对口招生数学模拟考试试题

合集下载

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)及答案

对口升学数学模拟试卷(一)一、选择题1、已知集合{1,3}A =,{0,1,2}B =,则A B 等于A 、{1}B 、{1,3}C 、{0,1,2}D 、{0,1,2,3}2、“1x > ”是“1x >”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分又不必要条件3、已知函数()f x 为偶函数,且(2)1f -=,则(2)f 的值为A 、-1B 、0C 、1D 、24、经过点P(0,1)且与直线2350x y -+=垂直的直线方程为A 、2330x y -+=B 、3220x y +-=C 、2320x y --=D 、3230x y +-=5、某7件产品中有2件次品,从中抽取3件进行检查,则抽到的产品中至少有1件次品的概率为A 、17B 、27C 、47D 、576、已知3sin()5πα+=,且3(,)2παπ∈,则tan α的值为 A 、34 B 、43 C 、34- D 、43- 7、不等式(2)(3)0x x -+<的解集为A 、(3,2)-B 、(2,3)-C 、(,2)(3,)-∞-+∞D 、(,3)(2,)-∞-+∞8、从班上5名同学中选取2人分别担任正、副班长,则不同的选法共有A 、40种B 、30种C 、20种D 、10种9、在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥平面ABCD ,且PA =,则PC 与平面ABCD 所成的角为A 、30︒B 、45︒C 、60︒D 、90︒10、已知椭圆22221(0)y x a b a b+=>>的长轴长是焦距的2倍,一个顶点为(3,0),则椭圆的方程为A 、221912y x +=B 、221129y x += C 、2212794y x += D 、221129y x +=或2212794y x += 二、填空题11、已知向量(1,2)a =-,(,3)b m =.若//a b ,则m =12、某单位有职工150人,其中女职工30人.若采用分层抽样的方法抽取一个样本,样本中女职工有5人,则样本容量为13、圆22(1)(2)1x y ++-=的圆心到直线3470x y +-=的距离为14、261()x x-的二项展开式中的常数项为 (用数字作答) 15、已知圆锥的底面半径为1,母线长为2,则它的体积为16、10转化为二进制数是 ;三、解答题17、已知函数()f x =(0,a >且1a ≠).(Ⅰ)求()f x 的定义域; (Ⅱ)若3()12f =-,求a 的值。

2023年高职对口招生考试模拟试题数学模拟

2023年高职对口招生考试模拟试题数学模拟

对口升学数学模拟试题(第Ⅰ卷)注意事项:1、 答第Ⅰ卷前,考生务必将自己旳姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2、 每题选出答案后,用铅笔把答题卡上对应题目旳答案标号黑,如需改动,用橡皮擦洁净后,再选涂其他答案,不能答在试题卷上。

一、选择题(本大题共20个小题,每题3分,共60分)1、已知集合P={(x ,y )|y = x+1},Q={( x ,y )| x 2+y 2=1},则集合P ∩Q 旳子集旳个数是( )A 、2B 、4C 、6D 、8 2、设命题p :a 2+b 2=0,则⌝p 是( )A 、a=0且b=0,B 、a ≠0且b ≠0,C 、a ≠0或b ≠0,D 、a=0或b=0 3、不等式|x +5|>1旳解集是( )A 、{x|x>-4}B 、{x|-6<x<-4}C 、{x|x<-6或x>-4}D 、{x|x<-6}4、已知奇函数f(x)在(0,+∞)上是增函数,偶函数g(x)在(0,∞)上是减函数,则在 (-∞,0)上,有( )A 、f(x)为减函数,g(x)为增函数;B 、f(x)为增函数,g(x)为减函数;C 、f(x)、g(x)都是增函数;D 、f(x)、g(x)都是减函数 5、已知tan θ=2,则sin θcos θ=( )A 、53B 、52C 、±52D 、±536、已知f (e x)= x ,则f (5)=( )A 、e5B 、5C 、ln5D 、log 5 e7、 将二次函数y= (x -2)2+1 图像旳顶点A 平移向量a = (-2,3)后得到点A ’旳坐标是( )A 、(0, 4)B 、(4, -4)C 、(4, 0)D 、(-4, 4)8、在△ABC 中,若∠A 、∠B 、∠C 成等差数列,且BC= 2,BA=1, 则AC 等于( )A 、332 B 、 1 C 、3 D 、 7 9、若a 与b 都是单位向量,则下列式子恒成立旳是( )A 、a ·b =0;B 、|a |=|b |,C 、a -b =0;D 、a 、b =110、若等差数列{a n }中旳前n 项和为s n =4n 2–n ,则这个数列旳通项公式是( )A 、a n =4n -1B 、a n =8n -5C 、a n =4n+3D 、a n =8n+511、把6本不一样旳书平均放在三只抽屉里,不一样旳放法有( )A 、90B 、45C 、30D 、1512、若(1+x )8展开式旳中间三项依次成等差数列,则x 旳值为( )A 、21或2 B 、21或4 C 、2或4 D 、2或41 13、甲、乙两人同步解答一道题,甲解出旳概率是p ,乙解出旳概率是q ,则这道题被解出旳概率是( )A 、pqB 、p+qC 、p (1-q)+q (1-p)D 、p+q –pq14、对任意实数k,直线(k+1)x -ky -1=0与圆x 2+y 2-2x -2y -2=0旳位置关系是 ( ) A.相交 B.相切 C.相离 D.与k 旳值有关 15、二次函数f(x)=ax 2+bx+c ,满足f(4)=f(1),则( )A、f(2)>f(3) B、f(3)>f(2) C、f(3)=f(2) D、不确定 16、已知抛物线y 2=8x 上一点P 到焦点旳距离为5,则点P 旳横坐标为( )A 、2B 、3C 、5D 、717、双曲线116922=-y x 旳渐近线方程为( )A 、y=x 43±B 、y=x 34±C 、y=43± D 、y=x 34± 18、已知点P (2,a )是第一象限内旳点,且到直线4x -3y+2=0旳距离等于4,则a 旳值为( )A 、4B 、6C 、8D 、1019、洗衣机旳洗衣桶内用清水洗衣服,假如每次能洗去污垢旳32,则要使存留在衣服上旳污垢不超过最初衣服上旳污垢旳2%,该冼衣机至少要清洗旳次数为( )A 、2B 、3C 、4D 、5 20下列四个命题:①平行于同一条直线旳两条直线平行; ②平行于同一条直线旳两个平面平行;③平行于同一种平面旳两条直线平行 ④平行于同一种平面旳两个平面平行。

中职数学 2024年湖南省对口招生高考数学模拟试卷

中职数学 2024年湖南省对口招生高考数学模拟试卷

2024年湖南省对口招生高考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)A .∅B .{d }C .{a ,c }D .{b ,e }1.(4分)已知全集U ={a ,b ,c ,d ,e },集合N ={b ,d ,e },M ={a ,c ,d },则∁U (M ∪N )=( )A .{x |x <1}B .{x |x >4}C .{x |1<x <4}D .{x |x <1或x >4}2.(4分)不等式-x 2+5x -4>0的解集是( )A .6B .-4C .4或-6D .6或-43.(4分)已知点P (a ,2)到直线4x -3y +2=0的距离等于4,则a =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(4分)已知直线m 、n 和平面α,且n ⊆α,则“m ⊥α”是“m ⊥n ”的( )A .4B .4+4C .4D .4+45.(4分)设正四棱锥的底面边长和侧棱长都是2,则该四棱锥的表面积为( )M 3M 3M 5M 5A .2B .-2C .1D .-16.(4分)已知向量a =(-2,1),b =(4,3),c =(-1,λ).若(a +b )∥c ,则λ的值为( )→→→→→→A .(0,]B .[0,]C .(-∞,]D .[,+∞)7.(4分)已知函数f (x )=log a x (a >0且a ≠1)满足f (2)=-1,则不等式f (x )≥3的解集是( )18181818二、填空题(本大题共5个小题,每小题4分,共20分)A .10B .9C .8D .78.(4分)从某小学随机抽取100名学生,将他们的身高数据绘制成频率分布直方图如图所示,若要从身高在[120,130)、[130,140)、[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为( )A .f (-π)>f (-2)>-f (3)B .-f (3)>f (-π)>f (-2)C .f (-2)>-f (3)>f (-π)D .f (-π)>-f (3)>f (-2)9.(4分)已知f (x )是R 上的奇函数,且在区间[0,+∞)上是减函数,则f (-2),f (-π),-f (3)的大小关系是(A .函数y =sin 2x 的周期为πB .函数y =sinx 在区间(,)内是减函数C .函数y =sinx +cosx 的值域是[-2,2]D .函数y =sin 2x 的图像可由y =sin (2x -)的图像向左平移个单位得到10.(4分)下列命题中错误的是( )3π45π4π5π1011.(4分)已知sin (π+α)=-,α∈(,π),则sin 2α= .45π212.(4分)不等式|x -a |<2的解集为{x |-1<x <3},则实数a = .13.(4分)从7名运动员中选出4人参加校运会的4×100米接力赛,则甲、乙两人都不跑中间两棒的方法有 种.14.(4分)过点P (2,-1)作圆C :(x -1)2+(y -2)2=2的切线,切点为A 、B .则|PA |= .15.(4分)已知等差数列{a n }中a 1=13,且S 3=S 11,则S n 的最大值为 .三、解答题(本大题共7个小题,其中第21、22小题为选做题.满分50分.解答应写出文字说明、证明过程或演算步选做题:请考生在第21、22题中选择一题作答.若两题都做,则按所做的第21题计分.作答时,请写清题号.老师建科类做第21题,服务类做22题.16.(10分)已知点(4,2)在函数f (x )=的图象上.(1)求a 的值,并画出函数f (x )的图象;(2)求不等式f (x )<1的解集.{x +4,x ≤0x ,x >0log a 17.(10分)我校学生心理咨询中心服务电话的接通率为.21机2班的3名同学分别就某一问题在某天咨询该服务中心,只拨打一次电话,设X 表示他们中成功咨询的人数.求:(1)恰有2人成功咨询的概率;(2)随机变量X 的概率分布和数学期望、方差.3418.(10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N +).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .19.(10分)如图四棱锥P -ABCD 的底面是边长为2的菱形,且∠ABC =60°,PA =PC =2,PB =PD .(1)若O 是AC 与BD 的交点,证明:PO ⊥平面ABCD .(2)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.20.(10分)已知椭圆C 的中心在坐标原点O ,焦点在x 轴上,离心率为,椭圆上一点P 到椭圆左右两焦点的距离之和为(1)求椭圆C 的标准方程;(2)已知直线l :y =x +m 与椭圆C 交于A 、B 两个不同的点,且弦AB 的中点恰好在圆+=上,求直线l 的方程.M 32x 2y 2172521.(10分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.M222.某公司计划在今年内同时出售变频空调机和智能洗衣机.由于这两种产品的市场需求量非常大,有多少就能销售多少,该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的是资金和劳动力.通过调查,得到关于这两种产品的有关数据如表:资金(表中单位:百元)单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润6试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?。

