台式摇头风扇设计

合集下载

2机械原理课程设计台式电风扇摇头装置

2机械原理课程设计台式电风扇摇头装置

台式电风扇摇头装置设计一.设计要求设计台式电风扇的摇头装置要求能左右旋转并可调整俯仰角。

以实现一个动力下扇叶旋转和摇头动作的联合运动效果。

台式电风扇的摇头机构,使电风扇作摇头动作(在肯定的仰角下随摇杆摇摆)。

风扇的直径为300mm,电扇电动机转速n=1450r∕min,电扇摇头周期t=10s.电扇摇摆角度中、仰俯角度Φ与急回系数K的设计要求及任务安排见表。

方案号电扇摇摆转动电扇仰俯转动仰角夕/(°)摆角ψ/(°)急回系数K2.设计任务:⑴按给定的主要参数,拟定机械传动系统总体方案;⑵画出机构运动方案简图;⑶安排蜗轮蜗杆、齿轮传动比,确定他们的基本参数,设计计算几何尺寸;(4)确定电扇摇摆转动的平面连杆机构的运动学尺寸,它应满意摆角中及急回系数K条件下使最小传动角/最大。

并对平面连杆机构进行运动分析,绘制运动线图,验算曲柄存在的条件;⑸编写设计计算说明书;二.功能分解明显为完成风扇左右俯仰的吹风过程须要实现下列运动功能要求:在扇叶旋转的同时扇头能左右摇摆肯定的角度,因此,须要设计相应的左右摇摆机构(本方案设计为双摇杆机构)。

为完成风扇可摇头,可不摇头的吹风过程。

因此必需设计相应的离合器机构(本方案设计为滑销离合器机构)。

扇头的俯仰角调整,这样可以增大风扇的吹风范围。

因此,须要设计扇头俯仰角调整机构(本方案设计为外置条件按钮)。

三.机构选用驱动方式采纳电动机驱动。

为完成风扇左右俯仰的吹风过程,据上述功能分解,可以分别选用以下机构。

机构选型表:b图1:锥齿轮减速机构图2,蜗杆减速机构由于蜗杆蜗轮啮合齿轮间的相对滑动速度较大,摩擦磨损大,传动效率较低,易出现发热现象,常须要用较贵的减磨耐磨材料来制造蜗轮,制造精度要求高,刀具费用昂贵,成本高。

锥齿轮可以用来传递两相交的运动,相比蜗杆蜗轮成本较低。

所以在此我们选用锥齿轮减速。

2,离合器选用方案一方案二由以上两个机构简图可以看出:方案二采纳的比方案一少用了一个齿轮,它主要采纳的滑销和锥齿轮卡和从而实现是否摇头的运动.不管是从结构简便还是从经济的角度来说方案二都比方案一好.也更简洁实现.所以我们选择方案一.3,摇头机构选用方案一方案二要实现扇头的左右摇摆运动有许多种运动方式可以选择,例如我们可以选用凸轮机构,多杆机构,滑块机构齿轮机构等.但四杆机构更简洁制造,制造精度要求也不是很高,并且四杆机构能实现摆幅也更广更简洁实现,最重要的是它的制造成本比较低.所以首选四杆机构.从以上两个简图中我们不难看出方案一比方案二多了一个齿轮盘,所以方案二更好.四,机构组合据上述功能机构的分析我们选用以下机构来实现电风扇的减速、摇头、俯仰运动。

台式电风扇摇头机构设计 机械原理课程设计

台式电风扇摇头机构设计 机械原理课程设计

机械原理课程设计说明书设计课题台式电风扇摇头机构设计指导教师郑丽娟完成日期 2 0 1 1 年 7 月 8 日1.摘要2.机构设计任务书2.1 设计目的2.2 课程题目2.3 工作原理2.4 设计要求2.5 设计背景3.机构方案设计3.1思路来源3.2思路流程3.3方案选择与比较3.3.1方案选择3.3.2 方案综合分析3.3.3主方案分析4.典型机构的设计和运动分析4.1轮系设计及分析4.2移动从动件圆柱凸轮机构设计——理论廓线设计4.3 设计注意要求5.动力分析5.1传动比计算5.1.1 总传动比计算5.2.2分配各级传动比5.2传动参数的计算5.2.1各零件转速的计算5.2.2各零件功率的计算5.2.3各零件输入转矩的计算5.2.4各构件的传动参数汇总5.3齿条、齿轮传动5.4蜗杆上任一点(扇叶安装位置)运动分析:6.心得体会7.参考文献8.附件1.摘要机械原理课程设计旨在让我们在掌握一定理论知识之后,对现实的机械产品进行分析与设计,为了更好地将机械原理课程的理论与实际想结合,我们组设计的研究课题是台式电风扇的摇头机构。

此摇头机构由一个电机驱动,通过一定数量的齿轮组成轮系进行传动,可以实现电风扇扇叶在预定的工作角度内转动,有较强的适应性与稳定性。

本说明书将首先对我们组设计的电风扇摇头机构以及工作方式借助Matlab等辅助软件进行分析、研究,并进行Pro/E动画仿真模拟,然后对主要构件的具体设计方案、制作方法以及Solidworks三维图样进行展示与说明,最后对整个机构的设计方案进行总结、评价与比较。

关键词摇头机构三维设计分析评价2.机构设计任务书2.1设计目的a)综合运用机械设计课程和其他课程的知识,分析和解决机械设计问题,进一步巩固、加深和拓宽所学的知识。

b)通过设计实践,逐步树立正确的设计思想,增强创新意识和竞争意识熟悉掌握机械设计的一般规律,培养分析问题和解决问题的能力。

c)通过设计计算、绘图以及运用技术标准、规范、设计手册等有关设计资料,进行全面的机械设计基本技能的训练。

课程设计《台式电风扇摇头装置》

课程设计《台式电风扇摇头装置》

一、题目:台式电风扇摇头装置二、设计题目及任务2.1设计题目设计台式电风扇的摇头机构,使电风扇做摇头动作(在一定的仰角下随摇杆摆动)。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s。

电扇摆动角度ψ,仰俯角度φ与急回系数K的设计要求及任务分配表见表2.11.表2.11 台式电风扇摆头机构设计数据此次选择的是方案C:摆角为ψ=90°,急回系数K=1.02,仰角φ=15°。

2.2设计任务(1)按给定主要参数,拟定机械传动系统总体方案。

(2)画出机构运动方案简图。

(3)分配涡轮蜗杆、齿轮传动比。

确定它们的基本参数,设计计算几何尺寸。

(4)确定电扇摇摆转动的平面连杆机构的运动学尺寸,它满足摆角ψ及急回系数K条件下使最小传动比角γmin最大。

并对平面连杆机构进行运动分析,绘制运动线图,验算曲柄存在条件。

(5)编写设计计算说明书。

(6)学生可进一步完成台式电风扇摇头机构的计算机动态演示或模型试验验证。

2.3设计提示(1)常见的摇头机构有杠杆式、滑板式和揿拔式等。

可以将风扇的摇头动作分解为风扇的左右摆动和风扇的上下俯仰运动。

风扇摇摆转动可以采用平面连杆机构实现。

以双摇杆机构的连杆为主动件(即风扇转子通过涡轮蜗杆带动连杆传动),则其中一个连架杆的摆动即实现风扇的左右摆动(风扇安装在连架杆上)。

机架可选取80~90mm。

风扇的上下仰俯运动可采用连杆机构、凸轮机构等实现。

(2)还可以采用空间连杆机构直接实现风扇的左右摆动和上下仰俯的复合运动。

三、功能分解现市售电风扇的机头一般只是做单一的左右摆头动作,可结合手动调节机头俯仰角度来改变受风区域,但正常工作时机头的俯仰角往往是固定的,只依靠机头自身左右摆动来送风,因此受风区域、面积有限。

