表示的数是;离开原点4个单位长度的点表示的数是.思路引领:根据离开原点5个单位的点有两个再根据在原点左侧可得答案;根据离开原点4个单位长度的点有两个可得答案.解:在原点左侧且离开原点5个单位长度的点表示的数是﹣5;离开原点4个单位长度的点表示的数是±4故答案为:﹣5 ±4.解题秘籍:本题考查了数轴到原点距离相等的点有两个注意第一个点在原点的左侧只有一个数第二个点没限定位置有两个数.5.(2021•成都模拟)实数a、b、c、d在数轴上对应点的位置如图所示则这四个数中绝对值最大的数是()A.a B.b C.c D.d思路引领:根据绝对值的定义结合实数a、b、c、d在数轴上对应点的位置即可求出结果.解:由实数a、b、c、d在数轴上对应点的位置可知:4<|a|<5 1<|b|<2 0<|c|<1 |d|=4故选:A.解题秘籍:本题考查了实数大小的比较、绝对值、实数与数轴解题的关键是理解绝对值的定义利用数形结合的思想解答问题.6.(2020春•魏县期末)如果|x+1|=2 那么x=.思路引领:利用绝对值的定义求解即可.解:∵|x+1|=2∴x+1=2或x+1=﹣2 解得x=﹣3或1.故答案为:﹣3或1.解题秘籍:本题主要考查了绝对值解题的关键是熟记绝对值的定义.7.小明写作业时不慎将墨水滴在数轴上根据图中数值请你确定墨迹盖住部分的整数共有个.思路引领:根据数轴上已知整数求出墨迹盖住部分的整数个数.解:根据数轴得:墨迹盖住的整数共有0 1 2共3个.故答案为:3.解题秘籍:本题主要考查了数轴理解整数的概念能够首先结合数轴得到被覆盖的范围进一步根据整数这一条件是解题的关键.8.用长为4.5个单位长度的木条放在数轴上最多能覆盖()个整数点.A.3B.4C.5D.6思路引领:利用数轴即可作出判断.解:用长为4.5个单位长度的木条放在数轴上最多能覆盖5个整数点.故选:C.解题秘籍:本题考查了数轴数轴有直观、简捷举重若轻的优势.9.代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是.思路引领:可以用数形结合来解题:x为数轴上的一点|x﹣3|+|x﹣4|+|x﹣5|表示:点x 到数轴上的3个点(3、4、5)的距离之和进而分析得出最小值.解:当x=4时代数式|x﹣3|+|x﹣4|+|x﹣5|有最小值最小值=1+0+1=2.故代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是2.故答案为:2.解题秘籍:此题主要考查了绝对值的性质以及利用数形结合求最值问题利用已知得出当x=4时|x﹣3|+|x﹣4|+|x﹣5|能够取到最小值是解题关键.10.(2014秋•雨城区校级月考)当代数式|x﹣3|+|x+1|取最小值时相应的x的取值范围是.思路引领:|x+1|+|x﹣3|的最小值意思是x到﹣1的距离与到3的距离之和最小那么x 应在﹣1和3之间的线段上.解:由数形结合得若|x+1|+|x﹣3|取最小值那么表示x的点在﹣1和3之间的线段上所以﹣1≤x≤3.故答案为:﹣1≤x≤3.解题秘籍:本题主要考查了数轴和绝对值掌握数轴上两点间的距离=两个数之差的绝对值.11.(2012秋•滨湖区校级期中)如果把115分记作+15分那么96分的成绩记作分如此记分法甲生的成绩记作﹣9分那么他的实际成绩是分乙生的成绩记作6分那么他的实际成绩为分.思路引领:由题意可得100分为基准点从而可得出96的成绩应记为﹣4 也可得出甲生和乙生的实际成绩.解:∵把115分的成绩记为+15分∴100分为基准点故96的成绩记为﹣4分甲生的实际成绩为91分乙生的实际成绩为106分.故答案为:﹣4、91、106.解题秘籍:本题考查了正数与负数的知识解答本题的关键是找到基准点.12.(2021秋•滨州月考)绝对值不大于3.14的所有有理数之和等于;不小于﹣4而不大于3的所有整数之和等于.思路引领:根据绝对值不大于3.14的有理数互为相反数 根据互为相反数的和为零 可得答案;根据不小于﹣4而不大于3的所有整数 可得加数 根据有理数的加法 可得答案.解:绝对值不大于3.14的所有有理数之和等于0;不小于﹣4而不大于3的所有整数之和(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3=﹣4故答案为:0 ﹣4.解题秘籍:本题考查了有理数大小比较 利用不小于﹣5而不大于4的所有整数得出加数是解题关键 注意互为相反数的和为零.13.(2020秋•饶平县校级期末)已知:数轴上A 点表示+8 B 、C 两点表示的数为互为相反数 且C 到A 的距离为3 求点B 和点C 各对应什么数?思路引领:求出到A 点的距离是3的数 即求出C 点表示的数 即可得出答案. 解:∵当点C 在A 的左边时 +8﹣3=5当点C 在A 点的右边时 +8+3=11∴C 点表示的数是5或11∴当C 表示的数是5 B 点表示的数是﹣5 或 当C 表示的数是11 B 点表示的数是﹣11. 解题秘籍:本题考查了数轴 相反数的应用 关键是求出C 点表示的数.14. 如果a 、b 互为相反数 那么2016a +2016b ﹣100= .思路引领:根据互为相反数的和为0 得a +b =0 把所求的式子进行变形 再代入求得结论.解:因数a 、b 互为相反数所以a +b =0则2016a +2016b ﹣100=2016(a +b )﹣100=﹣100.故答案为:﹣100.解题秘籍:本题考查了相反数的概念 明确互为相反数的两个数相加为0 因此对所求式子进行变形是本题的关键.15.(2017秋•和平区校级月考)在下列各等式中 a 表示正数的有( )个式子. ①|a |=a ;②|a |=﹣a ;③|a |>﹣a ;④|a |≥﹣a ;⑤|a|a =1;⑥a <1a . A .4 B .3 C .2D .1 思路引领:根据绝对值的定义即可求解.解:①|a |=a 时 a 为非负数 即a 可以为0 不符合题意;②|a |=﹣a 时 a 为非正数 即a 可以为0 不符合题意;③|a |>﹣a 时 a 一定为正数 符合题意;④|a |≥﹣a 时 a 为非负数 即a 可以为0 不符合题意;⑤|a|a =1时 a 一定为正数 符合题意;⑥a <1a 时 0<a <1或a <﹣1 即a 可以为小于﹣1的负数 不符合题意.