黑龙江高职对口招生考试数学模拟试题二(含答案)

黑龙江高职对口招生考试数学模拟试题二(含答案)

数学试题第I 卷(选择题,共60分)一. 选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合1{|24}8x A x R =∈<<,{|24}B x R x =∈-<≤,则A B 等于 ( )A. (2,2)-B. (2,4)-C. 1(,2)8D. 1(,4)82. 在复平面内,复数z 满足20131i z i +⋅=()(i 为虚数单位),则复数z 表示的点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 抛物线22y x =的准线方程是 ( ) A. 12x =-B. 18x =-C. 12y =D. 18y =- 4. 下列说法正确的是 ( )A. “1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件B. 命题“,R x ∈∃使得0322<++x x ”的否定是:“,R x ∈∀0322>++x x ”C. “1-=x ”是“0232=++x x ”的必要不充分条件D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题 5. 某几何体的三视图如图所示,则该几何体的表面积为( ) A. 18 B. 21 C.24 D.276. 执行右面的程序框图,如果输入72,30m n ==,则输出的n 是( )A. 12B. 6C. 3D. 0 7. 在一次对“学生的数学成绩与物理成绩是否有关”的独立性检验的 试验中,由22⨯列联表算得2K 的观测值7.813k ≈,参照附表:判断在此次试验中,下列结论正确的是 ( )2()P K k ≥0.050 0. 010 0.001 k3.8416.63510.8281111侧视图A. 有99.9%以上的把握认为“数学成绩与物理成绩有关”B. “数学成绩与物理成绩有关” 的概率为99%C. 在犯错误的概率不超过0.01的前提下,认为“数学成绩与物理成绩有关”D. 在犯错误的概率不超过0.001的前提下,认为“数学成绩与物理成绩有关”8. 函数ln xy e x =-的图象是 ( )9. 已知四棱锥P ABCD -中,侧棱都相等,底面是边长为22O ,以PO 为直径的球经过侧棱中点,则该球的体积为 ( ) A.823 B.23 C. 43π D.323π 10. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos ,cos ,cos a C b B c A 成等差数列,则B 等于 ( )A .6π B.3π C.4π D.23π 11. 过双曲线22221x y a b-=(0,0a b >>)的右焦点F 作圆222x y a +=的切线FM ,交y轴于点P ,切圆于点M ,若2OM OF OP =+,则双曲线的离心率是 ( ) A.5 B. 3 C. 2 D.212. 函数()f x 的定义域为R ,(0)2f =,对x R ∀∈,有()()1f x f x '+>,则不等式()1x x e f x e ⋅>+的解集为( )A. {|0}x x >B. {|0}x x <C. {|1x x <-或1}x >D. {|1x x <-或01}x <<第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~(24)题为选考题,考生根据要求做答. 二. 填空题:本大题共4小题,每小题5分,共20分.13. 已知直线y x a =+与圆224x y +=交于,A B 两点,且0OA OB ⋅=,其中O 为坐标原点,则正实数a 的值为_______________. 14. 已知x x 2sin ,31)4sin(则=-π的值为________________.15. 已知点(1,2)A -,点(,)P x y 为平面区域M :203602x y x y y +-≥⎧⎪--≤⎨⎪≤⎩内一点,O 是坐标原点,则z OA AP =⋅的最大值为________________.16.已知,6a t ===+=,若,a t 均为正实数,则由以上等式,可推测a t += . 三. 解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 中,37a =,且1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令211n n b a =-(n N *∈),求数列{}n b 的前n 项和n S . 18.(本小题满分12分)2012年伦敦奥运会前夕,在海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行了7轮比赛,得分的情况如茎叶图所示(单位:分).(Ⅰ)分别求甲、乙两名运动员比赛成绩的平均分与方差;(Ⅱ)若从甲运动员的7轮比赛的得分中任选3个不低于80分且不高于90分的得分,求这3个得分与其平均分的差的绝对值都不超过2的概率. 19.(本小题满分12分)如图,已知三棱锥A BCD -,,AB BD AD CD ⊥⊥,,E F 分别 为,AC BC 的中点,且BEC ∆为正三角形.(Ⅰ)求证:CD ⊥平面ABD ;(Ⅱ)若3CD =,10AC =,求点C 到平面DEF 的距离.BDC20.(本小题满分12分)如图,已知椭圆22221(0)x y a b a b+=>>的中心在原点,其上、下顶点分别为,A B ,点B在直线:1l y =-上,点A 到椭圆的左焦点的距离为2.(Ⅰ)求椭圆的标准方程;(Ⅱ)设P 是椭圆上异于,A B 的任意一点,点P 在y 轴上的射影为Q ,M 为PQ 的中点,直线AM 交直线l 于点C ,N 为BC 的中点,试探究:P 在椭圆上运动时,直线MN 与圆C:222x y b +=的位置关系,并证明你的结论.21.(本小题满分12分)已知函数()ln af x x x=-. (Ⅰ)若()f x 在3x =处取得极值,求实数a 的值; (Ⅱ)若()53f x x ≥-恒成立,求实数a 的取值范围.答案一、 选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20 分) 13. 2 14.9715. 1- 16. 41 三、解答题(本大题共6小题,共70分。

甘肃兰州中职对口招生考试数学模拟试题:选择题05

甘肃兰州中职对口招生考试数学模拟试题:选择题05

对口招生考试数学模拟试题选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确的选项填在答题纸上)1. 设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 .A 若l m ⊥,m α⊂,则l α⊥ .B 若l α⊥,l m //,则m α⊥.C 若l α//,m α⊂,则l m // .D 若l α//,m α//,则l m //2. 如图,一个用斜二侧画法画出来的三角形是一个边长为a 的正三角形,则原三角形的面积是 23.2A a 23.4B a 26.2C a 2.6D a 3. 直线10x y ++=的倾斜角与其在y 轴上的截距分别是 .A 1,135 .B 1,45- .C 1,45 .D 1,135-4. 如图长方体中,23AB AD ==,12CC =,则二面角1C BD C --的大小为 .A 030 .B 045 .C 060 .D 090 5. 一个几何体的三视图如图所示,则该几何体的体积为 .A 2 .B 1.C 23 .D 136. 过点()2,1且在x 轴、y 轴截距相等的直线方程为.A 03=-+y x .B 03=-+y x 或 01=--y x.C 03=-+y x 或x y 21= .D 01=--y x 或x y 21= 7. 已知点()3,4A --,()6,3B 到直线01:=++y ax l 的距离相等,则a 的值 .A 97- .B 31- .C 97-或31- .D 97-或1 8. 如图在三棱锥BCD A -中,E 、F 是棱AD 上互异的两点,G 、H 是棱BC 上互异的两点,由图可知① AB 与CD 互为异面直线; ② FH 分别与DC 、DB 互为异面直线; 'x 'y 'o 'A 'B 'C AB CD A 1B 1C 1D 1③ EG 与FH 互为异面直线; ④ EG 与AB 互为异面直线.其中叙述正确的是.A ①③ .B ②④ .C ①②④ .D ①②③④9. 已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则PAB ∆面积的最大值与最小值分别是.A 2,()1452- .B ()1452+,()1452- .C 5,45- .D ()1522+,()1522- 10. 已知直线(1)20k x y k ++--=恒过点P ,则点P 关于直线20x y --=的对称点的坐标是.(3,2)A - .(2,3)B - .(1,3)C - .(3,1)D -11. 已知点(,)P x y 满足2220,x y y +-= 则1y u x+=的取值范围是 .33A u -≤≤ .3B u ≤-或3u ≥33.33C u -≤≤ 3.3D u ≤-或33u ≥ 12. 在三棱锥A BCD -中,AB ⊥平面,BCD ,BC CD ⊥ 且3,4,AB BD == 则三棱锥A BCD -外接球的半径为.2A .3B .4C 5.2D选择题(本大题共12小题,每小题5分,共60分)ABC D。

2022年湖南省长沙市普通高校对口单招数学一模测试卷(含答案)

2022年湖南省长沙市普通高校对口单招数学一模测试卷(含答案)

2022年湖南省长沙市普通高校对口单招数学一模测试卷(含答案)班级:________ 姓名:________ 考号:________一、单选题(20题)1.若f(x)=4log2x+2,则f⑵+f⑷+f(8)=()A.12B.24C.30D.482.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-53.函数f(x)=的定义域是( )A.(0,+∞)B.[0,+∞)C.(0,2)D.R4.A.B.C.D.5.已知等差数列{a n}的前n项和为S n,a4=2,S10=10,则a7的值为()A.0B.1C.2D.36.A.B.C.D.7.A.B.C.8.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)9.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.810.A.7B.8C.6D.511.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)12.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a13.下列函数中,是增函数,又是奇函数的是(〕A.y=B.y=1/xC.y=x2D.y=x1/314.在等差数列{a n}中,如果a3+a4+a5+a6+a7+a8=30,则数列的前10项的和S10为()A.30B.40C.50D.6015.已知集合,则等于()A.B.C.D.16.设集合A={1,2,4},B={2,3,4},则A∪B=()A.{1,2}B.{2,4}C.{1,2,3,4}D.{1,2,3}17.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定18.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)19.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-420.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定二、填空题(10题)21.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.22.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.23.24.25.1+3+5+…+(2n-b)=_____.26.27.28.若函数_____.29.30.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.三、计算题(10题)31.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1) 3个人都是男生的概率;(2) 至少有两个男生的概率.32.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾” 和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1) 试估计“可回收垃圾”投放正确的概率;(2) 试估计生活垃圾投放错误的概率。

2023年广西省对口单招数学模拟题(答案) (5)

2023年广西省对口单招数学模拟题(答案) (5)