本台式电风扇是立体送风电风扇,该电风扇有两种实现方式。

即风扇左右摆动和风扇上下俯仰运动。

3.1风扇的左右摇摆运动风扇在开启后,需要调整受风区域时,则自然希望风扇能摇头,增加、改变受风的区域。

台式电风扇摇头装置的设计

台式电风扇摇头装置的设计

毕业设计题目:台式电风扇摇头装置班级:姓名:指导教师:完成日期:一、设计题目台式电风扇摇头装置二、原始资料(1) 台式电风扇摇头装置设计数据(2) 生产类型:中批或大批大量生产三、上交材料(1) 机构运动方案简图1张(2) 课程设计说明书1份四、进度安排(参考)(1) 拟定机械传动系统总体方案(2) 画出机构运动简图(3) 分配传动比、确定他们的基本参数,计算几何尺寸(4) 编写说明书(5) 准备及答辩五、指导教师评语成绩:指导教师日期摘要这次课程设计的内容是台式电风扇摇头机构,主要设计传动方案,拟定机械传动系统的总体方案并确定传动机构的具体尺寸,并画出机构运动方案简图。

首先要根据给出的参数拟定传动方案,然后计算并确定传动比及传动件的具体尺寸。

我希望能通过这次课程设计,了解并认识台式电风扇摇头装置的工作原理,巩固和加深已学过的技术基础课和专业课的知识,理论联系实际,锻炼自己分析问题、解决问题的能力,为今后的工作打下一个良好的基础。

关键词:台式电风扇摇头装置传动装置AbstractThe content of curriculum design, desktop fans shaking mechanism agencies, major transmission program designed to develop mechanical transmission system of the overall program and determine the specific size of transmission, and kinematic programs draw diagrams. First, according to the parameters given in the development drive program, and then calculate and determine the transmission ratio and transmission parts of specific dimensions. I hope that through this curriculum design, understand and appreciate the fans shook their heads desktop device works to consolidate and deepen the already learned basic courses and specialized courses of technical knowledge, theory with practice, exercise their own analysis of issues, problem-solving abilities,For future work to lay a good foundation.Key words:desktop electric blower head shaking mechanism transmission目录1.设计要求...................... 错误!未定义书签。

机械原理课程设计-台式电风扇摇头装置的设计

机械原理课程设计-台式电风扇摇头装置的设计

目录0.设计任务书 (3)1.工作原理和工艺动作分解 (4)2.根据工艺动作和协调要求拟定运动循环图 (5)3.执行机构选型 (6)4.机械运动方案的选择和评定 (10)5.机械传动系统的速比和变速机构 (11)6.摇头机构的尺寸设计 (12)7.电风扇摇头机构的三维建模 (14)8.电风扇摇头机构速度与加速度分析 (15)9.参考资料 (16)10.设计总结 (17)课程设计任务书机械工程学院(系、部)机械大类专业机械0904 班级课程名称:机械原理课程设计设计题目:台式电风扇摇头装置的设计完成期限:自2011 年 6 月24 日至2011 年7 月 1 日共 1 周1.工作原理和工艺动作分解(1)工作原理及工艺过程图1-1 工艺过程图(2)功能分解电风扇的工作原理是将电风扇的送风区域进行周期性变换,达到增大送风区域的目的。

显然,为了完成电风扇的摆头动作,需实现下列运动功能要求:1)风扇需要按运动规律做左右摆动,因此需要设计相应的摆动机构。

2)风扇需要转换传动轴线和改变转速,因此需要设计相应的齿轮系机构。

对这两个机构的运动功能作进一步分析,可知它们分别应该实现下列基本运动:3)左右摆动有三个基本运动:运动轴线变换、传动比降低和周期性摆动。

4)转换运动轴线和改变传动比有一个基本动作:运动轴线变换。

此外,还要满足传动性能要求:改变电风扇的送风区域时,在急回系数 K =1.01、摆动角度φ=80°的要求下,尽量保持运动的平稳转换和减小机构间的摩擦。

图1-2 功能分解图2.根据工艺动作和协调要求拟定运动循环图图2-1 运动循环图3.执行机构选型3.1(方案1)通过构件2对构件3做相对圆周转动使构件3摆动,从而实现电风扇的摇头动作,如图3-1图3-1 双摇杆机构示意图该机构通过齿轮啮合达到减速的目的,然后由涡轮蜗杆实现转动的方向改变的目的,由四连杆机构组成双摇杆机构实现风扇头的摆动。

此方案的优点是涡轮蜗杆机构的传递准确性搞,连杆机构制造简单成本低,齿轮传动平稳;缺点是涡轮蜗杆传递力的能力差,发热量比较大。

械原理课程设计台式电风扇摇头装置的设计-V1

械原理课程设计台式电风扇摇头装置的设计-V1

械原理课程设计台式电风扇摇头装置的设计-V1设计一个可以使得台式电风扇能够进行左右转动的摇头装置,需要运用到械原理。

械原理课程设计能够提供一个很好的解决方案。

以下是关于械原理课程设计台式电风扇摇头装置的设计的文章。

1. 需求分析首先,我们需要进行需求分析,确定适当的参数和限制。

在设计中,我们需要考虑以下几个方面:- 电风扇的电机参数- 摇头器的大小和形状- 摇头装置的运作速率- 摇头角度,也就是每次转动的角度2. 设计方案接下来,我们可以开始设计电风扇摇头装置。

为了实现这个目标,械原理技术将被运用。

以下是设计方案:- 在风扇头部的中央加入一个凸起的基座,用于安装摇头器。

- 将一个凸形隆起的柱子放在基座上,使其旋转可以进行摇头的运作。

- 摇头器可以采用传统的齿轮和链条系统,其中一个齿轮和闸片用来限制摇头器的转速。

- 计算针对实现理想的摇头角度,在摇头器一圈中设置摆动装置。

摆动装置会把摇头器的运动传送到机械臂上。

机械臂可以单独设定到不同的摇头亚角度,以获得所需的摇头角度。

3. 实施在实施过程中,我们需要把设计所需的部件进行加工和制造,其中包括制造适合于齿轮和闸片的齿轮轴,以及一个摆动装置和一个机械臂。

一旦所有的部件被制造完成,并且装配在一起,即可进行实际测试。

测试可分为两个方面:第一方面是测试摇头器是否正常运作;第二方面是测试电风扇和摇头机械臂的协调运作。

4. 结论通过这次的实践,我们成功地设计出一个完整的台式电风扇摇头装置,实现了理想的摇头角度和速率。

这是一个很好的械原理课程设计例子,学生可以通过这个例子了解并掌握技能,并在未来的职业生涯中实践运用。

《机械原理课程设计》台式电风扇摇头机构

《机械原理课程设计》台式电风扇摇头机构

《机械原理课程设计》台式电风扇摇头机构绪论:风扇,指热天借以生风取凉的用具。

电风扇,是用电驱动产生气流的装置,内配置的扇子通电后来进行转动化成自然风来达到乘凉的效果。

图1(家用风扇简图)发明时间机械风扇起源房顶上,1829年,一个叫詹姆斯·拜伦的美国人从钟表的结构中受到启发,发明了一种可以固定在天花板上,用发条驱动的机械风扇。

