数据仓库与数据挖掘实验报告-焦永赞
《数据仓库与数据挖掘》实验二聚类分实验报告37
实验二、聚类分析实验报告一、实验目的通过计算机编程实现并验证谱系聚类法的模式分类能力,了解和掌握最小距离归类原则在模式识别中的重要作用与地位。
二、实验内容1)用Matlab 实现谱系聚类算法,并对给定的样本集进行分类;2)通过改变实验参数,观察和分析影响谱系聚类算法的分类结果与收敛速度的因素;三、实验原理、方法和手段人类认识世界往往首先将被认识的对象进行分类,聚类分析是研究分类问题的多元数据分析方法,是数值分类学中的一支。
多元数据形成数据矩阵,见下表1。
在数据矩阵中,共有n 个样品 x 1,x 2,…,x n (列向),p 个指标(行向)。
聚类分析有两种类型:按样品聚类或按变量(指标)聚类。
距离或相似系数代表样品或变量之间的相似程度。
按相似程度的大小,将样品(或变量)逐一归类,关系密切的类聚到一个小的分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位,直到所有的样品(或变量)都聚集完毕,形成一个表示亲疏关系的谱系图,依次按照某些要求对样品(或变量)进行分类。
⑴ 分类统计量----距离与相似系数① 样品间的相似性度量----距离用样品点之间的距离来衡量各样品之间的相似性程度(或靠近程度)。
设(,)i j d x x 是样品 ,i j x x 之间的距离,一般要求它满足下列条件:1)(,)0,(,)0;2)(,)(,);3)(,)(,)(,).i j i j i j i j j i i j i k k j d x x d x x x x d x x d x x d x x d x x d x x ≥=⇔==≤+且在聚类分析中,有些距离不满足3),我们在广义的角度上仍称它为距离。
欧氏距离1221(,)()pi j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ 绝对距离1(,)||pi j ik jk k d x x x x ==-∑⏹ Minkowski 距离11(,)()pmm i j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ Chebyshev 距离1(,)max ||i j ik jk k pd x x x x ≤≤=-⏹ 方差加权距离12221()(,)pik jk i j k k x x d x x s =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ 其中 221111,().1n n ik k ik k i i x x s x x n n ====--∑∑ ⏹ 马氏距离112(,)()()T i j i j i j d x x x x S x x -⎡⎤=--⎣⎦其中 S 是由样品12,,...,,...,j n x x x x 算得的协方差矩阵:1111,()()1n n T i i i i i x x S x x x x n n ====---∑∑ 样品聚类通常称为Q 型聚类,其出发点是距离矩阵。
数据仓库与数据挖掘实验报告
一、上机目的及内容目的:1.理解数据挖掘的基本概念及其过程;2.理解数据挖掘与数据仓库、OLAP之间的关系3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。
内容:将创建一个数据挖掘模型以训练销售数据,并使用“Microsoft 决策树”算法在客户群中找出购买自行车模式。
请将要挖掘的维度(事例维度)设置为客户,再将客户的属性设置为数据挖掘算法识别模式时要使用的信息。
然后算法将使用决策树从中确定模式。
下一步需要训练模型,以便能够浏览树视图并从中读取模式。
市场部将根据这些模式选择潜在的客户发送自行车促销信息。
要求:利用实验室和指导教师提供的实验软件,认真完成规定的实验内容,真实地记录实验中遇到的各种问题和解决的方法与过程,并根据实验案例绘出模型及操作过程。
实验完成后,应根据实验情况写出实验报告。
二、实验原理及基本技术路线图(方框原理图或程序流程图)关联分析:关联分析是从数据库中发现知识的一类重要方法。
时序模式:通过时间序列搜索出重复发生概率较高的模式。
分类:分类是在聚类的基础上对已确定的类找出该类别的概念描述,代表了这类数据的整体信息,既该类的内涵描述,一般用规则或决策树模式表示。
三、所用仪器、材料(设备名称、型号、规格等或使用软件)1台PC及Microsoft SQL Server套件四、实验方法、步骤(或:程序代码或操作过程)及实验过程原始记录( 测试数据、图表、计算等)创建 Analysis Services 项目1.打开 Business Intelligence Development Studio。
2.在“文件”菜单上,指向“新建”,然后选择“项目”。
3.确保已选中“模板”窗格中的“Analysis Services 项目”。
4.在“名称”框中,将新项目命名为 AdventureWorks。
5.单击“确定”。
更改存储数据挖掘对象的实例1.在 Business Intelligence Development Studio 的“项目”菜单中,选择“属性”。
数据挖掘_实习报告
数据挖掘_实习报告数据挖掘实习报告一、实习目的进入大学以来,我一直在学习数据挖掘的相关理论知识,包括统计学、机器学习、数据库管理等。
为了将理论应用于实践,提升自己的专业技能,我选择了在XX公司进行数据挖掘实习。
二、实习内容在实习期间,我主要参与了以下几个项目:1. 用户画像构建:通过对用户历史数据的分析,提取用户的特征和兴趣点,构建用户画像。
这涉及到数据清洗、特征工程、标签制定等环节。
2. 推荐系统开发:基于用户画像,开发推荐算法,为用户提供个性化的商品或服务推荐。