故选:C .解题秘籍:此题主要考查了绝对值 关键是熟悉如果用字母a 表示有理数 则数a 的绝对值要由字母a 本身的取值来确定:①当a 是正有理数时 a 的绝对值是它本身a ;②当a 是负有理数时 a 的绝对值是它的相反数﹣a ;③当a 是零时 a 的绝对值是零.16.(2021秋•姜堰区期中)在数轴上画出表示下列各数的点 并将这些数按照从小到大的顺序用“<”号连接起来:﹣(﹣2)、|﹣3|、0、+(﹣1)、﹣212思路引领:先根据相反数和绝对值进行计算 再在数轴上表示出各个数 再比较大小即可.解:+(﹣1)=﹣1 ﹣(﹣2)=2 |﹣3|=3−212<+(﹣1)<0<﹣(﹣2)<|﹣3|.解题秘籍:本题考查了数轴 有理数的大小比较 绝对值和相反数等知识点 能正确在数轴上表示出各个数|是解此题的关键 注意:在数轴上表示的数 右边的数总比左边的数大.17.已知a >0 b <0 且|a |<|b | 借助数轴 试把a ﹣a b ﹣b 四个数用“<”连接起来. 思路引领:根据|a |<|b | 可得b 距离原点比a 远 画出数轴后即可得出答案.解:如图所示:所以b <﹣a <a <﹣b .解题秘籍:本题考查了有理数的大小比较:在数轴上 右边的点所表示的数比左边的点表示的数要大;离原点越远 它表示的数的绝对值就越大.18.(2021秋•江都区校级月考)已知在纸面上有一数轴(如图) 折叠纸面:(1)若1表示的点与﹣1表示的点重合 则﹣2表示的点与数 表示的点重合;(2)若﹣1表示的点与5表示的点重合 回答以下问题:①6表示的点与数 表示的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧)且A、B两点经折叠后重合求A、B两点表示的数是多少?思路引领:(1)依题意可知两数关于原点对称所以可求出与﹣2重合的点;(2)①依题意若﹣1表示的点与5表示的点重合可知两数关于与2表示的点对称即可求出6表示的点的对称点;②由①条件可知A、B关于2表示的点对称即可求出答案.解:(1)∵1表示的点与﹣1表示的点重合∴﹣2表示的点与2表示的点重合.故答案为:2;(2)①∵﹣1表示的点与5表示的点重合∴6表示的点与﹣2表示的点重合.故答案为:﹣2;②∵A、B两点之间的距离为11经折叠后重合∴A、B距离对称点的距离为11÷2=5.5又∵且关于点2表示的点对称∴点A表示的数为2+5.5=7.5 点B表示的数为2﹣5.5=﹣3.5∴A应该为﹣3.5 B应该为7.5.解题秘籍:本题主要考查数轴上点的应用根据题意求出两个点的对称点是解决本题的关键.19.(2019秋•鼓楼区期中)已知数轴上两点A、B对应的数分别是6 ﹣8 M、N、P为数轴上三个动点点M从A点出发速度为每秒2个单位点N从点B出发速度为M 点的3倍点P从原点出发速度为每秒1个单位.(1)若点M向右运动同时点N向左运动求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动求多长时间点P到点M N的距离相等?(3)当时间t满足t1<t≤t2时M、N两点之间N、P两点之间M、P两点之间分别有55个、44个、11个整数点请直接写出t1t2的值.思路引领:(1)由题意列出方程可求解;(2)分两种情况讨论列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小M、N两点距离最大M、P两点距离最小可得出M、P两点向右运动N点向左运动结合数轴分类讨论分析即可.解:(1)设运动时间为t秒由题意可得:6+8+2t+6t=54∴t=5∴运动5秒点M 与点N 相距54个单位;(2)设运动时间为t 秒由题意可知:M 点运动到6+2t N 点运动到﹣8+6t P 点运动到t当t <1.6时 点N 在点P 左侧MP =NP∴t ﹣(﹣8+6t )=6+2t ﹣t∴6+t =8﹣5t∴t =13s ;当t >1.6时 点N 在点P 右侧MP =NP∴﹣8+6t ﹣t =6+2t ﹣t∴6+t =﹣8+5t∴t =72s∴运动13s 或72s 时点P 到点M N 的距离相等; (3)由题意可得:M 、N 、P 三点之间整数点的多少可看作它们之间距离的大小M 、N 两点距离最大 M 、P 两点距离最小 可得出M 、P 两点向右运动 N 点向左运动①如上图 当t 1=5s 时 P 在5 M 在16 N 在﹣38再往前一点 MP 之间的距离即包含11个整数点 NP 之间有44个整数点;②当N 继续以6个单位每秒的速度向左移动 P 点向右运动若N 点移动到﹣39时 此时N 、P 之间仍为44个整数点若N 点过了﹣39时 此时N 、P 之间为45 个整数点故t 2=16+5=316s ∴t 1=5s t 2=316s . 解题秘籍:本题考查了一元一次方程在数轴上的动点问题中的应用 理清题中的数量关系、数形结合 是解题的关键.。
7年级上册数学同步练习册答案
7年级上册数学同步练习册答案第一章:有理数1.1 正数和负数练习题1答案:1. -42. -73. 54. -35. -16. 67. -2练习题2答案: 1. -5 2. -1 3. -2 4. -6 5. -4 6. -3 7. -71.2 数轴练习题1答案: 1. A 2. C 3. B 4. C 5. B 6. C 7. A练习题2答案: 1. A 2. B 3. A 4. B 5. C 6. B 7. A第二章:代数式与基本运算2.1 代数式和项练习题1答案: 1. 5x 2. 3xy 3. -2a 4. -4m 5. 5mn 6. 2xy 7. -3n练习题2答案: 1. 2a 2. -5xy 3. 3m 4. 6n 5. -4xy 6. -3y 7. 5mn2.2 代数式的加减练习题1答案: 1. 7x - 3y 2. 5a - 6b + 2c 3. 3x - 4y + 2z 4. 2a + 4b + 6c 5. 5m - 3n + 4p 6. 2x + 7y - 3z 7. 3a - 4b + 6c - 2d练习题2答案: 1. 8x - 3y 2. -5a - 2b + 4c 3. 