2023年广西省对口单独招生模拟题数学试卷(答案)(满分120分,考试时间120分钟)一.选择题:(本题共20小题,每小题3分,共60分)1.设集合{1,2,4,6}A =,{2,3,5}B =,则韦恩图中阴影部分表示的集合为()A.{}2 B.{}3,5 C.{}1,4,6 D.{}3,5,7,82.函数21)(--=x x x f 的定义域为()A.[)()+∞⋃,22,1 B.()+∞,1 C.[)2,1 D.[)+∞,13.下列四个函数中,与y=x 表示同一函数的是()A.y=(x )2B.y=33xC.y=2xD.y=xx 24.△ABC 的内角A.B.C 的对边分别为a.b.c,且asinC=bsinB.则B ∠=___.()A.6π B.4π C.3π D.34π5.某学校周五安排有语文.数学.英语.物理.化学.体育六节课,要求体育不排在第一节课,数学不排在第四节课,则这天课表的不同排法种数为()A.600B.288C.480D.5046.角2017°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角7.直线12y =+的倾斜角为()A.30° B.60°C.120°D.150°8.直线l1210y ++=与直线l2:30x -+=的位置关系是()A.平行B.垂直C.重合D.非垂直相交9.在圆:22670x y x +--=内部的点是()A.(0) B.(7,0)C.(-2,0) D.(2,1)10.函数2()|1|f x x =+的定义域为()A.[-2,+∞)B.(-2,+∞)C.[-2,-1)∪(-1,+∞)D.(-2,-1)∪(-1,+∞)11.命题p :a=1,命题q :2(1)0a -=.p是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件12.在△ABC 中,向量表达式正确的是()A.AB BC CA += B.AB CA BC -= C.AB AC CB-= D.0AB BC CA ++= 13.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260xx --≤ B.260xx --≥ C.15||22x -≥ D.32x x -+14.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为15.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =- C.1()2xy -= D.ln y x=16.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16B.18C.19D.51817.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p18.函数y =sin2x的图像如何平移得到函数sin(2)3y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位19.设动点M 到1( 0)F 的距离减去它到2 0)F 的距离等于4,则动点M 的轨迹方程为()A.221 (2)49x y x -=-≤ B.221 (2)49x y x -=≥ C.221 (2)49y x y -=≥ D.221 (x 3)94x y -=≥20.已知函数()3sin f x x x =+,则(12f p=()B. C. D.二.填空题(共10小题,每小题3分;共计30分)1.已知55)4sin(=+απ,则=α2sin _________.2.顶点在原点,对称轴为坐标轴的抛物线经过点)3,2(-,则抛物线的标准方程为_________.3.已知函数()f x =223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4.不等式2340x x --+>的解集为______.(用区间表示)5.不等式422<-xx的解集为______..(用区间表示)6.函数()35lg -=x y 的定义域是______.(用区间表示)7.函数y =)9(log 2-x 的定义域是______.(用集合表示)8.不等式062<--x x 的解集是______.(用集合表示)9.不等式0125>--x 的解集为______.(用集合表示)10.已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三.大题:(满分30分)1.如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.2.已知一次函数()f x 满足(1)3,(1)2f f =-=,求(2)f .参考答案:一.选择题:1-5:BABCD 二.填空题:参考答案1.53-;2.292-=y 或y x 342=3.0;4.(-4,1);5.(-1,2);6.⎪⎭⎫⎢⎣⎡∞+,54;7.}9{>x x ;8.{}32<<-x x ;9.}32{><x x x 或;10.3。

2024年四川省对口升学数学试题 以及解析

2024年四川省对口升学数学试题 以及解析

四川省2024年普通高校对口招生统一考试数学试题第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知集合{}2,1,0,1,2M =--,{}0,1,2N =,则=M N ⋂().A {}2,1,0--.B {}1,0,1-.C {}0,1,2.D {}2,1,0,1,2--2.函数()()2333x f x log x -=--的定义域是().A ()3,-+¥.B [)3,-+¥.C ()3,+¥.D [)3,+¥3.3090cos cos +=o o ().A 2-.B 12-.C 12.D 24.已知平面向量()2,3=-a ,()2,1=--b ,则=×a b ().A 2-.B 1-.C 1.D 25.不等式122x <-<的解集为().A ()0,4.B (-∞,1)È(4,+∞).C ()1,3.D ()()0,13,4È6.过点()11,且与直线20x y -=垂直的直线的方程是().A 230x y +-=.B 210x y +-=.C 230x y --=.D 210x y --=7.224lg 22lg 4lg 25lg 25++=().A 1.B 2.C 4.D 258.函数()2sin y x ωϕ=+的部分图象如图所示,其中0ω>,2πϕ<,则().A 2sin 26x y π⎛⎫=- ⎪⎝⎭.B 2sin 23x y π⎛⎫=- ⎪⎝⎭.C 2sin 26y x π⎛⎫=- ⎪⎝⎭.D 2sin 23y x π⎛⎫=- ⎪⎝⎭9.已知椭圆()2222103x y m m m+=>的左焦点为()4,0-,则m 的值为().A .B .C 3.D 410.某保险公司为了解购买某险种的1000名投保人的出险次数情况,随机调查了其中100名投保人的出险次数,得到如下表格:出险次数01234³投保人数a 292583则下列结论中正确的是().A 表中a 的值为25.B 调查的这100名投保人的出险次数的均值大于1.C 购买该险种的100名投保人的出险次数是总体.D 估计购买该险种的所有投保人中,出险次数不低于3次的人数为1111.已知0.22a =,0.33b =,20.2c =,则a b c 、、的大小关系为().A a b c >>.B a c b >>.C b a c>>.D b c a >>12.设a R Î,则“1tan α=-”是“34πα=”的().A 充分不必要条件.B 必要不充分条件.C 充要条件.D 既不充分也不必要条件13.一个温度为0T C o 的物体移入恒温a C o 的室内,t 分钟后该物体的温度为T C o .已知T 与t 的关系可以表示为()0kt T a T a e -=+-,其中0k >.现将温度为90C o 的该物体移入恒温10C o 的室内,20分钟后该物体的温度为50C o ,则再过20分钟该物体的温度为.A 10C o .B 20C o .C 30C o .D 40Co 14.设αβγ、、是三个不同的平面,l m 、是两条不同的直线.给出下列四个命题:①若∥a g ,∥b g ,则a b ∥;②若a g ^,b g ^,则a b ∥;③若l ∥a ,m ∥b ,l m ∥,则a b ∥;④若l a g Ç=,m b g Ç=,l m ∥,则a b ∥.其中正确命题的个数是().A 1.B 2.C 3.D 415.已知定义在R 上的函数()f x 满足()()66f x f x -=+.当31x -£<时,()22f x x x =--;当19x £<时,()4f x x =-.则()()()()1232024f f f f +++⋅⋅⋅+=().A 328.B 332.C 336.D 340第Ⅱ卷(非选择题共90分)二、填空题(本大题共5个小题,每小题4分,共20分)16.已知抛物线22y px =过点()3,6,则p =.17.若5(2+)x a 的展开式中2x 的系数为320-,则a =.18.某植物的快速生长期约有10天,在此期间该植物每天结束时的高度都为前一天结束时的高度的2倍.已知在快速生长期的第4天结束时,该植物的高度是20毫米,那么它在第7天结束时的高度为毫米.19.已知函数()()ln 11b f x x a x ⎛⎫=++ ⎪+⎝⎭是偶函数,其中,a b ∈R ,则a b -=.20.已知平面向量,a b 满足3=a ,1=b ,则++-a b a b 的最大值是.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)为弘扬中华优秀传统文化,某学校将开展传统文化知识竞赛.已知该学校的文学、朗诵、书画、戏曲4个社团的人数分别为140,112,56,28,且每个社团的成员都只参加了1个社团.竞赛组委会拟采用分层抽样的方法从以上4个社团中抽取12名同学担任志愿者.(1)求应从这4个社团中分别抽取的志愿者人数;(2)若从抽取的12名志愿者中随机抽取3名担任竞赛分数统计员,求抽取的3名统计员中恰有2名来自同一社团的概率.22.(本小题满分12分)已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且23sin sin 2122A A π⎛⎫++= ⎪⎝⎭.(1)求角A 的大小;(2)若cos sin c b A B =+,证明:ABC ∆为直角三角形.23.(本小题满分12分)如图,已知四棱锥P ABCD -的底面为长方形,PA ABCD ⊥底面,1AB PA ==,AD =E 为BC 的中点.(1)证明:PE BD ⊥;(2)求二面角P BD A --的正切值.24.(本小题满分12分)设数列{}n a 的前n 项和n S 满足:()121n n S n a +=+,且321S =.(1)求数列{}n a 的通项公式;(2)求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(本小题满分12分)设a ∈R ,函数()2335f x x ax a =-+-.(1)设函数()f x 的图象与x 轴相交于A B 、两点,且2153AB =,求a 的值;(2)若()0f x <对任意的[]1,1a ∈-恒成立,求实数x 的取值范围.26.(本小题满分12分)设k ∈R ,过定点A 的动直线240kx y k --+=和过定点B 的动直线0x ky +=相交于点M .(1)求定点A B 、的坐标,并求点M 的轨迹方程;(2)求MA +的最大值.四川省2024年普通高校对口招生统一考试数学试题相关解析第Ⅰ卷(选择题共60分)一、选择题(本大题共15个小题,每小题4分,共60分。

江苏省对口单招数学模拟试卷

江苏省对口单招数学模拟试卷

综合试卷一、单项选择题(本大题共10小题,每小题4分,共40分)1.如果全集},,,,{e d c b a U =,),,{},,,{e d b B d c a A ==,那么B C A C U U = ( ) A .φ B .}{d C .},{c a D .},{e b2.已知P(-3,4)为角α的终边上一点,则=α2sin ( ) A.2524 B.-2524 C.2512 D.-25123.在∆ABC 中,角A 、B 对应的边为a 、b ,则“B A cos cos >”是“b a <”的 ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知向量a )1,2(-=,b )5,(-=x ,且a ⊥(a +b ),则a •b 等于 ( ) A .1B . -1C .5D .-55.复数i z i z -=+=1,321,则21z z z ⨯=在复平面内的点在第( )象限 A .一B .二C .三D .四6.已知)2,1(A 、)1,3(B ,则线段AB 的垂直平分线的方程是 ( ) A .0524=-+y x B .0524=--y x C .052=-+y x D .052=--y x7.若实数x 满足21<-x ,则x)21(的取值范围是 ( ) A .)3,1(-B .)8,21(C .)2,81(D .)2,21(8. 从1,2,3,…,9这九个数中,随机抽取3个不同的数,则这三个数的和 为奇数的概率为 ( ) A .95 B .94 C .2111 D .2110 9.抛物线2x y =的准线方程是( )A .014=+xB .014=+yC .012=+xD .012=+y10.已知偶函数)(x f 在[]3,0内单调递增,则)41(log ),23(),3(2f f f -之间的 大小关系为 ( )A .))23()41(log )3(2f f f >>- B .)41(log )23()3(2f f f >>- C .)3()41(log )23(2->>f f f D .)3()23()41(log 2->>f f f二、填空题(本大题共5小题,每小题4分,共20分) 11.底面直径为2的等边圆柱的侧面积是12.双曲线1322=+y k x 的离心率3=e ,则=k .13.已知函数)sin(ϕω+=x A y )2,0,0(πϕω<>>A 在一个周期内的图象最低点)2,3(--π,最高点)2,6(π,则这个函数的解析式为 .14. 8)2(x a -的展开式中3x 的系数是448,则=a .15.设)(x f 是周期为2的奇函数,当10≤≤x 时)1(2)(x x x f -=,则=-)25(f . 三、解答题(本大题8小题,共90分)16.(本大题6分)若022>--bx ax 的解集为)2,1(,求b a +的值.17.(本大题10分)在ABC ∆中,a 、b 、c 分别是内角A 、B 、C 所对的边,,2,3==b a0)cos(21=++C B .求:(1)角A 的大小;(2)ABC ∆的面积S .18.(本大题12分)已知:等差数列}{n a 182102==a a ,,.(1)求数列}{n a 的通项公式;(2)若nn n a b 2+=,求数列}{n b 的前n 项和n T .19.(本大题12分)已知:二次函数)(x f 图象的顶点坐标是)8,3(-,图象与x 轴的两个交点之间的距离是4.求:(1)二次函数)(x f 的解析式;(2)若0)(0=x f ,则称0x x =是函数)(x f 的零点,设10)()(-=x f x g ,求函数)(x g 的零点.20.(12分))某工厂可以用两种不同原料生产同一种产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品190千克;若采用乙种原料,每吨成本1400元,运费400元,可得产品240千克。