这种风扇转动扇叶带来的徐徐凉风使人感到欣喜,但得爬上梯子去上发条,很麻烦。

1872年,一个叫约瑟夫的法国人又研制出一种靠发条涡轮启动,用齿轮链条装置传动的机械风扇,这个风扇比拜伦发明的机械风扇精致多了,使用也方便一些。

1880年,美国人舒乐首次将叶片直接装在电动机上,再接上电源,叶片飞速转动,阵阵凉风扑面而来,这就是世界上第一台电风扇。

电风扇的主要部件是:交流电动机。

其工作原理是:通电线圈在磁场中受力而转动。

能量的转化形式是:电能主要转化为机械能,同时由于线圈有电阻,所以不可避免的有一部分电能要转化为热能。

在人们的日常生活中,一台风扇为了满足多人多角度的使用,具备了在启动后左右反复摇头的功能,因此能增加令人感到凉爽的面积,这不失为一种方法。

在电风扇内部使风扇部分摇头有很多种方法。

工作原理:1.通过电机提供原动力2.通过轮系,连杆,凸轮等机构进行传动设计要求:最终机构要在单一驱动力驱动的前提下使这两种独立运动,即电风扇的转动与电风扇的摆动两组运动按预设传动比同时进行。

传动装置可由一组轮系组成。

风扇转动结构原理:双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。

(如图2)机构中两摇杆可以分别为主动件。

当连杆与摇杆共线时,为机构的两个极限位置。

双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

图2(双摇杆机构简图)风扇转动结构设计:(图3)图3本次设计的预定参数:电机转速为600转每分钟自由度:F=3n-(2PL+Ph)F=9-8=1传动比:蜗杆采用单头蜗杆n1/n2=K/Z其中,n1-蜗杆的转速 n2-涡轮的转速 K-蜗杆头数 Z-涡轮的齿数电机转速600r/min 涡轮齿数100传动比(i=Z/K)=100总结:该机构不宜用于实现大角度转动的电扇采用的原因是,大角度转动之后,容影引起蜗轮、蜗杆接触过紧或脱离的发生,影响正常使用。

台式电风扇摇头机构设计

台式电风扇摇头机构设计

台式电风扇摇头机构设计(总36页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--课程设计台式电风扇摇头装置机构姓名:_____________学号:_____________专业:_____________指导教师:_____________台式电风扇摇头装置机构设计摘要电风扇摇头装置设计是从电风扇设计开始的,也是电风扇设计中最重要的部分,对于电风扇的研究,国内外已有不少的研究成果,但在创新这一块做的还不够, 还有待进一步完善。

本文首先对摇头电风扇的历史和发展现状以及其类型和特点进行了介绍,然后介绍了设计准则, 提出方案拟定, 并选择最优方案,主要是现有的电风扇摇头装置中平面摇杆机构,包括平面摇杆机构的结构、工作原理、设计原理、设计原则;其次根据已知原动机的转速, 分配传动比,选择合适的机构, 如蜗轮蜗杆机构以及齿轮机构, 根据传动比确定它们的基本参数,设计计算几何尺寸,再次采用图解法, 根据已知条件(极位夹角, 摇杆速度等)设计平面四杆机构, 然后在实验室组建仿真机构模型, 观察所设计的尺寸是否满足所需的运动轨迹,再就制作台式电风扇摇头平面机构的计算机动态演示, 通过图解法研究各杆件的运动, 进行运动分析, 最后总结并讲述了电风扇的未来展望。

关键词:平面摇杆机构,传动比, 蜗轮蜗杆, 齿轮传动, 运动分析 ,动态演示目录第一章引言..................................................................... 错误!未定义书签。

电风扇工作原理 ..................................................... 错误!未定义书签。

第二章电风扇摇头机构的设计................................. 错误!未定义书签。

电风扇摇头机构设计概述 ................................... 错误!未定义书签。

机械原理课程设计台式电风扇摇头装置

机械原理课程设计台式电风扇摇头装置

成都理工大学机械基础训练I设计说明书设计题目:台式电风扇摆头机构设计学生姓名:陈朋专业:14级机械工程学号:3201406120624指导教师:刘念聪日期:20 16 年12月28 日目录第一章:要求和任务 (3)一.设计原始数据 (3)二.设计方案提示 (3)三.设计任务 (4)四:注意事项 (4)第二章:机构的选用 (5)一、摆头机构: (5)二、传动机构 (7)第三章:机构的设计 (8)一、四杆机构的设计 (8)二、凸轮机构的设计: (11)三、传动机构的设计 (14)第四章:机构的运动分析 (18)一、四杆机构的运动分析: (18)二、圆柱凸轮机构运动分析: (20)第五章:方案的确定 (22)一、比较两种方案并选取方案: (22)二、机构简图 (22)总结 (23)参考文献 (24)第一章:要求和任务一.设计原始数据设计台式电风扇的摇头装置,风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s。

电扇摆动角度ψ,仰俯角度φ与急回系数K的设计要求及任务分配表见下表.表: 台式电风扇摆头机构设计数据我选择方案B:摆角为ψ=85°,急回系数K=1.015。

二.设计方案提示:常见的摇头机构有杠杆式、滑块式、揿拔式等。

本设计可采用平面连杆机构实现。

由装在电动机主轴尾部的蜗杆带动蜗轮旋转,涡轮和小齿轮做成一体,并以四杆机构的连杆作为原动件,则机架、两个连架杆都做摆动,其中一个连架杆相对于机架的摆动即是摆头动作。

机架可取80—90mm。

三.设计任务:1.至少提出两种方案,然后进行方案分析评比,选一种方案进行设计;2.设计传动系统中各机构的运动尺寸,绘制机构运动简图。

3.编写课程设计说明书。

(用A4纸张,封面用标准格式)4.机械传动系统和执行机构的尺寸计算。

四:注意事项每位同学按照课程设计后最好准备一个专用笔记本,把课程设计中查阅、摘录的资料。

初步的计算以及构思的草图都记录在案,这些资料是整理设计说明书的基本素材。

机械原理课程设计台式电风扇摇头装置的设计(1)

机械原理课程设计台式电风扇摇头装置的设计(1)