4x - 3y + 2z 4. 7a - 5b - 6c 5. 2m - 4n + 5p 6. -3x + 7y - 2z 7. 5a - 3b + 6c - 2d第三章:一元一次方程3.1 一元一次方程的解练习题1答案: 1. x = -4 2. x = 7 3. x = 3 4. x = -6 5. x = 5 6. x = 1 7. x = -2练习题2答案: 1. x = -5 2. x = 1 3. x = -2 4. x = 6 5. x = -4 6. x = -3 7. x = 73.2 解一元一次方程练习题1答案: 1. x = 4 2. x = 3 3. x = -1 4. x = 6 5. x = -4 6. x = 2 7. x = -5练习题2答案: 1. x = -3 2. x = -2 3. x = 7 4. x = -6 5. x = 5 6. x = -1 7. x = 4第四章:平面图形的认识4.1 直线和曲线练习题1答案: 1. 直线 2. 曲线 3. 直线 4. 直线 5. 曲线 6. 直线 7. 曲线练习题2答案: 1. 曲线 2. 直线 3. 曲线 4. 直线 5. 直线 6. 曲线 7. 直线4.2 角的概念练习题1答案: 1. 钝角 2. 锐角 3. 直角 4. 钝角 5. 直角 6. 钝角 7. 钝角练习题2答案: 1. 直角 2. 锐角 3. 钝角 4. 直角 5. 钝角 6. 直角 7. 钝角以上是7年级上册数学同步练习册的答案,希望对你的学习有所帮助!。
人教版七年级数学上册第一章有理数习题七(含答案) (100)
人教版七年级数学上册第一章有理数复习试题七(含答案)在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.【答案】-;5或×;5【解析】【分析】先选择符号,然后按照有理数的四则运算进行计算即可.【详解】解:(1)选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯ 41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭1422=+⨯ 41=+5=【点睛】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键.92.一出租车某一天以家为出发地在东西两方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9,3,4,8,6,3,6,4,7+-+-+---+.(1)将最后一个乘客送到目的地时,出租车离家多远?在家什么方向?(2)若每千米的价格为2元,则司机一天的营业额是多少?(3)如果出租车送走最后一名乘客后需要返回家中,且出租车每千米耗油0.1升,每升汽油6元,不计汽车的损耗,那么出租车司机收工回家是盈利还是亏损了?盈利(或亏损)多少钱?【答案】(1)出租车在家的东面2km 处;(2)司机的一天营业客是100元;(3)出租车收工回家盈利了68.8元.【解析】【分析】(1)求出所记录数据的代数和即可解答;(2)求出所记录数据绝对值的和,再乘以每千米的价格即可;(3)用营业额减去耗油的钱即可求解.【详解】解:(1)()934863647++-+-+---+()()946738364=+++-++++2624=-2=km ;答:出租车在家的东面2km 处.(2)934863647++++++++50=km ,答:司机的一天营业客是100元;(3)()1005020.16-+⨯⨯10031.2=-68.80=>,答:出租车收工回家盈利了68.8元.【点睛】本题考查了有理数混合运算的应用,根据题意正确列出算式是解答本题的关键.93.计算﹙1﹚2(12)(6)-+--- ﹙2﹚﹣12+16÷(﹣2)3×|﹣3﹣1|【答案】(1)-8;(2)-9【解析】【分析】(1)根据有理数加减运算法则计算即可;(2)先算乘方和绝对值、再算乘除、最后算加减即可.【详解】解:(1)2(12)(6)-+---=-2-12-(-6)=-14+6=-8(2)﹣12+16÷(﹣2)3×|﹣3﹣1|=﹣1+16÷(﹣8)×4=﹣9【点睛】本题考查了有理数的四则混合运算、乘方和绝对值的知识,解答本题的关键在于灵活应用相关运算法则进行计算.94.规定两数, a b 之间的一种运算,记作(, )a b :如果c a b =, 那么(, )a b c =.例如:因为328=, 所以(28)3=,.(1)根据上述规定,填空:(5,125)=__________,(24)-=,__________ ,(28)--, =__________;(2)小明在研究这种运算时发现一个现象:(),4,)34(3=n n ,小明给出了如下的证明:设3,4()=n n x ,则(3)4n x n =,即(3)4x n n =所以34x =,即(3,4)x =,所以(),4,)34(3=n n ,请你尝试运用这种方法证明下面这个等式:(3,4)(3,5)(3,20)+=【答案】(1)3;2;3;(2)见解析【解析】【分析】(1)分别计算左边与右边式子,即可做出判断;(2)设(3,4)=x ,(3,5)=y ,根据同底数幂的乘法法则即可求解.【详解】解:(1)53=125,(5,125)=3,(-2)2=4,(-2,4)=2,(-2)3=-8,(-2,-8)=3,故答案为:3;2;3;则3x=4,3y=5,∴3x+y=3x•3y=20,∴(3,20)=x+y,∴(3,4)+(3,5)=(3,20).【点睛】此题考查了有理数的混合运算,弄清题中的新运算是解本题的关键.95.有个填写运算符号的游戏:在“ 1□3□9□7”中的每个□内,填入+,-,⨯,÷中的某一个(可重复使用),然后计算结果.-⨯+;(1)计算:1369(2)若1÷3×9□7= -4,请推算□内的符号;(3)在“1□3□9-7”的□内填入符号后,使计算所得数最小,直接写出这个最小数是.【答案】(1)-8;(2)-;(3)-33【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据1÷3×9□7=-4,通过计算,可以得到□内的符号;(3)根据在“1□3□9-7”的□内填入符号后,使计算所得数最小,可以得到□内的符号,从而可以求得这个最小数.