不规则图形面积的计算及详细讲解
不规则图形的面积计算
不规则图形的面积计算在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法来思考。
下面介绍几种常见的面积计算的解题思路.一、“大减小”例1.求下图中阴影部分的面积(单位:厘米)解析:阴部部分的面积=“大减小”=两正方形面积-空白部分面积=(4×4+3×3)-(4+3)×4÷2=11平方厘米二、“补”例2.四边形ABCD是一个长10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米,求CF的长。
解析:假设三角形EFC为图1,四边形ECBA为图2,三角形ADE为图3。
给1、3同时补上2,它们的面积差不会发生改变图形3的面积-图形1的面积=10(图形3+图形2)-(图形1+图形2)=即长方形ABCD的面积-三角形ABF的面积=10那么,三角形ABF的面积=60-10=50=AB×BF÷2可算出 BF=10厘米,所以CF=10-6=4厘米例3.如图,四边形ACEF中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF的面积解析:分别延长AF、CE,交于B点在三角形ABC中,很明显,它是个等腰直角三角形,面积=8×8÷2=32平方厘米在三角形EFB中,很明显,它也是一个等腰直角三角形,面积=2×2÷2=2平方厘米所以,S四边形ACEF=S△ABC-S△EFB=32-2=30平方厘米三、“移”例4.如图所示(1图),四边形ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求路的面积。
解析:小路是曲折的,不规则图形,可用采用“移”的思路来解决把图1下面空白部分往上、往左移,使它与上面空白部分连接在一起,就成了图2中的空白部分,是一个长方形,长是20-2=18米,宽是14-2=12米,这个长方形的面积=18×12=216平方米,小路的面积=大长方形的面积-空白长方形的面积=20×14-216=64平方米例5.如图,AE=ED,AF=FC,已知三角形ABC的面积是100平方厘米,求阴影部分的面积解析:由于两阴影部分不在一起,我们可以考虑用“移”的思维把阴影变成一个整体。
不规则图形面积的计算(实用课件)
8
“割”、“补”的方法是我们今后计算复 杂图形时常用的方法,方法越简单越好。
❖ 在进行图形计算割补时,要注意以下几点:
(1)要根据原来图形的特点进行思考。
(2)要便于利用已知条件计算简单图形的面积。
(3)可以用不同的方法进行割补。
不规则图形面积的计算(实用课件)
9
练一练:
1、校园里有一个花圃(如图),你能算出 它的面积是多少平方米?
❖
3×6÷2=9㎡
❖ 草坪的面积:120+9=129㎡
❖ 答:这块草坪的不面规则图积形面是积的1计2算(9实㎡用课件)
6
12m
方法三:分割法 4m
10m
15m
❖ 草坪的面积=梯形面积+三角形面积 ❖ 梯形的面积:(4+10)×12÷2=84㎡ ❖ 三角形的面积:10-4=6m,15×6÷2=45㎡ ❖ 草坪的面积:84+45=129㎡ ❖ 答:这块草坪的面积是129㎡
不规则图形面积的计算
感谢您的阅览
不规则图形面积的计算(实用课件)
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
17
作业
课本23页练习四1到4题
不规则图形面积的计算(实用课件)
18
45cm 60cm
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
(60+45) ×(30÷2) ÷2×2 =105×15÷2×2 =1575(㎝²)
不规则面积计算公式(一)
不规则面积计算公式(一)不规则面积计算公式在几何学中,常常遇到需要计算不规则形状的面积的情况。
针对不同的不规则形状,有一些常用的计算公式可以帮助我们计算出准确的面积。
下面列举了一些常见的不规则面积计算公式,并举例进行解释说明。
1. 矩形面积计算公式矩形是一种常见的不规则形状,其面积计算公式如下:面积 = 长度 × 宽度例如,如果一个矩形的长度为5厘米,宽度为3厘米,则可以使用上述公式计算出它的面积为15平方厘米。
2. 三角形面积计算公式三角形也是常见的不规则形状,其面积计算公式如下:面积 = × 底边长度 × 高度例如,如果一个三角形的底边长度为6厘米,高度为4厘米,则可以使用上述公式计算出它的面积为12平方厘米。