这需要对推荐算法有深入的理解,并熟悉相关工具和平台。
3. 广告投放策略优化:通过数据分析和机器学习算法,优化广告投放策略,提高广告的点击率和转化率。
这涉及到数据处理、模型训练、AB测试等环节。
三、实习过程在实习过程中,我遇到了很多挑战和问题。
其中最大的挑战是如何将理论知识与实际应用相结合,我对数据挖掘的知识有了深入的理解,但在实际应用中,却发现自己对某些概念的理解还不够深入。
为了解决这个问题,我主动向同事请教,并阅读了大量相关文档和资料。
我还积极参加团队讨论和分享会,与其他同事交流经验和看法,不断加深对数据挖掘的理解和应用。
除了技术层面的挑战外,我还面临了时间管理和工作压力的挑战。
由于项目进度紧张和任务繁重,我需要在有限的时间内完成大量的工作和学习任务。
为了应对这些挑战,我制定了详细的工作计划和时间表,并学会合理安排时间和优先级。
我也积极调整自己的心态和情绪,保持积极乐观的态度,以应对工作中的压力和挑战。
四、实习收获通过这次实习,我不仅提升了自己的专业技能和实践能力,还学会了如何将理论知识与实际应用相结合,解决实际问题。
我还培养了自己的团队协作能力和沟通能力,学会了如何与他人合作完成任务。
在未来的学习和工作中,我将更加注重理论与实践的结合,不断提升自己的专业素养和实践能力。
五、总结与展望这次实习是一次非常宝贵的学习和成长经历,通过这次实习,我不仅掌握了数据挖掘的基本理论和技能,还提升了自己的实践能力和团队协作能力。
数据仓库与数据挖掘实训课程学习总结
数据仓库与数据挖掘实训课程学习总结在经过一学期的数据仓库与数据挖掘实训课程学习之后,我对这门课程有了更深入的了解,并且对于数据仓库与数据挖掘的应用和重要性有了更清晰的认识。
本文将从三个方面对我的学习总结进行论述,分别是课程内容的学习与理解、实验项目的实践和应用以及对未来的展望。
首先,通过课程内容的学习与理解,我对数据仓库的概念和特点有了更为全面的认识。
数据仓库是企业数据管理的重要组成部分,它能够集成和存储不同来源、不同格式的数据,并为企业决策提供支持。
在课程中,我们学习了数据仓库的建模、设计和实施等方面的知识,掌握了数据仓库的构建方法和技术。
通过实验和案例分析,我更加深入地了解了数据仓库的实际应用和操作流程,为以后的实践打下坚实的基础。
其次,通过实验项目的实践和应用,我进一步巩固了对数据仓库与数据挖掘知识的理解,并学会了将其应用于实际问题中。
在实验项目中,我们需要选择一个具体的业务场景,运用所学的数据仓库和数据挖掘技术进行分析和挖掘。
这对我来说是一个很好的机会,可以将课堂上学到的理论知识运用到实践中,进一步加深对知识的理解和应用能力的培养。
通过与同学们的合作和老师的指导,我顺利完成了实验项目,并成功地提取了有关业务场景的有价值的信息,并应用于实际决策中。
最后,对未来的展望方面,我认为数据仓库与数据挖掘领域具有广阔的发展前景。
随着社会的进步和信息技术的快速发展,数据量呈现爆炸式增长,数据的管理和挖掘需求也越来越迫切。
数据仓库和数据挖掘技术的应用将对企业的决策和运营产生深远的影响。
因此,我将继续深入学习与研究数据仓库与数据挖掘相关的知识,提升自己在这个领域的专业能力,并将其应用于实际工作中,为企业的发展做出贡献。
综上所述,通过数据仓库与数据挖掘实训课程的学习,我对于数据仓库的概念、构建方法和技术有了全面的认识,并通过实验项目的实践和应用巩固了所学知识。
我深刻认识到数据仓库与数据挖掘在企业决策和运营中的重要性,对未来有着广阔的发展前景。
数据仓库与数据挖掘-实验三决策树算法实验报告范文3
实验三决策树算法实验一、实验目的:熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法和实现技术。
二、实验原理: 决策树学习和分类.三、实验条件:四、实验内容:1 根据现实生活中的原型自己创建一个简单的决策树。
2 要求用这个决策树能解决实际分类决策问题。
五、实验步骤:1、验证性实验:(1)算法伪代码算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集data; 候选属性集合AttributeName。
输出一棵决策树。
(1)创建节点N;(2)If samples 都在同一类C中then (3)返回N作为叶节点,以类C标记;(4)If attribute_list为空then(5)返回N作为叶节点,以samples 中最普遍的类标记;//多数表决(6)选择attribute_list 中具有最高信息增益的属性test_attribute; (7)以test_attribute 标记节点N;(8)For each test_attribute 的已知值v //划分samples ;(9)由节点N分出一个对应test_attribute=v的分支;(10令Sv为samples中test_attribute=v 的样本集合;//一个划分块(11)If Sv为空then(12)加上一个叶节点,以samples中最普遍的类标记;(13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点值。
(2)实验数据预处理Age:30岁以下标记为“1”;30岁以上50岁以下标记为“2”;50岁以上标记为“3”。
Sex:FEMAL----“1”;MALE----“2”Region:INNER CITY----“1”;TOWN----“2”; RURAL----“3”; SUBURBAN----“4” Income:5000~2万----“1”;2万~4万----“2”;4万以上----“3” Married Children Car MortgagePep:以上五个条件,若为“是”标记为“1”,若为“否”标记为“2”。
