三相异步电机闭环调速设计

合集下载

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

“运动控制系统”专题实验r2 r2+Rs1 r2+Rs2 r2+Rs3sm sm1 sm2 s Tem图6-1整个调速系统采用了速度, 电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统相同而电流环的作用则有所不同。

在稳定运行情况下, 电流环对电网振动仍有较大的抗扰作用, 但在起动过程中电流环仅起限制最大电流的作用, 不会出现最佳起动的恒流特性, 也不可能是恒转矩起动。

2.异步电机调压调速系统结构简单, 采用双闭环系统时静差率较小, 且比较容易实现正, 反转, 反接和能耗制动。

但在恒转矩负载下不能长时间低速运行, 因低速运行时转差功率全部消耗在转子电阻中, 使转子过热。

3.双闭环异步电机调压调速系统的机械特性。

转子变电阻时的机械特性:3.三相异步电机的调速方法三种类型: 转差功率消耗型: 调压、变电阻等调速方式, 转速越低, 转差功率消耗越大。

转差功率馈送型: 控制绕线转子异步电机的转子电压, 利用转差功率可实现调节转速的目的。

如串级调速。

转差功率不变型:转差功率很小, 而且不随转速变换, 如改变磁极对数调速, 变频调速。

1)定子调压调速当负载转矩一定时, 随着电机定子电压的降低, 主磁通减少, 转子感应电势减少, 转(2)空载电压为200V时n/(r/min) 1281 1223 1184 1107 1045I G/A 0.10 0.11 0.12 0.13 0.13U G/V 182 179 176 166 157 M/(N·m) 0.2265 0.2458 0.2636 0.2814 0.28312.闭环系统静特性n/(r/min) 1420 1415 1418 1415 1416 1412I G/A 0.11 0.14 0.16 0.19 0.21 0.26U G/V 203 200 201 200 200 199 M/(N·m) 0.2394 0.2795 0.3080 0.3777 0.3496 0.4482 静特性曲线:3.与开环机械特性比较, 闭环静特性比开环机械特性硬得多, 且随着电压降低, 开环特性越来越软。

三相异步电动机的闭环恒速控制系统 设计结论

三相异步电动机的闭环恒速控制系统 设计结论

三相异步电动机的闭环恒速控制系统设计结论下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!三相异步电动机的闭环恒速控制系统设计结论在现代工业中,三相异步电动机广泛应用于各种机械设备中。

异步电动机调压调速系统

异步电动机调压调速系统

(5-4)
Tema x 21Rs
3npUs2 Rs212(LlsL'lr)2
(5-5)
由图5-4可见,带恒转矩负载工作时, 普通笼型异步电机变电压时的稳定工作点 为 A、B、C,转差率 s 的变化范围不超 过 0 ~ sm ,调速范围有限。如果带风机类 负载运行,则工作点为D、E、F,调速范 围可以大一些。
U TVC——双向晶闸管交流调压器
n2
A A’ 闭环变压调速系统的近似动态结构图
’’ 现代带电流闭环的电子控制软起动器可以限制起动电流并保持恒值,直到转速升高后电流自动衰减下来(图5-12中曲线c),起动时间
也短于一级降压起动。
U 根采变据用化图 普 时5通静-6异差a所步率示电很的机大原的(理变见图电图,压5-5可调)以速,画时开,出环调静控速态制范结很围构难很图解窄,决,如这采图个5用矛-7高所盾转示。子。电阻的力矩电机可以增大*n调3速范围,但机械特性又变软,因而当负载
为此,对于恒转矩性质的负载,要求调 速范围大于D=2时,往往采用带转速反馈 的闭环控制系统(见图5-6a)。
1. 系统组成
~
+
U*n +
GT ASR Uc
Un
M 3~
n
T-G-
a)原理图
图5-6 带转速负反馈闭环控制的交流变压调速系统
2. 系统静特性 异步电机近似的传递函数
由图5-4可见,带恒转矩负载工作时,普通笼型异步电机变电压时的稳定工作点为 A、B、C,转差率 s 的变化范围不超过 0 ~ sm ,
ua VT2
a)
ub
VT3
uc
Ua0 a
b 0
c 负载
•型接法
ia ua b) ub

调速实验1-4

调速实验1-4
六、实验报告
1、简述实验中观察到的现象,对实验中出现的问题加以分析、解释。
2、画出U/F曲线。
3、画出异步电动机的机械特性n=f(Te)曲线。
4、思考题:如何改变电动机的加速度、减速度?
5、写出实验小结。
实验四速度闭环三相异步电机调压调速系统实验
一.实验目的
3)直流电动机的电枢电流不要超过额定值使用,转速也不要超过1.2倍的额定值。以免影响电机的使用寿命,或发生意外。
4)DJK04与DJK02-1不共地,所以实验时须短接DJK04与DJK02-1的地。
实验二、双闭环晶闸管不可逆直流调速系统实验
一、实验目的
1、了解双闭环不可逆直流调速系统的原理及组成。
2、掌握双闭环不可逆直流调速系统的调试方法和步骤。
⑴、通过触摸面板上LO/RE切换键进行切换。
⑵、通过对输入端子参数(n36~n39)的设定来切换。
1、 触摸面板的操作方法
触摸面板操作有两种功能:一种是用面板上的RUN键和STOP/RESET键来控制电机的起动、停止。另一种是用于参数设定。
1) 指示灯显示说明
正常时:接通电源后,RUN灯闪亮、ALARM灯灭。指示灯FREF、FOUT、IOUT、MNTR、F/R、LO/RE、PRGM中有灯亮,指示窗口有数据显示。
U09:显示过去最后一次发生过的异常内容。
U10:制造商管理用。
F/R:灯亮时,可用 或 键,选择电动机的运转方向(正/
反转)。 FOR:正转 rev:反转
LO/RE:灯亮时,可用 或 键,选择本地/远程模式。
rE:远程 LO:本地
PRGM:。灯亮时,可用 或 键,选择要设定的参数,再用
键显示该参数的内容,用 或 键修改该