2023年河北省普通高等学校对口招生文化考试 数学模拟试卷(三)(含详细答案)

2023年河北省普通高等学校对口招生文化考试 数学模拟试卷(三)(含详细答案)

2023年河北省普通高等学校对口招生文化考试数学试卷(三)一、选择题(本大题共15小题,每小题3分,共45分.每小题所给出的四个选项中,只有一个符合题目要求,多选、错选,均不得分)1.集合M ={4,1},N ={2x ,3},若M ∩N ={1},则x =( ).A .1B .2C .-1D .02.若0≤a <1.则下列不等式不成立的是( ).A .0<|a |<1B .0<1a<1 C .0≤a 2<1 D .0<1 3.下列函数与y =x 有相同图象的一个函数是( ).A .yB .y =32x x C .y =122()x D .y =|x |4.若偶函数f (x )在(―∞,-1]上是增函数,则下列关系中成立的是( ).A .f (32-)<f (-1)<f (2)B .f (-1)<f (32-)<f (2). C .f (2)<f (-1)<f (32-) D .f (2)<f (32-)<f (-1) 5.a ∈A ∪B 是a ∈A ∩B 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知a =(3,4),b =(2,-1),如果(a +x b )⊥b ,则x 的值为( ).A . 233B . 323C .2D .25- 7.下面函数是表示同一函数的是( ).A .y =sinx 与y =sin (π+x )B .y =sinx 与y =cos (2π-x ) C .y =cosx 与y =sin (32π+x ) D .y =cosx 与y =sin (32π-x )8.1-1两数的等比中项是( ).A . 23B .-1C .±1D . 129.直线y =3x +1与x 2+y 2-4x +6y +3=0的位置关系是( ).A .相交不过圆心B .相交且过圆心C .相切D .相离10.直线l 1:x +ay +6=0与l 2:(a -2)x +3y +a +3=0平行,则a 的值( ).A .-1或3B .1或3C .-3D .-111.已知双曲线216x -225y =1一点到一个焦点的距离为9,则其到另一焦点的距离为( ).A .17B .1C .17或1D .1012.2个数学教师,2个语文教师分别担任4个班的课,每人两个班,则不同的分配方案有( ).A .12种B .24种C .36种D .72种13.二项式(x -1)5的展开式中,第_____________项的系数最小.( ).A .9B .8或9C .8D .714.下面命题:①垂直于同一平面的两个平面平行;②与同一平面所成角相等的两条直线平行或相交;③若一个平面内不共线的三个点到另一平面的距离相等,那么这两个平面平行或相交;④若m ⊥α,m ∥n 则n ⊥a .其中正确的命题的个数有__个.( ).A .3B .2C .1D .0 15.某奖券的中奖率是0.1,现买3张,则至少有一张中奖的概率是( ).A .0.271B .0.2C .0.729D .0.3二,填空题(本大题共15小题,每小题2分,共30分)16.已知函数f (x )= 21,022,2x x x x ⎧+⎨>⎩,若f (a )=8,则a =_________. 17.函f (x )=ln(3)x +-定义域为________. (用区间表示)18.计算12043216()log cos30!25C π-+-+=________. 19.已知sin()2πα-=513,且o <α≤π,则tanα=________.20.tan 22°+tan 23∘+tan 23tan 22°=________.21.求过点(2,3)且与直线4x -3y +5=0垂直的直线方程为________.22.若a =(3,4),b 与a 方向相反,且|b |=10,则b 的坐标为________.23.三男两女五名同学排成一排照相,2女生之间有且仅有一个男生的不同的排法总数为________.24.已知数列112,314,518,7116……,则其前n 项和Sn 为________. 25.双曲线上一个顶点与虚轴的一个端点的连线及实轴所在直线所成的角为60°,则双曲线的离心率e=________.26.正方体ABCD -A 1B 1C 1D 1中,BC 1与截面AA 1C 1C 所成的角是________.27.过点(1,2)且与圆(x -2)2+y 2=5相切的切线方程是________.28.已知函数f (x )=3sinx ,g (x )=4sin()2x π-,直线x =m 与f (x ),g (x )的图象分别交于A 、B 两点,则|AB |的最大值是________.29.在等腰直角三角形ABC 中,∠A 为直角,AB =2,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C ,使得BC ,则该二面角的大小为________.30.10个人站成一排,其中甲、乙、丙三人彼此不相邻的概率是________.三,解答题(本大题共7小题,共45分要写出必要的文字说明、证明过程和演算步骤)31.(5分)已知集合A -{x |x +x -6>0),集合B ={x |x -3<a }若B ⊆A .求a 的取值范围.32.(1分)某种图书原定价为每本10元.预计售出总量为1万册经过市场分析,如果每本价格上涨x %、售出总量将减少0.5x %,间x 为何值时,这种书的销售额最大?此时每本书的售价是多少元?最大销售额为多少元?33.(7分)数列{a n }、{b n }中, {b n }为等比数列且公比为4.首项为2.bn =2.求:(1) {a n }的通项公式;(2) {a n }的前n 项和公式.34. (6分)若函数f (x )= 22cos sin 21x x x -+-求,(1)函数f (x )的最小正周期;(2)函数f (x )的值域.35.(6分)从5名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生人数,求ξ的概率分布.36.(7分)直线y =x +1与抛物线y 2=-2px (ρ>0)交于MN 两点且|MN |=8.求抛物线的方程.37.(7分)如图.△DBC是边长为2的等边三角形,且AD⊥平面BCD,E是BC的中点,(1)求证:BC⊥平面ADE;(2)若平面ABC与平面BDC所成的角为60°,求点D到平面ABC的距离2023年河北省普通高等学校对口招生文化考试数学试卷(三)答案一、选择题1.D2.B3.C4.D5.B6.D7.B8.C9.C 10.D 11.A 12.C 13.C14.B 15.A二、填空题16.4 17.(2,3) 18.23910 19.- 12520.1 21.3x +4y -18=0 22.(-6,-8) 23.36 24. 211()2n n +- 25.2 26.6π 27.x -2y +3=0 28.5 29. 3π 30. 715 三、解答题31.解:A ={x |x 2+x -6≥0}={x |x <-3或x >2}集合B ={x |x -3<a }={x |x <a +3},因为B ⊆A ,所以a +3≤-3,解得a ≤―6,所以a 取值范围为(―∞,-6].32.解:设销售额为y 元,依题意得y =10(1+x %)∙10000·(1-0.5x %)=-5x 2+500x +100000当x =-5002(5)⨯-=50,y 有最大值是112500. 此时,每本书得售价是10×(1+50%)=15元时,最大销售为112500元.33.解:(1)因为{bn }为等比数列,且公比是4,首项为2,所以bn =2×14n -=22-1=1, 又因为bn =2n a ,所以a n =2n -1.(2)由(1)知a n =2n -1,所以a n +1-a n =2(n +1)-1-2n +1=2,又a 1=2-1=1,所以{a n }是首项为1,公差为2的等差数列,所以数列{a n }的前n 项和为 S n =1()2n n a a +=(121)2n n +-=n34.解:(1)函f (x )=2cos x -2sin x 2x +1=cos 2x sin 2x +1=2sin (2x +6π)+1,周期T =22π=π. (2)函数的最大值为3,有最小值为-1,所以函数的值域为[―1,3].35.解:随机变量ξ的取值为0,1,2,P (ξ=0)=3537C C =27 P (ξ=1)= 215237C C C =47,P (ξ=2)= 125237C C C =17, 所以ξ的概率分布为:36.解:设M (x 1,y 1),N (x 2,y 2),联立212yx y px=+⎧⎨=-⎩,得x 2+(2p +2)x +1=0, 则x 1+x 1=-(2p +2),x 1x 2=1,由弦长公式|MN 8,解得p =2或p =-4(含).所以抛物线方程为y 2=-4x .37.解:(1)证明:因为△DBC 是等边三角形,E 是BC 中点,所以DE ⊥BC ,因为AD ⊥平面BCD ,所以AD ⊥BC ,又DE ∩AD =D ,所以BC ⊥平面ADE ;(2)因为BC ⊥平面ADE ,所以AE ⊥BC ,DE⊥BC ,从而∠AED 为平面ABC 与平面BDC所成角的平面角,即∠AED =60°,因为BC ⊥平面ADE ,所以平面ABC ⊥平面ADE ,过点D 作DF ⊥AE 于点F ,则DE ⊥平面ABC ,即DF 为点D 到平面ABC 的距离,在等边三角形DBC 中, DE =2DB . 在Rt △DEF 中,DF =DE sin 60︒=32.。

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省对口升学考试数学模拟试题(含详细答案)

