渗碳件常见缺陷
渗碳淬火裂纹的特征
渗碳淬火裂纹的特征
渗碳淬火裂纹是一种常见的金属热处理缺陷,它在工业生产中造成了许多问题。
渗碳淬火裂纹是指在渗碳淬火过程中,金属材料表面出现的裂纹。
这种裂纹通常呈现出一定的形态特征,以及与渗碳淬火过程相关的特定位置。
渗碳淬火裂纹的特征之一是其位置分布的特殊性。
这些裂纹通常出现在金属材料的表面或近表面区域,而不是内部。
这是因为渗碳淬火过程中,表面的渗碳层与内部材料的差异导致了内外应力的不平衡,从而导致了裂纹的形成。
渗碳淬火裂纹的形态特征也值得关注。
这些裂纹通常呈现出沿着材料表面方向延伸的线状形态,有时呈现出分叉或交叉的形式。
这是由于渗碳淬火过程中,不同位置的温度和应力分布不均匀,导致裂纹在材料表面上扩展的方式不同。
渗碳淬火裂纹的特征还包括其尺寸和密度。
这些裂纹通常呈现出不同的尺寸和密度,有些裂纹可能很细小,几乎看不到,而有些裂纹则较大且密集。
这是由于渗碳淬火过程中,金属材料的组织和化学成分的不均匀性,导致了裂纹的形成和分布的差异。
渗碳淬火裂纹还具有一定的方向性特征。
这些裂纹通常沿着材料表面方向延伸,与材料的应力和变形方向有关。
这是由于渗碳淬火过程中,金属材料的热膨胀和收缩引起的应力分布不均匀性,导致了
裂纹在特定方向上的扩展。
总的来说,渗碳淬火裂纹具有位置分布特殊、形态特征独特、尺寸密度不均匀和方向性明显等特征。
了解和掌握这些特征对于预防和解决渗碳淬火裂纹问题至关重要。
在工业生产中,通过合理的工艺参数和控制措施,可以有效地减少渗碳淬火裂纹的发生,提高金属制品的质量和可靠性。
钢的渗碳热处理
20钢 4%硝酸酒精 500× 渗碳后空冷
表层全脱碳,白亮部分为铁素体 次表层为部分脱碳层,即珠光体+少量铁素体
过渡区为珠光体+铁素体(白色网块)
第18页/共21页
20钢 4%硝酸酒精 150× 渗碳后淬火
表层脱碳,次表层也略有脱碳层,冷却不足 马氏体+屈氏体
第19页/共21页
2.回火 渗碳件淬火后尚需进行低温回火,回火温度通常为150~190℃。 3.冷处理 作用是减少或消除残余奥氏体,从而适当提高渗层硬度。由于冷处 理生产成本高,又增加了工序,目前生产中除特殊渗碳零件外,一般很少采用。
第12页/共21页
20钢 4%硝酸酒精 500× 930℃气体渗碳8小时,直接淬火 表层组织照片:马氏体+碳化物(白色颗粒)+残余奥氏体
第20页/共21页
感谢您的观看。
第21页/共21页
渗碳层厚度δ
图7 低碳钢渗碳缓冷后的显微组织 第9页/共21页
典型零件渗碳层厚度确定方法
零件种类 轴类 齿轮
薄片工件
渗碳层厚度δ(mm) (0.1~0.2)R (0.2~0.3)m (0.2~0.3)t
备注 R--半径(mm)
m--模数 t--厚度(mm)
第10页/共21页
五、渗碳后的热处理
1.淬火 淬火是为了获得马氏体组织,以得到高硬度。通常有三种方法, 即预冷直接淬火、一次加热淬火和二次加热淬火。渗碳零件淬火温度的 选择要兼顾高碳的渗层和低碳的心部两方面的要求。原则上,过共析层 的淬火温度低于Accm,而亚共析层的淬火温度高于Ac3。如果Accm> Ac3,很容易选择一个淬火温度来同时满足这两者的要求;果Accm≤Ac3, 则很难同时兼顾。在这种情况下,要根据对零件的主要技术要求、钢件 的心部能否淬透、渗碳后零件的表面含碳量和所采用的淬火方法等综合 考虑加以决定。
渗碳
渗碳科技名词定义中文名称:渗碳英文名称:carburizing定义:为增加钢件表层的含碳量和形成一定的碳浓度梯度,将钢件在渗碳介质中加热并保温使碳原子渗入表层的化学热处理工艺。
应用学科:机械工程(一级学科);机械工程(2)_热处理(二级学科);化学热处理(三级学科)本内容由全国科学技术名词审定委员会审定公布编辑本组织及性能特点:不能细化钢的晶粒。
工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。
2 、预冷直接淬火、低温回火,淬火温度800-850℃组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。
适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。