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。

利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。

本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。

1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。

如图1 所示。

2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。

一般说来,在断路器和变频器之间,应该有接触器。

a. 可通过按钮开关方便地控制变频器的通电与断电。

b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。

另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。

2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。

a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。

因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。

b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。

另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。

通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

双闭环三相异步电动机调压调速的系统设计与仿真课程设计模板

第1章绪论1.1 双闭环三相异步电动机调压调速系统旳原理和构成调压调速即通过调整通入异步电动机旳三相交流电压大小来调整转子转速旳措施。

理论根据来自异步电动机旳机械特性方程式:其中,p为电机旳极对数;w1为定子电源角速度;U1为定子电源相电压;R2’为折算到定子侧旳每相转子电阻;R1为每相定子电阻;L11为每相定子漏感;L12为折算到定子侧旳每相转子漏感;S为转差率。

图1-1 异步电动机在不一样电压旳机械特性由电机原理可知,当转差率s基本保持不变时,电动机旳电磁转矩与定子电压旳平方成正比。

因此,变化定子电压就可以得到不一样旳人为机械特性,从而到达调整电动机转速旳目旳1.2 双闭环三相异步电动机调压调速系统旳工作原理系统主电路采用3个双向晶闸管,具有体积小。

控制极接线简朴等长处。

A.B.C为交流输入端,A 3.B3.C3为输出端,接向异步电动机定子绕组。

为了保护晶闸管,在晶闸管两端接有阻容器吸取装置和压敏电阻。

控制电路速度给定指令电位器BP1所给出旳电压,经运算放大器N构成旳速度调整器送入移相触发电路。

同步,N还可以得到来自测速发电机旳速度负反馈信号或来自电动机端电压旳电压反馈信号,以构成闭环系统,提高调速系统旳性能。

移相触发电路双向晶闸管有4种触发方式。

本系统采用负脉冲触发,即不管电源电压在正半周期还是负半周期,触发电路都输出负得触发脉冲。

负脉冲触发所需要旳门极电压和电流较小,故轻易保证足够大旳触发功率,且触发电路简朴。

TS是同步变压器,为保证触发电路在电源正负半波时都能可靠触发,又有足够旳移相范围,TS采用DY11型接法。

移相触发电路采用锯齿波同步方式,可产生双脉冲并有强触发脉冲电源(+40V)经X31送到脉冲变压器旳一次侧第2章双闭环三相异步电动机调压调速系统旳设计方案2.1 主电路设计调压电路变化加在定子上旳电压是通过交流调压器实现旳。

