材料物理性能
材料物理性能及测试
材料物理性能及测试材料的物理性能是指材料在物理方面的性质和行为,包括材料的力学性能、热学性能、电学性能以及光学性能等。
这些性能对于材料的使用和应用起着重要的作用。
为了准确地评估和测试材料的物理性能,科学家和工程师使用了各种测试方法和仪器设备。
一、力学性能力学性能是衡量材料在外力作用下的行为的一种性能。
主要指材料的强度、韧性、硬度、延展性等。
常用的测试方法包括拉伸测试、压缩测试、剪切测试和弯曲测试等。
1.拉伸测试拉伸测试是一种常见的方法,用来评估材料的强度和延展性。
在拉伸测试中,材料样品被施加拉伸力,通常通过测量载荷和伸长量来计算拉伸应力和应变。
拉伸强度是指材料在拉伸过程中承受的最大应力,屈服强度是指材料开始产生可观察的塑性变形的应力。
2.压缩测试压缩测试用于测量材料在受压力下的性能。
将材料样品放入压力装置中,施加压力使其受到压缩,通过测量载荷和位移来计算压缩应力和应变。
压缩强度是指材料在压缩过程中承受的最大应力。
3.剪切测试剪切测试用于评估材料的抗剪切能力。
将材料样品放入剪切装置中,施加剪切力使其发生剪切变形,通过测量载荷和位移来计算剪切应力和应变。
剪切强度是指材料在剪切过程中承受的最大应力。
弯曲测试用于评估材料在弯曲载荷下的行为。
将材料样品放入弯曲装置中,施加弯曲力使其发生弯曲变形,通过测量载荷和位移来计算弯曲应力和应变。
弯曲强度是指材料在弯曲过程中承受的最大应力。
二、热学性能热学性能是指材料在温度变化下的行为。
主要包括热膨胀性、热导率、比热容等性能。
常用的测试方法包括热膨胀测试、热导率测试和比热容测试等。
1.热膨胀测试热膨胀测试用于测量材料随温度变化而发生的膨胀或收缩。
在热膨胀测试中,材料样品被加热或冷却,通过测量长度变化来计算热膨胀系数。
2.热导率测试热导率测试用于测量材料传导热的能力。
在热导率测试中,材料样品的一侧被加热,另一侧被保持在恒定温度,测量两侧温度差来计算热导率。
3.比热容测试比热容测试用于测量材料吸热或放热的能力。
材料物理性能名词解释
铁电性:电偶极子由于它们的相互作用而产生的自发平行排列的现象。
屈服极限:中档应力足够大,材料开始发生塑性变形,产生塑性变形的最小应力。
延展性:指材料受塑性形变而不破坏的能力。
构建的受力模型:拉伸、压缩、剪切、扭转、弯曲塑性形变:指外力移去后不能恢复的形变。
热膨胀:物体的体积或长度随着温度的升高而增加的现象称为热膨胀,本质是点阵结构中质点的平均距离随温度升高而增大。
色散:材料的折射率随入射光频率的减小而减小的性质。
抗热震性:是指材料承受温度的剧烈变化而抵抗破坏的能力。
蠕变:对材料施加恒定应力时。
应变随时间的增加而增加,这种现象叫蠕变。
此时弹性模量也将随时间的增加而减少。
弛豫:对材料施加恒定应变,应力随时间减少的现象,此时弹性模量也随时间而降低。
滞弹性:对于理想弹性固体,作用应力会立即引起弹性形变,一旦应力消除,应变也随之消除。
对于实际固体,这种应变的产生和消除需要一定的时间,这种性质叫滞弹性。
粘弹性:有些材料在比较小的应力作用下可以同时表现出弹性和粘性。
虎克定律:材料在正常温度下,当应力不大时其变形是单纯的弹性变形,应力与应变的关系由实验建立。
晶格滑移:晶体受力时,晶体的一部分相对于另一部分发生平移滑动。
应力:单位面积上所受的内力。
形变:材料在外力作用下,发生形状和大小的变化。
应变:物质内部各质点之间的相对位移。
本征电导:由晶体点阵的基本离子运动引起。
离子自身随热运动离开晶格形成热缺陷,缺陷本身是带电的,可作为离子电导截流子,又叫固有离子电导,在高温下显著。
杂质电导:由固定较弱的离子的运动造成,主要是杂质离子。
在低温下显著。
杂质电导率要比本征电导率大得多。
离子晶体的电导主要为杂质电导。
热电效应:自发极化电矩吸附异性电荷,异性电荷屏蔽自发极化电场而自发极化对温度影响当温度变化时释放出电荷。
极化:在外电场作用下,介质内质点政府电荷重心的分离,并转变为偶极子,即电介质在电场作用下产生感应电荷的现象.自发极化:这种极化状态并非由外加电场所引起而是由晶体内部结构特点所引起。
材料物理性能
材料物理性能
测试弹性模数的必要性
材料物理性能
几种材料在常温下的弹性模数
材料物理性能
比弹性模数
定义:指材料的弹性模数与其单位体积质 量的比值。
陶瓷的比弹性模数一般都比金属材料的大。 在金属材料中,大多数金属的比弹性模数 相差不大。
材料物理性能
材料物理性能
2.3 影响弹性模数的因素
材料的弹性模数是构成材料的离子或分子 之间键合强度的主要标志。
材料物理性能
④ 微观结构
金属材料,在合金成分不变的情况下,显 微组织对弹性模数的影响较小,晶粒大小 对弹性模数无影响。
冷加工可以降低金属及合金的弹性模数 (5%以下),只有形成强的织构才有明显 的影响,并出现弹性各项异性。 作为金属材料刚度代表的弹性模数,是一 个组织不敏感的力学性能指标。
材料物理性能
材料物理性能
真应力—真应变曲线
工程设计和材料选用中一般以工程应力、工程应变为依据. 在材料科学研究中,真应力与真应变将具有重要意义.