3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。
适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。
4、渗碳高温回火,一次加热淬火,低温回火,淬火温度840-860℃组织及性能特点:高温回火使M和残余A分解,渗层中碳和合金元素以碳化物形式析出,便于切削加工及淬火后残余A减少。
适用范围:主要用于Cr—Ni合金渗碳工件5、二次淬火低温回火组织及性能特点:第一次淬火(或正火),可以消除渗碳层网状碳化物及细化心部组织(850-870℃),第二次淬火主要改善渗层组织,对心部性能要求不高时可在材料的Ac1—Ac3之间淬火,对心部性能要求高时要在Ac3以上淬火。
适用范围:主要用于对力学性能要求很高的重要渗碳件,特别是对粗晶粒钢。
但在渗碳后需经过两次高温加热,使工件变形和氧化脱碳增加,热处理过程较复杂。
渗碳零件的质量检验及缺陷预防
渗碳零件的质量检验及缺陷预防渗碳化学热处理工艺是通过改变零件表面化学成分及显微组织,使得零件表面具有高硬度、高耐磨性、高接触疲劳强度,心部应具有良好的综合力学性能。
文章结合渗碳零件宏观质量检验及微观质量检验的基本内容,论述了渗碳零件的热处理缺陷产生的原因及不同缺陷的解决措施。
标签:渗碳零件;质量检验;解决措施1 概述在现代工业中,齿轮、凸轮及其他磨损件承受了一定的摩擦力、交变弯曲应力、接触疲劳应力、一定的冲击力。
失效形式有过量磨损,表面剥落、断裂等。
所以要求表面具有高硬度、高的接触疲劳抗力和良好的耐磨性,而心部有一定的塑韧性[1]。
通过改变这些零件表面化学成分及显微组织的渗碳、渗氮、渗硼等化学热处理工艺,使得零件表面具有高硬度、高耐磨性、高接触疲劳,心部应具有良好的综合力学性能[2]。
渗碳钢碳含量为0.12%~0.25%(质量),锰、铬、镍的作用是提高渗碳钢的淬透性,淬火时心部能获得大量的板条马氏体组织。
钛、钒、钨、钼等能细化晶粒。
锰、铬、镍等元素还能改善渗碳层性能。
渗碳层性能有表层含碳量、表层浓度梯度和渗碳层深度。
表层含碳量0.80%~1.05%(质量分数),碳的浓度梯度宜平缓过渡,以免性能变化太大,增大内应力。
铬、锰、钼有利于渗碳层增厚,而钛、钒减小渗碳层厚度。
镍、硅等元素不利于渗碳层增厚,一般渗碳钢中不用硅合金化。
钢中碳化物形成元素含量过高,在渗碳层中产生块状碳化物,造成表面脆性,所以碳化物和非碳化物形成元素含量要适当。
渗碳零件由于表面化学成分及显微组织都发生变化,加之要进行淬火及回火热处理工艺,所以常产生热处理缺陷,降低零件的弯曲强度、疲劳强度及耐磨性能。
因此,加强渗碳零件的质量检验及缺陷预防,对于提高力学性能、延长产品寿命、节约材料、促进可持续发展具有实际意义[3]。
2 渗碳零件的质量检验内容2.1 渗碳零件的外观及硬度检验渗碳零件的外观检验属于宏观检验方法,主要有渗碳零件表面的无氧化检验、锈蚀检验、剥落检验、机械碰伤检验、表面裂纹检验等。
渗碳件常见缺陷与对策
渗碳件常见缺陷与对策一、渗碳层出现大块状或网状碳化物缺陷产生原因:1、表面碳浓度过高;2、滴注式渗碳,滴量过大;3、控制气氛渗碳,富化气太多;4、液体渗碳,盐浴氰根含量过高;5、渗碳层出炉空冷,冷速太慢;对策:1、降低表面碳浓度,扩散期内减少滴量和适当提高扩散期湿度,也可适当减少渗碳期滴量;2、减少固体渗碳的催碳剂;3、减少液体渗碳的氰根含量;4、夏天室温太高,渗后空冷件可吹风助冷;5、提高淬火加热温度50~80ºC并适当延长保温时间;6、两次淬火或正火+淬火,也可正火+高温回火,然后淬火回火;二、渗层出现大量残余奥氏体缺陷产生原因:1、奥氏体较稳定,奥氏体中碳及合金元素的含量较高;2、回火不及时,奥氏体热稳定化;3、回火后冷却太慢;对策:1、表面碳浓度不宜太高;2、降低直接淬火或重新加热淬火温度,控制心部铁素体的级别≤3级;3、低温回火后快冷;4、可以重新加热淬火,冷处理,也可高温回火后重新淬火;三、表面脱碳缺陷产生原因:1、气体渗碳后期,炉气碳势低;2、固体渗碳后,冷却速度过慢;3、渗碳后空冷时间过长;4、在冷却井中无保护冷却;5、空气炉加热淬火无保护气体;6、盐浴炉加热淬火,盐浴脱氧不彻底;对策:1、在碳势适宜的介质中补渗;2、淬火后作喷丸处理;3、磨削余量,较大件允许有一定脱碳层(≤0.02mm);四、渗碳层淬火后出现屈氏体组织(黑色组织)缺陷产生原因:渗碳介质中含氧量较高:氧扩散到晶界形成Cr、Mn、Si的氧化物,使合金元素贫化,使淬透性降低。