目前广泛采用旳交流调压器由晶闸管等器件构成。

它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角旳大小来调整加到定子绕组两端旳端电压。

三相异步电动机调速方法

三相异步电动机调速方法

三相异步电动机调速方法三相异步电动机是工业生产中常见的一种电动机,它具有结构简单、运行可靠、维护方便等优点,因此在各种机械设备中得到广泛应用。

在实际生产中,为了满足不同工艺要求和工作条件,常常需要对三相异步电动机进行调速。

下面将介绍几种常见的三相异步电动机调速方法。

首先,我们来介绍电压调制调速方法。

这是一种最为简单的调速方法,通过改变电动机的供电电压来实现调速。

当电动机的供电电压降低时,电动机的转速也会相应降低,反之亦然。

这种方法简单易行,成本低廉,但是调速范围有限,且效率不高。

其次,我们来介绍频率调制调速方法。

这种方法是通过改变电动机的供电频率来实现调速。

通常情况下,电动机的供电频率是恒定的,但是通过变频器等设备可以改变供电频率,从而实现调速。

这种方法调速范围广,效率高,但是设备成本较高。

另外,我们还可以采用极对数调速方法。

这是通过改变电动机的极对数来实现调速。

当电动机的极对数增加时,电动机的转速会相应降低,反之亦然。

这种方法调速范围广,效率高,但是需要更换电动机的定子绕组,成本较高。

除了以上几种常见的调速方法外,还有一些其他的调速方法,如机械变速调速方法、液压变速调速方法等。

这些方法各有特点,可以根据具体的工艺要求和工作条件选择合适的调速方法。

总的来说,三相异步电动机的调速方法有多种多样,可以根据具体的需求选择合适的调速方法。

在选择调速方法时,需要考虑调速范围、效率、成本等因素,并结合实际情况进行综合考虑。

希望本文介绍的内容能够为大家在实际生产中选择合适的调速方法提供一些参考,使生产过程更加顺利高效。

双闭环三相异步电动机调压调速心得体会

双闭环三相异步电动机调压调速心得体会

双闭环三相异步电动机调压调速心得体会
双闭环三相异步电动机调压调速是一种常见的控制技术,用于实现电动机的精确调节和控制。

通过对电动机的调压和调速,可以在不同的负载和工况下实现电动机的高效运行。

在实践中,我总结了一些关键的心得体会:
1. 理论基础:熟悉电动机的基本原理和工作特性是掌握调压调速技术的前提。

了解电动机的构造、转矩特性、绕组和定子的连接,可以更好地理解调压调速的原理和实现方式。

2. 控制策略:在双闭环控制中,内环控制是电流控制,外环控制是速度或转矩控制。

合理选择控制策略和参数调节方法,可以实现电动机的稳定运行和响应速度的提高。

3. 传感器选择:准确感知电动机的状态是实现调压调速的前提。

选择合适的传感器(如电流传感器、速度传感器)能够提供准确的反馈信号,为控制系统提供准确的输入。

4. 控制器设计:根据系统需求和控制策略选择合适的控制器。

PID控制器是常用的控制器类型,但根据实际情况可能需要采用其他控制算法。

5. 运行监测:定期对电动机进行运行监测,观察调压调速系统的性能和稳定性,及时发现和解决问题,确保电动机的正常运行。

需要注意的是,实施调压调速技术时,应遵守相关的安全操作规程,确保工作环境安全,避免事故发生。

三相异步电机VF调速

三相异步电机VF调速

第1章绪论1.1 毕业论文选题的背景电动机作为主要的动力设备被广泛的应用于工农业生产、国防、科技、日常生活等各个方面,其负荷约占总发电量的60%"70%,成为用电量最多的电气设备。

根据采用的电流制式不同,电动机分为直流电动机和交流电动机两大类,其中交流电动机形式多样、用途各异、拥有量最多,交流电动机又分为同步电动机和异步(感应)电动机两大类。

根据统计,交流电动机用电量占电机总用电量的85%左右,可见交流电动机应用的广泛性及其在国民经济中的重要地位。

电动机作为把电能转换为机械能的主要设备,在实际应用中,一是要使电动机具有较高的机电能量转换效率;二是根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能好坏对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

电动机和控制装置一起合成电力传动自动控制系统。

以直流电动机作为控制对象的电力传动自动控制系统称之为直流调速系统;以交流电动机作为控制对象的电力传动自动控制系统称之为交流调速系统。

根据交流电机的类型,相应有同步电动机调速系统和异步电动机调速系统。

众所周知,直流电动机的转速容易控制和调节,采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。

因此,长期以来在变速传动领域中,直流调速一直占据主导地位。

但是,由于直流调速系统解决不了直流电动机本身的的换向问题和在恶劣环境下的不适应问题,这就限制了直流调速系统的进一步发展。

交流电动机,特别是鼠笼型异步电动机,具有结构简单、制造容易、坚固耐用、转动惯量小、运行可靠、很少维修、使用环境及结构发展不受限制等优点。

但交流电动机自1885年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。

20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统已具备了宽调速范围、高稳态精度、快速动态响应、高工作效率以及可以四象限运行等优异性能,其静、动态特性均可以和直流调速系统相媲美。

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与 应用(616G5)

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与            应用(616G5)

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与应用(616G5)学校:华北电力大学院系:专业:电气工程及其自动化指导教师:姓名:学号:引言由于电力电子技术的不断发展和进步,伴随着新的控制理论的提出与完善,使交流调速传动,尤其是性能优异的变频调速传动得到飞速的发展。

近年来,变频器的售价不断下降,而其使用功能却不断提升和扩大变频器的大量推广使用,在节能、省力化、自动化及提高生产率、提高质量、减少维修和提高舒适性等多方面都取得了令世人瞩目的应用效果。

1目录一、交流调速系统概述 (3)二、变频调速系统 (4)三、变频器的原理 (6)四、电机选择及参数 (9)五、旋转编码器选择及参数 (11)六、安川变频器(616g5)结构形式 (12)七、安川变频器(616g5)参数设定 (13)八、结束语 (20)参考文献: (21)一、交流调速系统概述调速系统的发展三相交流电机自十九世纪发明以来走过了100多年历史,电力拖动控制技术也随之日渐成熟,已从最初直接起动发展成目前的变频调速。

电机在恒压下直接起动时电流约为其额定值的4-7倍,电机转速要在很短时间内从零升至额定值将产生很大冲击,且在起动瞬间大电流作用下,会引起电网压降,甚至严重影响电网内其它设备正常运行。

为此,改善电机起动状态,使之处于低或无冲击及平滑柔和环境,各种限流起动的方法便应运而生。

变频调速技术是随交流电机无级调速的需要而诞生的。

20世纪60年代后半期开始,电力电子器件从SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物半导体场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MCT(MOS控制晶体管)、MCT(MOS控制晶闸管)发展到今天的IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管),器件更新促使电力变换技术的不断发展。

从20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视,到20世纪80年代作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验

三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。

4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。

图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。

2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。

n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。

这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。

由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。

由通入的三相交变电流来保证。

2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。

因此,转子的转速n 必须低于定子磁场的转速0n 。

两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。

由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。

基于PLC的三相异步电机变频调速系统的设计

基于PLC的三相异步电机变频调速系统的设计

高等教育自学考试本科毕业论文基于PLC的三相异步电机变频调速系统的设计考生姓名:彭中建准考证号: 011811306047 专业层次:本科院(系):机械与动力工程学院指导教师:唐晓庆职称:讲师重庆科技学院二O一三年七月十五日高等教育自学考试本科毕业论文基于PLC的三相异步电机变频调速系统的设计考生姓名:彭中建准考证号: 011811306047专业层次:本科指导教师:***院(系):机械与动力工程学院重庆科技学院二O一三年七月十五日摘要随着科技的进步,电机的运用已经深入到各行各业的各个领域。

而现今也是一个资源高度消耗造成能源匮乏的时代,在这个时候考虑如何让其在高可靠性的同时又有效的节约能源耗费提高自身的效率,这不仅可以使企业的生产成本降低,而且对于社会的可持续发展有着重要的意义。