数据仓库与数据挖掘实验报告
数据仓库与数据挖掘实验报告一、实验目的和意义数据仓库和数据挖掘是现代大数据时代中关键的技术与方法,本实验旨在通过实践操作,了解数据仓库和数据挖掘的基本概念、流程和方法,并基于实验数据进行数据仓库与数据挖掘的实际应用。
二、实验内容及步骤本实验基于某电商平台的网购数据,通过数据仓库的建立和数据挖掘的过程,探索和发现隐藏在数据中的有价值信息。
具体步骤如下:1. 数据收集和预处理获取电商网购数据集,对数据进行清洗和预处理,如缺失值处理、异常值处理和数据集整合等,以保证数据的质量和可用性。
2. 数据仓库的建立基于处理后的数据,进行数据仓库的建立。
根据业务需求和分析目标,确定维度表和事实表的建模方法和关联关系,设计和构建星型或雪花模式的数据仓库。
3. 数据挖掘的实践基于已建立的数据仓库,进行数据挖掘的实践,包括关联规则挖掘、分类与预测、聚类分析、异常检测等。
通过使用数据挖掘工具,如R、Python中的Scikit-learn等,进行模型构建和算法实施,得到数据挖掘结果。
4. 结果分析与应用对数据挖掘结果进行分析和解读,发现和总结其中的规律和知识,得到业务价值和应用建议,为业务决策和目标达成提供支持和参考。
三、实验结果与分析本实验得到了以下数据挖掘结果:1. 关联规则挖掘通过关联规则挖掘的过程,发现了一些有趣和有用的关系,如购买商品A的用户有70%的概率也会购买商品B,可以利用这些关联规则进行交叉销售和推荐。
2. 分类与预测通过构建分类和预测模型,成功预测了用户的购买行为,可以预测出用户未来可能会购买的商品,为精准市场营销和库存管理提供决策支持。
3. 聚类分析通过聚类分析,将用户分为不同的群体,可以对不同群体采取不同的营销策略,提高用户满意度和购买转化率。
4. 异常检测通过异常检测,发现了一些异常行为和欺诈行为,可以及时进行监控和防范,保护用户权益和平台安全。
此外,还通过数据可视化的方式,将分析结果展示出来,如通过柱状图、折线图、散点图等方式进行可视化展示,直观地呈现数据的分布和关系。
数据仓库与数据挖掘实验四
数据仓库与数据挖掘实验四一、实验目的本实验旨在通过实践操作,掌握数据仓库与数据挖掘的相关技术,包括数据预处理、数据集成、数据转换和数据挖掘算法的应用。
二、实验背景随着信息化时代的到来,数据量呈指数级增长,如何从这些庞大的数据中提取有用的信息成为了一个重要的研究方向。
数据仓库与数据挖掘技术应运而生,能够帮助我们从海量数据中挖掘出有价值的知识和模式,为决策提供科学依据。
三、实验内容1. 数据预处理数据预处理是数据挖掘的第一步,目的是清洗原始数据,解决数据中存在的噪声、缺失值和异常值等问题。
在本实验中,我们将使用一个包含学生信息的数据集进行数据预处理的实验。
首先,我们需要导入数据集,并对数据进行初步的观察和分析。
可以使用Python编程语言中的pandas库来进行数据的读取和分析。
通过查看数据集的属性、数据类型以及数据的统计信息,我们可以对数据有一个初步的了解。
接下来,我们需要处理数据中存在的缺失值。
可以使用pandas库中的fillna()函数来填充缺失值,常用的填充方法包括均值填充、中位数填充和众数填充等。
根据不同的情况选择合适的填充方法,并对数据进行处理。
最后,我们需要处理数据中的异常值。
可以使用箱线图和散点图等可视化工具来检测异常值,并根据实际情况进行处理。
2. 数据集成数据集成是将多个数据源中的数据合并成一个一致、完整的数据集的过程。
在本实验中,我们将使用两个包含学生信息的数据集进行数据集成的实验。
首先,我们需要对两个数据集进行初步的观察和分析,了解数据的结构和属性。
接下来,我们需要选择一个合适的数据集成方法。
常用的数据集成方法包括追加、合并和连接等。
根据数据集的特点和实际需求,选择合适的方法进行数据集成。
最后,我们需要对合并后的数据集进行处理,解决数据中存在的重复值和冲突值等问题。
可以使用pandas库中的drop_duplicates()函数来去除重复值,并根据实际情况解决冲突值。
3. 数据转换数据转换是将原始数据转换成适合进行数据挖掘的形式的过程。
数据仓库与数据挖掘1实验报告册汽院科院2
《数据仓库与数据挖掘》实验报告册20 - 20 学年第学期班级: 学号: 姓名:目录实验一 Microsoft SQL Server Analysis Services的使用 (3)实验二使用WEKA进行分类与预测 (7)实验三使用WEKA进行关联规则与聚类分析 (8)实验四数据挖掘算法的程序实现 (8)实验一 Microsoft SQL Server Analysis Services的使用实验类型: 验证性实验学时: 4实验目的:学习并掌握Analysis Services的操作, 加深理解数据仓库中涉及的一些概念, 如多维数据集, 事实表, 维表, 星型模型, 雪花模型, 联机分析处理等。
实验内容:在实验之前, 先通读自学SQL SERVER自带的Analysis Manager概念与教程。
按照自学教程的步骤, 完成对FoodMart数据源的联机分析。
建立、编辑多维数据集, 进行OLAP操作, 看懂OLAP的分析数据。
1、实验步骤:启动联机分析管理器:2、建立系统数据源连接。
建立数据库和数据源, 多维数据集编辑多维数据集3、设计存储和处理多维数据集4、浏览多维数据集中的数据按时间筛选数据实验小结:实验二使用WEKA进行分类与预测实验类型: 综合性实验学时: 4实验目的:掌握数据挖掘平台WEKA的使用。
综合运用数据预处理、分类与预测的挖掘算法、结果的解释等知识进行数据挖掘。
从而加深理解课程中的相关知识点。
实验内容:阅读并理解WEKA的相关中英文资料, 熟悉数据挖掘平台WEKA, 针对实际数据, 能够使用WEKA进行数据的预处理, 能选择合适的分类与预测算法对数据进行分析, 并能解释分析结果。