对策:1、控制炉气介质成分,降低含氧量;2、用喷丸可以进行补救;3、提高淬火介质冷却能力;五、心部铁素体过多,使硬度不足缺陷产生原因:1、淬火温度低;2、重新加热淬火保温时间不足,淬火冷速不够;3、心部有未溶铁素体;4、心部有奥氏体分解产物;对策:1、按正常工艺重新加热淬火;2、适当提高淬火温度延长保温时间;六、渗碳层深度不足缺陷产生原因:1、炉温低、保温时间短;2、渗剂浓度低;3、炉子漏气;4、盐浴渗碳成分不正常;5、装炉量过多;6、工件表面有氧化皮或积炭;对策:1、针对原因,调整渗碳温度、时间、滴量及炉子的密封性;2、加强新盐鉴定及工作状况的检查;3、零件应该清理干净;4、渗层过薄,可以补渗,补渗的速度是正常渗碳的1/2,约为0.1mm/h左右;七、渗层深度不均匀缺陷产生原因:1、炉温不均匀;2、炉内气氛循环不良;3、炭黑在表面沉积;4、固体渗碳箱内温差大及催渗剂不均匀;5、零件表面有锈斑、油污等;6、零件表面粗糙度不一致;7、零件吊挂疏密不均;8、原材料有带状组织;对策:1、渗碳前严格清洗零件;2、清理炉内积炭;3、零件装夹时应均匀分布间隙大小相等;4、经常检查炉温均匀性;5、原材料不得有带状组织;6、经常检查炉温、炉气及装炉情况;八、表面硬度低缺陷产生原因:1、表面碳浓度低;2、表面残余奥氏体多;3、表面形成屈氏体组织;4、淬火温度高,溶入奥氏体碳量多,淬火后形成大量残余奥氏体;5、淬火加热温度低,溶入奥氏体的碳量不够,淬火马氏体含碳低;6、回火温度过高;对策:1、碳浓度低,可以补渗;2、残余奥氏体多,可高温回火后再加热淬火;3、有托氏体组织,可以重新加热淬火;4、严格热处理工艺纪律;九、表面腐蚀和氧化缺陷产生原因:1、渗剂不纯有水、硫和硫酸盐;2、气体渗碳炉漏气固体渗碳时催渗剂在工件表面融化,液体渗碳后,工件表面粘有残盐;3、高温出炉,空冷保护不够;4、盐炉校正不彻底,空气炉无保护气氛加热,淬火后不及时清洗;5、零件表面不清洁;对策:1、严格控制渗碳剂及盐浴成分;2、经常检查设备密封情况;3、对零件表面及时清理和清洗;4、严格执行工艺纪律;十、渗碳件开裂缺陷产生原因:1、冷却速度过慢,组织转变不均匀;2、合金钢渗后空冷,在表层托氏体下面保留一层未转变奥氏体在随后冷却或室温放置时,转变成马氏体,比容加大,出现拉应力;3、第一次淬火时,冷却速度太快或工件形状复杂;4、材质含提高淬透性的微量元素(Mo、B)太多等;对策:1、渗后减慢冷却速度,使渗层在冷却过程中完全共析转变;2、渗后加快冷却速度,得到马氏体+残余奥氏体。
渗碳补渗工艺的确定及措施
渗碳补渗工艺的确定及措施(四川泸州长江挖掘机厂赵振东)渗碳件表面脱碳或渗碳深度未达到工艺要求,是渗碳件常见缺陷。
为满足技术要求,必须施行正确的补渗工艺方法,进行补救。
众所周知,补渗件表层已有较高的碳浓度,故与正常渗碳件的低碳表层状态有明显差异。
渗碳特性也必然不同,如不考虑其特点,将难以获得预期的效果,甚至造成废品。
(1)表面脱碳的补渗工艺及措施常规渗碳件表层大多数出现脱碳现象,因此,一般标准均规定:渗碳件表层只允许一定的脱碳深度(小于0.05mm),当脱碳深度超出规定时,必须进行补渗使其恢复到要求的碳浓度(>0.80%)。
渗碳脱碳件最表层的碳浓度有明显下降,使渗层的正常碳浓度分布发生变化,最就碳浓度由表层移至次表层。
补渗件的表面碳浓度由C1提高到C S,使表层至次表层之间补充足够的碳后,才能满足渗碳质量要求。
在制定补渗工艺,选择其参数时,应充分考虑渗层碳浓度分布及其变化的这一特点。
理论分析及试验均证明,渗碳是一个不平衡过程,随着渗碳时间的延长,表面碳浓度按一定规律增加,最后达到与炉气碳势平衡的浓度,形成一定的碳浓度分布,对脱碳件,补渗前表面的碳浓度分布不同于正常渗碳件和非脱碳补渗的情况,其特征在于最表层为低或中碳浓度,而次表层为高碳浓度。
补渗时,脱碳层所需增加的碳来自高碳势炉气和次表面的高碳区域,相当于双面渗碳,其补碳速度成倍增加。
在补渗表面增碳的同时,其次表面碳浓度下降,浓度梯度降低,减弱了碳向内部扩散的能力。
因此,补渗时,渗层浓度增加并不明显。
只要炉气有足够的活性碳提供,脱碳表层被补足碳的时间并不长。