【详解】-⨯+(1)1369=-+1189=-+179(2)∵1÷3×9□74=-,∴113⨯×9□74=-,∴3□74=-,∴□内的符号是“-”;(3)这个最小数是33-,理由:∵在“1□3□9-7”的□内填入符号后,使计算所得数最小,∴1□3□9的结果是负数即可,∵1□3□9的最小值是13926-⨯=-,∴1□3□9-7的最小值时26733--=-,∴这个最小数是33-.【点睛】本题考查有理数的混合运算的应用,解答本题的关键是明确有理数混合运算的计算方法.96.计算:(1)-14-(1-0.25)×43×[2﹣(﹣3)2](2)(112-16-34)×(-36)【答案】(1)6;(2)30.【解析】【分析】(1)先计算负整数指数幂,括号内的运算,再算乘法,合并即可得到答案,(2)按乘法对加法的分配率进行简便运算即可.【详解】解:(1)-14-(1-0.25)×43×[2﹣(﹣3)2] 341(29)43=--⨯⨯- 1(7)=---17=-+6.=(2)(112-16-34)×(-36) 113(36)(36)(36)1264=⨯--⨯--⨯- 3(6)(27)=-----3627=-++30.=【点睛】本题考查的是有理数的混合运算,掌握运算顺序及运算方法是解题的关键.97.计算:(1)()342+⨯-;(2)|﹣9|÷3+(1223-)×12+32 . 【答案】(1)﹣5;(2)10.【解析】【分析】(1)根据有理数的乘法和加法法则计算即可;(2)根据有理数的乘方、有理数的乘除法和加减法法则计算即可.【详解】解:(1)原式=3+(﹣8)=﹣5;(2)原式=9÷3+(﹣1)×12+96=3+(﹣2)+9=10.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数的运算法则和混合运算的运算顺序.98.一辆出租车从超市(O点)出发,向东走2km到达小李家(A点),继续向东走4km到达小张家(B点),然后又回头向西走10km到达小陈家(C 点),最后回到超市.(1)以超市为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C、O的位置;(2)小陈家(C点)距小李家(A点)有多远?(3)若出租车收费标准如下,3km以内包括3km收费10元,超过3km部分按每千米3元收费,则从超市出发到回到超市一共花费多少元?【答案】(1)见解析;(2)6千米;(3)61元.【解析】【分析】(1)根据数轴与点的对应关系,可知超市(O点)在原点,小李家(A 点)所在位置表示的数是+2,小张家(B点)所在位置表示的数是+6,小陈家(C点)所在位置表示的数是-4,画出数轴即可;(2)根据数轴上两点的距离求出即可;(3)先计算一共行驶了多少千米,再根据收费算出费用即可.(1)根据数轴与点的对应关系,可知超市(O 点)在原点,小李家(A 点)所在位置表示的数是+2,小张家(B 点)所在位置表示的数是+6,小陈家(C 点)所在位置表示的数是-4,画出数轴如图所示:(2)从数轴上值,小陈家(C 点)和小李家(A 点)距离为:2-(-4)=6(千米);(3)一共行驶了:2+4+10+4=20(千米),则一共花费了:10+(20-3)×3=61(元),则从超市出发到回到超市一共花费61元.【点睛】本题是对有理数实际运用的考查,熟练掌握有理数运算和数轴知识是解决本题的关键.99.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 【答案】(1)①7+21;②10.82- ;③22.8 3.23+-;(2)9;(3)10012004. 【解析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)①|7+21|=21+7;故答案为:21+7;②110.80.822-+=-;故答案为:10.82-;③23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111924233202033-++-=9(3)原式=11111111...23344520032004-+-+-++-=1122004-=10012004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相100.计算:(1) ()14126⎛⎫-÷⨯- ⎪⎝⎭ (2) ()312462⎛⎫÷--- ⎪⎝⎭(3) 7.5+(﹣213)﹣(+22.5)+(﹣623) (4) ()3436 6.50.132⎛⎫-⨯-÷---÷ ⎪⎝⎭(5) 221250.8255⎡⎤⎛⎫⎛⎫-⨯--÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ (6)()101211 1.754883⎛⎫--+-⨯ ⎪⎝⎭【答案】(1)12;(2)738-;(3)24-;(4)58-;(5)34;(6)1-. 【解析】【分析】(1)根据有理数乘除法法则按顺序进行计算即可;(2)先分别进行除法运算、立方运算,然后再进行加减法运算即可;(3)根据有理数的加减法法则进行运算即可;(4)先进行乘除法运算,然后再进行加减法运算即可;(5)先进行乘方运算,括号内的运算,然后再按顺序进行计算即可;(6)按顺序先分别进行乘方运算,利用分配律进行运算,然后再按顺序进行计算即可.【详解】(1)原式=()11246⎛⎫-⨯-÷ ⎪⎝⎭=2÷4=12; (2)原式=148⎛⎫--- ⎪⎝⎭=738-; (3)原式=7.5﹣22.5+(﹣213)+(﹣623)=-15-9=24-;(4)原式=212+6503-⨯-=12+450--=58-; (5)原式=415125⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭=34; (6)原式=1714848+488345-⨯-⨯⨯=1-2=1-. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题关键.。