机械原理课程设计台式电风扇摇头装置的设计(1)设计题目:机械原理课程设计台式电风扇摇头装置的设计一、设计需求随着人们对生活品质要求的提高,电风扇已成为人们夏季生活中不可缺少的物品。

然而,传统的台式电风扇只能在一个固定角度内吹风,无法实现摇头功能,导致风扇的使用范围受限。

因此,本次设计需要设计一种适用于台式电风扇的摇头装置,使电风扇能够摇头,拓展其使用范围。

同时,需要确保摇头装置的可靠性、稳定性和安全性,以避免装置故障或损坏带来危险。

二、方案设计1. 前置条件在本次设计中,假设已有一台传统的台式电风扇,其外形和结构参照如下图:2. 摇头装置的设计方案本次设计中,我们采用一种球形转向机构来实现电风扇的摇头功能。

球形转向机构能够实现方向的变化,使得电风扇能够左右晃动,从而实现摇头功能。

具体地,摇头装置的设计分为以下几个步骤:(1)选材为保证装置的质量和稳定性,我们选用了优质的铜材和不锈钢材料。

铜材和不锈钢材料具有良好的强度和韧性,能够承受较大的力和振动,同时不易生锈,也能减少散热导致的问题。

(2)设计球形转向机构球形转向机构的结构如下图所示:球形转向机构由两个球形承载件、两个承压块、一个转向架、两个支架和一个齿轮组成。

其中两个球形承载件被安装在承压块中,转向架上安装有齿轮,支架固定在电风扇的支架上。

在球形转向机构的设计中,需要控制好齿轮的齿数和直径,以保证转向机构的转动角度和速度,从而保证电风扇的摇头幅度和摇动频率。

同时,还需要控制好球形转向机构中的各个零部件的尺寸和公差,以保证装置的稳定性和可靠性。

(3)装配球形转向机构球形转向机构的装配相对简单,只需将各个零件依次按照设计方案组装即可。

在装配过程中需要注意的是,应该仔细检查各个零部件的公差是否合适,避免在装配过程中出现误差。

并且,需要确保球形承载件与电风扇支架之间的连接紧固可靠,以免在使用中出现松动或磨损的情况。

3. 测试在球形转向机构装配好后,需要进行测试以检查装置的性能和稳定性。

机台式电风扇摇头装置

机台式电风扇摇头装置

《机械原理》课程设计任务书学生姓名:专业班级:指导教师:陈晓岑工作单位:机电工程学院1. 设计题目:台式电风扇摇头装置机构简介和设计内容台扇的摇头装置由两级减速器、连杆机构、控制机构和过载保护装置等部分组成。

摇头机构旋钮由钢丝绳与摇头机构相连。

摇头机构有杠杆离合式、螺旋式和滑板式。

一般我们用的都是杠杆离合式。

通电后电动机带动转轴后端的蜗杆转动,蜗杆转动带动蜗轮转动,蜗轮转动通过过载保护装置带动离合器下齿转动(一级减速)。

当旋钮旋到摇头位置时,钢丝拉绳处于松驰状态,离合器上齿在压缩弹簧的作用下,下压和离合器下齿啮合,离合器上齿中的横槽与齿合轴上的横销啮合,使齿合轴一起转,位于齿合轴下端的直齿轮和摇头直齿轮啮合(二级减速)。

再由摇头直齿轮带动摇摆连杆和摇摆盘运动,使扇头来回摆动。

经两次减速后,电动机由每分钟1440转,减到扇头每分钟摆动5-6次。

当控制旋钮旋到不摇头位置时,钢丝绳处于拉紧状态,离合器机构装置上下齿分开,扇头停转。

试设计该装置的一级、二级减速机构和风扇摇摆机构。

2. 设计数据如表3.设计要求(1)至少设计出三种能实现该运动形式要求的机构,绘制所选机构的机构示意图(绘制在说明书上),比较其优缺点,并最终选出一个自己认为最合适的机构进行机构综合设计,绘制出其机构运动简图。

(2)按给定主要参数,拟定机械传动系统总体方案。

(3)分配蜗轮蜗杆、齿轮传动比,确定它们的基本参数,设计计算几何尺寸。

(4)确定平面连杆机构的尺寸,它应满足摆角ψ及行程速比系数 k 。

并对平面连杆机构进行运动分析,绘制运动线图。

验算曲柄存在条件,验算最小传动角(最大压力角)。

(5)以上所要求绘制的图形均绘制在一号图纸。

(6)编写设计计算说明书。

4.设计提示摇头机构有杠杆离合式、螺旋式和滑板式。

一般我们用的都是杠杆离合式。

本设计可采用平面连杆机构实现。

由装在电动机主轴尾部的蜗杆带动蜗轮旋转,蜗轮和小齿轮做成一体,小齿轮带动大齿轮,大齿轮与铰链四杆机构的连杆做成一体,并以铰链四杆机构的连杆作为原动件,则机架、两个连架杆都作摆动,其中一个连架杆相对于机架的摆动即是摇头动作。

台式电风扇摇头装置机构设计-机械设计制造及其自动化专业毕业设计-毕业论文

台式电风扇摇头装置机构设计-机械设计制造及其自动化专业毕业设计-毕业论文

论文题目台式电风扇摇头装置目录目录 (1)第1章台式电风扇摇头装置的功能与设计要求 (3)1.1 设计题目 (3)1.2 工作原理及工艺过程 (3)1.3 设计要求 (3)1.4 功能分解 (4)第2章机构的选用与设计 (5)2.1 机构的选用 (5)2.2左右摇头机构 (5)2.2.1 左右摇动方案一(放弃) (5)2.2.2 左右摇头方案二(采用) (6)2.2 上下仰俯机构 (6)第3章传动比的设计 (8)第4章机构尺寸设计 (10)4.1 蜗轮蜗杆尺寸设计 (10)4.1.1 蜗杆尺寸参数 (10)4.1.2 蜗轮尺寸参数 (11)4.2 直齿圆柱齿轮尺寸参数 (11)4.2.1 直齿圆柱齿轮3尺寸参数 (11)4.2.2 直齿圆柱齿轮4尺寸参数 (12)4.2 双摇杆机构尺寸参数 (13)第5章小结 (14)第6章参考文献 (15)第1章台式电风扇摇头装置的功能与设计要求1.1 设计题目设计台式电风扇的摇头机构,使电风扇作摇头动作。

风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s,电扇摆动角度ψ=100°、俯仰角度φ=22°与急回系数K=1.03。

风扇可以在一定周期下进行摆头运动,使送风面积增大。

1.2 工作原理及工艺过程1.3 设计要求⑴.电风扇摇头机构至少包括连杆机构、蜗轮蜗杆机构和齿轮传动机构三种机构。

⑵.画出机器的运动方案简图与运动循环图。

拟订运动循环图时,执行构件的动作起止位置可根据具体情况重叠安排,但必须满足工艺上各个动作的配合,在时间和空间上不能出现干涉。

⑶.设计连杆机构,自行确定运动规律,选择连杆机构类型,校核最大压力角。

⑷.设计计算齿轮机构,确定传动比,选择适当的摸数。

⑸.编写设计计算说明书。

1.4 功能分解电风扇的工作原理是将电风扇的送风区域进行周期性变换,达到增大送风区域的目的。

显然,为了完成电风扇的摆头动作,需实现下列运动功能要求:电动机齿轮传动蜗轮蜗杆曲柄摇杆左右摇头机构图1.1 运动功能图⑴.风扇需要按运动规律做左右摆动,因此需要设计相应的摆动机构。