但应注意,工件入炉补渗并非立即进入渗碳过程,而要经历一段时间(一般为1.5~3h不等)排气,方能达到补渗要求的碳势。
在排气期,补渗件不但无碳渗入,而且还要脱碳,使原脱碳层加深,在制定补渗时间时,应考虑该情况。
①补渗温度渗碳是碳在γ—Fe中的扩散现象,温度越高,碳在钢中的扩散速度越快,在表面吸收同样碳量的条件下,表面碳浓度增长变慢,而渗层深度增加变快。
渗碳常见的五种缺陷和相应的防止方法
书山有路勤为径,学海无涯苦作舟
渗碳常见的五种缺陷和相应的防止方法
一、碳浓度过高
1、产生原因及危害:假如渗碳时急剧加热,温度又过高或固体渗碳时用全新渗碳剂,或用强烈的催渗剂过多都会引起渗碳浓度过高的现象。
随着碳浓度过高,工件表面出现块状粗大的碳化物或网状碳化物。
由于这种硬脆组织产生,使渗碳层的韧性急剧下降。
并且淬火时形成高碳马氏体,在磨削时容易出现磨削裂纹。
⒉防止的方法
①不能急剧加热,需采用适当的加热温度,不使钢的晶粒长大为好。
假如渗碳时晶粒粗大,则应在渗碳后正火或两次淬火处理来细化晶粒。
②严格控制炉温均匀性,不能波动过大,在反射炉中固体渗碳时需特别注意。
③固体渗碳时,渗碳剂要新、旧配比使用。
催渗剂最好采用47%的BaCO3,不使用Na2CO3 作催渗剂。
二、碳浓度过低
⒈产生的原因及危害:温度波动很大或催渗剂过少都会引起表面的碳浓度不足。
最理想的碳浓度为0.91.0%之间,低于0.8%C,零件容易磨损。
⒉防止的方法:
①渗碳温度通常采用920940℃,渗碳温度过低就会引起碳浓度过低,且延长渗碳时间;渗碳温度过高会引起晶粒粗大。
②催渗剂(BaCO3)的用量不应低于4%。
三、渗碳后表面局部贫碳:。
渗碳件的缺陷有哪些及防止措施
渗碳件的缺陷有哪些?如何防止渗碳缺陷?(1)渗碳层中网状或大块花碳化物产生的原因是渗碳碳势太高,使表面渗层含碳量太高合渗碳后冷却速度过慢。
网状碳化物增加了表面脆性,渗层容易剥落,降低使用寿命,容易使零件表面在淬火或磨削加工中产生裂纹。
消除的办法是进行Acm以上的高温淬火或正火。
预防办法是减低炉内碳势,延长扩散时间。
(2)渗碳层中大量残余奥氏体产生的原因是渗碳剂浓度太高使表面含碳量过高、淬火温度太高。
消除的办法是进行高温回火后重新加热淬火+回火或冷处理+回火。
预防措施:降低炉内碳势,选择较低的淬火温度。
淬火剂温度偏高也是原因之一。
淬火剂的温度越低,淬火冷却的终止温度距离马氏体转变终止点Mf也就越近,马氏体转变进行越充分,残余奥氏体就越少。
反之,淬火剂温度高了,则残余奥氏体量也就多了。
(3)反常组织一般在含氧量较高的钢(如沸腾钢)固体渗碳时出现,其特征是网状碳化物和珠光体之间被一层铁素体所分离。
这种组织淬火后易出现软点。
消除的办法是适当提高淬火温度或适当延长淬火加热的保温时间,以便使组织均匀化,并选用更为剧烈的冷却剂淬火。
(4)渗碳零件中形成魏氏组织在高温下进行长时间渗碳后,奥氏体晶粒会急剧长大,碳浓度也大大增加,在随后的缓慢冷却中,二次渗碳体很易于沿奥氏体晶粒的一定晶面析出,形成穿插在晶粒内部的白亮色的粗针,这种组织称为过共析魏氏组织。
产生的原因是长时间过热渗碳和渗碳后冷却太缓慢。
这种组织可通过渗碳后的两次家人淬火予以改善或完全消除。
在渗碳件的心部出现魏氏组织,这种魏氏组织的针状物是先共析铁素体。
形成的原因是:①原材料为本质粗晶粒钢或原始组织中已有魏氏体组织,通过高温长时间渗碳,晶粒会更加粗大,在随后的缓慢冷却中,先共析铁素体以针状自晶界向晶内析出或在晶粒内部单独呈针状析出而形成白亮针状的魏氏组织。
②渗碳工艺不当。
渗碳温度过高,保温时间太长,奥氏体晶粒特别粗大,导致冷却后出现魏氏组织,这种组织具有明显的过热特征。
渗碳件常见缺陷与对策