本文所讨论的是利用PLC控制的三相异步电机变频调速的基本原理与实现方法。

三相异步电机一般的调速方法有:降压调速,转子回路串电阻调速,变极调速,串极调速,变频调速等。

但是这些调速方法都有着各自的缺点,降压调速的调速范围很小,没有多大的实用价值;转子回路串电阻调速不利于空载或轻载调速,效率低,经济性差;变极调速调速的平滑性差;串极调速的控制设备复杂,成本高,控制困难。

所以调速性能至少需从两方面考虑。

第一,应从节能和提高效率的角度考虑,应将损耗在转子附加电阻上的能量吸收,转化成别的有用的能量或反馈到电网,以提高传动系统的效率。

第二,应从高性能调速要求考虑,应用控制理论,将其组成闭环调速控制系统,满足调速精度、动态响应等各项指标的要求。

综上所述,利用PLC控制的变频调速系统,是使三相异步电动机实现高性能高效率调速的有效办法。

通过改变定子绕组的供电频率f来实现,当转差率s一定时,电动机的转速n基本上正比于f。

很明显,只要有输出频率可以平滑调节的变频电源,就能平滑的调节异步电动机的转速。

关键词:变频调速,PLC,异步电机The three-phase asynchronous motor variable frequency speed regulation system based on PLC designAbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on. These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rays has a deviation, small gear are rotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Control system mainly includes the sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection system is used to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances received different light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords: Frequency control, PLC, asynchronous motor目录中文摘要 (I)英文摘要 ........................................................................................... 错误!未定义书签。

三相异步电动机的闭环恒速控制系统.doc

三相异步电动机的闭环恒速控制系统.doc

毕业设计论文三相异步电动机的闭环恒速控制系统袁慎辉指导老师姓名:徐瑾瑜专业名称:电气自动化班级学号: 08137124论文提交日期: 2008年11月14日论文答辩日期: 2008年11月15日2008年 11月 14 日任务三相异步电动机的闭环恒速控制系统第一章任务提出现有一台三相异步电机需要按设定的转速恒速运行,请设计一台闭环控制系统。

第二章知识衔接一、光电编码器光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字的传感器。

一般的光电编码器主要由光栅盘和光电检测装置组成,光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

在伺服系统中,由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理如图3—1所示。

通过计算每秒光电编码器输出脉冲的个数就反映当前电动机的旋转。

此外,为判断旋转方向,码盘还可以提供相差90度的2个通道的光吗输出,如果A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转。

根据检测原理,编码器可分为光学式,磁式,感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式,绝对式以及混合式3种。

二、高速计数指令前面讲的计数器指令的计数速度受扫描周期的影响,若|输入脉冲的频率比CPU扫描频率高时,就不能满足控制要求了。

为此,S7—200系列PLC设计了高速计数功能HSC(High Speed Counter),其计数自动进行,不受扫描周期的影响,最高计数频率取决于CPU的类型,CPU22x 系列最高计数频率为30KHz用于捕捉比CPU扫描速更快的事件,并产生中断,执行中断程序,完成预定的操作。

高数计数器最多可设置12种不同的操作模式。

用高数计数器可实现高速运动的精确控制。

1.高数计数器的工作模式高数计数器由12种工作模式,模式0~模式2采用单路脉冲输入的内部方向控制加/减计数;模式3~模式5采用采用单路脉冲输入的外部方向控制加/减计数器;模式6~模式8用两路脉冲输入的加/减计数器;模式9~模式11用两路脉冲输入的双相正交计数。

异步电动机采用调压调速时

异步电动机采用调压调速时

异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电动机或绕线式异步电动机在转子中串入适当的电阻后是机械特性变软后,其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此长采用双闭环调速系统。

双闭环三相异步电动机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。

控制部分由“电流调节器”,“速度变换”,“触发电路”,“正桥功放”等组成。

其系统原理框图如图所示。

整个调速系统采用了速度,电流两个反馈控制环。

这里的速度环作用基本上与直流调速系统想同,而电流环的作用则有所不同。

在稳定运行的情况下,电流环对电网扰动仍有较大的抗绕作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。

异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正,反转和能耗制动。

但在恒转矩负载下不能长时间低速运行,因为低速运行时转差率功率Ps=SPm全部消耗在转子电阻中,会使转子过热。

222222交流调速调压系统的电气原理图如图所示。

交流调压调速系统的仿真模型如图所示。

下面介绍各部分的建模与参数设置过程。

1.系统的建模和模型参数设置(1)主电路的建模和参数设置由图可见,主电路由三相对称交流电压源,晶闸管三相交流调压器,交流异步电动机,电动机信号分配器等部分组成。

此处着重讨论晶闸管三相交流调压器,交流异步电动机,电动机测试信号分配器的建模和参数设置问题。

@1晶闸管三相交流调压器的建模和参数设置。

晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管采用“相位控制”方式,利用电网自然换流。

图()所示为晶闸管三相交流调压器的仿真模型及模块符号。

图()所示为三相交流调压器中的晶闸管元件的参数设置情况。

在图()中我们是用单个晶闸管元件按三相交流调压的接线要求建成仿真模型的,单个晶闸管元件的参数设置仍然遵循晶闸管整流桥的参数设置原则。

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告

双闭环三相异步电机调压调速系统实验报告一、实验目的1.实现双闭环三相异步电机的调压调速系统;2.了解电机调速系统的工作原理及稳态特性;3.掌握电机调速过程中的调节和优化方法。