台式电风扇结构设计

台式电风扇结构设计
摇头机构过载保护装置如图7-5所示。
揿拨式摇头机构如图7-6所示。
2.5 :风扇电机外壳后壳
弹性锁扣结构设计:具有结构简单、 形式灵活、工作可靠等特点
弹性锁扣
揿拨孔
透气孔
2.6 :风扇电机外壳前板
防护罩固定螺母
扣销设计
卡槽
顶杆
2 . 7 :风扇防护后罩 8:风扇防护前罩
2 . 9 :防护板
锁扣
2.10:防护罩固定圈 2.11:风扇扇叶
2 . 4 :风扇电机
螺钉
旋转传递杆
风扇扇头
电动机
•电风扇的电动机大多数采用 电容运转式交流单相异步电 动机,主要由定子、转子、 端盖等组成,其结构如图7-3 所示。
摇头机构
摇头机构由减速机构、连杆机构、控 制机构与过载保护装置组成,形式有 两种:离合式与揿拨式。离合式摇头 机构如图7-4所示。
螺钉
螺钉 装饰盖
指示灯
3 :风扇转头机构(竖直方向)装配图
4 : 风扇扇叶和防护机构的装配图
风扇后防护罩
风扇前防护罩
扇叶
防护罩固定圈
风扇电机后壳
电机 风扇电机前壳 防护罩固定螺母
扇叶固定螺母
螺母
螺钉
Hale Waihona Puke 5 : 风扇扇叶和防护机构的装配图 6 : 装配图
4:装配后整体效果图
1、
4 : 风扇扇叶和防护机构的装配图
风扇的功能是改善某环境的温度和湿度状况,加速空气流通或室内外空气 的交换,摇头风扇中机构的功能为: 1、实现吹风功能(叶轮的回转运动); 2、实现“大范围”的空气流动——摇头功能(风扇头部的转向运动)。
•台扇的基本结构如图7-1所示。
2 . 1 :风扇底座上壳 2 . 2 :风扇底座下壳

台式电风扇摇头机构设计

台式电风扇摇头机构设计
2.3.1
图 2.3 平面四杆摇头机构
图2.3所示为电风扇摇头机构原理,电动机外壳作为其中的一根摇杆AB,蜗轮作为连杆BC,构成双摇杆机构ABCD。蜗杆随扇叶同轴转动,带动BC作为主动件绕C点摆动,使摇杆AB带电动机及扇叶一起摆动,实现一台电动机同时驱动扇叶和摇头机构。该方案主要特点:
(1)是一种平面连杆机构,机构简单,加工方便,能承受较大载荷;
关键词:平面摇杆机构,传动比, 蜗轮蜗杆, 齿轮传动, 运动分,动态演示第一章 引言4
1.2.2 电风扇工作原理5
第二章 电风扇摇头机构的设计6
2.1 电风扇摇头机构设计概述6
2.2 电风扇摇头装置设计原则[16
2.3 电风扇摇头装置方案拟定[2]7
2.3.1 方案 Ⅰ (平面连杆摇头机构)7
2.3.2 方案Ⅱ (另一种平面连杆摇头机构)7
图1.1 台扇的基本结构
1.2.2
电风扇工作时(假设房间与外界没有热传递)室内的温度不仅没有降低,反而会升高。让我们一块来分析一下温度升高的原因:电风扇工作时,由于有电流通过电风扇的线圈,导线是有电阻的,所以会不可避免的产生热量向外放热,故温度会升高。但人们为什么会感觉到凉爽呢?因为人体的体表有大量的汗液,当电风扇工作起来以后,室内的空气会流动起来,所以就能够促进汗液的急速蒸发,结合“蒸发需要吸收大量的热量”,故人们会感觉到凉爽。风扇在转动时,扇叶后面空气的流速要慢于扇叶前面空气的流速,这样后面空气的压力就比前面的大,这个压力差,就推动空气向前,形成风了。
3) 双摇杆机构: 在铰链四杆机构中, 若两个连架杆均为摇杆, 则称之为双摇杆机构,
其中在电风扇摇头装置中用到了双摇杆机构。
3.1
按组成它的各杆长度关系可分成两类, 第一类是符合曲柄存在条件, 即符合格拉肖夫准则的四杆运动链, 而以其最短杆对边的杆为机架组成的双摇杆机构。 第二类是不符合曲柄存在条件, 即最短杆与最长杆长度之和大于其余两杆长度之和的四杆运动链, 以其任意一杆为机架构成的双摇杆机构。

台式风扇摇头装置设计

台式风扇摇头装置设计

摘要经过电动机的运转,所有动力都来源于电动机,再经过一对锥齿轮机构的传动,实现减速将动力传动给摇头机构。

由于蜗杆蜗轮啮合齿轮间的相对滑动速度较大,摩擦磨损大,传动效率较低,常需要用较贵的减磨耐磨材料来制造蜗轮,制造精度要求高,成本高。

锥齿轮可以用来传递两相交的运动,相比蜗杆蜗轮成本较低。

所以在此我们选用锥齿轮减速;由曲柄摇杆机构实现左右摇头运动。

要实现扇头的左右摇摆运动有很多种运动方式可以选择,例如,滑块机构齿轮机构等.但四杆机构更容易制造,制造精度要求也不是很高,并且四杆机构能实现摆幅也更广更容易实现,最重要的是它的制造成本比较低.所以首选四杆机构。