3. 圆形面积计算公式圆是一种特殊的不规则形状,其面积计算公式如下:面积= π × 半径的平方其中,π取近似值。
例如,如果一个圆的半径为2厘米,则可以使用上述公式计算出它的面积约为平方厘米。
4. 梯形面积计算公式梯形也是一种常见的不规则形状,其面积计算公式如下:面积 = × (上底长 + 下底长) × 高度例如,如果一个梯形的上底长为4厘米,下底长为6厘米,高度为3厘米,则可以使用上述公式计算出它的面积为15平方厘米。
5. 不规则多边形面积计算公式对于更复杂的不规则形状,例如不规则多边形,可以使用以下方法计算其面积:•将不规则多边形划分为若干个简单的形状,例如三角形、矩形等。
•分别计算这些简单形状的面积。
•将这些简单形状的面积相加,得到不规则多边形的总面积。
例如,如果一个不规则多边形可以划分为两个三角形和一个矩形,分别计算出这些形状的面积为8平方厘米、6平方厘米和12平方厘米,则可以将它们相加得到该不规则多边形的面积为26平方厘米。
综上所述,针对不同的不规则形状,我们可以使用相应的计算公式来计算其面积。
不规则图形面积的解答方法
不规那么图形面积的解答方法一、相加法:这种方法是将不规那么图形分解转化成几个根本规那么图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下列图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
二、相减法:这种方法是将所求的不规那么图形的面积看成是假设干个根本规那么图形的面积之差.例如,下列图,假设求阴影局部的面积,只需先求出正方形面积再减去里面圆的面积即可。
三、直接求法:这种方法是根据条件,从整体出发直接求出不规那么图形面积.如下列图,欲求阴影局部的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。
四、重新组合法:这种方法是将不规那么图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下列图中阴影局部面积,可以把它拆开使阴影局部分布在正方形的4个角处,这时采用相减法就可求出其面积了。
五、辅助线法:这种方法是根据具体情况在图形中添一条或假设干条辅助线,使不规那么图形转化成假设干个根本规那么图形,然后再采用相加、相减法解决即可.如下列图,求两个正方形中阴影局部的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。
六、割补法:这种方法是把原图形的一局部切割下来补在图形中的另一局部使之成为根本规那么图形,从而使问题得到解决.例如,如下列图,欲求阴影局部的面积,只需把右边弓形切割下来补在左边,这样整个阴影局部面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一局部切割下来平行移动到一恰当位置,使之组合成一个新的根本规那么图形,便于求出面积.例如,如下列图,欲求阴影局部面积,可先沿中间切开把左边正方形内的阴影局部平行移到右边正方形内,这样整个阴影局部恰是一个正方形。
八、旋转法:这种方法是将图形中某一局部切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的根本规那么的图形,便于求出面积.例如,欲求下列图〔1〕中阴影局部的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如下列图〔2〕的样子,此时阴影局部的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的根本规那么图形.原来图形面积就是这个新图形面积的一半.例如,欲求下列图中阴影局部的面积,沿AB 在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影局部的面积。
三年级 不规则图形面积的计算
第十讲:面积的实际应用知识梳理【知识要点】1、周长:封闭图形一周的长度,是它的周长。
长方形的周长 =(长+宽)×2正方形的周长 = 边长×42、面积:物体的表面或封闭图形的大小就是它们的面积。
边长是1厘米的正方形的面积是1平方厘米。