二、实验原理1.双闭环三相异步电机调压调速系统的组成本次实验所用的电机调压调速系统主要由以下三个部分组成:(1)电源控制模块:主要是对驱动电机的电源进行控制,电源的形式可以是AC或DC。

(2)DSP控制模块:对电机进行调速调压和保护,实现电机的闭环控制。

(3)电机驱动模块:主要包括功率放大器和信号变换器。

2.电机调速控制原理实现电机调速控制主要通过改变电机转矩的大小和方向来实现。

根据电机理论,电机的转矩和电机 stator winding 上的电流之间有着线性关系,因此,改变电机 stator winding 上的电流大小和方向来改变电机的转矩。

启动电机的一种典型方法是通过 stator winding 上的正弦波 AC 电源激励。

通过改变 AC 电源的频率和幅度,可以改变电机的转速。

当电机开始旋转后,其转速可以通过反馈闭环控制来调节和控制。

例如,根据 PI 控制器的输出,可以调整电机的功率放大器来调整电机的 stator winding 上的电流,从而实现电机的转速调节和控制。

3.电机调压控制原理与电机调速不同,电机调压是通过控制电机 stator winding 上的电压大小来调整电机的输出功率和转矩。

在调压控制中,需要根据负载的需求来确定合适的电压值,并通过反馈机制来实现闭环控制。

三、实验内容与步骤1.实验装置准备本次实验所用的设备包括三相异步电动机、DSP开发板、电源、三相电表、频率计和电源电压采样电路等。

首先进行电机的接线,通过电源采样电路连接电源进行电压的采样和测量,再通过三相电表测量电机中三相电流和电机的输入功率等。

2.实验参数设置设置电机参数,包括电机的额定电压、额定功率、转速、电流等参数,并将这些参数输入到 DSP 控制模块中。

异步电机调压调速原理

异步电机调压调速原理

异步电机调压调速原理异步电机是一种常见的电动机类型,其调压调速原理是通过改变电源的电压和频率来控制电机的转速和负载。

这种调压调速方式广泛应用于工业生产和家庭电器等领域,具有调速范围广、控制精度高等优点。

异步电机的调压调速原理基于电机的转子和定子之间的电磁感应。

当定子绕组通电时,会产生一个旋转磁场,而转子则由于感应电动势的作用而产生转动。

电机的转速与电源的频率成正比,在额定电压下,电机的转速是固定的。

因此,要实现调速,就需要改变电源的电压和频率。

在调压调速系统中,通常使用变压器来改变电源的电压。

通过改变变压器的接线方式,可以实现对电机的调压。

当需要降低电机转速时,可以将变压器的绕组切换到较高的电压端;当需要提高电机转速时,可以将变压器的绕组切换到较低的电压端。

这样,通过改变电源的电压,可以实现对电机转速的调节。

除了调压外,调速系统还需要改变电源的频率。

在传统的调速系统中,通常使用机械式调速装置,通过改变电源的频率来改变电机的转速。

然而,这种方式通常比较复杂且成本较高。

近年来,随着电子技术的发展,越来越多的调速系统采用变频调速技术。

变频调速技术是一种通过改变电源的频率来控制电机转速的方法。

在变频器中,电源的交流电先经过整流器变成直流电,然后经过逆变器变成可调频率的交流电。

通过改变逆变器的输出频率,可以实现对电机转速的调节。

变频调速具有调速范围广、控制精度高、运行平稳等优点,已经成为现代调速系统中最常用的调速方式之一。

在实际应用中,异步电机的调压调速系统通常由电源、变压器、变频器和电机等组成。

通过控制变压器和变频器的工作状态,可以实现对电机的精确调速。

此外,还可以通过反馈控制系统来实现闭环控制,提高系统的稳定性和控制精度。

异步电机的调压调速原理是通过改变电源的电压和频率来控制电机的转速和负载。

调压调速系统通常由变压器、变频器和电机等组成,通过控制这些设备的运行状态和参数,可以实现对电机的精确调速。

这种调压调速方式已经在工业生产和家庭电器等领域得到广泛应用,为各种设备的运行提供了便利和灵活性。

111111111双闭环三相异步电动机调压调速系统设计

111111111双闭环三相异步电动机调压调速系统设计

双闭环三相异步电动机调压调速系统设计引言:异步电动机的转速恒小于旋转磁场的转速n1,只有这样,转子绕组才能产生电磁转矩,使电动机旋转。

如果n=n1,转子绕组和定子磁场之间无相对运动,则转子绕组中无感应电动势和感应电流产生,可见n<n1是异步电动机工作的必要条件。

由于电动机转速n 和旋转磁场转速n1不同步,故称为异步电动机。

一、三相异步工作原理三相绕组接通三相电源产生的磁场在空间旋转,称为旋转磁场。

转速的大小由电动机极数和电源频率而定。

旋转磁场的转速n1称为同步转速。

它和电网的频率f1及电机的磁极对数p 的关系为:n1=60f1∕p对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。

所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

交流异步电动机机械特性的参数表达式如下:变压调速是异步电动机调速方法中的一种,由三相异步电动机机械特性参数表达式可知,当异步电动机等效电路的参数不变时,在相同点的转速下,电磁转矩e T 和定子电压S U 的平方成正比,因此,改变定子外加电压就可以机械特性的函数关系,从而改变电动机在一定负载转矩下的转速。