材料物理性能
第二节 弹性变形及其性能指标
2.1 弹性变形的本质
材料产生弹性变形的本质,概括来说,都是构成 材料的原子(离子)或分子自平衡位置产生可逆 位置的反映。
材料物理性能
第一节 力-伸长曲线和应力-应变曲线
1.1 力—伸长曲线
材料物理性能
应力: P
FN
FN A
----胡克定律
Fl FN l l EA EA
其中:E----弹性模量,单位为Pa;
EA----杆的抗拉(压)刚度。 可得胡克定律 的另一种形式
l 规定线应变 l
材料物理性能
量子自由电子理论的主要内容:金属中正离子形成的电场是均匀的,价电子不被原子所束缚,可以在整个金属中自由地运动。
满带:全带中每一能级都被都被两个电子占据的能带。在能带图中满带是在最下方,该处电子能量低,不足以参加物理过程(除非受激发),因此满带没有导电性。
线膨胀系数:温度升高1K时,物体的相对伸长。
线性振动:是指质点间的作用力与距离成正比。
热膨胀和结合能、熔点的关系:固体材料的热膨胀与晶体点阵中质点的位能性质有关,而质点的位能性质是由质点间的结合力特性所决定的。所以,质点间结合力强 ,热膨胀系数小.熔点也取决于质点间的结合力。所以熔点高的材料膨胀系数小。
空带:所属各能级上没电子的能带。因此也无导电性。
价带:与原子中价电子的能量相对应的能带。在半导体或电绝缘体中,价带是满带中能量最高的能带。由于热激发、光辐射或掺入杂质等原因,价带可能失去少量电子,留下空穴,从而产生空穴导电性。
导带:最靠近价带而能量较高的能带.这是除去完全被电子充满的一系列能带外,还有部分被填表满的能带.此带中,电子能自由活动。由于热激发、光辐射或掺入杂质等原因,导带出现少量电子,从而产生电子导电性。
(1)材料抵抗发生瞬时断裂这类破坏的性能,称为抗热冲击断裂性;
(2)材料抵抗在热冲击循环作用下,材料表面开裂、剥落,并不断发展,最终碎裂或变质这类破坏的性能,称为抗热冲击损伤性。
提高抗热冲击断裂性能的措施:1.提高材料强度σ,减小弹性模量E,使σ/E提高。2.提高材料的热导率λ,使R′提高。3.减小材料的热膨胀系数α。4减小表面热传递系数h。5减小产品的有效厚度rm。6有意引入裂纹,是避免灾难性热震破坏的途径。
材料物理性能
材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。
它是材料的内在本质,直接影响着材料的使用性能和应用范围。
材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。
首先,热学性能是材料的一个重要物理性能指标。
热学性能包括导热性、热膨胀性和热稳定性等。
导热性是指材料传导热量的能力,通常用热导率来表示。
热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。
热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。
这些性能对于材料在高温环境下的应用具有重要意义。
其次,光学性能是材料的另一个重要物理性能。
光学性能包括透光性、反射率、折射率等指标。
透光性是指材料对光的透过程度,通常用透光率来表示。
反射率是指材料对光的反射程度,通常用反射率来表示。
折射率是指材料对光的折射程度,通常用折射率来表示。
这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。
此外,电学性能是材料的另一个重要物理性能。
电学性能包括导电性、介电常数、电阻率等指标。
导电性是指材料导电的能力,通常用电导率来表示。
介电常数是指材料在电场中的极化能力,通常用介电常数来表示。
电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。
这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。
最后,磁学性能是材料的另一个重要物理性能。
磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。
磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。
磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。
矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。
这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。
综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。
不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。
材料物理性能
裂纹的快速扩展(脆性材料) :临界裂纹尺寸决定材料的断裂强度,一旦裂纹临界尺寸就 迅速扩展使材料断裂。因为裂纹扩展力 G=π Cζ ²/E,C↑,G↑而 dWs/dc=2γ 是常数,因此, 裂纹一旦达到临界尺寸开始扩展,G 就越来越大于 2γ ,知道破坏。 亚临界生长:在使用应力下,裂纹随时间的推移而缓慢扩张,这种缓慢扩展叫亚临界生长。 13、 防止裂纹扩展的措施:1.作用应力不超过临界应力;2.在材料中设置吸收能量的机 构 3.认为地在材料中造成大量极微细的裂纹也能吸收能量。 14、 应力腐蚀理论:在一定的环境,温度和应力场强度因子作用下,材料中关键裂纹尖 端处,裂纹扩展动力与裂纹扩展阻力的比较构成裂纹开裂或止裂的条纹。 15、 显微结构对材料脆性断裂的影响:晶粒尺寸愈小,强度愈高;气孔率增加,强度 和弹性模量降低。 16、 提高无机材料强度改进材料韧性的途径:1.微晶,高密度与高纯度,消除缺陷,提 高晶体的完整性,强度增加。2.提高抗裂能力与预加应力。 (钢化玻璃)表面造成一层压 应力层,脆性断裂自表面开始断裂,预加应力吼需要克服该应力后才开始破坏。3.化学 强化。改变表面化学的组成,使表面的摩尔体积比内部的大,由于表面受到内部材料的 限制,就产生两向状态的压应力,从而使表面残余应力更高。通常是一种大离子置换小 离子来提高压应力。 4.相变增韧。 利用多晶多相陶瓷中某些组成成分在不同温度的相变, 体积增大使围观裂纹终止,从而达到增韧的效果。5.弥散增韧。在基体中渗入具有一定 颗粒尺寸的微细粉料,达到增韧的效果。 17、 F,m 的选择原则(纤维与晶体的匹配原则) :1.使纤维尽可能多的承担外加负荷。为 此,应选用强度及弹性模量比基体高的纤维。2.二者的结合强度适当,否则基体中所承 受的应力无法传递到纤维上。3.应力作用的方向与纤维平行,才能发挥纤维的作用,因 此应注意纤维在基体中的排列。4.纤维与基体的热膨胀系数匹配,最好是纤维的热膨胀 系数略大于基体。5.考虑二者在高温下的化学相容性。必须保证高温下不发生纤维性能 降低的化学反应。6.必须使 Vf>Vf 临界,才能起到强化作用。 18、 热容:物体温度升高 1K 所需要增加的能量 热膨胀:物体的体积或长度随温度的 升高而增大的现象。比热:单位质量的热容。 19、 晶态固体热容经验定律:1.杜隆—珀替定律(元素热容定律) :恒压下元素的原子 热容为 25J/(K·mol).实际上,大部分元素的原子热容都接近该值,特别在高温时符合 地更好。局限:轻元素的原子热容有较大误差 2 柯普定律(化合物热容定律) :化合物 分子热容等于构成此化合物各元素原子热容之和。 