渗碳件常见缺陷与对策一、渗碳层出现大块状或网状碳化物缺陷产生原因:1、表面碳浓度过高;2、滴注式渗碳,滴量过大;3、控制气氛渗碳,富化气太多;4、液体渗碳,盐浴氰根含量过高;5、渗碳层出炉空冷,冷速太慢;对策:1、降低表面碳浓度,扩散期内减少滴量和适当提高扩散期湿度,也可适当减少渗碳期滴量;2、减少固体渗碳的催碳剂;3、减少液体渗碳的氰根含量;4、夏天室温太高,渗后空冷件可吹风助冷;5、提高淬火加热温度50~80ºC并适当延长保温时间;6、两次淬火或正火+淬火,也可正火+高温回火,然后淬火回火;二、渗层出现大量残余奥氏体缺陷产生原因:1、奥氏体较稳定,奥氏体中碳及合金元素的含量较高;2、回火不及时,奥氏体热稳定化;3、回火后冷却太慢;对策:1、表面碳浓度不宜太高;2、降低直接淬火或重新加热淬火温度,控制心部铁素体的级别≤3级;3、低温回火后快冷;4、可以重新加热淬火,冷处理,也可高温回火后重新淬火;三、表面脱碳缺陷产生原因:1、气体渗碳后期,炉气碳势低;2、固体渗碳后,冷却速度过慢;3、渗碳后空冷时间过长;4、在冷却井中无保护冷却;5、空气炉加热淬火无保护气体;6、盐浴炉加热淬火,盐浴脱氧不彻底;对策:1、在碳势适宜的介质中补渗;2、淬火后作喷丸处理;3、磨削余量,较大件允许有一定脱碳层(≤0.02mm);四、渗碳层淬火后出现屈氏体组织(黑色组织)缺陷产生原因:渗碳介质中含氧量较高:氧扩散到晶界形成Cr、Mn、Si的氧化物,使合金元素贫化,使淬透性降低。
对策:1、控制炉气介质成分,降低含氧量;2、用喷丸可以进行补救;3、提高淬火介质冷却能力;五、心部铁素体过多,使硬度不足缺陷产生原因:1、淬火温度低;2、重新加热淬火保温时间不足,淬火冷速不够;3、心部有未溶铁素体;4、心部有奥氏体分解产物;对策:1、按正常工艺重新加热淬火;2、适当提高淬火温度延长保温时间;六、渗碳层深度不足缺陷产生原因:1、炉温低、保温时间短;2、渗剂浓度低;3、炉子漏气;4、盐浴渗碳成分不正常;5、装炉量过多;6、工件表面有氧化皮或积炭;对策:1、针对原因,调整渗碳温度、时间、滴量及炉子的密封性;2、加强新盐鉴定及工作状况的检查;3、零件应该清理干净;4、渗层过薄,可以补渗,补渗的速度是正常渗碳的1/2,约为0.1mm/h左右;七、渗层深度不均匀缺陷产生原因:1、炉温不均匀;2、炉内气氛循环不良;3、炭黑在表面沉积;4、固体渗碳箱内温差大及催渗剂不均匀;5、零件表面有锈斑、油污等;6、零件表面粗糙度不一致;7、零件吊挂疏密不均;8、原材料有带状组织;对策:1、渗碳前严格清洗零件;2、清理炉内积炭;3、零件装夹时应均匀分布间隙大小相等;4、经常检查炉温均匀性;5、原材料不得有带状组织;6、经常检查炉温、炉气及装炉情况;八、表面硬度低缺陷产生原因:1、表面碳浓度低;2、表面残余奥氏体多;3、表面形成屈氏体组织;4、淬火温度高,溶入奥氏体碳量多,淬火后形成大量残余奥氏体;5、淬火加热温度低,溶入奥氏体的碳量不够,淬火马氏体含碳低;6、回火温度过高;对策:1、碳浓度低,可以补渗;2、残余奥氏体多,可高温回火后再加热淬火;3、有托氏体组织,可以重新加热淬火;4、严格热处理工艺纪律;九、表面腐蚀和氧化缺陷产生原因:1、渗剂不纯有水、硫和硫酸盐;2、气体渗碳炉漏气固体渗碳时催渗剂在工件表面融化,液体渗碳后,工件表面粘有残盐;3、高温出炉,空冷保护不够;4、盐炉校正不彻底,空气炉无保护气氛加热,淬火后不及时清洗;5、零件表面不清洁;对策:1、严格控制渗碳剂及盐浴成分;2、经常检查设备密封情况;3、对零件表面及时清理和清洗;4、严格执行工艺纪律;十、渗碳件开裂缺陷产生原因:1、冷却速度过慢,组织转变不均匀;2、合金钢渗后空冷,在表层托氏体下面保留一层未转变奥氏体在随后冷却或室温放置时,转变成马氏体,比容加大,出现拉应力;3、第一次淬火时,冷却速度太快或工件形状复杂;4、材质含提高淬透性的微量元素(Mo、B)太多等;对策:1、渗后减慢冷却速度,使渗层在冷却过程中完全共析转变;2、渗后加快冷却速度,得到马氏体+残余奥氏体。
渗碳淬火的缺陷
渗碳淬火常见缺陷本文是多年从事渗碳淬火的一线工艺人员讲解:工艺流程,渗碳淬火常见缺陷,到积碳如何燃烧,如何定碳,以及炉子的日常保养等。
在热处理实际生产中,往往由于细节的忽略经常导致不良品的出现。
因此热处理工作中要认真负责,将不良品岀现的几率降到最低。
实际生产中的热处理流程如下:来料检验(有无磕碰伤,铁屑,漏工序)一备料(热处理工艺卡,可以拼炉的产品)一一装料(选择正确的装料方式,主要是从变形方而考虑)——淸洗(需要刷涂料的刷涂料防渗,需要螺纹防渗的螺纹防渗)——预氧化(主要是为了使工件表而活化,提髙渗碳速度)——进加热炉(工艺一左要选择正确)一后淸洗——低温回火。
当然随炉试样也要有的。
渗碳淬火常见工艺缺陷:内氧化(IGO),碳化物超标(游离状碳化物,网状碳化物),残余奥氏体超标,渗碳淬硬层中贝氏体数量(NMTP)超标,晶粒粗大,渗碳层淬火后微裂纹, 心部硬度和渗碳深度出现偏差。