边长是1分米的正方形的面积是1平方分米边长是1米的正方形的面积是1平方米长方形的面积 = 长×宽正方形的面积 = 边长×边长3、一个图形剪掉一部分,面积一定会减少,但周长不一定会减少。
4、掌握换算的方法(1)高级单位化成低级单位:高级单位的数×进率大单位化小单位添0,如2平方米=(200)平方分米(想:平方米大,所以是大化小添0,因为1平方米=100平方分米,应该在2后面添两个0.)(2)低级单位聚成高级单位:低级单位的数÷进率小单位化大单位去0,如20000平方米=(2)公顷,(想:平方米小,所以是小化大去0,因为1公顷=10000平方米,应该去掉2后面的四个0.)5、周长相等的两个长方形,面积不一定相等。
面积相等的两个长方形,周长也不一定相等。
6、长方形和正方形的面积相等时,正方形的周长小。
7、长方形和正方形的周长相等时,正方形的面积大。
(如用同样长的绳子围成的正方形面积比长方形的面积大)面积单位换算1平方千米 = 100公顷 1公顷=10000 平方米 1平方米=100 平方分米 1平方分米=100平方厘米【例题一】小林要从左边的纸上剪下一个最大的正方形。
剩下部分是什么图形?它的面积是多少平方厘米?【拓展训练】一个长方形,长16分米,宽12分米,在这个长方形上尽可能剪下一个正方形,正方形的面积是多少?剩下图形的面积是多少?【例题二】求下列图形的周长。
12厘米 15厘米 15厘米12厘米 12厘米 9米10米 3米4米【拓展训练】(单位:cm )【例题三】李奶奶家房子东面有一块长方形菜地,菜地一边紧挨着墙壁(如右图),少先队员们要给李奶奶的菜地围上篱笆,需要准备多长的篱笆?这块菜地的面积是多少平方米?【拓展训练】李大爷靠东墙围了一个羊圈,算出这个羊圈的占地面积?如果要砌上围墙,围墙的长度应该是多少米?【例题四】一块面积有72平方分米的长方形台布,长9分米,它的宽是多少?57 522 18米 3米 墙18 25米东墙【拓展训练】一块正方形的喷水池的周长是20米,它的边长是多少米?面积是多少平方米?【例题五】3平方米=()平方分米 5平方分米=()平方厘米700平方厘米=()平方分米600平方分米=()平方厘米30平方分米=()平方厘米 8000平方分米=()平方米【拓展训练】1、教室地面的面积大约是60(),也就是6000()。
不规则图形面积的求法
不规则图形面积的求法求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。
一、等积替换(1)三角形等积替换依据:等底等高的三角形面积相等或全等的三角形面积相等。
例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分点.,求阴影部分的面积.解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ∆∆=(同底等高的三角形面积相等)∴==扇形阴影O CD S S ππ323602602=⨯⨯例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的半圆与BC 切于M 点,求阴影部分面积.解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。
连结OM 交 BD 于E; 则△OED ≌△MEB∴MEB OED S S ∆∆= (全等三角形面积相等)∴==扇形阴影O M D S S 43601902ππ=⨯⨯ (2)弓形等积替换依据:等弧所对的弓形面积相等。
例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和.解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4,得∠A =45°且AC=AD =BD =CD=∴A D BnD S S 弓形m 弓形=∴CDB 11S CD BD 422S ∆⨯⨯⨯阴影===例4、点A、B、C、D是圆周上四点,且 AB + CD= AC + BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。
解:作⊙ O 的直径BE 连结AE ,则∠BAE =90°,AB AE =+半圆;A图2图4又∵ AB + CD= AC + BD = 1AB CD AC BD 2(+++)=半圆, ∴ AE = CD ,所以A E C DS m n S 弓形弓形=,AE=CD=4。
几种不规则图形面积的解题方法