20、 爱因斯坦,德拜模型比热模型的异同:同:都是在量子理论的基础上求得热容的 表达式,且两者在高温时与经典公式一致;异:1.爱因斯坦比热模型假设的是每个原子 都是一个独立的振子, 原子之间彼此无关。 所导出的热容值仅在高温下与经典公式一致, 而德拜模型考虑了晶体中原子的相互作用,把晶体近似为连续介质,声频支的震动也近 似的看作是连续的,与实验结果十分吻合;2.爱因斯坦模型的假设忽略可原子振动之间 频率的差别,导致模型在低温时不准;德拜模型考虑了晶体中原子的相互作用,高于 Wmax 不在声频支而在光频支范围,对热容贡献小,可忽略。当温度很低时,即 T<<θ D,有 Cv=12/5π 4NK(T/θ D)3,温度越低,近似越好。 热膨胀系数:温度升高 1K,物体的相对伸长或体积的相对增长值。 19、热膨胀机理 固体材料的热膨胀本质, 归结为点阵结构中的质点间平均距离随温度升高而增大。 在晶格振 动中相邻质点间的作用力实际是非线性的,质点在平衡位置两侧时,受力并不对称。在在质 点平衡位置两侧,合力曲线斜率时不相等的。当 r<r0 时,斜率较小,引力随位移的增大要 慢一些。在这样的受力情况下,质点平衡位置就要向右移,温度越高,相邻质点间平均距离
材料物理性能
2.杜隆-珀替定律(元素的热容定律):恒压下元素的原子热容为25/(K.mol);热容与温度无关奈曼-柯普定律化合物的热容定律:化合物分子热容等于构成此化合物各元素原子热容之和。
4.5.热膨胀与化学键关系:对分子晶体,分子间是弱的范德华力作用,膨胀系数大;共价键的材料如金刚石作用力很强,对高聚物沿链方向共价键连接,垂直链的方向近邻分子间是弱范德华力因此结晶高聚物和取向高聚物热膨胀有很大各向异性,高聚物热膨胀系数比金属高7.钢中A、M、F热膨胀系数大小:A>F>M8.Me对膨胀系数的影响:主要取决于形成K还是固溶于F中,前者使α增大后者减小。
9.金属、高聚物、无机非金属热传导大小和传导机制:热导率λ是指单位温度梯度下,单位时间内通过单位垂直面积的热量。
金属中有大量质量很轻的自由电子,能迅速传递热,无机非金属中自由电子很少,晶格振动是主要导热机制,低温声子导热(声频支格波—弹性波—声波—声子),高温时光子导热;绝缘材料声子导热;高聚物声子热传导机制在低温区,随着温度升高,λ增大;温度升至玻璃化温度时,λ出现极大值;温度高于玻璃化温度后,由于分子排列变得越来越疏松,λ也越来越小。
10.晶体中缺陷、杂质如何影响热导率:引起格波散射等效于声子平均自由程减小→↓λ11.固溶体中溶质含量、性质如何影响热导率:溶质元素的质量大小与溶剂元素相差愈大取代后结合力改变愈大,对λ影响愈大,低温时影响随T↑而↑,T高于0.5德拜温度时,与T 无关原因:低温下声子传导的平均波长远大于点缺陷的线度,不引起散射,T↑平均波长↓→接近点缺陷线度→散射达到最大,再升温散射也不变化12.抗热冲击断裂:抵抗无机材料发生瞬时断裂的性能抗热冲击损伤:抵抗材料在热冲击循环作用下表面发生开裂剥落以致最终破裂或变质的性能13.多相材料产生热应力原因:不同相有不同膨胀系数,温度变化各相膨胀收缩量不同而相互牵制产生热应力14.提高抗热冲击断裂措施:①↑材料强度σ↓弹性模量E,使σ/E↑,即提高材料的柔韧性能吸收较多的弹性应变能而不开裂,↑热稳定性②↑热导率λ,使R’↑,λ大→传热快→内外温差较快平衡,↓热应力聚集③↓热膨胀系数α④↓表面热传递系数h⑤↓产品有效厚度15.差热分析法(DTA):在程序控制温度下将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差随温度、时间的变化关系。
材料物理性能
材料物理性能1. 引言材料物理性能是指材料在物理方面的性能特征与表现,包括其力学性能、热学性能、电学性能等。
了解材料的物理性能能够帮助我们选择合适的材料,预测材料的行为以及进行工程设计和优化。
2. 力学性能2.1 弹性模量弹性模量是材料在受力作用下产生弹性变形的能力,一般表示为杨氏模量(Young’s modulus)、剪切模量(Shear modulus)和泊松比(Poisson ratio)。
- 杨氏模量描述了材料在受拉或受压时的弹性性能,可以算作是应力与应变之间的比例系数。
- 剪切模量衡量了材料在受剪切力作用下的变形能力。
- 泊松比描述了材料在受力作用下,在两个垂直于受力方向的平面上的变形比例。
2.2 强度强度是指材料在承受外力作用下能够抵抗变形和破坏的能力。
强度可以分为屈服强度、抗拉强度、抗压强度、抗剪强度等。
不同类型的力学性能指标适用于不同的应用场景。
2.3 脆性和韧性脆性是指材料在受力作用下容易发生断裂的性质,表现为材料的断裂韧度较低;韧性是指材料在受力作用下能够发生塑性变形而不断裂的性质,表现为材料的断裂韧度较高。
脆性和韧性是相对的,不同材料的脆性和韧性特点不同。
3. 热学性能3.1 热膨胀系数热膨胀系数描述了材料在温度变化下的对长度、体积或密度的变化率。
材料的热膨胀系数可以影响它在温度变化下的热膨胀或收缩行为。
3.2 热导率热导率是指材料传导热量的能力,表示的是单位时间内单位温度差下,通过单位横截面积所传导的热量。
热导率可以用于描述材料的导热性能。
3.3 热容量热容量是指材料在受热时吸收热量的能力,以及在冷却时释放热量的能力。
热容量可以用于描述材料在温度变化下的热稳定性和热响应行为。
4. 电学性能4.1 电导率电导率是指材料导电的能力,表示单位长度内单位面积上的电流。
电导率可以用于描述材料的导电性能。
4.2 介电常数介电常数是指材料对电场的响应能力,表示单位电场下单位体积内储存能量的能力。
材料物理性能
§1 材料物理性能1.1 热学性能1.1.1 热容热容是表征材料从周围环境吸收并储存热量的能力,可以用每一摩尔物质温度每升高1K时所吸收的热量来表示,单位为:J/mol/K。
定压热容Cp :Cp = dQ/dT (p=p0)定容热容Cv :Cv = dQ/dT (v=v0)1.1.2 热传导热传导是表征材料传热能力大小的,用热传导率λ表示,单位为W/m/K:q = -λdT/dx式中,q ------ 单位时间内流过垂直于热流方向的单位面积的热量,单位为W/m2;dT/dx ------ 温度梯度,单位为K/m。
热传导的本质是由于温差而发生的材料相邻部分之间的能量迁移,可以通过三种方式进行:自由电子传导、晶格振动传导和分子或链段传导。
金属材料的热传导主要是通过自由电子在晶体中的自由迁移实现的,因此具有较高的热导率,约为20-400 W/m/K。
无机非金属材料主要是通过离子键、共价键结合,电子迁移困难,其热传导主要通过晶格振动实现,一般热导率低,约为2-50 W/m/K,是良好的绝热材料。
玻璃的原子排列远程无序,因此热导率更低。
高分子材料的传热主要是通过分子或链段的振动实现,速度慢,因此其热导率更低。
1.1.3 热膨胀系数热膨胀系数是用来表征材料热胀冷缩特性的,其定义为:温度变化1K时材料单位长度(线膨胀系数αl)或单位体积(体积膨胀系数αv)变化量,单位为1/K:αl = (dl/dT)p/lαv = (dv/dT)p/v对于各向同性材料,αv=3αl 。
热膨胀系数主要取决于原子(或分子、链段)之间的结合力,结合力越大,则热膨胀系数越小。
无机非金属材料原子间结合力大,热膨胀系数最小,约0.5-15 /106K;金属材料次之,约为5-25 /106K;高分子材料以分子间力结合,结合力小,有很大的热膨胀系数,约为50-300 /106K。
在温度作用下,材料热膨胀系数的巨大差异往往会引起很大的应力,从而导致材料界面开裂,材料失效。
材料物理性能精品文档
化合物的分子热容等于构成此化合物各原子热容之和。
双原子固体:如NaCl、TiC
摩尔热容?