2023年河北省普通高等学校对口招生文化考试模拟试题数 学一、选择题(本大题共15小题,每小题3分,共45分,每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合2{|1}A x x =<,且a A ∈,则a 的值可能为( ). A .2-B .-3C .0D .22.下列命题中正确的是( ). A .若a b >,则ac bc > B .若,a b c d >>,则a c b d ->- C .若0,ab a b >>,则11ab<D .若,a b c d >>,则a b cd<3. “直线l 与平面α平行”是“直线l 与平面α内无数条直线平行”的( ). A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则实数a 的取值范围是( ). A .3a -B .3a -C .5aD .3a5. 下列各组函数中,表示同一函数的是( ).A .3y =和y x =B .2y =和y x =C .y 2y =D .3y =和2x y x=6. 若三点A (-2,12),B (1,3),C (m ,-6)共线,则m 的值为( ). A .3 B .4 C .-3 D .-47. 两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ). A .213 B .113 C .126 D .5268. 函数f (x )=sin (2x -2π),x ∈R ,则f (x )是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数9. 已知等差数列{a n }的前n 项和为S n ,且a 5+a 9=50,a 4=13,则S 10=( ). A .170 B .180 C .189 D .190 10. 在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ). A . 锐角三角形 B .直角三角形 C . 钝角三角形 D .不能确定 11. 直线1y kx =+被圆222x y +=截得的弦长为2,则k 的值为( ). A .±1 B.2±C .12D .0 12. 有5列火车停在某车站并排的5条轨道上,若火车A 不能停在第1轨道上,则5列火车的停车方法共有( ).A .96种B .24种C .120种D .12种 13.在10(x -的展开式中,x 6的系数是( ).A .-27610CB .27410C C .-9610CD .9410C14. 已知点F (2 ,0)是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率为( ).A .12BC .2D .415. 已知椭圆C :22221x y a b += (a >b >0)的左、右焦点分别为F 1,F 2,离心率为3,过F 2的直线l 交C 于A ,B 两点.若△AF 1B的周长为C 的方程为( ).A . 221128x y +=B .221124x y += C . 2213x y += D . 22132x y += 二、填空题(本大题共15小题,每小题2分,共30分)16. 设函数1122,1()1log ,1x x f x x x -⎧⎪=⎨>⎪⎩,则((2))f f =________. 17. 设集合A ={1,2,4},{}2|40B x x x m =-+=.若A B = {1},则集合B 用列举法表示为________.18. 已知12315,log ,ln22a b c ===,则a ,b ,c 从大到小为________. 19. 32log 420223202213327lg 0.012sin()C 6π----+等于________. 20. 已知向量a =(1,3),a +b =(–2,6),向量a 与b 的夹角为θ,则cos θ=________. 21. 在长方体ABCD -A 1B 1C 1D 1中,若AB =AD =1,AA 1=2,则异面直线A 1C 1与B 1C 所成的角的余弦值为________.22. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向____平移_____个单位.23. 双曲线25x 2-16y 2=400的两条渐近线方程为______.(用斜截式表示) 24. 如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为________.24.线段AB 是平面α的斜线段,斜足为B ,点A 到平面α的距离是3AB 在α内的射影长为2,那么AB 与平面α所成的角为________.25. 一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有_______种不同的取法26. 已知7270127(12)x a a x a x a x -=++++,则127...a a a +++=________.27.函数12()log (2)f x x =-的单调递增区间是________. 28. 函数y =|sin x ·cos x |的最小正周期是________. 29.方程()222log 2log 80x x --=的解集为________.30. 箱子里放有编号分别为1,2,3,4,5的5个小球,5个小球除编号外其他均相同,从中随机摸出2个小球,则摸到1号球的概率为________. 三、解答题(本大题共7个小题,共45分.要写出必要的文字说明、证明过程和演算步骤)31.(5分)已知集合22{|340A x x ax a =-->,(0)}a >,{|2}B x x =>,若B A ⊆,求实数求的取值范围.32.(6分)某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量对应值如下表:(1)求每天销售量y (件)与售价x (元/件)的函数关系式?(2)设该商店销售商品每天获得的利润为W (元),求W 与x 之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?33.(7分)已知数列{a n }为等差数列,a 7-a 2=10,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式; (2)设11n n n b a a +=,求数列{b n }的前n 项和为S n . 34.(6分)已知函数f (x )=2a sin x cos x +2b cos 2x ,且f (0)=8,f (6π)=12. (1)求实数a ,b 的值;(2)求函数f (x )的最大值及取得最大值时x 的值.35.(7分)如图所示.已知线段PD 垂直于菱形ABCD 所在的平面,点D 为垂足.PD =2,菱形的边长为2,且ADC ∠=60O .(1)求证:平面P AC ⊥平面PBD ; (2)求二面角P -AC -D 的正切值.36.(7分)已知双曲线225x y m-=1与抛物线y 2=12x 有共同的焦点F 2,经过双曲线的左焦点F 1作倾斜角为π4的直线与双曲线相交于A ,B 两点.求: (1)直线AB 的方程和双曲线的标准方程; (2)△F 2AB 的面积. 37.(7分)一个袋中装有6个形状和大小都相同的小球,其中2个红球和4个白球.(1)若从中无放回地任取2球,求取到白球的概率;(2)若每次取1个球,有放回地取3次,求取到红球个数ξ的概率分布.2022年河北省普通高等学校对口招生文化考试模拟试题数学答案一、选择题1.C2.C3.A4.A5.A6.B7.C8.B9.D 10.C 11.D 12.A 13.D 14.C 15.D 二、填空题16.1 17. {}1,3 18. a c b >>19.-1 2021. 1010 22. 右6π 23. y =±54x 24. 3π25.56 26.-2 27. (,2)-∞28.2π 29. 1164x x ==或 30. 25 三、解答题 31.解:集合22{|340A x x ax a =-->,(0)}a >{|(4)()0x x a x a =-+>,(0)}a > {|x x a =<-或4x a >,(0)}a >,∵{|2}B x x =>,B A ⊆, ∴042a <,解得102a<. ∴实数a 的取值范围是10,2⎛⎤⎥⎝⎦.32. 解:(1)依题意设y kx b =+,则有55906570k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,所以2200y x =-+,y 与x 关系式为2200y x =-+,(2)由题意知:(50)(2200)w x x =--+,2230010000x x =-+-,22(75)1250x =--+,当销售单价定为75元时,该商店销售这种商品每天获得的利润最大,为1250元.1(23n +++b cos 2x +b 由f (0)=8,f (6)=12可得a =43,b =4; (2)f (x )=4sin2x +4cos2x +4=8sin (2x +6π)+4. 所以当2x +6π=2kπ+2π,即x =kπ+6π,k ∈Z 时,函数f (x )取最大值为12. 35. (1)证明:四边形ABCD 为菱形,AC ⊥BD PD ⊥平面ABCD ,AC ⊆平面ABCD ,PD ⊥AC BD ,PD ⊆平面PBD ,所以AC ⊥平面PBD . 因AC ⊆平面P AC ,所以平面P AC ⊥平面PBD (2)解:因AC ⊥平面PBD ,PO 、OD ⊆平面PBD 所以∠POD 为二面角P -AC -D 的平面角因PD ⊥平面ABCD ,BD ⊆平面ABCD ,所以,PD ⊥BD ﹐则△POD 为直角三角形 又四边形ABCD 是边长为2的菱形,∠ADC =60o所以,BD 为∠ADC 的平分线,且BD ⊥AC ,所以∠ODC =30°在Rt △CDO 中,OD =CD cos30︒=2在Rt △POD 中, D tan PO PD OD ∠=36. 解:(1)∵抛物线y 2=12x 的焦点(3,0)为双曲线225x y m-=1的右焦点F 2(3,0),∴m +5=9,解得m =4,∴双曲线的标准方程为2254x y -=1.∵双曲线的左焦点F 1(-3,0), 故,直线过点F 1(-3,0)且斜率k =tanπ4=1 ∴直线AB 的方程为y =x +3,即x -y +3=0.(2)由2230,1,54x y x y -+=⎧⎪⎨-=⎪⎩消去y 得x 2+30x +65=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-30, ∴|AB |=∵双曲线的左焦点F 1(3,0) ∵点F 1到直线AB 的距离d=∴S △OAB =12 |AB |·d=12⨯ 37. 解:(1)设A ={无放回地任取2个,取到白球},则P (A )= 11224426C C C C +=1415.(2)ξ的可能取值为0,1,2,3.033128(0)()()3327P C ξ==⨯⨯=; 1123124(1)()()339P C ξ==⨯⨯=2213122(2)()()339P C ξ==⨯⨯=330312(3)()()37123P C ξ===⨯⨯∴ξ的概率分布为。

2023年对口升学数学试卷

2023年对口升学数学试卷

2023年对口升学数学试卷一、选择题(每题3分,共30分)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. B⊂neqq AD. A∩ B=varnothing2. 函数y = √(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若sinα=(3)/(5),且α是第二象限角,则cosα的值为()A. (4)/(5)B. -(4)/(5)C. (3)/(4)D. -(3)/(4)4. 过点(1,2)且斜率为3的直线方程为()A. y - 2 = 3(x - 1)B. y + 2 = 3(x + 1)C. y - 2=-3(x - 1)D. y + 2=-3(x + 1)5. 等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 11C. 13D. 156. 二次函数y = x^2+2x - 3的对称轴为()A. x = - 1B. x = 1C. x = - 2D. x = 27. 若向量→a=(1,2),→b=(x,4),且→a∥→b,则x的值为()A. 2B. -2C. (1)/(2)D. -(1)/(2)8. 函数y=log_2x在(0,+∞)上是()A. 减函数。

B. 增函数。

C. 先减后增函数。

D. 先增后减函数。

9. 从5名男生和3名女生中选3人参加某项活动,要求至少有1名女生,则不同的选法有()种。

A. 46B. 55C. 76D. 8010. 若圆x^2+y^2=r^2过点(1, - √(3)),则r的值为()A. 2B. √(2)C. √(3)D. 4二、填空题(每题3分,共15分)1. 计算:limlimits_x→1frac{x^2-1}{x - 1}=_2。