本实验即采用定子调压调速系统,就是在恒定交流电源和交流电动机之间接入晶闸管作为交流电压控制器,即改变定子电压调速。

如下图画出了定子电压为1U 、'1U 、"1U ('"111U U U >>)时的机械特性。

()()⎥⎦⎤⎢⎣⎡+++=2'21'1'23lr ls r S r sL L S R R S R UT ωω二、设计流程1电动机的选型:假设电动机工作于普通机床主轴传动系统中,设定最大转速为1440r/min,可选出电动机型参数如下:型号:Y132S-4 额定功率:5.5KW 满载时定子电流:12A满载时转速:1440r/min 满载时效率:85.5% 满载时功率因数:0.84 堵转电流/额定电流:7A 堵转转矩/额定转矩:2.2N.m铁芯长度:115mm 气隙长度0.4mm 定子外径:210mm定子内径:136mm 定子线规根数-d:1-0.9mm每槽线数:47 绕组形式:单层交叉节距:1~9mm定转子槽数Z1/Z2: 36/32系统结构确定如图所示2主电路设计:2.1晶闸管的选择晶闸管选择主要根据变流器的运行条件,计算晶闸管电压、电流值,选出晶闸管的型号规格。

三相异步电动机变频调速系统设计及仿真.

三相异步电动机变频调速系统设计及仿真.

天津职业技术师范大学课程设计说明书题目:三相异步电动机变频调速系统设计及仿真指导老师:班级:机检1112班组员天津工程师范学院课程设计任务书机械工程学院机检1112 班学生课程设计课题:三相异步电动机变频调速系统设计及仿真一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日二、同组学生:三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资料等):1、目的和意义交流调速是一门重要的专业必修课,它具有很强的实践性。

为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。

2、具体内容写出设计说明书,内容包括:(1)各主要环节的工作原理;(2)整个系统的工作原理(包括启动、制动以及逻辑切换过程);(3)调节器参数的计算过程。

2.画出一张详细的电气原理图;3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节器参数进行校正,验证设计结果的正确性。

将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。

4、考核方式1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。

其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容);2.每天上午8:30--11:30在综合楼226房间答疑。

五、参考文献1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003指导教师签字:教研室主任签字:目录第一章绪论 (2)第二章系统总体设计方案 (4)2.1 概述 (4)2.2系统组成结构及工作原理 (4)2.2.1恒压频比控制下的机械特性 (4)2.2.2变频器 (6)2.2.3变频器主电路工作原理 (6)2.2.4整流电路 (7)2.2.5逆变电路 (7)2.2.6调节器 (9)2.2.7启动制动 (10)第三章硬件设计及选型 (11)3.1主电路的设计 (11)3.2整流电路设计 (11)3.3逆变电路的设计 (12)第四章simulink仿真 (13)4.1建立模型 (13)4.2 未变频时仿真结果 (14)4.3变频时仿真结果(基频以下调速) (15)4.4变频时仿真结果(基频以上调速) (17)关于变频调速的总结 (18)附电气图 (19)参考文献 (19)第一章绪论在交流调速中,交流电动机的调速方法有三种:变极调速、改变转差率调速和变频调速。

三相异步电机变频调速的工作原理

三相异步电机变频调速的工作原理

三相异步电机变频调速的工作原理1.基本原理:三相异步电机是通过电磁感应的原理产生转动力的,其转速与供电频率成正比。

变频调速就是通过改变电机的供电频率,来改变电机的转速。

2.变频器:变频调速系统的核心是变频器,也称为交流变频调速器。

它由整流器、滤波器、逆变器、控制电路等组成。

变频器可以将输入的固定频率、固定电压的交流电能转换成可变频率、可调电压的交流电能。

3.电压变频调速:在电压变频调速中,变频器通过提供可调的电压来改变电机的供电电压,进而控制电机的转速。

变频器会根据控制信号,调整输出电压的频率和幅值,使得电机的转速与所需的转速匹配。

4.频率变频调速:在频率变频调速中,变频器通过改变电机的供电频率来控制电机的转速。

变频器会通过改变输入电压的频率,改变电机的额定转速。

例如,如果输入电压的频率为50Hz,变频器将其转换为30Hz,电机的转速将降低为原来的60%。

5.闭环控制系统:为了实现精确的调速,变频调速系统通常采用闭环控制方法。

这种方法通过在电机轴上安装编码器等位置传感器,将电机的实际转速反馈给控制系统。

控制系统会根据设定的转速和实际转速之间的误差,调整变频器的输出,使得实际转速接近设定转速。

6.调速特性:三相异步电机变频调速具有良好的调速特性。

在负载变化较小的情况下,调速范围广,调速精度高。

同时,变频调速系统还具有起动电流小、起动冲击小、能耗低等特点。

总结起来,三相异步电机变频调速是通过改变电机的供电频率来调节电机的转速的方法。

其核心是变频器,通过调整电压或频率来控制电机的供电,同时采用闭环控制系统实现精确的调速。

该方法具有调速范围广、调速精度高等特点,广泛应用于工业生产和交通运输等领域。

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计

三相异步电机双闭环调速控制系统设计O 引言三相交流异步电机以其结构简单,体积小,重量轻,价格低,维修方便等优点,广泛应用于武器装备、给料系统、数控机床、柔性制造技术、各种自动化设备等领域,其转速控制系统性能的优劣直接决定了设备性能的发挥。

随着高性能微处理器及新型电力电子器件的出现,使得应用全控型电力电子器件和空间矢量(SVPWM)控制技术进行变频调速的方式已成为交流电机调速控制的主流。

相对于其他微处理器,DSP 具有运算速度快,可以自己产生有死区时间的PWM 输出,可以实现诸如模糊控制等复杂的算法,外围硬件少等优点,因而广泛用于电机的数字控制。