多原子固体:如H2O、 SiO2、CaSiO3
摩尔热容?
其来由是根据杜隆-伯替定律,也是基于经典热容理论。
3.热容经验定律评价 (1)认为热容与温度无关,与事实不符。实际上? (2)低温时、轻元素与事实差别很大。 (3)认为所有元素热容相同,构成化合物时,分子热容等于各原子热 容之和,与事实不完全相符。 (4)未考虑体积是否变化及电子的影响。 (5)除轻元素外大部分元素与固体物质在非低温时与事实十分接近。
较实际值小,但较经验定律有明显进步。
(3)T→0时,热容为0,与事实相符。
1.爱因斯坦模型
进步:能量量子化,考虑了温度因素。 不足:在T<<θ E温区理论值较实验值下降得过快。 原因:前提、没有考虑低频率振动对热容的贡献。德拜模型在这一方面 作了改进,故能得到更好结果。
2. 德拜模型
前提:①考虑了晶体中各质点的相互作用;②对热容的贡献主要是频率 较低的声频支振动(0~ω max),光频支振动对热容的贡献很小,忽略; ③把晶体看作连续介质;④ ω max由分子密度和声速决定。
学习材料物理性能主要是为功能材料的研究和使用打基础。
本课程学习的内容和要求
学习热学性能、电学性能、磁学性能和光学性能。 ●掌握基本概念:
有关概念与现象及表征,如热导率、磁畴、硬磁与软磁材料、热电效 应、半导体的热敏、光敏现象等等。 ●物理本质:
如热膨胀是怎么产生的,不同材料为什么有不同的磁性等。从材料原 子结构、电子层、晶格运动等内部因素认识材料物理性能的本质和机理。 ●影响因素、与化学成分及组织结构之间的关系: 如为什么合金热导率较纯金属低?为?等等。 ●物理性能指标的工程意义: 物理性能指标在实际工程上有何应用。 ●了解物理性能指标的测试方法和原理,相关仪器,试样准备。 注意:金属材料、无机非金属材料、高分子材料表现出不同的物理性能, 如材料热稳定性(耐热震性)只对无机非金属材料有意义,导电热敏效 应只对半导体材料有意义等等。学习时将三大类材料物理性能的共性融 合在一起,同时兼顾其个性。
材料物理性能
2、弹性模量E随原子间距R的减小,近似的存在以下关系:E=k/R m3、并联:E=E A S A/S+E B S B/S 串联:1/E=L A/E A L+L B/E B L4、弹性系数Ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。
对于一定的材料它是个常数,它代表了对原子间弹性位移的抵抗力,即原子结合力。
5、影响裂纹扩展的因素:①首先应使作用应力不超过临界应力,这样裂纹就不会扩展。
②其次在材料中设置吸收能量的机构也阻碍裂纹扩展。
③此外,人为地在材料中造成大量极微细的裂纹(小于临界尺寸)也能吸收能量,阻止裂纹扩展。
6、杜隆-珀替定律——元素的热容定律:恒压下元素的原子摩尔热容为25J/(K*mol),即3R7、热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀。
8、固体材料的热膨胀机理:①固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。
②晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。
9、影响金属热导率的因素:①温度的影响②晶粒大小的影响③立方晶系的热导率与晶向无关;非立方晶系的热导率表现出各向异性④杂质将强烈影响热导率10、影响无机非金属材料热导率的因素:温度的影响;化学组成的影响;显微结构的影响:a.结晶构造的影响b.各向异性晶体的热导率c.多晶体与单晶体的热导率d.非晶体的热导率11、热稳定性:是指材料承受温度的急剧变化而不致破坏的能力,故又称抗热震性。
12、晶体和非晶体热导率曲线比较:①在不考虑光子导热的贡献的任何温度下λ非晶体<λ晶体。
②高温时,非晶体的热导率和晶体的热导率比较接近。
③两者的λ-T曲线的重大区别在于非晶体的λ-T曲线无λ的峰值点m。
13、热应力引起的材料断裂破坏,还涉及材料的散热问题,散热使热应力得以缓解。
与此有关的因素包括:材料的热导率λ;传热的途径;材料表面散热速率14、提高材料抗热冲击断裂性能的措施:①提高材料强度、减小弹性模量,使σ/E提高;②提高材料的热导率,使R、提高;减小材料的热膨胀系数;③减小表面热传递系数;减小产品厚度15、光子与固体材料相互作用,实际上是光子与固体材料中的原子、离子、电子等的相互作用,出现以下两重要结果:①电子极化;②电子能态转变。
材料物理性能整理
名词解释:0.马基申定则:当金属中存在缺陷时,散射系数μ=μT+△μ。
总的电阻包括金属的基本电阻和溶质浓度引起的电阻1.本征半导体:是指纯净的无结构缺陷的半导体单晶2.载流子:任何一种物质,只要存在带电荷的自由粒子就可以在电场下产生导电电流3.多子:在n型半导体中,自由电子的浓度大,故自由电子称为多数载流子,简称多子4.少子:由于自由电子的浓度大,有本征激发产生的空穴与它们相遇的机会也增多,故空穴被复合的掉的数量也增多,所以n型半导体中空穴的浓度反而比本征半导体中的空穴浓度小,故把n型半导体中的空穴称为少数载流子,简称少子5.电介质的击穿:当施加于电介质上的电场强度或电压增大到一定程度时,电介质由介电状态变为导电状态的现象。
6.击穿电压:当施加于电介质上的电场强度或电压增大到一定程度时,电介质由介电状态变为导电状态,此时所加电压称为击穿电压,用Ub表示7.耐电强度(介电强度):发生击穿时的电场强度称为击穿电场强度,又称耐电强度(介电强度)8.电介质的极化:电介质在电场的作用下,其内部的束缚电荷所发生的弹性位移现象和偶极子的取向(正端转向电场的负极,负端转向电场的正极)现象,称为电介质的极化9. 介质损耗:电介质在电场作用下,在单位时间内因发热而消耗的能量称为电介质的损耗功率,简称介质损耗介质损耗是应用于交流电场中电介质的重要品质指标之一10. 磁滞损耗Q:磁滞回线所包围的面积表示磁化一周时所消耗的功,称为磁滞损耗Q,其大小为Q=∮HdB11.原子磁矩:为原子中各电子磁矩总和12.自发磁化:在铁磁物质内部存在着很强的与外磁场无关的“分子场”,在这种“分子场”的作用下,原子磁矩趋于同向平行排列,即自发的磁化至饱和,称自发磁化13. 磁化强度M:单位体积的磁矩称为磁化强度,即在外磁场H的作用下,材料中因磁矩沿外电场方向排列而使磁场强化的度量14.矫顽力Hc: 是材料在正向加磁场使磁化强度达到饱和,然后去掉磁场,再反向加磁场直到磁化强度为零,其相对应的磁场称为矫顽力Hc15.饱和磁化强度Ms:随磁化场的增加,磁感应强度B开始时增加较缓慢,然后迅速地增加,再缓慢的增加,最后磁场强度达到Hs时,磁化至饱和。