实验步骤:1.在开始->程序->启动WEKA, 进入Explorer界面, 熟悉WEKA的界面功能。
2.选择数据集(实验中的数据可以从网络获取), 如泰坦尼克号数据集, 将要处理的数据集转换成WEKA能处理的格式, 如.ARFF格式。
数据仓库与数据挖掘实验报告
数据仓库与数据挖掘实验报告题目Glass(玻璃)数据集分析院系姓名学号专业班级科目数据仓库与数据挖掘任课老师目录一、实验目的 (1)二、实验内容 (1)1.数据预处理方法(缺失值处理) (1)2.数据可视化 (1)3.分类算法测试及比较 (1)三、实验步骤 (1)1.Weka平台搭建及收集该数据集 (1)2.加载 Glass(玻璃)数据集 (1)3.数据预处理 (2)4.数据可视化 (4)5.分类算法 (5)四、实验总结 (9)一、实验目的1.使用Weka数据预处理方法,对缺失值数据进行处理。
缺失值会使数据挖掘混乱,分析可能会得到错误结论,所以在数据挖掘前最好进行缺失值数据进行处理。
2.使用数据挖掘中的分类算法,对数据集进行分类训练并测试,应用不同的分类算法,比较他们之间的不同。
3.学习与了解Weka平台的基本功能与使用方法。
二、实验内容1.数据预处理方法(缺失值处理)2.数据可视化3.分类算法测试及比较三、实验步骤1.Weka平台搭建及收集该数据集2.加载 Glass(玻璃)数据集(1)Glass(玻璃)数据集预处理界面如图2.1所示:(2)Glass(玻璃)数据属性含义如表2.1所示:表2.1 Glass(玻璃)数据属性含义3.数据预处理(1)Glass(玻璃)数据预处理前数据如图3.1所示:(2)使用缺失值处理函数:weka.filters.unsupervised.attribute.ReplaceMissingValues。
Glass(玻璃)数据预处理后数据如图3.2所示:图3.2 Glass(玻璃)数据预处理后数据图示4.数据可视化Glass(玻璃)数据可视化如图4.1所示:图4.1 Glass(玻璃)数据可视化图示5.分类算法(1)KNN算法:一种统计分类器,对数据的特征变量的筛选尤其有效。
KNN算法如图5.1所示:图5.1 KNN算法图示①元素分析结果如表5.1所示:表5.1 元素分析结果②类型分析结果:准确率为70.5607%,其中214个实例数据有151个正确分类,63个错误分类。
数据仓库与数据挖掘实验一
《数据仓库与数据挖掘》课程实验报告一一、实验目的、内容、原理与环境1.实验目的:掌握在SQL Server 2005示例数据仓库环境下数据加载和建立多维数据模型过程的知识, 训练其把教材上的内容应用到实际中的技能, 为今后继续数据挖掘技术的学习奠定基础。
2.实验内容:在SQL Server 2005示例数据仓库环境下加载数据仓库, 建立多维数据模型。
具体内容包括:创建 Analysis Services 项目 , 定义数据源 , 定义数据源视图 , 修改表的默认名称, 定义多维数据集 , 检查多维数据集和维度属性 , 部署 Analysis Services 项目, 浏览已部署的多维数据集等知识。
3、实验原理与环境:数据仓库环境下数据加载过程和多维数据模型建立的方法。
SQL Server 2005示例数据仓库环境。
二、实验步骤(一)本实验的主要步骤(7步)分别介绍如下:(二)创建 Analysis Services 项目(二)创建数据源(三)定义数据源视图(四)定义多为数据源集(五)部署 Analysis Services 项目(六)浏览已部署的多维数据集(七)提高多维数据集的可用性和易用性三、实验总结通过数据仓库与数据挖掘的这门课的学习, 掌握了数据仓库与数据挖掘的一些基础知识和基本概念, 了解了数据仓库与数据库的区别。
下面谈谈我对数据仓库与数据挖掘学习心得以及阅读相关方面的论文的学习体会。
数据仓库是支持管理决策过程的、面向主题的、集成的、稳定的、不同时间的数据集合。
主题是数据数据归类的标准, 每个主题对应一个客观分析的领域, 他可为辅助决策集成多个部门不同系统的大量数据。
数据仓库包含了大量的历史数据, 经集成后进入数据仓库的数据极少更新的。
数据仓库内的数据时间一般为5年至10年, 主要用于进行时间趋势分析。
数据仓库的数据量很大。
数据仓库的特点如下:。
数据仓库与数据挖掘实验报告
数据仓库与数据挖掘实验报告一、引言数据仓库与数据挖掘是当今信息技术领域中非常重要的两个方向,它们的应用范围广泛,可以用于企业管理、市场分析、科学研究等方面。
本实验旨在通过学习和实践,深入了解数据仓库和数据挖掘的基本概念、原理和方法,并利用相应工具进行实际操作。
二、数据仓库实验1. 数据仓库概念及特点数据仓库(Data Warehouse)是指将各种不同来源的数据进行整合、清洗、转换后存储到一个统一的集合中,以便于进行查询和分析。
其主要特点包括:- 面向主题:即按照某个主题或业务领域来组织数据。
- 集成性:将来自不同系统和部门的数据整合到一个统一的存储介质中。
- 非易失性:即一旦存储到数据仓库中,就不能轻易删除或修改。
- 时间性:即记录历史信息,以便于进行趋势分析。
2. 数据仓库建模在建立一个完整的数据仓库之前,需要对其进行建模。
常见的建模方法包括星型模型和雪花模型。
其中星型模型是最常用的一种建模方法,其特点是以一个中心事实表为核心,围绕着它建立多个维度表。
而雪花模型则是在星型模型的基础上进一步拆分出多个层级的维度表。
3. 数据仓库实战在本次实验中,我们使用了SQL Server Management Studio (SSMS)这一数据库管理工具来创建和管理数据仓库。
首先我们需要创建一个数据库,并在其中创建一个事实表和多个维度表。
然后将各种不同来源的数据导入到相应的表中,并进行必要的清洗和转换操作。
最后,我们可以通过SQL查询语句来查询和分析数据。