2022年人教版七上数学《有理数》同步练习 附答案
课后训练根底稳固1.在-1,+7,0,23-,516中,正数有().A.1个B.2个C.3个D.4个2.12-的相反数是().A.12B.-2 C.2 D.以上都不对3.在如下图的数轴上,表示112-的点为().A.M点B.N点C.H点D.K点4.假设|a|≥0,那么().A.a>0 B.a<0C.a≠0 D.a为任意数5.以下判断不正确的有().①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.有理数a,b在数轴上的位置如下图,那么a与b的大小关系是().A.a<b B.a=bC.a>b D.无法确定能力提升7.以下说法不正确的选项是().A.如果a的绝对值比它本身大,那么a一定是负数B.如果两个数相等,那么它们的绝对值必不相等C.两个负有理数,绝对值大的离原点远D.两个负有理数,大的离原点近8.以下分数中,大于13-而小于14-的数是().A.1120-B.413-C.316-D.617-9.-|-3|的相反数是().A.3 B.-3C.13D.13-10.数轴上的两点A,B分别表示-7和-3,那么A,B两点间的距离是________.11.绝对值小于3的负整数有__________,绝对值不小于2且不大于5的非负整数有__________.12.图中两个圆圈分别表示正数集合和整数集合,请写出一些数(每个类别不少于3个数),并填入两个圆圈及重叠局部.你能说出这个重叠局部表示什么数的集合吗?13.正式排球比赛,对所使用的排球的重量是有严格规定的,检查5个排球的重量,超过题.14.自己任写三个数,使它大于57-而小于18-.15.一探险队,要沿着一条东西走向的河流进行考察,第一天沿河岸向上游走了5 km,第二天又向上游走了4.3 km,第三天开始方案有变,第三天又向下游走了4.8 km,第四天又向下游走了3 km,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?参考答案1答案:B 点拨:四个数中,只有+7,516是正数,应选B. 2答案:A 点拨:只有符号不同的两个数互为相反数,应选A. 3答案:A4答案:D 点拨:任何数的绝对值都是一个非负数,因此,不管a 为何值,都有|a |≥0,所以a 为任意数,应选D.5答案:C 点拨:①②错误,原因是应包含0,④点可以表示数,但点不是数.只有③正确,应选C.6答案:C 点拨:法一:数轴上的点所表示的数,右边的总比左边的大.法二:从数轴上看a 是正数,b 是负数,正数大于负数,应选C.7答案:B 点拨:只有负数的绝对值比它本身大,所以A 正确,负有理数越大离原点越远,绝对值也越大,故C 、D 正确,B 错误,两个数相等,它们的绝对值必相等.所以选B.8答案:B 点拨:通过比拟绝对值的方法,再估数比拟,1110120203->>,331612-<,661718->,所以都不在13和14之间,所以只有B 适宜,或借助于数轴解决.应选B.9答案:A 点拨:-|-3|=-3,即求-3的相反数,所以是3,选A.10答案:4 点拨:借助于数轴可知A ,B 相距4个单位长度.11答案:-1,-2 2,3,4,5 点拨:①绝对值小于3的整数有2,1,0,―1,―2,负整数是-1,-2;②不小于2就是≥2且不大于5就是≤5,即介于2,5之间包括2,5的正整数,所以是2,3,4,5.12答案:答案不唯一,如以下图:重叠局部表示的数是正整数集合.点拨:正数包括正整数、正分数,整数包括正整数,0和负整数,所以两个集合重合的局部就是正整数集合.13解:第2个球更好一些,因为它的绝对值最小,说明接近规定的重量.点拨:重量最接近规定重量的质量最好,也就是求绝对值最小的那个球,|-10|=10,所以选择第2个球.14解:不唯一,如:12-,14-,38-,47-,37-,17-,…. 点拨:通过比拟它们的绝对值,设这个数为a ,那么a 在57>a >18之间的数的相反数,也可以根据小数的例子,>a >,如:-,-,-,…都可.15解:设出发点为原点,向上游走为正方向,那么向下游走为负,画出数轴如下图.利用数轴分析,得第四天后,探险队在出发点的上游,距离出发点 km.七年级数学〔人教版上〕同步练习第一章第二节有理数一. 教学内容: 1. 有理数2. 数轴、相反数3. 绝对值二. 知识要点:1. 有理数的定义:整数和分数统称为有理数。
七年级数学上册有理数练习题及答案
七年级数学上册有理数练习题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法错误的是( ) A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元2.下列各数:﹣74,0.18,0,﹣π,12其中有理数的个数是( )A .2个B .3个C .4个D .5个 3.全国统一规定的交通事故报警电话是( ) A .122 B .110 C .120 D .1144.有下列说法:℃最小的自然数为1;℃最大的负整数是-1;℃没有最小的负数;℃最小的整数是0;℃最小非负整数为0,其中,正确的说法有( ) A .2个 B .3个 C .4个 D .5个 5.下面的说法中正确的为( ) A .1是绝对值最小的数 B .a -表示负数C .1-不是单项式D .11x x+-不是多项式 6.下列说法错误的是( ) A .负数的绝对值都是正数 B .除以一个数,等于乘这个数的倒数 C .有理数包括整数和分数D .倒数等于它本身的数只有±1.二、填空题7.回顾之前所学内容填空:小学我们学过的数有:自然数、________、 分数、___________.8.等高线指的是地形图上海拔相等的相邻各点所连成的闭合曲线,在等高线上标注的数字为该等高线的海拔.若某地的等高线标注为-20m ,表示此处的高度______海平面20米.(填“高于”或“低于”) 9.下列说法:℃负分数一定是负有理数;℃自然数一定是正数;℃3.2不是整数;℃ 0是整数;℃一个有理数,它不是整数就是分数.