材料物理性能
一、名词解释1.顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。
2.铁磁体:在较弱的磁场内,铁磁体也能够获得强的磁化强度,而且在外磁场移去,材料保留强的磁性。
原因是强的内部交换作用,材料内部有强的内部交换场,原子的磁矩平行取向,在物质内部形成磁畴,这样的磁体称铁磁体。
3.金属热膨胀:物质的体积或长度随温度的升高而增大的现象。
4.内耗:对固体材料内在的能量损耗称为内耗。
5.磁致伸缩效应:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化的现象。
6.磁畴:指在未加磁场时铁磁体内部已经磁化到饱和状态的小区域。
7.软磁材料:软铁被磁化后,磁性容易消失,称为软磁材料。
8.亚铁磁体:磁体中存在大小不等反平行的自旋磁矩,磁矩大小部分抵消,因而磁体仍然可以自发磁化,类似于铁磁体。
这种磁体称为亚铁磁体。
9.磁畴结构:磁畴的形状、尺寸、磁壁的类型与厚度的总称。
10.磁滞回线:当磁化磁场作周期的变化时,表示铁磁体中的磁感应强度与磁场强度关系的一条闭合曲线。
二、问答题1.对于一根具体的导线而言,影响它的导电因素有哪些?答:对于一根具体的导线而言,导电过程分两部分,包括最外电子脱离正离子实和之后的在晶格中运行,所以,影响导电性包括这两部分的影响因素。
(1) 从导电定律关系式中可以看出一个电子的电荷是固定的数值,n有效决定于金属的晶体结构及能带结构,而电子自由运行时间或电子平均自由程则决定于在外电场作用下,电子运动过程中所受到的散射。
(2) 电子在金属中所受到的散射可用散射系数μ来表述。
μ的来源有两方面,一是温度引起离子振动造成的μT,二是各种缺陷及杂质引起晶格畸变造成的μn。
μ=μT+μn相应地电阻为:ρ=ρT+ρn(3) 由温度造成的晶格动畸变和由缺陷造成的晶格静畸变,两者都会引起金属电阻率增大。
2.什么是西贝克(Seeback)效应?它是哪种材料的基础?答:西贝克效应是由于温差产生的热电现象,即温差电动势效应——广义地,在半导体材料中,温度和电动势可以互相产生。
材料物理性能名词解释
电导率:当施加的电场产生电流时电流密度正比于电场强度,其比例常数即电导率。
超导:在一定的低温条件下,金属突然失去电阻的现象。
电介质:在电场作用下能被极化的物质,通常是指电阻率大于1010Ω·cm的一类在电场中以感应而并非传导的方式呈现其电学性能的材料。
正压电效应:晶体受机械力作用时,一定方向的表面产生束缚电荷(正负电荷中心不重合),其电荷密度大小与所加应力成线性关系。
逆压电效应:晶体在外电场激励下,某些方向产生形变的现象,形变与电场强度成线性关系。
电致伸缩:电介质在外电场的作用下,发生尺寸变化即产生应变现象,起应变大小与所加电压的平方成正比。
相对电导率:把国际标准退火铜在20℃时的电导率(电阻率为0.017241Ωmm2/m,电导率为58.0M S/m)作为100%,其他材料与此导电率的比值(百分数).热焓:等压过程中,质量为m的物体从0K升高到T时所需的热量。
平均热容:单位质量的物质在没有相变、没有化学反应的情况下每升高一度所需热量。
真实热容:物体吸收或放出的热量在数值上等于物体的焓变。
定压热容:等压条件下单位质量的物质在没有相变、没有化学反应的情况下每升高一度所需热量.定容热容:等容条件下单位质量的物质在没有相变、没有化学反应的情况下每升高一度所需热量。
摩尔热容:1mol物质在没有相变、没有化学反应的情况下每升高一度所需热量。
热传导:由于材料相邻两部分间的温差而发生的能量迁移与传递。
热电性:在金属导体组成的回路中,存在温差或通以电流时,会产生热与电的转换效应。
K状态:回火过程中发现含过渡族合金的电阻有反常升高(其他物理性能,如热膨胀效应、比热容、弹性、内耗等也有明显变化)。
冷加工时发现合金的电阻率明显降低。
托马斯(Thomas)最早发现这一现象,并把这一组织状态称为K状态。
不均匀固溶体:由x射线分析可见,固溶体中原子间距的大小显著地波动,其波动正是组元原子在晶体中不均匀分布的结果,所以也把K状态称之为“不均匀固溶体"。
材料物理性能
第一章热学性能1、热容热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1k所需要增加的能量2、金属高聚物的热容本质及比较大小高聚物多为部分结晶或无定形结构,热容不一定符合理论式。
大多数高聚物的比热容在玻璃化温度以下比较小,温度升高至玻璃化转变点时,分子运动单位发生变化,热运动加剧,热容出现阶梯式变化。
高分子材料的比热容由化学结构决定,温度升高,使链段振动加剧,而高聚物是长链,使之改变运动状态较困难,因而需提供更多的能量。
一般而言,高聚物的比热容比金属和无机材料大。
3、热膨胀的物理本质物体的体积或长度随温度的升高而增大的现象称为热膨胀。
材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子振动但平衡位置保持不变,材料不随温度升高而发生膨胀;而温度升高,振动中心右移,原子间距增大,材料产生热膨胀。
4、化学键对热膨胀的影响材料的膨胀系数与化学键强度密切相关。
对分子晶体而言,膨胀系数大;而由共价键相连接的材料,膨胀系数小的多。
对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
5、从化学键角度比较高聚物的膨胀系数对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
6、热膨胀与熔点、热容的关系(1)热膨胀与熔点的关系当固体晶体温度升高至熔点时,原子热运动将突破原子间结合力,使原有的固态晶体结构被破坏,物体从固态变成液态,所以,固态晶体的膨胀有极限值。
因此,固态晶体的熔点越高,其膨胀系数就越低。
(2)热膨胀与热容的关系热膨胀是固体材料受热以后晶格振动加剧而引起的容积膨胀,而晶格振动的激化就是热运动能量的增大,每升高单位温度时能量的增量也就是热容的定义。
材料物理性能
材料物理性能1.热容⽆相变⽆化学反应条件下。