2. 已知向量→a=(2,3),→b=( - 1,k),若→a⊥→b,则k=_-(2)/(3)。

2023年江苏省对口单招数学模拟试卷一含答案

2023年江苏省对口单招数学模拟试卷一含答案

一.单项选择题(本大题共12小题,每题4分,共48分,每题列出旳四个选项中,只有一项是符合规定旳)1. 已知集合{}{}N M P N M ===,,5,3,14,3,2,1,0,则P 旳子集共有 ( ) A .2 B .4 C .6 D .82.设p :直线l 垂直于平面α内旳无数条直线,q :l ⊥α,则p 是q 旳 ( )A.充足不必要条件B.必要不充足条件C.充要条件D.既不充足也不必要条件3.复数2341i i i i++=- ( )A .1122i -- B .1122i -+ C .1122i - D .11+22i 4.若tan α=3,则αα2cos 2sin 旳值等于 ( )A .2B .3C .4D .65.圆224460x y x y +-++=截直线50x y --=所得旳弦长为 ( ) A .6 B .225 C .1 D .5 6.函数1()lg (1)1f x x x=++-旳定义域是( ) A .(,1)-∞- B .(1,)-+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞7. 下列函数中,其图象有关直线65π=x 对称旳是 ( ) A .4sin ()3πy x =-B. 52sin ()6πy x =- C .2sin (+)6πy x = D .4sin (+)3πy x =8. 设()f x 是周期为2旳奇函数,当0≤x ≤1时,()()21f x x x =-,则( 2.5)f -=( )A . 12-B .1 4- C .14 D .129.设双曲线2221(0)9x y a a -=>旳渐近线方程为023=±y x ,则a 旳值为 ( )A .4B .3C .2D .110.有A 、B 、C 、D 、E 共5人并排站在一起,假如A 、B 必须相邻,并在B 在A 旳右边,那么不一样旳排法有( )A .60种B .48种C .36种D .24种11.若△ABC 旳内角A 、B 、C 所对旳边c b a 、、满足22()4a b c +-=,且C=60°,则ab 旳 值为 ( )A .34B .8-C .1D .32 12.若X 服从X ~N(1,0.25)原则正态分布,且P (X<4)=0.8,则P(1<X<4)= ( ) A .0.2 B .0.3 C .0.4 D. 0.5二.填空题(本大题共6小题,每题4分,共24分)13.过点(1,2)且与原点距离最大旳直线方程是___________________. 14.已知函数1()2f x x =-,则12f -=()_____________. 15.已知2a b ==,(2)()2a b a b +⋅-=-,则a 与b 旳夹角为 _______.16.已知椭圆2255x ky +=旳焦点坐标为(0,2),则=k _____________. 17.若2cos 1log θx =-,则x 旳取值范围为_______________. 18.若R y x ∈,,则222211()(+4)x y y x+旳最小值为______________.二.填空题(本大题共6小题,每题4分,共24分)13. .14. .15. .16. .17. .18. .第Ⅱ卷(共78分)三.解答题(本大题共7小题,共78分)19.(6分) 已知2++<0ax bx c 旳解集为{|1<<2}x x ,求>0ax b -旳解集.20.(10分)已知函数()4cos sin ()16πf x x x =+- (1)求)(x f 旳最小正周期;(2)求)(x f 在区间,64ππ⎡⎤-⎢⎥⎣⎦上旳最大值和最小值.21. (10分)已知等比数列{}n a 旳各项均为正数,且2123262319a a a a a +==,. (1)求数列{}n a 旳通项公式;(2)设11121333log +log ...log n n b a a a =++,求数列1n b ⎧⎫⎨⎬⎩⎭旳前n 项和.22.(12分) 已知函数211()2()2f x x x b a a =--> (1)若()f x 在[)2+∞,上是单调函数,求a 旳取值范围;(2)若()f x 在[]2,3-上旳最大值为6,最小值为3-,求b a ,旳值.23. (12分) 红队队员甲、乙分别与蓝队队员A、B进行围棋比赛,甲对A,乙对B,各比一盘,已知甲胜A,乙胜B旳概率分别为31,52,假设各盘比赛成果互相独立.(1)求红队只有甲获胜旳概率;(2)求红队至少有一名队员获胜旳概率;(3)用ξ表达红队队员获胜旳总盘数,求ξ旳分布列和数学期望()Eξ.24.(14分) 如图所示,ABC∆为正三角形,⊥CE平面ABC,//BD CE,G、F分别为AB、AE 旳中点,且EC=CA=2BD=2.(1)求证:GF//平面BDEC;(2)求GF与平面ABC所成旳角;(3)求点G到平面ACE旳距离.B CEDGF25. (14分) 已知一条曲线C在y轴右边,C上任一点到点F(1,0)旳距离都比它到y轴距离大1.(1)求曲线C旳方程;(2)与否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B旳任一直线,均有FA?若存在,求出m旳取值范围;若不存在,请阐明理由.⋅FB<二、填空题13、05-2=+y x 14、2515、ο60 16、1 17、[]4,1 18、9 三、解答题 19、解:2++<0ax bx c 旳解集为{|1<<2}x x120123ba x x a∴>-=+=+=,, >0ax b ->3bx a ∴=-∴不等式>0ax b -旳解集为(-3,+∞) (6)分20、解:(1)()4cos sin()16πf x x x =+-1)cos 21sin 23(cos 4-+=x x x1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x ……………………………………………………………………3分则()f x 旳最小正周期为π ……………………………………………………………5分(2)64ππx -≤≤ 22663πππx ∴-≤+≤…………………………………………………………………6分当2,=626πππx x +=即时,()f x 获得最大值2 …………………………………8分当2,=666πππx x +=--即时,()f x 获得最小值-1. ……………………………10分 21、解:(1)11225111231()9>0a a q a q a q a q q +=⎧⎪=⋅⎨⎪⎩⎪⎩⎪⎨⎧==⇒31311q a …………………………………………3分1()3nn a ∴= ………………………………………5分 (2)2111333111log log ()+...log ()333n n b =++ 12...+n =++ =(1)2n n + …………………………………………7分 则12112()(1)1n b n n n n ==-++ ∴1221)=+1+1n nS n n =-(……………………………………………………10分 22、解:(1)对称轴为2=12x a a-=-,()f x 在[)2+∞,上是单调函数 ∴ 2≤a ……………………………………………………………………4分 21>a ∴221≤<a ………………………………………………………………………6分(2)1>2a当a x =时,获得最小值,即23a a b --=- 当2x =-时,获得最大值,即446b a+-= 解得1,2a b == …………………………………………………………………12分23、 解:(1)P=3135210⨯=………………………………………………………………3分 (2)P=2141525-⨯= ………………………………………………………………………6分(3)ξ旳取值为0,1,2,211(0)525P ξ==⨯=, 31211(1)52522P ξ==⨯+⨯=, 313(2)5210P ξ==⨯= 则ξ旳概率分布列为……………………………10分1311()1221010E ξ=⨯+⨯= ……………………………………………………………12分 24、解:(1)证明:连接BEG 、F 是AB 、AE 旳中点//GF BE ∴GF ⊄平面BDEC ,BE ⊂平面BDEC//GF ∴平面BDEC ………………………………………………………………………4分(2) //GF BE∴BE 与平面ABC 所成旳角即为GF 与平面ABC 所成旳角EC ⊥平面ABC∴EBC ∠是BE 与平面ABC 所成旳角在Rt ECB ∆中,EC=BC ,则=45EBC ∠︒∴GF 与平面ABC 所成旳角为45︒ ……………………………………………………9分(3) --=G ACE E ACG V V∴11=33ACE ACG S h S EC ∆∆⋅⋅ 1=22=22ACE S ∆⨯⨯,1=12ACG S ∆⨯ ……………………………………………………………12分∴22=h h ∴……………………………………………………………………13分∴点G 到平面ACE …………………………………………………………14分 25、解:(1)设),y x P (是曲线C 上任意一点,那么点),y x P (满足:1x =+化简得:x y 42= ………………………………………………………………4分(2)假设存在在这样旳m①当直线斜率存在时设过点M (m ,0)旳直线为()y k x m =-,0k ≠,点),(11y x A 、),(22y x B 222222()(24)04y k x m k x k m x k m y x =-⎧⇒-++=⎨=⎩ 222142k m k x x +=+∴ 221m x x =⋅……………………………………6分2212211616)(m x x y y =⋅=⋅0m > 124y y m ∴⋅=- ……………………………………………………8分 0<⋅FB FA1212(1)(1)0x x y y ∴--+<即121212()10x x x x y y -+++<22224140k m m m k +∴-+-<化简为22(61)40m m k -+-< ………………………………………………………11分 无论k 取何值该不等式恒成立,即为2610m m -+≤3m ⎡∴∈-+⎣ ②当直线斜率不存在时过点(,0)M m 旳直线为=x m ,此时(A m 、(,B m -(1,2),(1,FA m m FB m =-=--2(1)40FA FB m m ⋅=--<,即26+10m m -<,(3m ∈-+综上可得,存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 旳任一直线,均有0<⋅FB FA ,且(3m ∈-+ …………………………………………………14分。

2024年湖南省对口升学数学试题

2024年湖南省对口升学数学试题

湖南省2024年一般高等学校对口招生考试数 学(时量:120分钟;满分:150分)一、选择题(10550⨯=)1.已知全集{,,,,,,}U a b c d e f g =,集合{,,}M a b d =,集合{,,}N b c e =,则()UM N =( )A 、{,}f gB 、{,,}b c eC 、{,,}a b dD 、{,,,,}a b c d e2.函数1()lg(1)1f x x x =++-的定义域是( ) A 、(,1)-∞-B 、(1,1)-C 、(1,)+∞D 、(1,1)(1,)-+∞3.复数1z i =-+的三角形式是( )A cossin44i ππ⎫+⎪⎭B 33cossin 44i ππ⎫+⎪⎭C 55cossin 44i ππ⎫+⎪⎭D 77cossin 44i ππ⎫+⎪⎭4.下列命题中,正确的是( ) A 、AB BA +=0B 、0AB ⋅=0C 、AB BC AC +=D 、AB AC BC -=5、0tan 2limx xx→的值是( )A 、0B 、12C 、1D 、26.已知双曲线22916144x y -=上一点P 到该双曲线一个焦点的距离为4,则P 到另一个焦点的距离为( ) A 、8 B 、10 C 、12 D 、147.已知445sincos 9θθ+=,且θ是其次象限角,则sin 2θ的值是( )A 、23-B 、23C、3-D、38.某班拟从8名候选人中推选3名同学参与校学生代表大会,8名候选人中有甲、乙两名同学. 假设每名候选人都有相同的机会被选到,则甲、乙两同学都被选为学生代表的概率是( ) A 、314B 、328C 、128D 、1569.下列四个命题:(1)若一条直线和一个平面垂直,则这条直线垂直于这个平面内的任何一条直线; (2)若一条直线和一个平面平行,则这条直线平行于这个平面内的任何一条直线; (3)若一条直线和两个平面都垂直,则这两个平面相互平行; (4)若一条直线和两个平面都平行,则这两个平面相互平行. 其中正确命题的个数是( ) A 、1B 、2C 、3D 、410.设奇函数()()y f x x =∈R 存在反函数1()y f x -=. 当0a ≠时,肯定在函数1()y f x -=的图像上的点是( )A 、((),)f a a --B 、((),)f a a -C 、(,())a f a --D 、(,())a f a -二、填空题(8540⨯=) 11.函数1sin(2)32y x π=+的最小正周期是 . 12.设有命题P :3是6与9的公约数;命题Q :方程210x +=没有实数根,则P Q ⌝∧⌝的真值是 . (用T 或F 作答) 13.若复数3()1biz b i-=∈+R 的实部和虚部互为相反数,则b 等于 . 14.(61+的绽开式中x 的系数是 .15.甲、乙两人独立地解答一道数学题,甲解答对的概率为0.8,乙解答对的概率为0.5,那么此题能解答对的概率是 .16.如图,在长方体1111ABCD A B C D -中,已知11AB AD AA ===1B D 与ABCD1A 1C 1B 1D平面ABCD 所成的角的大小是 .17.若,0,()ln(1),0x e a x f x x x ⎧+≤=⎨+>⎩在(,)-∞+∞内连续,则实数a 等于 .18.若椭圆22360kx y k +-=的一个焦点为(0,2),则常数k 等于 . 三、解答题(61060)⨯=19.解不等式23|21|x ≥-.20.已知平面对量,,a b c 满意0a b c ++=,且||3,||4,a b a b ==⊥,求||c 的值. 21.如图,一艘海轮从A 动身,沿北偏东75︒的方向航行50海里后到达海岛B ,然后由B 动身,沿北偏东15︒的方向航行30海里后到达海岛C . 假如下次航行干脆从A 动身到达海岛C ,此船应当沿怎样的方向航行,须要航行多少距离?(角度精确到0.1︒,距离精确到0.01海里)22.已知函数()(0)xf x e ax a =->. (1)求()f x 的单调区间;(2)若不等式()0f x >对随意实数x 恒成立,求实数a 的取值范围.23.已知抛物线1c 的顶点为坐标原点O ,焦点F 是圆222:(2)16c x y +-=的圆心.(1)求抛物线1c 的方程; (2)设过点F 且斜率为34-的直线l 与抛物线1c 交于,A B 两点,过,A B 两点分别作抛物线的切线A B l l 与,求直线A B l l 与的交点M 的坐标,并推断点M 与圆2c 的位置关系(圆内,圆上,圆外).24.为拉动经济增长,2024年某市安排新建信房的面积为200万平方米,其中小户型住房面积120万平方米. 以后每年新建住房面积比上一年增长10%,其中小户型住房面积每年比上一年增加16万平方米.(1)该市2024年度新建住房面积有多少万平方米?其中新建小户型住房面积有多少万平方ABC75︒15︒东南西北78-图米?(精确到万平方米)(2)从2024年初到2024年底,该市每年新建的小户型住房累计面积占新建住房累计总面积的面分比是多少?(精确到0.01)25.设数列{}n a 是公差为2的等差数列,数列{}n b 是等比数列,且112253,,a b a b a b ===. 求:(1)数列{}n a 与{}n b 的通项公式;(2)111lim 131n a n n n b n -→∞⎡⎤+⎛⎫+⋅⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦.。