对于不规则图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
常用的基本方法有: 1. 直接求面积:这种方法是根据已知条件,从整体出发直接求出组合图形面积。
例1:求下图阴影部分的面积(单位:厘米)。
解答: 通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为:(平方厘米) 2.相加、相减求面积:这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。
例2:正方形甲的边长是5厘米,正方形乙的边长是4厘米,阴影部分的面积是多少? 解答: 两个正方形的面积:5×5+4×4=41(平方厘米) 三个空白三角形的面积和:(5+4)×5÷2+4×4÷2+5×(5-4)÷2=33(平方厘米) 阴影部分的面积:41-33=8(平方厘米)除了以上这两种方法,还有其他的几种方法,同学们不妨了解了解。
3.等量代换求面积:一个图形可以用与它相等的另一个图形替换,如果甲乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
例3:平行四边形ABCD的边BC长8厘米,直角三角形ECB的直角边EC长为6厘米。
已知阴影部分的总面积比三角形EFG的面积大8平方厘米,平行四边形ABCD的面积是多少?解答:阴影部分的总面积比三角形EFG的面积大8平方厘米,分别加上梯形FBCG,得出的平行四边形ABCD比三角形EBC的面积大8平方厘米。
平行四边形ABCD的面积:8×6÷2+8=32(平方厘米)4.借助辅助线求面积:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
例4:下图中,CA=AB=4厘米,三角形ABE比三角形CDE的面积大2平方厘米,CD的长是多少?解答:结合已知条件看图,很难有思路,连接DA,就可以发现:三角形ABE 比三角形CDE的面积大2平方厘米,分别加上三角形DAE得到的三角形ABD 比三角形CDA的面积大2平方厘米。
不规则图形面积的计算
小 喷泉 湖
草坪
假山
游乐场
例如:华丰校园里有一块草坪(如图) 它的面积是多少平方米?
12m
4m 10m
方法一:分割法
15m
草坪的面积=长方形的面积+梯形的形的面积:10-4=6m (12+15) ×6=81㎡
草坪的面积:48+81=129㎡
法计算组合图形面积.
作业
课本23页练习四1到4题
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
(60+45) ×(30÷2) ÷2×2 =105×15÷2×2 =1575(㎝²)
答:一面锦旗需要1575平方厘 米面料。
45cm 60cm
30cm
1、草坪的面积有多少平方米?
5m
2m
2m 6m
小挑战:你能求出下面图形的面积吗?
8 43 36 2
中队旗面积 = 梯形面积 + 梯形面积
中队旗面积 = 长方形面积 + 三角形面积 × 2
中队旗面积 = 梯形面积 + 三角形面积
中队旗面积 = 长方形面积 — 三角形面积
小结
方法:一分图形 二找条件 三算面积
关键:学会运用“分割”与“添补” 的方
答:这块草坪的面积是129㎡
方法二:分割法
12m
4m 10m
15m
草坪的面积=长方形的面积+三角形的面积
长方形的面积:12×10=120㎡
三角形的面积:15-12=3m,10-4=6m
3×6÷2=9㎡
草坪的面积:120+9=129㎡
答:这块草坪的面积是129㎡
12m
不规则图形面积的计算
2、现在要给小路铺上地砖,如果9块 地砖正好铺1m2,那么至少需要多少 块地砖?
复习旧知:
平行四边形的面积=底×高 用字母表示为S=a×h 三角形面积=底×高÷2 用字母表示为S=a×h÷2 梯形面积=(上底+下底)×高÷2 用字母表示为S=(a+b)h÷2 长方形面积=长×宽用字母表示为S=a×b 正方形面积=边长×边长用字母表示为
S=a×a= a 2
下面是某自然保护区一个湖泊的平面图 (每个小方格表示1公顷)。你能估计这 个湖泊的面积大约是多少公顷吗?
你准备怎样估计?
先数整格,再数不满整格, 不满整格作半格计算。
不规则图形面积的计算
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
生活中有许多不规则的图形
法计算组合图形面积.