本文以TMS320LF2407A DSP 芯片和AT89S52 单片机为核心,设计了针对三相交流异步电机的全数字调速控制系统。

实验结果表明,该系统具有实时显示,数据存储,动态响应快,控制精度高,抗干扰性强等优点。

1 TMS320LF2407A 简介TMS320LF2407A 主要包括算术逻辑运算单元(CALU)、寄存器集、辅助算术逻辑单元(ARAU)、乘法器、乘法移位器、累加器、加法移位器、时钟锁相环电路、两个完全等同的事件管理器A,B(包括通用定时器、比较单元、捕获/正交编码器脉冲电路)、内部A/D 转换器、双串口、看门狗、CAN 总线电路单元等。

TMS320LF2407A 采用先进的哈佛结构,流水线作业,在30 MHz 内部时钟频率下,指令周期仅为33 ns。

其内部存储器包含2 类RAM 块。

一类为DRAM,另一类为SRAM。

对DRAM 而言又划分为3 个RAM 块,即B0,B1,B2,容量依次为256 字,256 字,32 字。

这些RAM 全部允许在一个指令周期内访问两次,因此在数据处理能力上有显著的增加。

同时,B0 块还可以通过程序动态地配置为数据存储器区或程序存储器区。

若配置为程序区可在上电时把浮点算法子程序或者数据表从外部慢速EPROM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《控制系统设计》课程设计报告学院:信息工程学院姓名:班级:11自动化学号:题目:三相异步电动机闭环调速系统设计与实践指导老师:完成时间:2014年6月20日目录摘要 (I)1概述 (1)1.1三相异步电动机的调速方法 (2)1.2调压调速的简介 (3)1.3课程设计的要求 (5)2三相异步电动机调压调速系统的组成 (5)3三相异步电动机调压调速系统的设计和实现 (8)3.1三相异步电动机调压调速系统的电路 (8)3.2闭环调速结构图 (10)3.3 系统各部分参数的计算 (10)4三相异步电动机调压调速系统的仿真 (13)4.1MATLAB仿真的介绍 (13)4.2电路的建模和参数设置......................... 错误!未定义书签。

4.3异步电机调压调速系统仿真模型................. 错误!未定义书签。

4.4仿真效果图 (17)总结 (22)参考文献 (23)摘要异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可拖动。

随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可拖动中逐渐得到广泛的应用。

实现电机调速有不少方法。

研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。

异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。

本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。

在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。

还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。

以转速单闭环调压调速系统为例,电机调速开环控制系统调速范围较小,采用速度作为负反馈的闭环控制系统解决了这个问题,使调速性能得到改善。

最后,经过理论分析建立模型后,基于Matlab语言开发仿真软件,并进行仿真实验,并且对仿真结果进行了一定的分析及改进。

关键词: 调压调速MATLAB三相异步电动机转速调节器1概述直流电力拖动和交流电力拖动在19世纪先后诞生。

在20世纪上半叶的年代里,鉴于直流拖动具有优越的调速性能,高性能可调速拖动都采用直流电机,而约占电力拖动总容量80%以上的不变速拖动系统则采用交流电机,这种分工在一段时期内已成为一种举世公认的格局。

交流调速系统的多种方案虽然早已问世,并已获得实际应用,但其性能却始终无法与直流调速系统相匹敌。

直到20世纪60-70年代,随着电力电子技术的发展,使得采用电力电子变换器的交流拖动系统得以实现,特别是大规模集成电路和计算机控制的出现,高性能交流调速系统便应运而生,一直被认为是天经地义的交直流拖动按调速性能分工的格局终于被打破了。

交流调速系统的应用领域主要有三个方面:●一般性能的节能调速●高性能的交流调速系统和伺服系统●特大容量、极高转速的交流调速(1)一般性能的节能调速在过去大量的所谓“不变速交流拖动”中,风机、水泵等通用机械的容量几乎占工业电力拖动总容量的一半以上,其中有不少场合并不是不需要调速,只是因为过去的交流拖动本身不能调速,不得不依赖挡板和阀门来调节送风和供水的流量,因而把许多电能白白地浪费了。

如果换成交流调速系统,把消耗在挡板和阀门上的能量节省下来,每台风机、水泵平均都可以节约20-30%以上的电能,效果是很可观的。

(2)高性能的交流调速系统和伺服系统许多在工艺上需要调速的生产机械过去多用直流拖动,鉴于交流电机比直流电机结构简单、成本低廉、工作可靠、维护方便、惯量小、效率高,如果改成交流拖动,显然能够带来不少的效益。

但是,由于交流电机原理上的原因,其电磁转矩难以像直流电机那样通过电枢电流施行灵活的实时控制。

(3)特大容量、极高转速的交流调速直流电机的换向能力限制了它的容量转速积不超过106 kw r•/min,超过这一数值时,其设计与制造就非常困难了。

交流电机没有换向器,不受这种限制,因此,特大容量的电力拖动设备,以及极高转速的拖动,如高速磨头、离心机等,都以采用交流调速为宜。

与直流调速系统相比,交流调速系统具有以下特点:● 容量大;● 转速高且耐高压;● 交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;● 交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;● 高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标; ● 交流调速系统能显著的节能; 从各方面看,交流调速系统最终将取代直流调速系统。