材料升⾼1K所需要的热量2.⽐热容质量为1Kg的物质在没有相变和化学反应的条件下升⾼1K所需要的热量3.定热容在⽆相变⽆化学反应的条件下保持加热过程中体积不变材料升⾼1K所需要的热量4.定压热容在⽆相变⽆化学反应条件下在加热过程中保持压⼒不变材料升⾼1K所需要的热量5.膨胀系数平均线膨胀是材料在⼀个温度范围内温度平均每升⾼1个单位长度的相对量6.导热系数标志材料热传导能⼒表⽰在单位温度梯度下单位时间内通过单位截⾯积的导热量7.导温系数在不稳定导热过程中表⽰材料温度变化的速率8.德拜三次⽅定律在温度远远⼩于材料的德拜温度下材料的定容摩尔热容与温度三次⽅呈正⽐例关系9.膨胀的物理本质材料温度升⾼材料内部原⼦振动能量增⼤振动幅度增⼤原⼦的平均间距增⼤宏观上表现为热膨胀10.热容的物理本质反映了分⼦热运动的能量随温度变化的程度由晶格热容与电⼦热容组成11.固体导热的微观机制.三种机制:电⼦导热声⼦导热光⼦导热电⼦声⼦的散射会使热阻上升光⼦导热在⾼温情况下才会考虑12.各热物理性能的影响因素热容:温度当T→0 Cvm→0 当T<<θ0 Cvm∝T3当T>>θ0 Cvm→3R组分:⾦属材料Cvm=AT3+BT ⽆机⾮⾦属材料与德拜模型符合较好的⾼分⼦材料与模型符合的不好相变组织变化⼀级相变ΔH≠0ΔV≠0 Cp→∞⼆级相变ΔH⽆突变Cp有突变组织变化由亚稳态向稳态变化中若有热量放出Cv会下降13.膨胀系数:1温度与Cv-T关系相近2成分及组织:越使原⼦间作⽤⼒越强的成分和组织其α越⼩有α奥⽒体>α铁素体>α马⽒体 3 相变⼀级相变dV≠0 α发⽣不连续变化⼆级相变dV=0 α变化14.热导率1原⼦结构与晶体结构对导热机制⼜决定性作⽤:电⼦导热的能⼒⽐声⼦导热的能⼒好并且导电率好的材料导热率好。
对于声⼦导热原⼦间作⽤⼒越强导热率越⾼结构越复杂声⼦散射作⽤加强导热率下降2组分与组织通过影响结构的完整性来影响导热率杂质缺陷温度升⾼都会是散射作⽤加强热导率下降λ单晶>λ多晶λ晶体>λ⾮晶15.物理性能与内部结构的关系1热容:材料原⼦间结合⼒越⼤θp越⾼2 热膨胀系数原⼦间结合⼒越⼤α越⼩3热导率材料间结合⼒越强声⼦导热能⼒越强材料内部的杂质缺陷越多对电⼦声⼦散射作⽤越强导热率越低16.德拜热容理论取得了什么成功相较爱因斯坦原⼦是⼀个个独⽴振⼦的观点德拜提出原⼦之间存在相互作⽤并且与爱因斯坦原⼦以相同频率振动的理论相反,认为原⼦以⼀系列近似连续的振动频率振动且存在最⼤频率并且将晶体近似为连续介质,较好地解决了材料在低温区热容分布的问题17.试⽤双原⼦模型说明固体热膨胀的物理本质原⼦间存在着斥⼒与引⼒,⽽斥⼒随原⼦间距的变化⽐引⼒⼤。
材料物理性能
1.根据受力应变特征材料分为:脆性材料,延性材料,弹性材料。
2.材料受载荷后形变的三个阶段:弹性形变,塑形形变,断裂3.弹性模量:材料在弹性变形阶段内正应力和对应的正应变的比值。
意义:反映材料抵抗应变的能力,是原子间结合强度的标志。
影响因素(键合方式,晶体结构,温度,复相的弹性模量)。
机理:对于足够小的形变应力与应变成线性关系,系数为弹性模量,物理本质是原子间结合力抵抗外力的宏观表现,弹性系数和弹性模量是反映原子间结合强度的标志。
4.滞弹性:固体材料的应变产生与消除需要有限的时间,这种与时间有关的弹性称为滞弹性。
衡量指标:应力弛豫和应力蠕变。
应力弛豫:在持续外力作用下发生形变的物体在总变形值保持不变的情况下,徐变变形增加使物体的内部应力随时间延续而逐渐减少的现象。
应力蠕变:固体材料在恒定荷载下变形随时间延续而缓慢增加的不平衡过程。
5.塑性形变指一种在外力移去后不能回复的形变。
滑移系统:滑移方向和滑移面。
产生条件:a-(几何条件)面间距大滑移矢量小 b(静电条件)每个面上是同种电荷原子,相对滑移面上的电荷相反。
无机非材料不产生原因:a.滑移系统少;b.(位错运动激活能大)位错运动需要克服的势垒比较大,位错运动难以实现。
施加应力,或者由于滑移系统少无法达到临界剪应力,或者在达到临界剪应力之前就导致断裂;c.伯格斯矢量大。
6.高温蠕变定义:材料在高温下长时间受到小应力作用出现蠕变现象。
影响因素:温度和应力。
机理:a晶格机理(位错攀移理论,由于热运动位错线处一列原子移去或移入,位错线向上移一个滑移面。
)b扩散蠕变理论(空位扩散流动,应力造成浓度差,导致晶粒沿受拉方向伸长或缩短引起形变)c晶界机理(多晶体蠕变,高温下晶界相对滑动,剪应力松弛,有利蠕变。
低温下晶界本身是位错源,不利蠕变)7.理论断裂强度:理论下材料所能承受的最大应力。
实际强度:实际情况中材料在外加应力作用下,沿垂直外力方向拉断所需应力。
8.断裂韧性:是材料的固有性能,由材料的组成和显微结构所决定,是材料的本征参数。
材料物理性能
材料物理性能材料的物理性能是指材料在物理层面上所表现出来的各种性质和特性,包括力学性能、热学性能、电学性能、磁学性能等。
首先,力学性能是材料最基本的物理性能之一。
它包括抗拉强度、屈服强度、硬度、韧性、弹性模量等指标。
抗拉强度是材料在拉伸破坏时所能承受的最大拉力,屈服强度是材料在拉伸过程中开始产生塑性变形的拉力。
硬度是材料抵抗划痕或压痕的能力,描述了材料的抗刮擦性能。
韧性是材料在受外力作用下发生塑性变形而不破裂的能力,反映了材料的延展性。
弹性模量是材料在受力后产生弹性变形的能力,反映了材料的变形程度与受力大小的关系。
其次,热学性能是材料在热力学层面上的表现,包括热导率、热膨胀系数、比热容等。
热导率是材料导热性能的指标,反映了材料传导热量的能力。
热膨胀系数是材料在受热后的膨胀程度与温度变化之间的关系,描述了材料在温度变化时的尺寸变化。
比热容则是材料所需吸收或释放的热量与温度变化之间的关系,反映了材料的热量储存能力。
此外,电学性能是材料在电学层面上的表现,包括电导率、介电常数、磁导率等。
电导率是材料导电性能的指标,反映了材料导电的能力。
介电常数是材料对电场的响应能力,描述了材料在电场中的电极化程度。
磁导率则是材料对磁场的响应能力,反映了材料对磁场的传导性能。
最后,磁学性能是材料在磁化和磁导方面的表现,包括磁化强度、剩余磁感应强度、矫顽力等。
磁化强度是材料在外加磁场下磁化的能力,剩余磁感应强度是材料在去除外加磁场后保留的磁感应强度。
矫顽力是材料从磁化过程中恢复原始状态所需的去磁场强度,反映了材料抵抗磁通方向变化的能力。
总之,材料的物理性能涵盖了力学、热学、电学及磁学等多个方面,对于不同的应用需求,选择合适的材料具备合适的物理性能是十分重要的。
材料物理性能(第二章材料的脆)
脆性材料的破坏形式
脆性破坏
脆性材料的破坏往往是发生在一 个瞬间,伴随着明显的断裂,并 且很难修复。
劈裂破坏
劈裂破坏是指在压力或拉力作用 下,脆性材料沿着晶体极易劈开 的方向产生断裂。