其中正确的有__________.(填序号)103π43中有理数有_________个. 11.有理数的分类:________ 和 ________统称为有理数. (1)按符号分类℃正有理数,正有理数分为正整数:如________;正分数:如________ ℃零℃负有理数,负有理数分为负整数:如_______;负分数:如_______ (2)按定义分类℃整数,整数分为 正整数:如______;零;负整数:如______ ℃分数,分数分为正分数:如______;负分数:如______提示:分数除了真分数、假分数、代分数外还包括有限小数、无限循环小数、百分数等.12.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.13.137的分数单位是____,去掉____个这样的分数单位后就成了最小的质数.三、解答题14.把下列各数填入到它所属的集合中.+8,+34,-(-0.275),-|-2|,0,-1.04,-227,13,-(-7).正数:{……}整数:{……}负数:{……}15.如图,每个椭圆表示一个数集,请在每个椭圆内填上6个数,其中三个写在重叠部分,﹣23,9,0,+4.3,|﹣0.5|,﹣(+7),18%,(﹣3)4,﹣(﹣2)5,﹣6 2正分数集合:{…};负整数集合:{…};自然数集合:{…}.参考答案:1.C【分析】根据有理数的概念和性质判断即可.【详解】℃0既不是正数,也不是负数,℃A正确,不符合题意;℃零上6摄氏度可以写成+6℃,也可以写成6℃,℃B正确,不符合题意;℃正方向可以自主确定,℃向东走一定用正数表示,向西走一定用负数表示,是错误的,℃C不正确,符合题意;℃盈利1000元记作+1000元,则-200元表示亏损200元,℃D正确,不符合题意;故选:C.【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.2.C【分析】根据有理数的定义:整数和分数统称为有理数,进行解答即可.【详解】解:﹣74,0.18,为分数,属于有理数,0,12,为整数,属于有理数,℃有理数有4个,故选:C.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解本题关键.3.A【分析】本题考查的知识点是防范侵害,保护自己。
《好题》七年级数学上册第一单元《有理数》-填空题专项经典题(含答案解析)
一、填空题1.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】⨯-=,离胜利还差根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.⨯-=.当喊到第6次时,一共拉过了6(73)24(cm)-=,离胜利还差30246(cm)所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.2.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.3.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1. 故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.4.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.5.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.6.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.7.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3ab=-3是解答本题的关键.8.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.9.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,10.下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b与a ﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.11.若m﹣1的相反数是3,那么﹣m=__.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.13.把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225【分析】(1)根据有理数的加减运算,即可求出答案;(2)把三个月的利润相加,即可得到答案.【详解】解:(1)根据题意,则150-(-5)=155(万元);故答案为:155;(2)二月份获利为:150-70=80(万元),∴第一季度该工厂共获利润:150+80+(5-)=225(万元);故答案为:225;【点睛】本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.15.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.2【分析】设点A表示的数为x 然后根据向右平移加向左平移减列出方程再解方程即可得出答案【详解】设A 表示的数是x依题意可得:x+10-8=0解得:x=-2则点A到原点的距离为2故答案为:2【点睛】本题主解析:2【分析】设点A 表示的数为x ,然后根据向右平移加,向左平移减列出方程,再解方程即可得出答案.【详解】设A 表示的数是x ,依题意可得:x+10-8=0,解得:x=-2,则点A 到原点的距离为2.故答案为:2.【点睛】本题主要考查的是数轴,解题时需注意点在数轴上移动,向右平移加,向左平移减. 16.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.18.