三、数据挖掘实验1. 数据挖掘概念及过程数据挖掘(Data Mining)是指从大量数据中自动发现隐藏在其中的有价值的信息和知识,并将其应用于决策支持、预测分析等方面。
其主要过程包括:- 数据预处理:包括数据清洗、缺失值处理、异常值处理等。
- 特征选择:根据业务需求选择最有价值的特征变量。
- 模型构建:根据所选特征变量构建相应的分类或回归模型。
- 模型评估:对所构建模型进行评估,确定其准确性和可靠性。
数据挖掘实验报告
数据仓库与数据挖掘实验报告书班级:姓名:学号:指导老师:一.数据的预处理1.1 数据的导入打开软件,在窗口中添加数据源,并进行编辑,在“文件”选项中找到需要添加的目录,录入数据源,即“信用卡交易-Data”数据文件,如图:1.2 抽样为了提高运行速度,减少数据记录数。
需要通过“抽样”节点抽取部分样本进行分析研究。
设定样本为随机抽取30%。
如图:1.3 过滤字段数据文件中有没有涉及到的一部分字段,所以应该在本次分析中把这部分字段过滤掉。
比如“都市化程度、退票、申请书来源、逾期”等。
设置如图所示:1.4 类型设置由于原始数据的类型全部为“连续型”,其中有一部分不符合数据实际特点,为了分析要求,并根据现实情况中数据取值特点,分别更改各个字段的类型,具体类型如图所示:1.5 汇总、重排字段通过汇总研究,求出个人月收入的平均值和标准差,个人月开销的平均值和标准差,月刷卡额的合计和平均值等等,如图:定制输出与学历的关系,排序字段首先显示。
将学历设为第一个字段,年龄平均值设为第二个字段,如图:1.6 数据的选择丢弃性别女,年龄大于20的数据,然后在突出显示性别男,年龄大于35的记录,设置如下图示执行后,弹出下图,显示记录皆为丢弃性别为女,年龄>20的记录之后的记录。
1.7 数据的抽样从数据中抽取一部分数据进行数据分析。
从第一条记录开始连续选取200条记录,如图:同时标注家庭月收入模拟少于6000元。
则下图表中,家庭月收入模拟这一栏红字数据全部是少于6000的记录。
1.8 汇总、选择、抽样数据预处理将整体数据进行了汇总,设置过程如下图所示:。
则显示的列表中有申请书来源、强制停卡记录、性别、个人月收入模拟等6个字段的记录记数。
二、各种图形分析2.1 散点图如图是信用卡交易中的性别与个人每月消费情况的分布情况。
X轴是性别,Y 轴是个人每月消费。
图中可看出男女的个人每月消费大体相等,其中大部分集中0-10000元/月和10000-20000元/月2.2 多重散点图如图是个人月收入、个人月开销、年龄模拟的多重散点图各个年龄段的信用卡交易使用的差异不大, 55岁以上信用卡消费相对来说比较少一些。
数据仓库与数据挖掘实验报告
后单击该界面类似计算器图标的公式编辑器,在其内容里面写
fruitveg = ‘T’ and fish =’T’后点击check进行检查是否有语法错误,如果没有点击ok
4.在Derive节点后增加table节点,查看增加的health列内容。
五、实验结果
任课教师:***成绩:年月日
(注释:health列可理解为健康食品购买者)
5.去掉table节点,增加type节点,点击读入数据readvalues,把客户的个人信息(valuepmethod sex homeown income age)的Direction列设置成in,health的Direction列设置成out,其他的Direction列信息全部设置为none。
6.在type节点后增加决策树模型C5.0,决策树进行不剪枝设置,运行生成决策树1。
7.对生成的决策树进行分析。
8.对生成的决策树进行剪枝,生成决策树2。
9.分别对生成的模型(决策树1和决策树2)后添加Analysis节点,来对剪枝后的决策树进行分析,来确定是否可以剪枝成决策树2,给出自己的理由。
四、操作步骤
5.用web节点方法调节不同的参数环境,给出各数据属性之间的关联度,并给对结论给出解释。
第二步:决策树分析
要求:1.用自由格式读取Demo文件夹下的文件BASKETS1n,
2.接入type结点,点击readvalues读取数据,去掉一些与关联分析(即对购买商品关联分析)没有用的个人信息数据。
3.添加Derive节点,并重新命名该节点名称为health,Derive as
1
1
1
1
0
数据仓库与数据挖掘实验三
数据仓库与数据挖掘实验三引言概述:数据仓库与数据挖掘是当今信息技术领域中备受关注的两大重要概念。
数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
而数据挖掘则是通过分析大量数据,发现其中隐藏的模式、规律和知识,为决策提供支持。
在本次实验中,我们将探讨数据仓库与数据挖掘的关系,以及它们在实际应用中的重要性。
一、数据仓库的概念与特点1.1 数据仓库的定义:数据仓库是一个面向主题的、集成的、时间变化的、非易失性的数据集合,用于支持管理决策。
1.2 数据仓库的特点:- 面向主题:数据仓库关注于特定主题或领域,如销售、市场等。
- 集成性:数据仓库集成了来自不同数据源的数据,保证数据的一致性。
- 时间变化性:数据仓库存储历史数据,可以进行时间序列分析。
- 非易失性:数据仓库的数据不易丢失,保证数据的完整性和持久性。
1.3 数据仓库的作用:- 支持决策:数据仓库提供决策者所需的数据,帮助其做出正确的决策。
- 数据分析:数据仓库可以进行数据分析,发现数据之间的关联和趋势。
- 业务规划:数据仓库可以帮助企业进行业务规划,提高竞争力。
二、数据挖掘的概念与方法2.1 数据挖掘的定义:数据挖掘是从大量数据中发现未知的、潜在有用的信息和知识的过程。
2.2 数据挖掘的方法:- 分类:将数据分为不同类别,如决策树、支持向量机等。
- 聚类:将数据分为不同的簇,发现数据的分布规律。