本设计方案最大的特点是它采用一对锥齿轮机构实现运动的改变和减速作用。

采用追齿轮机构传动可使扇头结构紧凑,有确定的传动比等优点。

其次,采用滑销离合器实现是否摇头的控制,结构比较简单,使用方便,经济又实惠。

同时,采用曲柄摇杆机构实现扇头的左右摇摆,可以实现较大范围的摆动。

制作起来经济且精度也要求不是很高便于制造。

关键词:摇头齿轮曲柄摇杆AbstractAfter the motor running, all the power is derived from the motor, and then through a pair of bevel gear mechanism of the drive to achieve slowdown will power transmission to the body shaking his head. As the worm Worm Gear relative sliding velocity between the large, friction and wear large, the transmission efficiency is low, and often need to use expensive anti-friction wear-resistant materials to create a worm, manufacturing, high precision and high costs. Bevel gears can be used to pass the intersection of the two campaigns, compared with Worm Worm low cost. So, here we use bevel gear reducer; by a crank and rocker mechanism to achieve around shaking his head movement. To achieve the fan head swings back and forth movement there are many ways to exercise choice, for example, slider gear institutions. But the four-bar linkage is more easy to manufacture, manufacture of precision is not very high, and the four-bar linkage to achieve swing is also broader more easily achieved, the most important is its manufacturing cost is relatively low. Therefore, the preferred four-bar linkage.The greatest feature of this design is that it uses a pair of bevel gears to achieve the role of the movement to change and slow. Make use of fan-drive gear mechanism to recover the first compact, has a definite transmission ratio and so on. Secondly, the use of sliding pin clutch is shaking his head to achieve the control of relatively simple structure, easy to use, economical and affordable. Meanwhile, the use of crank-rocker mechanism to achieve Fan head swings back and forth, can achieve a larger range of swing. Making up the economy and the demand is not very high accuracy is also easy to manufacture.Keywords:shaking his head gear crank-rocker目录1总体设计 (1)1.1基本技术参数 (1)1.2结构类型选选择 (1)1.2.1减速机构选择 (1)1.2.2摇头机构选择 (1)1.2.3组合机构 (2)2传动设计 (3)2.1由速比系数K计算极位角θ (3)2.2齿轮传动比设计 (3)2.3选择合适的比例尺 (3)3设计体会 (4)参考文献 (6)1 总体设计1.1 基本技术参数风扇的直径为Ф300mm,电扇电动机转速n=1450r/min,电扇摇头周期T=10s。

台式电风扇摇头装置机械原理课程设

台式电风扇摇头装置机械原理课程设

台式电风扇摇头装置机械原理课程设
台式电风扇一般都带有摇头装置,这个装置的主要作用就是帮助风扇实现左右摆动,以扩大送风范围。

那么,这个摇头装置的机械原理是什么呢?下面我们来详细探讨一下。

首先,我们需要知道,摇头装置的核心部件就是一组齿轮。

这组齿轮由两个不同型号的齿轮组成,分别是主齿轮和从齿轮。

主齿轮是风扇机身内部的一个齿轮,而从齿轮则与主齿轮相连,并且与外部的操作杆相连。

当我们手动转动操作杆时,从齿轮也会跟着转动。

由于从齿轮与主齿轮相连,所以当从齿轮旋转时,会带动主齿轮进行旋转。

而主齿轮上有一组齿轮,这组齿轮与风扇叶片相连。

因此,当主齿轮旋转时,就会带动风扇叶片进行旋转,从而产生送风效果。

同时,咱们还需要知道从齿轮内部还设置有一个卡片。

当我们手动旋转操作杆时,这个卡片也会跟着转动。

卡片的主要作用就是限制从齿轮的旋转角度,从而保证风扇叶片的旋转角度不会超出安全范围。

所以,摇头装置的机械原理主要是利用齿轮的传动作用,将操作杆的旋转转化为风扇叶片的旋转,从而实现左右摇头效果。

同时,为了确保安全性,还需要在从齿轮内部设置卡片,限制旋转角度。

综上,台式电风扇摇头装置的机械原理十分简单,可以通过手动操作杆,利用齿轮的传动作用,实现风扇叶片的左右摆动。

在实际使用中,我们还需要注意操作的安全性,以免误伤自己或他人。

台式电风扇摇头装置的设计机械原理

台式电风扇摇头装置的设计机械原理

台式电风扇摇头装置的设计机械原理电机驱动系统是指通过电机来实现风扇叶片的旋转和摇头运动。

电风扇通常采用交流电机作为驱动力源,其机械原理是利用交流电产生的电磁感应,使电机产生转动。

电机内部的定子通过电流激励形成一个旋转磁场,而转子则受到磁场力的作用而转动。

通过控制交流电的频率和相位,可以控制电机输出的转速和方向。

摇头机械传动系统是实现风扇头部摇摆运动的关键部件。

它一般由电机驱动、齿轮传动和连杆机构组成。

具体来说,电机通过齿轮传动将转动力传递给连杆机构;连杆机构则通过连接风扇头部的摇头装置,将旋转运动转换为摇摆运动。

摇头机械传动系统的前面提到的齿轮传动,通常是通过斜齿轮传动来实现。

斜齿轮传动由两个相互啮合的斜齿轮组成,其中一个齿轮固定在电机轴上,另一个齿轮固定在连杆机构上。

当电机转动时,齿轮之间的啮合使连杆机构受力从而产生摇摆运动。

连杆机构一般由几个连杆和杆销组成。

其中,固定杆连接齿轮和连杆机构,使齿轮能够转动连动连杆;连杆则连接固定杆和摇头装置,使齿轮的旋转运动转换为摆动运动。

连杆机构的设计需要保证其结构紧凑、运动平稳等特点。

此外,摇头机械传动系统还需要设置导向装置来确保连杆机构的摆动轨迹。

导向装置一般采用导向拉杆和导向槽的组合,通过拉杆和槽的相互配合,使连杆机构的摆动轨迹稳定且具有一定的幅度。

综上所述,台式电风扇摇头装置的设计机械原理主要包括电机驱动系统和摇头机械传动系统。

电机驱动系统利用交流电产生的电磁感应实现风扇叶片的旋转和摇头运动;摇头机械传动系统通过齿轮传动和连杆机构将电机的旋转运动转换为摆动运动,实现风扇头部的摇摆功能。

同时,连杆机构的设计需要保证其结构紧凑、运动平稳,而导向装置的设置可以确保连杆机构的摆动轨迹稳定。

机械原理课程设计台式电风扇摇头装置

机械原理课程设计台式电风扇摇头装置

理工大学机械基础训练I设计说明书设计题目:台式电风扇摆头机构设计学生:朋专业:14级机械工程学号:24指导教师:念聪日期:20 16 年12月28 日目录第一章:要求和任务 (3)一.设计原始数据 (3)二.设计方案提示 (4)三.设计任务 (4)四:注意事项 (5)第二章:机构的选用 (5)一、摆头机构: (6)二、传动机构 (7)第三章:机构的设计 (8)一、四杆机构的设计 (9)二、凸轮机构的设计: (11)三、传动机构的设计 (15)第四章:机构的运动分析 (19)一、四杆机构的运动分析: (19)二、圆柱凸轮机构运动分析: (21)第五章:方案的确定 (23)一、比较两种方案并选取方案: (23)二、机构简图 (23)总结 (24)参考文献 (25)第一章:要求和任务一.设计原始数据设计台式电风扇的摇头装置,风扇的直径为300mm,电扇电动机转速n=1450r/min,电扇摇头周期t=10s。

电扇摆动角度ψ,仰俯角度φ与急回系数K的设计要求及任务分配表见下表.表: 台式电风扇摆头机构设计数据我选择方案B:摆角为ψ=85°,急回系数K=1.015。

二.设计方案提示:常见的摇头机构有杠杆式、滑块式、揿拔式等。

本设计可采用平面连杆机构实现。

由装在电动机主轴尾部的蜗杆带动蜗轮旋转,涡轮和小齿轮做成一体,并以四杆机构的连杆作为原动件,则机架、两个连架杆都做摆动,其中一个连架杆相对于机架的摆动即是摆头动作。