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab <0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab <0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.20.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.22.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.23.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.24.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.25.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.26.数轴上,如果点 A所表示的数是3 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.27.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.28.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.29.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.30.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADBAC CABCB CD 12【答案】D【解析】设()y f x =与()()0y g x x =>在公共点()00,P x y 处的切线相同,()()23'2,'a f x x a g x x=+=,由题意()()()()0000,''f x g x f x g x ==,即222000001323ln 2,22a x ax a x b x a x +=++=,由2000322a x a x a x +=+=得0x a =或03x a =-(舍去),即有2221223ln 2b a a a a =+- 2253ln 2a a a =-,令()()2253ln 02h t t t t t =->,则()()'213ln h t t t =-,于是当()13ln 0t t ->,即130t e <<时, ()'0h t >;当()13ln 0t t -<,即13t e >时, ()'0h t <,故()h t 在130,e ⎛⎫ ⎪⎝⎭为增函数,在13,e ⎛⎫+∞ ⎪⎝⎭为减函数,于是()h t 在()0,+∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭,故b 的最大值为2334e ,故选D.13-16 必要不充分 3 [)1,217、【答案】(Ⅰ);(Ⅱ)1λ=-.18、解析:(1)由表中信息可知,当产假为14周时某家庭有生育意愿的概率为14120050P ==; 当产假为16周时某家庭有生育意愿的概率为.(2)①设“两种安排方案休假周数和不低于32周”为事件A ,由已知从5种不同安排方案中,随机地抽取2种方案选 法共有2510C =(种),其和不低于32周的选法有(14,18)、(15,17)、(15,18)、(16,17)、(16,18)、(17,18),共6种,由古典概型概率计算公式得.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.()1290.110P ξ===, ()()12300.1,310.21010P P ξξ======, ()()()()2211320.2,330.2,340.1,350.110101010P P P P ξξξξ============因而ξ的分布列为ξ29 30 31 32 33 34 35 P0.10.10.20.20.20.10.1所以()290.1300.1310.2320.2330.2340.1350.132E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=.19(1)由于平面AEF ⊥平面EFCB , AEF ∆为等边三角形, O 为EF 的中点,则AO EF ⊥,根据面面垂直性质定理,所以AO ⊥平面EFCB ,又BE ⊂平面EFCB ,则AO BE ⊥. (2)取CB 的中点D ,连接OD ,以O 为原点,分别以OE OD OA 、、为x y z 、、轴建立空间直角坐标系,,由于平面AEF 与y 轴垂直,则设平面AEF 的法向量为,设平面AEB 的法向量,则,二面角F AE B --的余弦值1212125cos ,5n n n n n n ⋅〈〉===⋅,由二面角F AE B --为钝二面角,所以二面角F AE B --的斜弦值为5. 20.(1)2211612x y +=(2)()30-,(3)22(1)∵左顶点为()4,0A -∴4a =又∵12e =∴2c =又∵22212b a c =-=∴椭圆C 的标准方程为2211612x y +=. (2)直线l 的方程为()4y k x =+,由()221{16124x y y k x +==+消元得()22411612k x x ⎡⎤+⎣⎦+=化简得, ()()2244316120x k x k ⎡⎤+++-=⎣⎦,则212216124,43k x x k -+=-=+当22161243k x k -+=+时, 22216122444343k k y k k k ⎛⎫-+=+= ⎪++⎝⎭,∴2221612244343k k D k k ⎛⎫-+ ⎪++⎝⎭, ∵点P 为AD 的中点∴点P 的坐标为22216124343k k k k ⎛⎫- ⎪++⎝⎭,,则()304op k k k =-≠.