穿晶破坏
穿晶破坏是指在脆性材料中,断 裂面穿过晶粒,在晶界或晶粒内 发生断裂。
脆性材料的改进技术
材料改性
通过ห้องสมุดไป่ตู้加合适的添加剂,改变 材料的化学成分,以提高其塑 性和韧性。
材料物理性能(第二章材 料的脆)
本章将介绍材料的物理性能,特别是与脆性相关的方面。我们将了解脆性材 料的定义、特点以及破坏形式,以及如何改进脆性材料的技术。
材料的物理性能
1 导热性
材料的导热性能是指它传导热量的能力,对 于热传导和热稳定性的要求很高的应用非常 重要。
2 电导性
材料的电导性能是指它传导电流的能力,对 于电子器件和电气设备而言非常重要。
热处理
通过控制材料的加热和冷却过 程,改变晶体结构,从而提高 材料的强度和延展性。
加工工艺
采用适当的加工方法,如压延、 拉伸等,使材料的晶界发生滑 移,从而提高其塑性。
材料延展性和韧性
延展性和韧性是与材料的塑性密切相关的性能指标,延展性通常指材料的线 性塑性变形能力,韧性则是指材料在断裂前能吸收的能量。
3 机械性能
材料的机械性能包括强度、硬度、延展性等 指标,决定了材料在力学应用中的表现。
4 热性能
材料的热性能涉及热膨胀系数、热传导率等 参数,对于热应用和热循环要求高的场合至 关重要。
脆性材料的定义和特点
1 定义
脆性材料是指在受到外力作用下容易发生断 裂,而不发生明显的塑性变形的材料。
材料物理性能简介
材料物理性能简介<<材料物理性能>>基本要求一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax 分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料物理性能第一章、材料的热学性能一、基本概念1.热容:物体温度升高1K 所需要增加的能量。
(热容是分子热运动的能量随温度变化的一个物理量)T Qc ∆∆=2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。
[与物质的本性有关,用c 表示,单位J/(kg ·K)]T Qm c ∂∂=13.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。
用Cm 表示。
4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容:5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供给物体的能量,除满足内能的增加,还必须补充对外做功的损耗。
6.热膨胀:物质的体积或长度随温度的升高而增大的现象。
7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。
tl l l ∆=∆α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。
t V V t t V ∂∂=1α9.热导率(导热系数)λ:在单位温度梯度下,单位时间内通过单位截面积的热量。
(标志材料热传导能力,适用于稳态各点温度不随时间变化。
)q=-λ△T/△X 。
10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。
α=λ/ρc 。
α表示温度变化的速率(材料内部温度趋于一致的能力。
α越大的材料各处的温度差越小。
适用于非稳态不稳定的热传导过程。
本质仍是材料传热能力。
)。
二、基本理论1.德拜理论及热容和温度变化关系。
答:⑴爱因斯坦没有考虑低频振动对热容的贡献。
⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数;②固体可看做连续介质,能传播弹性振动波;③固体中传播的弹性波分为纵波和横波两类;④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。
⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。
②当T《θD时,Cv,m∝3T。
③当T→0时,Cv,m→0,与实验大体相符。
⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用;②晶体不是连续介质,德拜理论在低温下也不符;③金属类的晶体,没有考虑自由电子的贡献。
2.热容的物理本质。
答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。
物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。
【⑴反映晶体受热后激发出的晶格波和温度的关系;⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同;⑶温度升高,晶格的振幅增大,该频率的声子数目也增大;⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。
材料物理的解释】3.热膨胀的物理本质。
答:由于原子之间存在着相互作用力,吸引力与斥力。
力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。
即原子间距增大。
⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】4.固体材料的导热机制。
答:⑴固体的导热包括:电子导热、声子导热和光子导热。
①纯金属:电子导热是主要机制;②合金:声子导热的作用增强;③半金属或半导体:声子导热、电子导热;④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。
⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。
固体:质点间有很强的相互作用。
5.焓和热容与加热温度的关系。
P11。
图1.8⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变②等温转变,焓有突变;②磁性转变、BCC点阵的有序-无序转变。
③热容曲线发生不连续变化,焓曲线发生跃变;④珠光体转变、铁的α→γ转变。
6.相变对热容、焓的影响。