计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便。

传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便。

随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现。

如:matlab 软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。

matlab 语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率。

随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步。

交流调速技术发展到今天,相对而言已经比较成熟,在工业中得到了广泛的应用,但是随着一些新的电力电子器件和一些新的控制策略的出现,工业应用对交流调速系统又提了新的要求,现代交流电机调速技术的研究和应用前景十分广阔。

1.1三相异步电动机的调速方法异步电机的调速方法有不少,根据异步电机的转速公式()()11160/1n n s f p s =-=- (1-1) 其中1n 为同步转速(r/min);1f 为定子频率,也就是电源频率(Hz);p 为磁极对数。

可知;异步电动机有以下三种基本调速方法:(1) 改变定子极对数p 调速。

(2) 改变电源频率1f 调速。

(3) 改变转差率s 调速。

1.2调压调速的简介由电力拖动原理可知,当异步电机等效电路的参数不变时,在相同的转速下,电磁转矩与定子电压的平方成正比,因此,改变定子外加电压就可以改变机械特性的函数关系,从而改变电机在一定负载转矩下的转速。

当改变电动机的定子电压时,可以得到一组不同的机械特性曲线,由于电动机的转矩与电压平方成正比,因此最大转矩下降很多,其调速范围较小,使一般笼型电动机难以应用。

为了扩大调速范围,调压调速应采用转子电阻值大的笼型电动机,如专供调压调速用的力矩电动机,或者在绕线式电动机上串联频敏电阻。

为了扩大稳定运行范围,当调速在2:1以上的场合应采用反馈控制以达到自动调节转速目的。

调压调速的主要装置是一个能提供电压变化的电源,目前常用的调压方式有串联饱和电抗器、自耦变压器以及晶闸管调压器(TVC )等几种。

晶闸管调压方式为最佳。

交流调压器一般用三对晶闸管反并联或三个双向晶闸管分别串接在三相电路中,主电路接法有多种方案,用相位控制改变输出电压。

调在异步电动机调速方法中,变压调速是异步电机调速方法中比较简便的一种。

由电力拖动原理可知,当异步电机等效电路的参数不变时,在相同的转速下,电磁转矩与定子电压的平方成正比,因此,改变定子外加电压就可以改变机械特性的函数关系,从而改变电机在一定负载转矩下的转速。

根据异步电动机的机械特性方程式()()[]2'21212'211'221'22'211//33l l M L L s R R s R pU s R I P P T +++==Ω=ωωω (1-3) 其中 p ——电动机的极对数,1U 、1ω——电动机定子相电压和供电角频率,s ——转差率,1R 、'2R ——定子每相电阻和折算到定子侧的转子每相电阻,11L 、'12L ——定子每漏感和折算到定子侧的转子每相漏感 可见,当转差率s 一定时,电磁转矩T 与定子电压1U 的平方成正比。

改变定子电压可得到一组不同的人为机械特性,如图2-2所示。

在带恒转矩负载L T 时,可以得到不同的稳定转速,如图中的A ,B ,C 点,其调速范围较小,而带风机泵类负载时,可得到较大的调速范围,如图1-1中的D ,E ,F 点。

1T S S L m图1-1 异步电动机在不同定子电压时的机械特性所谓调压调速,就是通过改变定子外加电压来改变电磁转矩T ,可得到较大的调速范围,从而在一定的输出转矩下达到改变电动机转速的目的[13]。

为了能在恒转矩负载下扩大调压调速范围,使电机在较低速下稳定运行又不致过热,可采用电动机转子绕组有较高电阻值时的机械特性。

在恒转矩负载下的交流力矩电动机的机械特性。

图1-2显示此类电动机的调速范围增大了,而且在堵转转矩下工作也不致烧毁电动机[1][4]。

L图1-2 交流力矩电机在不同定子电压时的机械特性1.3课程设计的要求(1)设计目的1. 通过对一个实用的三相异步电动机闭环交流调速系统的设计,安装,调试来综合运用科学理论知识,提高学生工程意识和实践技能,达到素质和创新能力进一步提升,是学生获得控制技术工程的基础训练。

2. 通过系统建模和仿真,掌握用MATLAB/Simulink工具分析设计三相异步电动机速度控系统的方法。

3. 进一步掌握各种交流调速系统的性能,尤其是动态性能。

(2)设计内容1.理论设计:根据所学的理论知识和实践技能,了解带转速外闭环的基础原理,解决积分调节器的饱和非线性问题,采用工程设计的方法设计三相异步电动机闭环交流调速系统(包括主电路和控制电路,选择的元器件,系统等电器原理图)。

2.仿真实践:根据所设计的系统,利用MATLAB/Simulink建立各个组成部分相应的数学建模,并对系统仿真进行综合调试,分析系统的动态性能,并进行校正,得出正确的仿真实验波形和合适控制器参数,为搭建实际系统提供参考。

3.动手实践:根据所设计的系统,完成单元电路安装,系统组装,单元及系统调试(可利用试验台的某些挂件),得出实物实际波形和系统动,静态性能。

2三相异步电动机调压调速系统的组成三相异步电动机转速单闭环调压调速是一种典型的转差功率消耗型调速系统。

图2-1为交流电机转速单闭环变压调速的电路。

图2-1 交流电机转速单闭环变压调速电路交流调压调速是一种比较简便的调速方法。

常见的异步电动机调压调速系统由以下六大基本部分组成:转速调节器(ASR )、触发装置(GT )、晶闸管交流调压器(TVC )、测速发电机(TG )、三相异步电动机(M)。

这里主要介绍三相异步电动机(M )的结构,和测速发电机(TG )、晶闸管交流调压器(TVC )的具体结构以及工作原理。

相关文档
最新文档