作业
课本23页练习四1到4题
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
(60+45) ×(30÷2) ÷2×2 =105×15÷2×2 =1575(㎝²)
答:一面锦旗需要1575平方厘 米面料。
45cm 60cm
30cm
1、草坪的面积有多少平方米?
小 喷泉 湖
草坪
假山
游乐场
例如:华丰校园里有一块草坪(如图) 它的面积是多少平方米?
12m
4m 10m
方法一:分割法
不规则面积计算公式
不规则面积计算公式摘要:一、不规则面积计算公式简介1.不规则图形面积计算的困难2.推导不规则面积计算公式的方法二、不规则面积计算公式详解1.计算原理2.具体公式3.公式应用实例三、不规则面积计算公式的优势与局限1.优势a.解决不规则图形面积计算问题b.适用于多种场景2.局限a.复杂情况下计算量较大b.需要专业软件支持正文:不规则面积计算公式是一种用于解决不规则图形面积计算问题的方法。
在实际生活中,许多物体形状不规则,无法直接使用矩形、圆形等常见图形的面积公式进行计算。
推导不规则面积计算公式的方法通常基于微积分原理,结合物体的形状特征,逐步分解并求和。
不规则面积计算公式的计算原理主要是通过分割不规则图形,将其转化为多个规则图形(如矩形、三角形等)的面积之和。
具体公式根据物体的形状和分割方法有所不同,但通常都包含积分运算。
以一个简单的例子来说明不规则面积计算公式的应用。
假设有一个不规则图形,其边界为一条曲线,曲线方程为y = x^2。
我们可以将图形分割成无数个矩形,每个矩形的高为曲线在该点处的导数,宽为极小段曲线的长度。
这样,不规则图形的面积就可以表示为所有矩形的面积之和。
计算过程中需要用到微积分原理,最终得到面积公式为:A = 2∫(x^2)dx。
不规则面积计算公式具有以下优势:a.解决不规则图形面积计算问题。
通过将不规则图形分割成规则图形,并求和,可以得到不规则图形的面积,突破了传统面积计算方法的局限。
b.适用于多种场景。
不规则面积计算公式可以应用于各种形状的不规则图形,只要能找到合适的分割方法,就可以求解面积。
然而,不规则面积计算公式也存在一定的局限性:a.复杂情况下计算量较大。
随着不规则图形形状的复杂度增加,分割矩形数量会急剧增加,导致计算量迅速增大。
b.需要专业软件支持。
不规则面积计算公式通常涉及积分运算,需要借助专业数学软件(如Mathematica、MATLAB等)进行计算。
总之,不规则面积计算公式为不规则图形面积计算提供了一种有效方法。
不规则图形面积的计算(方法总结及详解)
不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
不规则图形面积的计算
2、现在要给小路铺上地砖,如果9块 地砖正好铺1m2,那么至少需要多少 块地砖?
下面是某自然保护区一个湖泊的平面图 (每个小方格表示1公顷)。你能估计这 个湖泊的面积大约是多少公顷吗?
你准备怎样估计?
先数整格,再数不满整格, 不满整格作半格计算。
答:这块草坪的面积是129㎡
方法二:分割法
12m
4m 10m
15m
草坪的面积=长方形的面积+三角形的面积
长方形的面积:12×10=120㎡
三角形的面积:15-12=3m,10-4=6m
3×6÷2=9㎡
草坪的面积:120+9=129㎡
答:这块草坪的面积是129㎡
12m
方法三:分割法 4m
法计算组合图形面积.
作业
课本23页练习四1到4题
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
(60+45) ×(30÷2) ÷2×2 =105×15÷2×2 =1575(㎝²)
答:一面锦旗需要1575平方厘 米面料。
45cm 60cm
30cm
1、草坪的面积有多少平方米?