内氧化:可控气氛渗破是建立在水煤气反应之上的,CO+H20一CO2+H2,英中C02, H20是有害气体,在高温下极易引起某些以固溶形式存在的合金元素的氧化,在氧化过程中,氧吸附于金属表面然后沿奥氏体晶界向内部扩散,引起晶界合金元素的氧化。
形成内氧化的合金元素是从奥氏体化的固溶体中获得,英结果是靠近氧化物微粒的奥氏体基体中该合金元素减少,造成淬火后内氧化处形成非马组织,降低了工件表面的残余压应力,因此在生产中要避免内氧化的产生。
1. 工件进炉前不能有油,水,锈斑。
2. 合理装炉,保证炉温恢复快,炉气恢复要快,减轻升温阶段内氧化的产生。
3. 严格控制渗碳辅料的质量。
4. 提高淬火温度和淬火冷却介质冷速减轻非马的产生。
5. 渗碳淬火前10-30min通入5-10%NH3也可减缓非马的产生碳化物:碳化物产生主要是由于渗碳碳势高,扩散不好,降温淬火时,在尖角和齿顶部位容易析岀网状和断续网状磯化物。
一旦析出网状碳化物返工也很难消除,因此工艺上一泄要引起注意。
11种渗碳件常见缺陷及防止措施
11种渗碳件常见缺陷及防止措施1.表层粗大块状或网状碳化物形成原因及防止措施:(1)渗碳剂活性太高或渗碳保温时间过长;(2)降低渗剂活性当渗层要求较深时,保温后期适当降低渗剂活性。
返修方法:(1)在降低碳势气氛下延长保温时间,重新淬火;(2)高温加热扩散后瑞淬火。
2.表层大量残余奥氏体形成原因及防止措施:(1)淬火温度过高,奥氏体中碳及合金元素含量高;(2)降低渗剂活性,降低直接淬火或重新加热淬火的温度。
返修方法:(1)冷处理;(2)高温回火后,重新加火;(3)采用合适的加热温度,重新淬火。
3.表面脱碳形成原因及防止措施:渗碳后期渗剂活性过分降低,气体渗碳炉漏气。
液体渗碳时碳酸盐含量过高,在冷却罐中及淬火加热时保护不当,出炉时高温状态在空气中停留时间过长。
返修方法:(1)在活性合适的介质中补渗;(2)喷丸处理(适用于脱碳层≤0.02mm时。
4.表面非马氏体组织形成原因及防止措施:渗碳介质中的氧向钢中扩散,在晶界上形Cr、Mn等元素的氧化物,致使该处合金元系贫化,淬透性降低,淬火后出理黑色网状组织(托氏体)控制炉内介质成分,降低氧的含量,提高淬火速度,合理选择钢材。
返修方法:当非马氏体组织出现处深度≤0.02mm时,可用喷丸处理强化补救;出现深度过深时,重新加热淬火。
5.反常组织形成原因及防止措施:当钢中含氧量较高(沸腾钢),固体渗碳时渗碳后冷却速度过慢,在渗碳层中出现先共析渗碳体网周围有铁素体层,淬火后出现软点。
返修方法:提高淬火温度或适当延长淬火加热保温时间,使奥氏体均匀化,并采用较快淬火冷却速度。
6.心部铁素体过多形成原因及防止措施:淬火温度低,或重新加热淬火保温时间不够。
返修方法:按正常工艺重新加热淬火。
7.渗层浓度不够形成原因及防止措施:炉温低,渗层活性低,炉子漏气或渗碳盐浴成分不正常加强炉温校验,及炉气成分或盐浴成分的监测。
返修方法:补渗。
8.渗层深度不均匀形成原因及防止措施:炉温不均匀:炉内气氛循环不良;升温过程中工件表面氧化;碳黑在工件表面沉积;工件表面氧化皮等没有清理干净;固体渗碳时渗碳箱内温差大及催渗剂拌和不均匀。
气体渗碳的常见缺陷和预防措施
櫡櫡櫡櫡櫡櫡櫡櫡~现场经验櫡櫡櫡櫡櫡櫡櫡櫡~收稿日期:2020 01 14作者简介:赵步青(1943—),男,江苏阜宁人,高级工程师,研究方向为工模具热处理工艺,已发表论文和实用性文章共270余篇,出版热处理专著5部,协编图书两部。
联系电话:15067596339;E mail:zsg4272@163.com气体渗碳的常见缺陷和预防措施赵步青,朱 敏,高旭华,徐利建(浙江省金华市华南汽配有限公司,浙江金华321000)中图分类号:TG157 文献标志码:B 文章编号:1008 1690(2020)02 0048 03CommonDefectsforGasCarburizingandPreventiveMeasuresZHAOBuqing,ZHUMin,GAOXuhua,XULijian(ZhejiangJinhuaHuananAutomobiveFittingsCo.,Ltd.,Jinhua321000,ZhejiangChina)0 引言气体渗碳是制造业应用最广泛的化学热处理工艺。