中职对口升学-数学模拟试卷-2份精选全文

中职对口升学-数学模拟试卷-2份精选全文

精选全文完整版(可编辑修改)数学(第二部分)一、单项选择题,本大题共8题,每小题6分,共48分。

1、下列关系式中不正确的是( )。

A. {0}∈{0,1,2,3}B.φ⊆ {0,1,2,3}C.0∈{0,1,2,3}D. {x |x>5}⊆{x|x>0}2、函数f (x )=√x−1x−2的定义域是( )。

A. {X|X ≥0且x ≠0} B. {X|X ≥1} C. {X|X ≥1且x ≠2} D.x ≠23、若f (x )={2x −1x 2−15(x <0)(0≤x ≤10)(x >10) 那么f (15)=( )。

A.29B.5C.224D.无法确定4、cos 3900的值是( )。

A.12B.√3C.√32D. √335、下列命题不正确的是( )。

A .已知直线l 1, l 2及其对应的斜率k 1, k 2,则有l 1 //l 2⟺k 1=k 2B.已知直线l 1, l 2及其对应的斜率k 1, k 2,则有l 1⊥l 2⟺k 1.k 2=-1C.已知a ⃗,b ⃗⃗, a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2),若a ⊥b ,则 a ⃗˙b⃗⃗=x 1x 2+y 1y 2=0 D. 已知a ⃗,b ⃗⃗ , a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2), 若a ⃗//b ⃗⃗,则a ⃗˙b⃗⃗=x 1x 2+y 1y 2=0 6、圆(x −2)2+y 2=4的圆心是( )。

A.(-2,0)B.(0,2)C.(2,0)D.(0,-2)7、已知长方形的宽是a ,长是b ,现以长的一条边为轴,旋转一周,得到一个几何体,那么这个几何体的体积是( )。

A. abB.a 2 b πC.2ab πD. a 2b8、甲、乙、丙、丁考数学,它们偏离平均分情况是-2,+1,+2,-1,已知他们的总分为320分,那么他们的平均分是()。

A.80B.81C.78D.79二、填空题,本大题共8题,每小题6分,共48分。

2024年安徽省高校分类对口招生考试数学试卷真题

2024年安徽省高校分类对口招生考试数学试卷真题

2024年安徽省普通高校分类考试招生和对口招生文化素质测试卷数学试题(本卷满分120分,考试时间为60分钟)得分阅卷人1.已知集合A={-2,-1,0},B={—1,2},则AUB=()A.{-2,-1,0,2}B.{-2,—1,0}C.{-1,2}D.{-1}2.函数12+=x y 的定义域为()A.⎥⎦⎤ ⎝⎛-∞-21,B.⎪⎭⎫ ⎝⎛-∞-21, C.⎪⎭⎫⎢⎣⎡∞+-,21 D.⎪⎭⎫ ⎝⎛∞+-,213.“x>2”是“x>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知向量a =(1,m),b =(2,4).若a ⊥b ,则m=()A.2B.—2C.D.5.设a,b,c∈R,且a>b,则下列结论正确的是()A.ac²<bc²B.a+c<b+cC.a-c>b—cD.ac>bc6.已知线段P1P2的中点坐标为(1,2).若点P1(-1,0),则点P₂的坐标为()A.(0,1)B.(3,4)C.(1,1)D.(-3,—2)选择题(共30小题,每小题4分,满分120分)7.若cos α=3/5,则cos2α=()A.2524-B.2524 C.257-D.2578.不等式31<-x 的解集为()A.{x|x<-2}B.{x|x>4}C.{x|-2<x<4}D.{x|x<-2或x>4}A.2B.3C.4D.510.已知直线l₁:2x—3y-1=0,l₂:ax+6y+1=0.若1₁//l₂,则a=()A.9B.—9C.4D.—411.在等比数列{an}中,a2=3,公比q=3.若此数列的前n 项和S,=40,则n=()A.3B.4C.5D.612.以点(1,-1)为圆心,且过坐标原点的圆的方程为()A.(x—1)²+(y+1)²=4B.(x+1)²+(y-1)²=4C.(x-1)²+(y+1)²=2D.(x+1)²+(y-1)²=213.某校高一年级有210名学生,高二年级有180名学生,高三年级有150名学生.为了解学生身体状况,该校采用分层抽样的方法抽取n 名学生进行体能测试,若从高二年级抽取了30名学生,则n=()A.55B.65C.90D.12014.椭圆14322=+y x 的离心率为()A.21 B.23 C.33 D.4315.已知函数⎩⎨⎧≤+>=.22)(2x a x x x x f ,,,若7)0()4(=-f f ,则a =()A.23B.9C.3D.116.意大利数学家斐波那契(Fibonacci)研究兔子繁殖问题时,得到数列:1,1,2,3,5,8,13,21,34,55,89,….此数列从第3项开始、每一项都等于前两项之和,被称为“斐波那契数列”.现从3,5,7,9,11,13,15中任取一个数,则该数是“斐波那契数列”的项的概率为()A.72B.73 C.74 D.7517.已知函数,关于此函数下列结论正确的是()A.最小正周期为32π B.振幅为4C.初相为12πD.频率为4π18.如图,在△ABC 中,D 是BC 的中点,则AD =()A.BCAB 21- B.BC AB 21+-C.BCAB 21-- D.BC AB 21+19.若数列{a n}的前n 项和Sn=n 2+n ,则a 2=()A.8B.6C.4D.220.已知)02(,πα-∈,135sin -=α,则tan α=()A.125-B.512-C.125 D.51221.某粮囤由圆柱体和圆锥形的顶组成,它的直观图如图所示.已知圆柱的底面直径为8m,高为4m,圆锥的母线PB 与底面圆的直径AB 成45°角,则此粮囤的容积(单位:m³)为()A.3256π96B.π128C.π320πD.3=a,b=2,A=60°,则c=() 22.在△ABC中,角A,B,C所对的边分别为a,b,c.若72 B.3 C.1 D.3A.723.在空间中,下列结论正确的是()A.垂直于同一直线的两条直线一定平行B.垂直于同一平面的两条直线一定平行C.平行于同一平面的两条直线一定平行D.没有公共点的两条直线一定平行24.若指数函数y=(2a-1)²是R上的增函数,则函数y=log₄(x+1)的图象可能是()A B C D25.若α是第二象限角,则π+α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角26.点(3,1)到直线y=x-4的距离为()A.√2B.2C.3√2D.627.sin20°cos10°+cos20°sin170°=()口A. B. C.28.如图,四棱锥P-ABCD的底面是正方形,PD⊥平面ABCD,PD=AB.若E为PC的中点,则直线AE与平面ABCD所成角的正切值为()A.√5B.2C.口29.已知f(x)是R上的奇函数.当x<0时,f(x)=x²+4x.若af(a)>0,则a的取值范围是(),)4-∞-((+∞- B.)4,0(,4(A.))0,4C.(-4,0)U(0,4)D.)--∞)4,,4((+∞30.已知直线l过抛物线y²=4x的焦点,且与该抛物线交于A,B两点.若线段AB的中点到直x=-1的距离等于3,则直线l的斜率为()A.±1B.±√2C.±√3D.±2。

2023年广西省对口单招数学模拟题(答案) (7)

2023年广西省对口单招数学模拟题(答案) (7)

2.圆锥的表面积是底面积的 3 倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为
_____.
3.设 5 , x -1, 5 5 成等比数列,则 x _______ 4.在等比数列{an}中,已知 an 0 , a2 a4 2a3 a5 a4 a6 25 ,则_______
5.在等差数列an 中,已知 a1 2 , a2 a3 19 ,则 a4 a5 a6 =_______ 6.在等差数列an 中,若 a3 a4 a5 a6 a7 25 ,则 a2 a8 =_______ 7.点 E(1,b) , F 3,2的中点坐标是 1,2,则b _______
PF1 PF2
(3 4t 2,t )(3 4t 2,t ) 16t 4
t2
9
(4t 2
1)2 8
577 64
,又 t2
[0, )

(PF1 PF2 )min
பைடு நூலகம்
( 1)2 8
577 64
9
,即当 t
0
时, PF1 PF2
取得最小值,且最小值为 9
.
【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出 A , B 两
()
,
,
所以
.
9.已知平行四边形 ABCD,则向量AB + BC =( )
A.BD
B.DB
C.AC
D.CA
10.若
,则
()
A. B. C. D.
11.已知函数
是定义在 上的奇函数,当
时,
,则
=( )
A. B. 12.直线 A. B.
C. D. 的倾斜角为 ( )
C. D.
13.若

对口招生数学模拟试题(含答案)

对口招生数学模拟试题(含答案)