10m
15m
草坪的面积=梯形面积+三角形面积 梯形的面积:(4+10)×12÷2=84㎡ 三角形的面积:10-4=6m,15×6÷2=45㎡ 草坪的面积:84+45=129㎡ 答:这块草坪的面积是129㎡
方法四:补的方法
12m
4m
10m
15m
草坪的面积=长方形的面积-梯形的面积 长方形的面积:15×10=150㎡ 梯形的面积:15-12=3m,(4+10) ×3÷2=21㎡ 草坪的面积:150-21=129㎡ 答:这块草坪的面积是129㎡.
不规则图形面积的计算
你还记得吗?
长 方 形 的 面 积 = 长 ×宽 正 方 形 的 面 积 = 边长×边长
S=ab
S=a×a S=ah S=ah÷2
平行四边形的面积= 底×高
三 角 形 的 面 积 = 底×高÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
生活中有许多不规则的图形
草坪
喷泉 小 湖
假山 游乐场
例如:华丰校园里有一块草坪(如图) 它的面积是多少平方米?
12m
4m
10m
方法一:分割法
15m
草坪的面积=长方形的面积+梯形的面积
长方形的面积:12×4=48㎡ 梯形的面积:10-4=6m (12+15) ×6=81㎡ 草坪的面积:48+81=129㎡ 答:这块草坪的面积是129㎡
正方形面积=边长×边长用字母表示为 2 S=a×a=
a
下面是某自然保护区一个湖泊的平面图 (每个小方格表示1公顷)。你能估计这 个湖泊的面积大约是多少公顷吗?
你准备怎样估计?
先数整格,再数不满整格, 不满整格作半格计算。
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
不规则面积计算公式
不规则面积计算公式摘要:1.引言2.不规则面积计算的基本原理3.不同形状的不规则面积计算公式4.应用实例5.结论正文:【引言】计算不规则面积是数学中的一个重要领域,它在实际生活中的应用非常广泛,例如建筑、工程、地理、物理等领域。
由于不规则形状的复杂性,计算其面积需要用到一些特殊的公式和方法。
本文将为大家介绍不规则面积计算的基本原理以及不同形状的不规则面积计算公式。
【不规则面积计算的基本原理】不规则面积计算的基本原理是将不规则形状分解成若干个简单的几何形状,然后分别计算这些几何形状的面积,最后将这些面积相加得到总面积。
这个过程需要运用到数学中的分割、平移、旋转等技巧。
【不同形状的不规则面积计算公式】1.梯形:梯形的面积计算公式为:(上底+ 下底) × 高÷ 2。
2.矩形:矩形的面积计算公式为:长× 宽。
3.圆形:圆形的面积计算公式为:π × 半径。
4.梯形和圆形的组合:可以先将梯形和圆形分别计算面积,然后按照一定的比例进行缩放,最后将两个面积相加得到总面积。
5.其他不规则形状:对于其他复杂的不规则形状,可以通过将其分割成简单的几何形状,然后分别计算面积,最后相加得到总面积。
【应用实例】假设有一个不规则的房间,其形状为梯形,上底长为4 米,下底长为6 米,高为3 米。
此外,房间内部还有一个半径为1 米的圆形区域。
我们可以使用上述公式计算出房间的总面积:(4 + 6) × 3 ÷ 2 + π × 1 = 21 + 3.14 ≈ 24.14 平方米。
【结论】不规则面积计算是数学中的一个重要领域,它在实际生活中的应用非常广泛。
通过将不规则形状分解成简单的几何形状,并运用相应的面积计算公式,可以方便地计算出不规则形状的面积。
不规则图形的面积求解公式
求任意图形的面积,要在图形中找到两个点A0和B,在两点之间画一条直线,然后垂直于这条直线画2n-1条分割线,均衡的将直线A0B划分为2n个区间,也就是把这个图形均衡的分割为2n个区间。
A0和B两个点的选择应当使它的垂直分割线能够涵盖整个图形。
垂直分割线的数目一定是2n-1个,也就是把图形分割为2n个区间。
记录直线A0B的长度,记录A0的长度,分割线A1、A2……An的长度,B的长度(注意:分割线的长度应当是分割线所连接图形的一端到另一端的长度,而不是所连接的其中一端到直线A0B的长度。
)
任意图形面积计算公式:
面积S=直线A0B*【A0+(A1+A3+……)*4+(A2+A4……)*2+B】/3*图形被分割区间数
图形被分割的区间越多,按照上述公式所计算出来的值越接近图形的真实面积,只不过分割图形一定要把图形分割为2n个区间。