渗碳并淬火和低温回火的低碳钢工件表面硬度和疲劳强度高、耐磨性好,且心部具有足够的强度和韧性。
华南汽配公司是生产汽车防滑链的民营企业,大部分产品都要进行气体渗碳。
渗碳炉有网带炉、井式炉和滚筒炉,产品质量稳定。
本文为生产实践经验的总结,介绍30多年来遇到的以及同行提供的常见的12种气体渗碳缺陷,供参考。
1 粗大针状马氏体通常,设计人员对渗碳件淬火后渗层的马氏体都会提出级别要求。
对于汽车防滑链,要求其渗碳层马氏体针≤4级。
图1为由于渗碳温度过高和炉气氛碳势较高造成的渗层粗大马氏体组织。
为了防止产生这种缺陷,必须调整渗碳气氛的碳势,降低渗碳温度,加强炉前的抽样检查。
2 网状碳化物根据经验,碳化物的形态、数量、大小及分布对渗碳件的性能有很大影响。
图2为渗碳层中严重的网状碳化物。
其产生的原因有3点:①滴注式渗碳时,煤油或其他渗剂滴量太大;②控制气氛渗碳的富化气用量太大;③渗碳后直接淬火的温度过高且冷却较慢。
渗碳补渗工艺的确定及措施
渗碳补渗工艺的确定及措施渗碳件表面脱碳或渗碳深度未达到工艺要求,是渗碳件常见缺陷。
为满足技术要求,必须施行正确的补渗工艺方法,进行补救。
众所周知,补渗件表层已有较高的碳浓度,故与正常渗碳件的低碳表层状态有明显差异。
渗碳特性也必然不同,如不考虑其特点,将难以获得预期的效果,甚至造成废品。
(1)表面脱碳的补渗工艺及措施常规渗碳件表层大多数出现脱碳现象,因此,一般标准均规定:渗碳件表层只允许一定的脱碳深度(小于0.05mm),当脱碳深度超出规定时,必须进行补渗使其恢复到要求的碳浓度(>0.80%)。
渗碳脱碳件最表层的碳浓度有明显下降,使渗层的正常碳浓度分布发生变化,最就碳浓度由表层移至次表层。
补渗件的表面碳浓度由C1提高到C S,使表层至次表层之间补充足够的碳后,才能满足渗碳质量要求。
在制定补渗工艺,选择其参数时,应充分考虑渗层碳浓度分布及其变化的这一特点。
理论分析及试验均证明,渗碳是一个不平衡过程,随着渗碳时间的延长,表面碳浓度按一定规律增加,最后达到与炉气碳势平衡的浓度,形成一定的碳浓度分布,对脱碳件,补渗前表面的碳浓度分布不同于正常渗碳件和非脱碳补渗的情况,其特征在于最表层为低或中碳浓度,而次表层为高碳浓度。
补渗时,脱碳层所需增加的碳来自高碳势炉气和次表面的高碳区域,相当于双面渗碳,其补碳速度成倍增加。
在补渗表面增碳的同时,其次表面碳浓度下降,浓度梯度降低,减弱了碳向内部扩散的能力。
因此,补渗时,渗层浓度增加并不明显。
只要炉气有足够的活性碳提供,脱碳表层被补足碳的时间并不长。
但应注意,工件入炉补渗并非立即进入渗碳过程,而要经历一段时间(一般为1.5~3h不等)排气,方能达到补渗要求的碳势。
在排气期,补渗件不但无碳渗入,而且还要脱碳,使原脱碳层加深,在制定补渗时间时,应考虑该情况。
①补渗温度渗碳是碳在γ—Fe中的扩散现象,温度越高,碳在钢中的扩散速度越快,在表面吸收同样碳量的条件下,表面碳浓度增长变慢,而渗层深度增加变快。
渗碳件的常见缺陷及预防措施
一
测 试与 分析 一
渗 碳 件 的 常 见 缺 陷 及 预 防 措 施
于娜红 , 余 成 龙
( 中国第一汽车股份有 限公 司无锡 油泵油嘴研 究所, 江 苏 无锡 2 1 4 0 6 3 )
摘
要 :渗碳 零件 的 常见缺 陷有 黑 色组 织、 渗层 大块 状或 网状碳 化 合物 、 渗层 不 均 匀和 畸 变过 大 等 。这 些缺 陷 的产生 与渗碳 气氛 的成分 和均 匀性 、 渗碳 操 作 、 工件 的装 炉 方式 、 渗碳 后 的淬 火工 艺和操 作 等 多 种 因素 中的一种 或 几种 有关 。采取 某 些相应 的措 施 可 以预 防这 些缺 陷的产 生。
f a c t o r s wh i c h i n c l u de c o mp o s i t i o n a n d u n i f o r mi t y o f e a r b u r l z i n g a t mo s p he r e, o p e r a t i o n o f c a r bu r i z i n g, c ha r g i冷时 , 表层为过共析
层, 是细 密珠 光体加 颗 粒状 均匀 分布碳 化 物 ; 次 表层 为共 析层 , 属 细密珠光体组织 ; 内层 为 亚 共 析 过 渡