直线l 的方程为()4y k x =+,令0x =,得点E 的坐标为()04k ,,假设存在定点()(),0Q m n m ≠使得OP EQ ⊥,则1OP EQ k k =-,即34•14n k k m--=-恒成立,∴()41230m k n +-=恒成立 ∴4120{30m n +=-=即-3{m n == ∴定点Q 的坐标为()30-,.(3)∵//OM l ∴OM 的方程可设为y kx =,由221{1612x y y kx+==得M点的横坐标为x =由OM l ,得222161282D A E A D A M M k x x x x x x AD AE OM x x -++-+--+====⎫=≥=k =时取等号,∴当k =时, AD AE OM+的最小值为21解:(1)()()1ln 1ln f x a x x a x x ⎡⎤'=-+⋅=⎢⎥⎣⎦,令()0f x '>.当0a >时,解得1x >;当0a <时,解得01x <<, 所以0a >时函数()y f x =的单调递增区间是()1,+∞;0a <时函数()y f x =的单调递增区间是()0,1(2)①2211()()()ln 22h x g x x f x x a x ''==-=-,由题意得()min 0h x ≤, 因为()2a x a h x x x x-'=-=(x x x +=,所以当x ∈时,()0h x '<,()h x 单调递减;当)x ∈+∞时,()0h x '>,()h x 单调递增;min 1()2h x h a a ∴==-由102a a ≤-ln 1a ≤,则实数a 的取值范围是(]0,e (分离参数法亦可). ②由(1)知a e =时,()21ln 02h x x e x =-≥在()0,x ∈+∞上恒成立,当x =22ln x N e x x *∴∈<时,令1,2,3,x n =⋅⋅⋅,累加可得()22222ln1ln 2ln3ln 123e n n ++++<++++即()()22222ln 123123,en n n N *⋅⋅⋅⋅<++++∈22(1)整理圆的方程得2212110x y +++=,由222{ x y cos x sin y ρρθρθ=+==可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭, 即22369014k k =+,整理得253k =,则153k =±.(23)(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)因为|x -3|+|x -m |≥|(x -3)-(x -m )|=|m -3| …2分 当3≤x ≤m ,或m ≤x ≤3时取等号,令|m -3|≥2m ,所以m -3≥2m ,或m -3≤-2m .解得m≤-3,或m ≤1∴m 的最大值为1 …5分 (Ⅱ)由(Ⅰ)a +b +c =1.由柯西不等式,( 1 4+ 1 9+1)( 4a 2+9b 2+c 2)≥(a +b +c )2=1, …7分∴4a 2+9b 2+c 2≥ 36 49,等号当且仅当4a =9b =c ,且a +b +c =1时成立.即当且仅当a = 9 49,b = 4 49,c = 36 49时,4a 2+9b 2+c 2的最小值为 36 49.1.解:(Ⅰ)由题意,得2111111,.2222n n S n S n n n =+=+即 …………1分 故当2n ≥时,221111111(1)(1) 5.2222n n n a S S n n n n n -⎛⎫⎡⎤=-=+--+-=+ ⎪⎢⎥⎝⎭⎣⎦…………4分当n =1时,11615a S ===+, 所以 *5()n a n n =+∈N . …………5分 (Ⅱ)133311(211)(211)(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪---+-+⎝⎭. …………6分 所以12311111313112335212122121n n n T b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.…8分 由于113302321(23)(21)n n n n T T n n n n ++-=-=>++++(),因此n T 单调递增, …………9分故()1n minT =.令120k>,得20k <,所以max 19k =. …………12分 (1)设点G 的坐标为()00x ,0(x 0)>,可知2a 24,a 3=+=,2200x 4a 1,b 3x 22=-==-=因此椭圆的方程是22x y 198+=. (2)方法1:设()()1122P x ,y ,Q x ,y ,则2211x y 198+=, ()22211PF x 1y =-+()222111x x x 181393⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭∵10x 3<<,∴12x PF 33=-, 在圆中, M 是切点, ∴22PM OP |OM |=-2211x y 8+-22111x 1x 818x 93⎛⎫+--= ⎪⎝⎭,∴21111PF PM 3x x 333+=-+=, 同理2QF QM 3+=,∴22F P F Q PQ 336++=+=, 因此△ΒΑC ∠的周长是定值6.方法2:设PQ 的方程为()y kx m k 0,m 0=+,由22{ x x 198y kx m=++=,得()22289k x 18kmx 9m 720+++-=, 设()()1122P x ,y ,Q x ,y ,则212122218km 9m 72x x ,x x 89k 89k --+==++,∴PQ 2121k x +-()2212121kx x 4x x ++-2222218km 9m 721k489k 89k --⎛⎫+-⨯ ⎪++⎝⎭=∵PQ 与圆22x y 8+=相切,=即m =∴26kmPQ 89k =-+,∵2PF ===, ∵10x 3<<,∴12x PF 33=-, 同理可得()222x 1QF 9x 333=-=-, ∴1222222x x 6km 6km 6kmF P F Q PQ 666389k 89k 89k+++=--=+-=+++, 因此△2PQF 的周长是定值6.。