- 关联规则挖掘:发现数据项之间的关联关系,如购物篮分析。
2.3 数据挖掘的应用:- 市场营销:通过数据挖掘分析客户行为,制定精准的营销策略。
- 风险管理:通过数据挖掘分析风险因素,预测可能的风险事件。
- 医疗保健:通过数据挖掘分析病例数据,辅助医生做出诊断和治疗方案。
三、数据仓库与数据挖掘的关系3.1 数据仓库与数据挖掘的联系:数据仓库提供数据挖掘所需的数据源,为数据挖掘提供支持。
3.2 数据仓库与数据挖掘的区别:- 数据仓库是数据的存储和管理平台,数据挖掘是从数据中发现知识的过程。
数据仓库与及数据挖掘实验报告
XX邮电大学****学年第1学期实验报告课程名称:数据仓库与数据挖掘实验名称:文本的分类实验完成人:姓名:*** 学号:*&*** 姓名:** 学号:**日期:实验一:文本的分类1.实验目的◆掌握数据预处理的方法,对训练集数据进行预处理;◆掌握文本分类建模的方法,对语料库的文档进行建模;◆掌握分类算法的原理,基于有监督的机器学习方法,训练文本分类器;◆了解SVM机器学习方法,可以运用开源工具完成文本分类过程。
2.实验分工***:(1)对经过分词的文本进行特征提取并用lisvm进行训练(2)用训练的模型对测试数据进行预测***:(1)数据采集和预处理(2)分词3.实验环境Ubuntu 13.04+jdk1.74.主要设计思想4.1 实验工具介绍1.NLPIR_ICTCLAS2013NLPIR (又名ICTCLAS2013),是由中科院张华平博士倾力打造的汉语分词系统。
其主要功能包括中文分词、词性标注、命名实体识别、用户词典功能、支持GBK 编码、UTF8编码、BIG5编码等。
从NLPIR官网可以下载其最新版的Java发布包,然后导入Eclipse,配置运行环境,实现对于语料库的分词。
最新的NLPIR可以通过更改源代码实现新增新词识别、关键词提取、微博分词等功能,极大地方便了使用。
2. Eclipse for JavaEclipse 是一个开放源代码的、基于Java的可扩展开发平台。
就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。
幸运的是,Eclipse 附带了一个标准的插件集,包括Java开发工具(Java Development Kit,JDK)。
3. LibSVM本次实验中我们采用的是台湾大学林智仁博士等开发设计的LIBSVM方法。
这是一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C−SVC 、ν−SVC ),回归问题(包括ε−SVR 、v−SVR ) 以及分布估计(one − class − SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。
数据仓库与数据挖掘实验报告
数据仓库与数据挖掘实验报告姓名:岩羊先生班级:数技2011学号:XXXXXX实验日期:2013年11月14日目录实验“图书销售分析”的多维数据集模型的设计【实验目的】1、熟悉SQLservermanager studio和VisualStudio2008软件功能和操作特点;2、了解SQLservermanager studio和VisualStudio2008软件的各选项面板和操作方法;3、熟练掌握SQLserver manager studio和VisualStudio2008工作流程。
【实验内容】1.打开SQLserver manager studio软件,逐一操作各选项,熟悉软件功能;2.根据给出的数据库模型“出版社销售图书Pubs”优化结构,新建立数据库并导出;3.打开VisualStudio2008,导入已有数据库、或新建数据文件,设计一个“图书销售分析”的多维数据集模型。
并使用各种输出节点,熟悉数据输入输出。
【实验环境】SQLserver manager studio , VisualStudio2008 , windows7【实验步骤】Step1 建立数据仓库的数据库:1.打开SQL Server manager studio:2.附加备份的数据库文件pubs_DW_Data.MDF和pubs_DW_Log.LDF并且做出优化:3.修改数据库属性:4.建立数据仓库所需的数据库bb(导出):点击新建:(若库有重名,则换名)Step2 建立数据仓库的多维数据集5. 创建新的分析服务项目:6.新建数据源;导入数据库bb:使用服务账户:6. 新建数据源(本地服务器输入“.”):选择数据源bb:选择表和视图:得到数据源视图:设置关系:7.建立多维数据集:得到多维数据集:8.处理多维数据集,得出模型:9.模型实例:【实验中的困难及解决办法】问题1:SQLserver中数据库的到导出解决方法:正确地新建数据库,选取需要的表和数据,谨慎选项,顺利导出。
数据仓库与数据挖掘有关多维数据集操作的实验报告
数据仓库与数据挖掘上机实验报告实验目的:学习Analysis Services的多维数据集的操作,学会建立事实表,度量,时间维度,使用数据存储方式等实验内容介绍:浏览SQL Server 2000 Analysis Services 随机教程以及数据仓库与数据挖掘的相关教程;建立分析数据库,设置数据源;建立多维数据库(newmd);设置多维数据库的数据存储方式及访问权限;利用vb访问Analysis Services实验分析:建立多维数据库(根据Analysis教程给定的样本数据库FoodMart建立市场营销多维数据集),先将需要的表从源库转换到新数据库,为数据仓库提供需要的数据,要形成的维表有Products,time,customer,Facts(事实表),在实验中Products,customer和time 将组成雪花架构的维表。