气 中的氧发 生 内氧化 。炉 气 中氧原 子吸 入钢 中 向内 扩散 , 在 晶界形 成 C r 、 Mn 、 T i 、 S i 等 的氧 化物 , 造 成 晶 界处 合金元 素 贫乏 , 此处 淬透 性低 , 渗碳 时表层 形成
YU Na h o n g .YU C h e n g l o n g
渗碳件常见的缺陷及防止和补救措施
渗碳件常见的缺陷及防止和补救措施
1、深层过浅:产生的原因主要是加热温度低,时间短,炉内的碳势低等原因造成的。
应针对具体原因采取防止措施。
深层过浅可采取补渗予以补救。
2、渗层过深:产生的原因主要是加热温度高,时间长,炉内的碳势高等原因造成的。
应针对具体原因采取防止措施。
但对已超过标准要求的是无法补救的。
3、渗层深度不均匀:产生这种缺陷的主要原因是炉温不均匀,炉内碳势不均匀,或工件表面不净。
防止方法主要是改善炉内温度和碳势的均匀性,清洁工件表面。
这类缺陷可在
比较缓和的渗碳气氛炉内重新渗碳,使其扩散均匀。
4、渗碳层脱碳:产生这种缺陷的主要原因是渗碳后期碳势降低太大,或是出炉冷速慢,零件在高温下与空气接触时间太长,或在重新加热时炉气保护不良等,防止办法采取相应措施,可以用补渗的办法补救。
5、网状碳化物:产生网状碳化物的主要原因是炉内碳势太高,或是渗碳后的冷却速度太慢。
可通过控制合适的碳势,或加大冷却速度来防止。
已有的网状碳化物可以通过正火处理来消除。
6、残余奥氏体量过多:钢中的合金元素较多碳浓度过高,淬火温度高时易产生多量残余奥氏体。
适当降低碳势和淬火温度可防止产生多量残余奥氏体。
采用长时间的较高温度回火可使残余奥氏体分解,也可以采用重新加热淬火及深冷处理等方法进行补救。
7、黑色组织:渗层中的黑色组织通常因升温期排气不足,晶界发生氧化而使合金元素贫化造成在淬火后出现驱氏体和贝氏体。
这种组织对零件性能有很坏的影响,而且是不可挽救的,应按上述因素采取预防措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗碳常见缺陷
1 渗碳层中有网状或大块状碳化物:
渗碳剂活性太高,使表面含碳量过高。
渗碳后冷速太慢,预冷温度过低。
危害:增加了表面脆性,渗层易剥落,降低使用寿命。
零件在淬火或磨削中易产生裂纹。
消除办法:进行A Cm以上的高温淬火或正火。
2 渗层中有大量的残余奥氏体:
渗碳剂浓度太高,使表面含碳量过高。
淬火温度过高。
危害:降低表面硬度和接触疲劳、弯曲疲劳性能,淬火易变形。
消除办法:进行高温回火后,重新加热淬火或冷处理。
3 黑色组织:某些合金刚渗碳以后,表层组织中出现断续的网状黑色组织,深度为0.03~0.05㎜.
产生原因:渗碳介质中的氧向钢内扩散,在晶界处形成铬、锰、钛、硅的氧化物,使得晶界处合金元素贫化,造成局部淬透性下降,而出现了奥氏体分解产物(屈氏体等)
危害:降低表面硬度和耐磨性,缩短零件使用寿命。
消除办法:减少氧化性气氛,增加炉子的密封性,排气充分,提高冷速。
已形成的可噴丸处理。
4 过热:渗碳时或渗碳后加热时过热,表现为钢的晶粒过大。
危害:增加脆性,增加表面碳化物的数量,并形成粗大碳化物,甚至
形成莱氏体,使零件报废。
消除办法:进行正火后再淬回火。
5 表面脱碳:渗碳后期渗碳气氛浓度过低,或渗碳后冷却及淬火加热时保护不良。
危害:降低了表面硬度和耐磨性,也降低了接触疲劳强度,淬火时易开裂。
消除办法:补渗或磨掉脱碳层,喷丸。
6表面含碳量过低,渗层深度不足。
产生原因:渗碳气氛浓度过低,渗碳温度低,时间短,炉子漏气,零件表面沉积碳黑,装炉量太多,排气不充分。
危害:降低表面硬度、耐磨性和疲劳强度。
消除办法:补渗
7 渗碳层过深:
产生原因:渗碳温度偏高,时间过长。
危害:淬火应力及脆性增加,韧性降低。
对严格要求渗层的产品只能报废。
8 渗碳层不均匀:
产生原因:零件表面不清洁或积碳,炉温不均,气氛循环不良或漏气,原材料带状偏析严重。
危害:性能不均,降低使用寿命。
消除办法:补渗为避免层深增加太多,可适当取低点的渗碳温度
9 表面腐蚀及氧化:产生原因:渗碳剂中含有硫及硫酸盐,零件表面
不清洁,炉子漏气,零件高温出炉,淬火盐浴脱氧不良。
危害:表面硬度不均,耐磨性差。
10 心部硬度不足:原因:加热与冷却不足。
危害:心部韧性有余,强度不够。
降低工件的疲劳寿命。
消除办法:重新加热淬火提高预冷温度。