千万不要把直线A0B当作一条分割线,如果那样,被分割的区间就会增加1倍,计算也就不正确了。
我的画图手艺不怎么样,分割线未能真实的分割图形,抱歉。
不规则图形面积的计算(方法总结及详解)
不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
不规则图形面积的计算(练习题)及详细讲解
第一讲不规则图形面积得计算(一)习题一(及详细答案)一、填空题(求下列各图中阴影部分得面积):二、解答题:1、如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE、求阴影部分面积。
2、如右图,正方形ABCD与正方形DEFG得边长分别为12厘米与6厘米、求四边形CMGN (阴影部分)得面积、3、如右图,正方形ABCD得边长为5厘米,△CEF得面积比△ADF得面积大5平方厘米、求CE得长。
4、如右图,已知CF=2DF,DE=EA,三角形BCF得面积为2,四边形BEDF得面积为4、求三角形ABE得面积、5、如右图,直角梯形ABCD得上底BC=10厘米,下底AD=14厘米,高CD=5厘米、又三角形ABF、三角形BCE与四边形BEDF得面积相等。
求三角形DEF得面积、6、如右图,四个一样大得长方形与一个小得正方形拼成一个大正方形,其中大、小正方形得面积分别就就是64平方米与9平方米、求长方形得长、宽各就就是多少?7、如右图,有一三角形纸片沿虚线折叠得到右下图,它得面积与原三角形面积之比为2:3,已知阴影部分得面积为5平方厘米、求原三角形面积、8、如右图,ABCD得边长BC=10,直角三角形BCE得直角边EC长8,已知阴影部分得面积比△EFG得面积大10、求CF得长、习题一解答一、填空题:二、解答题:ﻫﻫ3、CE=7厘米、ﻫ可求出BE=12、所以CE=BE-5=7厘米、4、3、提示:加辅助线BD∴CE=4,DE=CD-CE=5-4=1。
同理AF=8,DF=AD-AF=14-8=6,6、如右图,大正方形边长等于长方形得长与宽得与、中间小正方形得边长等于长方形得长与宽得差、而大、小正方形得边长分别就就是8米与3米,所以长方形得宽为(8-3)÷2=2、5(米),长方形得长为8-2、5=5、5(米)、7、15平方厘米、解:如右图,设折叠后重合部分得面积为x平方厘米,ﻫx=5、所以原三角形得面积为2×5+5=15平方厘米、∴阴影部分面积就就是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米)、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲不规则图形面积的计算(一)
习题一(及详细答案)
一、填空题(求下列各图中阴影部分的面积):
二、解答题:
1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN (阴影部分)的面积.
3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积.
5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。
求三角形DEF的面积.
6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?
7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.
8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长.
习题一解答
一、填空题:
二、解答题:
3.CE=7厘米.
可求出BE=12.所以CE=BE-5=7厘米.
4.3.提示:加辅助线BD
∴CE=4,DE=CD-CE=5-4=1。
同理AF=8,DF=AD-AF=14-8=6,
6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=(米),长方形的长为=(米).
7.15平方厘米.解:如右图,设折叠后重合部分的面积为x平方厘米,x=5.所以原三角形的面积为2×5+5=15平方厘米.
∴阴影部分面积是:10x-40+S△GEF
由题意:S△GEF+10=阴影部分面积,
∴10x-40=10,x=5(厘米).。