答:⑴一级相变:固态的多型性转变属于一级相变(如珠光体转变、铁的α-γ转变),加热到临界点Tc焓的曲线出现跃变,热熔曲线发生不连续变化,这种曲线中转变的热效应即为曲线跃变所对应的焓变化值。
【一级相变有潜热,如果是等温转变,则相变时焓的变化有突变,热容趋于无穷大】⑵二级相变:是在一个温度范围内逐步完成的,焓随着温度的升高而逐渐增大,当接近临界点Tc,由于转变的数量急剧增多,Q的变化加剧,与此相对应的热容值则达到最大值,转变的热效应相当于阴影面积。
【二级相变无潜热,热容有突变】7.熔化和凝固。
P10图1.7答:⑴加热温度低于熔点时,加热所需热量随T缓慢上升;⑵Tm处,熔化热q s,焓曲线拐折并陡直上升;⑶液态金属热容比固态大。
8.热导率和温度的关系:⑴金属:⑵无机非金属:①低温时有较高热导率的材料,随温度的升高,热导率降低;②高温时有较低热导率的材料,随温度的升高,热导率升高。
9.热力学参数的影响因素。
答:⑴热容:①温度;②压力;③组分;④组织变化。
⑵热导率:①金属:a.纯金属由于温度升高而使平均自由程减小的作用超过温度直接作用,因而纯金属的热导率一般随温度升高而降低。
合金:合金的热导率则不同于异类原子的存在,平均自由程受温度的影响相对较小,温度本身的影响占主导作用,使声子导热作用加强,因此随温度的升高而升高;b.原子结构;c.合金成分和晶体结构:合金中加入杂质元素,使热阻增强,λ下降;d.气孔率。
②无机非金属:a.温度;b.成分、结构;c.各向异性。
⑶热膨胀:①相变的影响;②成分和组织的影响;③各向异性的影响;④铁磁性转变的影响。
10.材料的热膨胀与热容、熔点、德拜温度的关系: ⑴与温度的关系:V K c v0v γα=V K c v 0l 3γα=⑵与熔点的关系Tm :022.0=m l T αC T m l =α⑶与德拜温度θD 的关系:23/2'1D l A V c γθα=11.影响膨胀系数的因素(了解):⑴膨胀系数和热容关系:格林爱森定律⑵膨胀系数和熔点的关系:022.0=m l T αC T m l =α⑶膨胀系数和原子序数的关系:膨胀系数随元素的原子序数呈明显周期性关系。
①只有IA 族的αl 随原子序数的增加而增大,其余主族的αl 随原子序数的增加而减小; ②过渡元素具有低的αl 值;③碱金属αl 值高,12.林德曼定律:32m 12108.2V A T r m ⨯=ω13.热导率Fe-合金的膨胀反常机制:磁致伸缩抵消了合金正常热膨胀的结果。
三、基本技能1.亚稳态组织转变、有序-无序转变(定性知道):答:⑴亚稳态组织转变:不可逆转变时效回火相变有偏离直线关系,无线性关系。
亚稳态能量高,变为稳态放热,而导致热熔曲线向下拐折。
⑵有序-无序转变:伴随着膨胀系数的变化。
有序结构会使合金原子之间的结合增强,因此,有序化导致膨胀系数减小。
2.热分析法分析组织相变,DTA,膨胀分析(膨胀曲线、相变点)。
答:利用加热或冷却过程中,热效应所产生的温度变化和时间关系的一种分析技术。
建立合金相图:先确定合金的液相线、固相线、共晶线以及包晶线,再确立相区。
如:建立二元合金相图,取某一成分的合金,用示差分析法测定出他的DTA曲线。
试样从液相开始冷却,熔化曲线向上拐折,拐折的特点是:陡直上升,然后逐渐减小,直到接近共晶温度时,DTA接近基线。
在共晶温度处,由于试样集中放出热量,所以出现一个陡直的放热峰,待共晶转变完成后,DTA曲线重新回到基线。
取宽峰将起始下和宽峰的峰值对应的温度T2分别连成光滑曲线,得到液相线和共晶线。
3.电导与热导的关系,导热机制。
答:⑴对金属来说热导率和电导率的关系(维德曼-弗兰兹定律):室温下许多金属的热导率和电导率之比λ/σ几乎相同,不随金属不同而改变表明导电性好的材料,导热性也好。
λ/σ=LT,L洛伦兹数。
洛伦兹数只有在T>0℃的较高温度才近似为常数;T→0K时,洛伦兹数趋于0。
⑵传热不同的传热方式,主要传导方式:固体:自由电子、声子、光子。
纯金属:电子。
合金:电子、声子。
半导体、半金属:电子、声子。
绝缘体:声子。
【无机非金属:声子(晶格振动)辐射传热相当于光在介质中传播】4.共析钢热膨胀曲线:⑴热容(A最小)转变体积先膨胀,M>Fe3C>P>A;⑵在加热时,温度到共析点以上,首先是铁素体转变为奥氏体,接着是珠光体转变为奥氏体;⑶由于发生相变而造成体积收缩(陡直下降),当全为奥氏体时,温度升高,原子间距离增大,钢膨胀。
5.淬火刚的回火转变:淬火后组织:M+Ar⑴80~160℃:发生体积收缩,此时析出ε相碳化物,体积收缩是由于碳化物析出,导致M 正反度下降;⑵230~280℃:发生了体积膨胀,表面淬火组织中Ar开始分解;⑶260~360℃:体积收缩,M继续分解铁素体和渗碳体混合物;⑷加热到535℃后,再缓慢冷却至室温,冷却曲线200℃附近出现拐折,表面535℃回火钢组织完全变为铁素体和渗碳体。
第二章、材料的电学性能一、基本概念1.压电效应:⑴正压电效应:在某些晶体的一定方向上施加压力或拉力,则在晶体的一些对应的表面上分别出现正、负电荷,其电荷密度与施加外力的大小成正比。
⑵逆压电效应:如果一块晶体置于外电场中,由于电场作用,使晶体正负电荷中心发生相对位移而分离,这一极化又导致了晶体放热形变——电致形变。
2.热释电效应:在某些绝缘体中,由于温度变化而引起电极化状态改变的现象。
3.铁电体:固有电偶极矩的取向一致,E作用下,固有电矩转向。
4.光电导效应:半导体受光辐射时,电导率增加而变得易于导电。
5.PN结的光伏效应:当光照射在PN结上时,在PN结上会产生电动势的现象。
5.光电效应:某些物质受到光照后,引起物质电性发生变化,这种光致电变的现象。
6电介质:能在电场中极化的材料。
7.N、P型半导体:在半导体中加入某种杂质元素并控制其含量分布可以得到主要靠电子或者电子空穴来导电的半导体结构,前者称为N型半导体,后者称为P型半导体。
U。
8.介电强度:指电介质在不发生电击穿条件下允许施加的最大电压d二、基本理论1.分析金属电阻产生原因?(缺陷、杂质)答:量子力学证明:当电子波在0K下通过一个理想的晶体点阵时,它将不受到散射无阻碍传播。
只有在晶体点阵的完整性以及由于晶体点阵离子的热振动,晶体中的异类原子、位错和点缺陷等使晶体点阵的周期性遭到破坏的地方,电子波会受到散射,从而产生了阻碍作用,导电性降低,这是材料产生电阻的本质所在。
2.马西森定律适用范围。
答:⑴ρ=∑ρi=ρ(T)+ρ残。
ρ(T)为与温度有关的金属的基本电阻率,即溶剂金属(纯金属)的电阻率;ρ残为决定于化学缺陷和物理缺陷,而与温度无关的残余电阻率。