普通高校对口招生考试模拟试题一、选择题(本大题有15个小题,每小题3分,共45分)1.满足{a ,b }A ⊆{a ,b ,c ,d ,e }的集合的个数为( ).A .2个B .4个C .6个D .7个2.下列不等式恒成立的是( ).A . 2x +1>xB . 2111x <+C .()2lg 1lg 2x x +> D . 244x x +> 3.在△ABC 中,若sinA =sinB 是A =B 的( ).A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件4.函数()f x = ).A .[0,)+∞B .[2,)+∞C .[4,)+∞D .R5.已知偶函数y =f (x )在(-∞,0)上为减函数,则( ).A .1123f f f ⎛⎫⎛⎫->-> ⎪ ⎪⎝⎭⎝⎭⎝⎭B .1123f f f ⎛⎫⎛⎫->>- ⎪ ⎪⎝⎭⎝⎭⎝⎭C .11342f f f ⎛⎫⎛⎫⎛⎫->>- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D . 11432f f ⎛⎛⎫⎛⎫>->- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭6.已知1,22,3a =(),b=()则32a b -为( ).A .(-1,0)B .(1,0)C .1D .-17.把二次函数2y x =-的图像沿x 轴向左平移3个单位后,再向上平移2个单位得到的像解析式为( ).().A .267y x x =-+-B .2611y x x =-+-C .267y x x =---D .2611y x x =---8.21log x y -=的定义域是( ).A .()2,11,3⎛⎫⋃+∞ ⎪⎝⎭B .()1,11,2⎛⎫⋃+∞ ⎪⎝⎭C .2,3⎛⎫+∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭9.sin15sin30sin75︒︒︒的值等于( ).A .BC . 14D .1810.方程式22132x y k k+=-+表示椭圆,则k 的取值范围是( ). A .23k k <->或 B . 23k -<< C . 12k ≠ D .112322k k -<<<或< 11.设n S 等差数列{}n a 的前项和,若133a a a ++=,则5S =( )A .B . C. D .12.下列命题中正确命题的个数是( ).(1)若两个平面都垂直于同一个平面,则这两个平面平行(2)两条平行直线与同一个平面所成的角相等(3)若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行(4)如果一条直线与一个平面内无数条直线垂直,则这条直线和这个平面垂直A .4B .3C .2D .113.己知直线1L :x =-7和直线2L :3x +4=0,则1L 与2L 的夹角为( ).A .3πB .6πC .2πD .4π 14.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种。

2023年中职对口升学单招数学模拟试卷)

2023年中职对口升学单招数学模拟试卷)

模拟卷六一、选择题(本大题共15 小题,每小题5 分,满分75 分)【建议用时:50 分钟】1. M={ x|x< 2 } ,N={ x|x- 4 < 0 } ,则M⋂N=().A. ( -∞,4 )B. ( -∞,2)C. ( -∞, -2) ⋃(2 , +∞)D. ∅2. 不等式|x+ 2|< 4 的解集是().A. ( -2 , 1)B. ( -∞, -2) ⋃(1 , +∞)C. ( -6 ,2)D. ( -∞,6)3. 设函数f(x)= 3 ,则f(x)().A. 是偶函数B. 是奇函数C. 不具有奇偶性D. 既是奇函数又是偶函数v4 -x2的定义域为().4. 函数f(x)=A. [ -2 ,2 ]B. [ 2 , +∞)C. ( -∞,2 ]D. ( -∞, -2) ⋃(2 , +∞)5. f(x)= a x+ 1经过点(2 ,8 ),则a=().A. -2B. 2C. 3D. -36. 等差数列{ a n} 中,a2=-4,a4=-16,则S5=().A. -50B. 60C. 126D. 07. 已知f(x)=x+ 4 ,则f-1(5)=().A. -1B. 1C. 9D. -98. 函数y= 2(log2x) 的定义域是().A. (0 , 1)B. (0 , +∞)C. [ 1 , +∞)D. (1 , +∞)9. 函数y= 3sin x- 2 的最小值是().A. 1B. 5C. -5D. 210. 若sinα< 0 ,cosαsinα< 0 ,则α为().A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角11. 已知一组数据1、2、y的平均数为4 ,那么y=().A. 7B. 8C. 9D. 1012. 有20位同学,编号从1 至20 ,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为().A. 5 ,10 ,15 ,20B. 2 ,6 ,10 ,14C. 2 ,4 ,6 ,8D. 5 ,8 ,11 ,1413. 若双曲线的焦距是10 ,则a的值是().A. 3B. 9C. 9或- 9D. 3或- 314. 椭圆上任意两点间的最大距离为8 ,则h的值为().A. 32B. 16C. 8D. 415. 圆x2+y2= 4与直线3x- 4y+ 4 = 0 的关系是().A. 相离B. 相切C. 相交D. 无法确定二、填空题(本大题共5 小题,每小题5 分,满分25 分)【建议用时:20 分钟】16. 函数f(x)=x2+ 2x+ 1 的最小值是.2 217. 以双曲线的左顶点为焦点,原点为顶点的抛物线方程是.18. 数据4 ,6 ,5 ,4 ,6 的方差是.19. 若{ a n}为等比数列,a n> 0 ,S2 = 7 ,S6 = 91 ,则S4 = .20. 向量< >= 60°,||= 2 , ||= 5 ,则||= .三、解答题(本大题共4 小题,第21-23 题各12 分,第24 题14 分,满分50 分)【建议用时:50 分钟】21. 如图11–1所示,在△ABO中,已知点A(2 ,4 ),B(6 ,2).(1)求△ABO的面积;(2)若点P是x轴上的一点,且△OAP的面积与△ABO的面积相等,求点P的坐标.y ▲ABOx图11 –122. 在△ABC中,a,b,c分别是∠A, ∠B, ∠C的对边,已知b= 3 ,c= 4 ,cos A= .(1)求a的值;(2)求△ABC的面积.23. 已知等差数列{ a n}满足:a1 = 2 ,a n+ 1 = a n+ 2(n∈N*).(1)求数列{ a n} 的通项公式和前n项和S n;若b n= 求数列{ b n} 的前n项和T n./6 ,且长轴长是短轴长的两倍.24. 已知椭圆E的中心在原点,焦点在y轴上,焦距为2(1)求椭圆E的标准方程;(2)设直线l:2x-y+ b= 0 与椭圆E交于A,B两点,若定点P的坐标是(1 ,2),求当b为何值时,△PAB的面积最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对口招生数学模拟考试试题
(时间:120分钟,满分:100分)
一、 选择题(每题5分,每题只有一个正确答案,共50分)
1、 已知集合A={})2,1(,B={1,2},C=(1,2),则下列命题正确的是( )
A、A=B=C B、A=B≠C
C、A≠B≠C D、A≠B=C
2、 命题P:三角形面积相等。

Q:三角形全等。

则P是Q 的( ) A、充分不必要条件。

B、必要不充分条件。

C、充要条件。

D、既不是充分条件,也不是必要条件
3、 下列各题中给出了实数集R到R的一个对应,其中是映射的有( )个。

①f:加2 ②f:乘2 ③f:平方 ④开平方
A 、1个
B 、2个
C 、3个
D 、4个
4、
100sin 12-=( ) A 、
cos100° B 、cos80° C 、sin100° D 、sin80° 5、 在等差数列{}an 中,a 1
= 25,d =-4,前n 项的和为Sn ,则( ) A、Sn 最大值=91
B、Sn 最小值=91 C、Sn 最大值=87
D、Sn 最小值=87 6、关于函数f(x)=x 2+1的说法正确的是( )
A、在(-∞,0)是增函数。

B、在〔-1,+∞ )为增函数。

C、在(-∞,1)是增函数。

D、在〔1,+∞〕是增函数。

7、已知圆的圆心是抛物线x 2
=2y 的焦点,半径是该抛物线的焦点到顶点的距离,则该圆的方程是( ) A、1)2
1(x 22=-+y B、(x -2
1)2+y 2 = 1 C 、x 2+(y- 21)2 = 41 D 、(x- 21)2+y 2 = 41 8、 从10种不同的作物种子中选出6种依次放在6个不同的瓶子展览,如果甲、乙两种种子不许放入第1号瓶内,那么不同的放法共有( )种。

A、C 210P 48 B、C 19P 59 C、C 18P 59 D、C 110P 59
9、 函数y=24x -的值域为( )
A、〔-2、2〕 B、(-∞,-2
]∪〔2,+∞ )
C 、〔0,+∞) D、〔0,2〕
10、lin x ∞→(1+x
21)3x =( ) A 、e B 、23
e C 、32e
D 、6
1e 二、 填空题(每小题5分,共40分)
11、函数y=x 2
-4x+5具有反函数的一个条件是 12、设双曲线22a x -22
b
y =1(b>a>0)的半焦距为c 直线L 经过(a,0),(0,b )两点,已知原点到直线L 的距离为4
3c ,则双曲线的离心率为 。

13、已知函数f(x)= ⎩⎨⎧+-1
1
x x 00
<≥x x ,f(0)= 。

14、已知数列
{}n a 的前n 项和Sn=n 2-2n+2 ,求1a = 。

15、0.9910= (精确到0.001)。

16、向量AB =(1,2) BZ
=(5,1),则|ZA |= 。

17、在正方体ABCD -A ′B ′C ′D ′中,DC 与BD ′所成角的正弦值= 。

18、从1,i ,1+i , 1-i 中任取两个相乘,所得积中不同的虚数有 个。

三、 解答题(共60分)
19、已知复数Z =(1-cos θ+isin θ)5, θ∈(0,
5
π)。

求z 的辐角主值argZ 及模|Z|。

(10分)
20、已知角A,B,C 为三角形△ABC 三内角,求证:tanA+tanB+tanC=tanA tanB tanC (10分)
21、已知f(x)=2x x e e --,g(x)= 2
x
x e e -+求证:
(1)〔g(x)〕2-〔f(x)〕2=1
( 2 ) f(2x)=2f(x)·g(x) (12分)
22、A 地产汽油,B 地需要汽油,汽车直接从A 地往B 地运汽油,往返的耗油量恰好等于其满载汽油的吨数,故无法直接从A 地将汽油运至B 地,今在途中C 地设一中转站油库,用同种型号的汽车,先由往返于A-C 之间的汽车运油至C 地,然后由往返于C-B 之间的汽车运至B 地。

(1) 设|AC|=3
1|AB|,问往返于A-C 之间与往返于C-B 之间的汽车的比例为多少时,才能以最经济的方法将A 地的汽油运往B 地,此时运油率(
地运油量地收油量A B )等于多少? (2) 设|AC|=d|AB|,则d 等于多少时运油率最大? (14分)
23、直线y=kx+1与双曲线x 2-y 2=1的左支交于A 、B 两点,另一条直线L 过点(-2,0)和AB 的中点,求直线L 在y 轴上截距b 的取值范围。

(14分)。

相关文档
最新文档