实验内容:建立多维数据库(newmd),要建立事实表Facts和维表Products,time,customer,设置多维数据库的数据存储方式。
目的:学会建立事实表,度量,时间维度,雪花表,使用数据存储方式步骤:1) 设置数据源,选中实验中建立的newmd数据库,并在数据源选项右击。
2) 建立多维数据集的事实表,使用Analysis Server的向导。
此时显示刚才选中的newmd数据集,还有一个系统自带的FoodMart数据集。
向导提示选择事实数据表,在这里我们选好了sale_fact_1997表作为事实表。
*在下一步用了定义度量值的数据中选择相关值作为度量,度量值的选择与决策者关心的项目有关。
在这里假设决策者关心的是当年销售额对销量产生的影响,从这些数据中可以得出进一步的经营方针。
3)定义好事实表后,我们要建立newmd的维度表①选择维度的创建方式,维度表的结构有星型架构,雪花架构等等,在本实验中,只用到前两个架构,因为本实验中根本没必要用到其他的结构。
而雪花架构的运用也只是用于学习和研究,在实际中,如此简单的数据仓库结构也不需要雪花架构,因为它会降低系统的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数据仓库与数据挖掘》实验报告册2013- 2014学年第一学期班级: T1153-8 学号: 20110530816 姓名:焦永赞授课教师:杨丽华实验教师:杨丽华实验学时: 16 实验组号: 1信息管理系目录实验一 Microsoft SQL Server Analysis Services的使用.. 3 实验二使用WEKA进行分类与预测 (114)实验三使用WEKA进行关联规则与聚类分析 (22)实验四数据挖掘算法的程序实现 (28)实验一 Microsoft SQL Server Analysis Services的使用实验类型:验证性实验学时:4实验目的:学习并掌握Analysis Services的操作,加深理解数据仓库中涉及的一些概念,如多维数据集,事实表,维表,星型模型,雪花模型,联机分析处理等。
实验内容:在实验之前,先通读自学SQL SERVER自带的Analysis Manager概念与教程。
按照自学教程的步骤,完成对FoodMart数据源的联机分析。
建立、编辑多维数据集,进行OLAP操作,看懂OLAP的分析数据。
实验步骤(写主要步骤,可以打印):1、启动联机分析管理器:开始->程序->Microsoft SQL Server->AnalysisManager。
2、按照Analysis Service的自学教程完成对FoodMart数据源的联机分析。
3、在开始-设置-控制面板-管理工具-数据源(ODBC),数据源管理器中设置和源数据的连接,“数据源名”为你的班级+学号+姓名,如T3730101张雨。
(1)打开管理工具中的数据源:(2)选择系统DNS(3)建立名为“………….”的数据源(4)添加,选择“Microsoft Access 驱动程序(*.mdb)”,然后单击“完成”按钮(5)选择数据库(6)在“ODBC Microsoft Access 安装”对话框中单击“确定”按钮。
在“ODBC 数据源管理器”对话框中单击“确定”按钮。
4、在开始-设置-控制面板-管理工具-服务-MSSQLServerOLAPService, 启动该项服务。
在Analysis Manager中,单击服务器名称,即可建立与Analysis Servers 的连接;否则,在Analysis Servers 上单击右键,注册服务器,在服务器名称中输入本地计算机的名字,如pc56。
本地计算机的名字可右击:我的电脑,选择属性,网络标志,里面有本地计算机的名字。
建立新的数据库,数据库名与数据源名相同,如T3730101张雨。
在你所建立的数据库中,单击“新数据源”,和早期在ODBC 数据源管理器中建立的数据源连接。
(1)启动MSSQLServerOLAPService服务(2)注册服务器(3)建立名为“………”的新数据库(4)建立数据源5、假设你是FoodMart Corporation 的数据库管理员。
FoodMart 是一家大型的连锁店,在美国、墨西哥和加拿大有销售业务。
市场部想要按产品和顾客分析1998 年进行的所有销售业务数据。
要求建立Sales多维数据集,多维数据集是由维度和事实定义的。
其维度有“Time”维度、“Product”维度、“Customer”维度、“Store”维度和“Promotion” 维度,事实表为sales_fact_1998,事实表中的度量为:store_sales、store_cost、unit_sales。
理解每个维度的级别。
(1)“Time”维度(2)Product维度(3)“Customer”维度(4)“Store”维度(5)“Promotion” 维度6、可以使用多维数据集编辑器对现有多维数据集进行更改。
在使用或浏览多维数据集中的数据之前,要求设计多维数据集中的数据和聚合的存储选项。
即设计好Sales 多维数据集的结构之后,需要选择要使用的存储模式并指定要存储的预先计算好的值的数量。
完成此项操作之后,需要用数据填充多维数据集。
这里选择MOLAP 作为存储模式,创建Sales 多维数据集的聚合设计,然后处理该多维数据集。
处理Sales 多维数据集时将从ODBC 源中装载数据并按照聚合设计中的定义计算汇总值。
7、使用多维数据集浏览器,可以用不同的方式查看数据:可以筛选出可见的维度数据量,可以深化以看到数据的细节,还可以浅化以看到较为概括的数据。
这里可以使用多维数据集浏览器对Sales 数据进行切片和切块操作。
要求理解OLAP操作下数据的含义,从而可以分析数据。
8、人力资源部想按商店来分析雇员的工资。
本节将建立一个HR(人力资源)多维数据集,以进行雇员工资分析。
将把Employee(雇员)维度创建为父子维度。