机架可取80—90mm。

三.设计任务:1.至少提出两种方案,然后进行方案分析评比,选一种方案进行设计;2.设计传动系统中各机构的运动尺寸,绘制机构运动简图。

3.编写课程设计说明书。

(用A4纸,封面用标准格式)4.机械传动系统和执行机构的尺寸计算。

四:注意事项每位同学按照课程设计后最好准备一个专用笔记本,把课程设计中查阅、摘录的资料。

初步的计算以及构思的草图都记录在案,这些资料是整理设计说明书的基本素材。

机械原理课程设计(台式风扇的摇头机构)

机械原理课程设计(台式风扇的摇头机构)

目录1. 台式风扇摇头装置的功能与设计要求1.1. 工作原理及工艺过程1.2. 功能分析1.3. 原始数据及设计要求1.3.1 原始数据1.3.2 设计要求1.4 设计任务2.执行机构的设计3.减速机构的设计4.方案的确定4.1 原动机的选择4.2 传动方案确定4.3 有关参数及相关计算4.3.1 相关计算4.3.2 传动构建的尺寸确定5.尺寸与运动综合5.1 执行机构的尺寸设计5.2 验算曲柄存在条件即最小传动角5.2.1 曲柄存在的条件5.2.2 最小传动角的验算6.系统总图1.台式风扇摇头装置的功能与设计要求1.1工作原理及工艺过程1.2 功能分解电风扇的工作原理是将风扇的送风区域进行周期性的变换达到送分区域的目的。

显然,为了完成电风扇的摇头工作,需要实现下列运动功能:(1)风扇需要按照运动规律做左右摆动,因此需要设计相应的摆动机构;(2)风扇需要转换传动轴线和改变转速,因此需要设计相应的齿轮系机构。

此外,还要满足传动性能要求:改变风扇的送风区域时,在急回系数K=1.025,摆动角 ψ=95°的要求下,尽量保持运动的平稳转稳和减小机构间的摩擦。

1.3原始数据及设计要求1.3.1原始数据风扇直径为Φ300mm ,电扇电动机转速n=1450r/min ,电扇摇头周期T=10s 。

电扇的摆动角ψ=95°,急回系数K=1.025。

1.3.2 设计要求设计台式电风扇的摇头装置要求能按给定的急回系数和摆动角左右摆动,以实现一个动作下叶片和摆头的动作同时完成。

1.4 设计任务1.按给定主要参数,拟定机械传动系统的总体方案。

2.画机构运动简图。

3.分配蜗轮蜗杆,齿轮传动比,确定他们的基本参数,设计计算几何尺寸。

4.解析法确定平面连杆机构的运动学尺寸。

5.提出调节摆角的结构方案,并计算分析。

6.学生科=可进一步完成台式风扇摇头机构的计算机动态演示验证。

2.执行机构的设计相当于一个四杆连杆机构,ABCD ,机架CD ,连杆架AB 为原动件,机构ABCD 变成双摇杆机构,AD 的相对于机架的摆动即是摇头动作。

台式电风扇摇头装置方案

台式电风扇摇头装置方案
双摇杆机构的设计
方案号
电扇摇摆转动
电扇仰俯转动
仰角 /(°)
摆角ψ/(°)
急回系数K
F
105
1.05
25
极位夹角为180°*(K-1)/(K+1)=4.4°,先取摇杆LAB=70,确定AB的位置,然后让摇杆AB顺时针旋转105°,即AB2,再确定机架AD的位置,且LAD=80,备注: AD只能在摇杆AB, AB2的同(由于k>1)。
由于极位夹角很小,可视为0°,当杆AB处在左极限时, BC,AB共线,当AB处在右极限时,即图中AB2的位置,此时B2C2,AB2重叠,
经计算得:LBC=48,LCD=75。
确定四根杆长之后,画出其一般位置如图所示,此时可根据理论力学知识求出杆AB, BC,CD的速度,已知VAB=WABLAB=(200/1800*π)*70=24.4mm/s在小三角形中,可求出WBC=0.264Rad/s。
3).实现上下吹风所选机构
选择滑销离合器以及按钮机构,按钮机构用于控制角度,属于外在条件设置,此处不详细介绍。
滑销离合器
滑销离合器利用装在半离合器凸缘端面上的销与另一半离合器凸缘端面上的小孔组成可滑动的配合以实现接合与脱开动作。即滑销的上下滑动使得蜗轮与蜗杆接合和脱开,从而实现能上能下地吹风。
五.机构的大体设计
计算与说明
结果
台式电风扇摇头装置方案
一.设计要求
设计台式电风扇的摇头机构,使电风扇作摇头动作(即风扇的摇摆转动和仰俯转动的复合运动)。
风扇的直径为Ф=300mm,电扇电动机转速n=1450r/min,电扇摇头周期T=10s。电扇摆动角度Φ、仰俯角度ψ与急回系数k的设计要求及任务分配见下表:
方案号
电扇摇摆转动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录 (1)
一:设计题目及其要求 (2)
二:设计任务 (3)
三:设计提示 (4)
四.设计分析 (4)
五,机构的选用 (4)
5.1减速机构的选用 (5)
5.2离合器的设计 (6)
53摇头机构的设计 (7)
5.4俯仰机构 (8)
六:传动方案的设计及计算 (9)
6.1根据速比系数K计算极位角9o (9)
6.2.四杆位置和尺寸的确定 (9)
6.3传动比的分配 (10)
七:设计成图 (11)
八:总结 (12)
九.参考资料 (13)
:设计题目及其要求
设计台式电风扇的摇头机构,使电风扇作摇头动作(在一定的仰角下随摇头摆动)。

图1所示为电风扇的外形图。

风扇的直径为300mm电风扇电动机转速n = 1450 r/min,电风扇摇头周期t = 10 s 。

电风扇摆动角度、仰俯角度与急回系数K的设计要求及任务分配见下表1
表1台式电风扇摆头机构设计数据
我选择方案E作为设计数据,摆角为书=100 :急回系数K为1.03
二:设计任务
(1)按给定的主要参数,拟定机械传动系统总体方案。

(2)画出机构运动方案简图。

(3)分配蜗轮蜗杆、齿轮传动比,确定它们的基本参数,设计计算几何尺寸。

(4)确定电风扇摇摆转动的屏幕、平面连杆机构的运动学尺寸,它应满足摆角及急回系数K条件下使最小传动角最大。

并对平面连杆机构进行运动分析,绘制运动线图,验算曲柄存在条件。

(5)编写设计计算说明书。

(6)学生可进一步完成台式电风扇摇头机构的计算机动态演示或模型试验验证。

三:设计提示
1)常见的摇头机构有杠杆式、滑板式和揿拔式等。

可以将电风扇的摇头动作分解为风扇左右摆动和风扇上下俯仰运动。

风扇要摇摆转动克采用平面连杆机构实现。

以双摇杆机构的连杆作为主动件(即风扇转子通过蜗轮蜗杆带动连杆传动),则其中一个连架杆的摆动即实现风扇的左右摆动(风扇安装在连架杆上)机架可取80~90 mm风扇的上下俯仰运动可采取连杆机构、凸轮机构等实现。