然后使用该维度以及常规维度来生成HR 多维数据集。
其中,事实数据表为salary(工资),维度为Employee(雇员)、Store(商店)、Time(时间)。
了解如何建立父子维度。
9、建立计算成员和成员属性。
在Sales 多维数据集中建立“Average price” 计算成员,思考建立该计算成员的目的。
市场部希望将Sales 多维数据集分析功能扩展到根据客户的下列特征分析客户销售数据:性别、婚姻状况、教育程度、年收入、在家子女数和会员卡。
需要向Customer 维度添加以下六个成员属性:Gender(性别)、Marital status(婚姻状况)、Education(教育程度)、Yearly Income(年收入)、Num Children At Home(在家子女数)和Member Card(会员卡)。
这些成员属性将限制Customer 维度中的每个成员。
理解什么是计算成员和成员属性,为什么要建立?10、已经为客户维度添加了六个成员属性,可以创建一个带有Yearly Income(年收入)成员属性的虚拟维度,然后将这个新创建的维度添加到Sales 多维数据集中。
使用虚拟维度,可以基于多维数据集中的维度成员的成员属性对多维数据集数据进行分析。
其优点是不占用磁盘空间或处理时间。
(1)为客户维度添加属性(2)创建Yearly Income虚拟维度11、理解多维数据集角色和数据库角色的联系和区别、建立角色的目的。
(1)在sales中创建marketing角色(2)在HR中创建HR角色12、查看销售多维数据集的元数据和维度的元数据,加深对元数据概念和分类的理解。
(1)查看销售元数据(2)查看Customer元数据思考题(要求手写)给出一个数据仓库成功应用的案例,包括所解决的问题,功能等。
实验小结(要求手写):实验中遇到的问题及解决办法、心得、体会等等...实验二使用WEKA进行分类与预测实验类型:综合性实验学时:4实验目的:掌握数据挖掘平台WEKA的使用。
综合运用数据预处理、分类与预测的挖掘算法、结果的解释等知识进行数据挖掘。
从而加深理解课程中的相关知识点。
实验内容:阅读并理解WEKA的相关中英文资料,熟悉数据挖掘平台WEKA,针对实际数据,能够使用WEKA进行数据的预处理,能选择合适的分类与预测算法对数据进行分析,并能解释分析结果。
实验步骤(可以打印):1、在开始->程序->启动WEKA,进入Explorer界面,熟悉WEKA的界面功能。
2、选择数据集(实验中的数据可以从网络获取),如泰坦尼克号数据集,将要处理的数据集转换成WEKA能处理的格式,如.ARFF格式。
思考:如何将其它格式的数据文件(如.XLS)转换为.ARFF格式?3、根据选择的数据挖掘算法,如果有必要,在Weka Explorer界面,Preprocess选项中,进行相应的数据预处理。
要求:熟悉Preprocess界面中各个功能选项的含义,理解数据的特征。
思考:在filter中,supervised和unsupervised的区别?4、在Weka Explorer界面,单击Visualize选项,进入WEKA 的可视化页面,可以对当前的关系作二维散点图式的可视化浏览。
要求:熟悉Visualize界面中各个功能选项的含义,理解可视化图形的意义。
5、选择相应的分类与预测挖掘算法对数据集进行分析,进行算法参数的具体设置。
如利用WEKA->Classifier->trees->J48 决策树算法,对泰坦尼克号数据集进行分析;如利用回归模型对连续数值进行预测。
要求:对你选择的分类和预测算法思想分别进行介绍,熟悉classify界面的内容,对classifier中的参数含义分别进行介绍。
思考:classifier->trees->J48算法与classifier->trees->id3算法的区别与联系。
ID3算法:J48算法:6、对分析所获得的结果进行解释。
如,根据决策树和分类规则尝试讨论泰坦尼克号幸存者的特征。
理解评估分类和预测优劣的一些准则。
思考题(要求手写)给出数据挖掘中分类与预测成功应用的案例,并简要介绍。
实验小结(要求手写):实验中遇到的问题及解决办法、心得、体会等等...实验三使用WEKA进行关联规则与聚类分析实验类型:综合性实验学时:4实验目的:掌握数据挖掘平台WEKA的使用。
综合运用数据预处理、关联规则与聚类的挖掘算法、结果的解释等知识进行数据挖掘。
从而加深理解课程中的相关知识点。
实验内容:阅读并理解WEKA的相关中英文资料,熟悉数据挖掘平台WEKA,针对实际数据,能够使用WEKA进行数据的预处理,了解属性选择,能选择合适的关联规则与聚类算法对数据进行分析,并能解释分析结果。
实验步骤(可以打印):1、在开始->程序->启动WEKA,进入Explorer界面,熟悉WEKA的界面功能。
2、选择数据集(实验中的数据可以从网络获取),将要处理的数据集转换成WEKA能处理的格式,如.ARFF格式。
根据选择的数据挖掘算法,如果有必要,在Weka Explorer界面,Preprocess选项中,进行相应的数据预处理。
3、在Weka Explorer界面,单击Select attributes选项,进入WEKA 的属性选择页面。
要求:了解该界面中主要功能选项的含义,理解该界面的功能。
4、在Weka Explorer界面,单击Associate选项,进入WEKA 的关联规则页面。
选择一个关联规则算法对数据集进行分析,进行算法参数的具体设置。
要求:对你选择的关联规则算法思想进行介绍,熟悉Associate界面的内容,对Associate中的参数含义分别进行介绍。
理解用来衡量规则的关联程度的几个度量指标。
理解并解释分析所获得的结果。
5、在Weka Explorer界面,单击Cluster选项,进入WEKA 的聚类页面。