(2)还可以采用空间连杆机构直接实现风扇的左右摆动和上下仰俯的复合运动。

四.设计分析
完成风扇左右俯仰的吹风过程需要实现下列运动功能要求:在扇叶旋转的同
时扇头能左右摆动一定的角度,因此,需要设计相应的左右摆动机构即双摇杆机构。

为完成风扇可摇头,可不摇头的吹风过程。

因此必须设计相应的撤销离合器机构。

扇头的俯仰角调节,这样可以增大风扇的吹风范围。

因此,需要设计扇头俯仰角调节机构,即外置条件按钮。

五,机构的选用
驱动方式采用电动机驱动。

为完成风扇左右俯仰的吹风过程,据上述功能分解,可以分别选用以下机构。

机构选型表:
功能执行构件工艺动作执行机构
减速减速构件周向运动锥齿轮机构执行摇头滑销上下运动离合机构
左右摆动连杆左右往复运动曲柄摇杆机构俯仰撑杆上下运动按钮机构
5.1减速机构的选用
蜗杆涡轮传动比大,结构紧凑,反行程具有自锁性,传动平稳,无噪声,因啮合时线接触,且具有螺旋机构的特点,故其承载能力强,考虑后面与离合机构的配合关系,综上,选择蜗杆涡轮减速机构。

图2蜗杆减速机构
5.2离合器的设计
图3离合器机构
它主要采用的滑销上下运动,使得涡轮脱离蜗杆从而实现是否摇头的运动
5.3.摇头机构的设计
图4 :摇头机构
如图所示上面一种摇头机构方案和传动比的大小,此案应用在传动比大的运动机构
中。

由已知条件和运动要求进行四连杆机构的尺寸综合,计算电动机功率、连杆机构设计等,绘出机械系统运动方案的电风扇的摇头机构中,电机装在摇杆1上,铰链B处装有一个蜗轮。

电机转动时,电机轴上的蜗杆带动蜗轮,蜗轮与小齿轮空套在同一根轴上,再由小齿轮带动大齿轮,而大齿轮固定在连杆2上, 从而迫使连杆2绕B点作整周转
动,使连架杆1和3作往复摆动,达到风扇摇头的目的。

图5电动机
电动机参数:
额定电压220v 输入总功率55W 额定电流0.3A
额定频率50HZ
5.4俯仰机构
图6•俯仰机构
设计一个外置手调俯仰角按钮,将其置于风扇立柱与扇头相接处,顺时针
转动调节为增大仰角,逆时针旋转为增大俯角。

可以任意的对电风扇俯仰角进行 手动调节。

六:传动方案的设计及计算
经过电动机的运转,所有动力都来源于电动机,在经过一对锥齿轮的传动, 实现减速将动力传给摇头机构,在由一个锥齿轮将动力传到凸轮机构上, 最后传 到双摇杆机构实现左右摇头运动。

滑销离合器实现风扇摇头的控制,当滑销下滑 实现摇头,上提则停止摇头。

外置手调俯仰角按钮置于风扇立柱与扇头相接处, 顺时针转动调节为增大仰角,逆时针旋转为增大俯角。

6.1根据速比系数 K 计算极位角9o
6.2.四杆位置和尺寸的确定
如上图所示BC,CD 共线,先取摇杆L A 长为70,确定AB 勺位置,然后让摇杆AB 逆时 针旋转100° ,即A B',再确定机架AD 勺位置,且L AD 取90。

当杆AB 处在左极限 时,BC, CD 共线,L BC 与L CD 之和可以得出,即L BC + L CE =131 ①,当AB 处在右极限 时,即图中A B'的
0 =
°
K ,K=1.03,所以极位角为2.6
位置,此时BC, CD重叠,即L CD-L B,C =25②,由①,②式可得L BC为53, L C为78, B点的运动轨迹为圆弧B B ',
确定四根杆长之后,画出其一般位置如下图所示,此时可根据理论力学知识求出杆AB, BC, CD 的速度,V AB=VWL AB=(200/1800* n )*70=24.4mm/s, VW=Vcb/Lbc=0.27Rad/s,Wcd=Vc/Lcd=0.05 Rad/s。

图8
6.3传动比的分配
其设计规定转速n=1450r/min, 可得,w =151.8 rad/s
由上面可知连杆的角速度W BC=0.27Rad/s,而电动机的角速度w=151.8rad/s
所以总传动比i = 562
由此可以把传动比分配给蜗轮蜗杆与齿轮传动,其中,蜗涡轮蜗杆的传动比
i 1=w/w2 = 95 .,齿轮的传动比i 2 = w 2/W3 = 5.9
1)蜗轮蜗杆机构的几何尺寸计算
蜗杆轴向模数(蜗轮端面模数)m m = 1.25
传动比i i = 95
蜗杆头数z 1 z 1 = 1
蜗轮齿数z 2 z 2 = i z 1 = 95
蜗杆直径系数(蜗杆特性系数)q q =d 1/m = 16
中心距a a = (d 计cb+2x2m)/2 =40
齿轮机构的几何尺寸计算
i=5.9,以及大小齿轮安装位置,小齿轮的齿数小于17,所根据齿轮传动比
用齿轮齿数较少, 标准齿轮不能满足要求,所以采用变位齿轮。

传动比i i=88/15=5.9
分度圆d 1 d2 1=mz=7.5 d 2=mz=44
齿顶高h a a1 = (h a +X2)m =
0.75
齿根高h f
h f1 =(h a +c -x 1)m=0.0425 h f2=(h a +c-x 2)m=0.925
齿高h
h1=h ai+h fi=1.175 h 2=h a2+h f2=1.175 齿顶圆直径d a a1=d1+2h a1=9 d a2=d2+2h a2=44.5
齿根圆直径d f
d f1 =d1 -2h f1 =6.65 d f2=d2-2h f2 =42.15
中心距a a=1/2(7.5+44)=25.75
基圆直径d b b1=d1 cos a =7.1
d b2=d2 cos a =41.3
齿顶圆压力角 a a1=arcos(d 閃/d a1)=37.9
a2=arcos(d b2/b a2)=21.86 °齿宽b b=12m=6
七:设计成图
图9
八:总结
通过这次课程设计,让我对机械原理这门课程有了更深入的了解,对以前不熟悉的环节理解。

虽然在设计的过程中遇到了好多麻烦,但是经过自己认真的思考和查阅资料,以及和同学一起讨论最终把问题都解决了。

这次设计给我一个感受,学习的过程中要懂得把所学的东西联系起来并运用到实践中来,而不是把每个章节分开来理解。

通过这个实践我学得了好多,同时认识到理论联系实际的重要性,不仅加深了我对课程的理解程度而且也激起了我学习的兴趣。

机械原理课程设计是使我们较全面系统的掌握和深化机械原理课程的基本原理和方法的重要环节,是培养我们机械运动方案设计创新设计和应用计算机对工程实际中各种机构进行分析和设计能力的一门课程。

九.参考资料
1•《机械原理》(第七版)孙桓陈作模主编高等教育出版社
2.《机械原理设计课程设计指导书》裘建新主编
高等教育出版社。

相关文档
最新文档