最新 2020年南通中考-数学试卷及解答

合集下载

2020年江苏省南通市中考数学试卷含答案解析(word版)

2020年江苏省南通市中考数学试卷含答案解析(word版)

南通市2020年初中毕业、升学考试试卷解析数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的相反数是A .2-B .21-C .2D .21 考点:相反数的定义解析: 2的相反数是2- ,选A2. 太阳半径约为696000km ,将696000用科学记数法表示为A .696×103B .69.6×104C .6.96×105D .0.696×106考点:科学记数法解析:将696000用科学记数法表示为6.96×105,选C 3. 计算x x 23-的结果是 A .26x B .x 6 C .x 25 D .x1 考点:分式的减法 解析:x x 23-=x1,选D 4. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共是A . 4个B .3个C .2个D .1个考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质 解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选C 5. 若一个多边形的外角和与它的内角和相等,则这个多边形是A .三角形B .四边形C .五边形D .六边形考点:多边形的内角和等腰三角形正方形正五边形圆解析:多边形的外角和为 360,多边形的外角和与它的内角和相等,则内角和为360,为四边形,选B 6. 函数y =112--x x 中,自变量x 的取值范围是 A .21≤x 且1≠x B .21≥x 且1≠xC .21>x 且1≠x D .21<x 且1≠x 考点:二次根式的意义,分式的意义,函数自变量的取值范围 解析:由⎩⎨⎧≠-≥-01012x x ,解得21≥x 且1≠x ,选B7. 如图为了测量某建筑物MN 的高度,在平地上A 处测得建筑物 顶端M 的仰角为30°,沿N 点方向前进16 m 到达B 处,在B 处 测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于A .8(3+1)mB . 8 (3—1) mC . 16 (3+1) mD .16(3-1)m考点:锐角三角函数 解析:由1645tan 30tan =-MNMN ,得)13(81316+=-=MN m ,选A 8. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4 cm ,则该圆锥的底面周长是A .π3 cmB .π4 cmC .π5 cmD .π6 cm考点:扇形、弧长公式,圆周长,圆锥侧面展开图解析:圆锥底面圆的半径为34522=-cm ,该圆锥的底面周长是π6cm 9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰 直角三角形ABC ,使点C 在第一象限,90=∠BAC .设点B 的横坐标为x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是(第8题)(第7题)MNAB(第9题)考点:函数图象,数形结合思想解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴ 设点B 的横坐标为x ,点C 的纵坐标为y ;则x y =-1(0>x ); 1+=x y (0>x ),故选A 10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,),1(m D 是一个动点,当ACD ∆周长最小时,ABD ∆的面积为A .31 B .32 C .34 D .38考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC 直线BC 方程为:131-=x y ,右图为ACD ∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.计算25x x ⋅= ▲ . 考点:幂的运算 解析:25x x ⋅=7x12.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =60°,则∠BOD 等于 ▲ 度. 考点:相交线,对顶角,垂直,余角解析:OE ⊥AB ,∠COE =60°,则∠BOD=∠AOC=3013.某几何体的三视图如图所示,则这个几何体的名称是 ▲ . 考点:三视图,圆柱解析:由几何体的三视图可知,该几何体为圆柱EDC B AO(第12题)(第9题)主视图左视图俯视图14.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则cos A 的值是 ▲ . 考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD =2,则AB=4,cos A =43=AB AC15.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是 ▲ . 考点:平均数,中位数 解析:85915105=++++x ,1=x ,这组数据的中位数是916.设一元二次方程0132=--x x 的两根分别是1x ,2x ,则)3(22221x x x x -+= ▲考点:一元二次方程根的概念,一元二次方程根与系数的关系解析:2x 是一元二次方程0132=--x x 的根,∴013222=--x x ,13222=-x x ,则3)3(2122221=+=-+x x x x x x17.如图,BD 为正方形ABCD 的对角线,BE 平分DBC ∠,交DC 于点E ,将BCE ∆绕点C 顺时针旋转90得到DCF ∆,若CE=1cm ,则BF= ▲ cm 考点:角平分线的性质,勾股定理,正方形 解析:BE 平分DBC ∠,则GE=CE=1cm DG=GE=1cm ;2=DE cm,BC=CD=1)2(+cm;)22(+=∴BF cm18.平面直角坐标系xOy 中,已知点),(b a 在直线222++=m mx y (0>m )上,且满足04)21(2222=+++-+b m bm b a ,则=m ▲ .考点:配方法;求根公式解析:已知点),(b a 在直线222++=m mx y (0>m )上,222++=∴m ma b (*)代入04)21(2222=+++-+b m bm b a 整理得:0)()2(22=++-m a m b 解得⎩⎨⎧=-=mb ma 2回代到(*)式得22222++-=m m m ,即0222=-+m m ,解得31±-=m ,又0>m ,13-=∴m ABDC(第14题)(第17题)三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算4)5()1(202--+-+-;(2) 解方程组:⎩⎨⎧-=-=+52392y x y x考点:(1)非零数的零次幂等于1,实数运算 (2)二元一次方程的解法 解析:(1)原式=22112=-++(2)①+②,得:1,44==x x ;代入①,得4=y ,⎩⎨⎧==∴4,1y x 20.(本小题满分8分) 解不等式组⎩⎨⎧+>++<-71533315x x x x ,并写出它的所有所有整数解.考点:一元一次不等式组解析:解:由①,得2<x ,由②,得4->x ;所以不等式组的解集为24<<-x ;它的整数解1,0,1,2,3---21.(本小题满分9分)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图).已知西瓜的重量占这批水果总重量的40%.回答下列问题:(1)这批水果总重量为 ▲ kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子 所对应扇形的圆心角为 ▲ 度. 考点:条形图、扇形图,条形图的画法,统计 解析:(1)4000(2)1200200100016004000=---补全统计图如下:(第21题)重量(kg 品种苹果(3)9022.(本小题满分7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率. 考点:树形图,随机事件等可能性 解析:画出树形图如下:从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.∴两次都摸到红色小球的概率为4123.(本小题满分8分) 列方程解应用题:某列车平均提速h km /60,用相同的时间,该列车提速前行使km 200,提速后比提速前多行使km 100,求提速前该列车的平均速度.考点:二元一次方程应用题解析:设提速前该列车的平均速度为v h km /,行使的相同时间为t h由题意得:⎩⎨⎧=+=300)60(,200t v vt 解得:⎪⎩⎪⎨⎧==35120t v答:提速前该列车的平均速度为h km / 120 24.(本小题满分9分)已知:如图,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作AM BD ⊥于点D ,BD 交⊙O 于C ,OC 平分AOB ∠重量(kg(第21题)第一次第二次 红红 绿 绿红绿(1)求AOB ∠的度数;(2)若⊙O 的半径为2 cm ,求线段CD 的长.考点:圆的切线,角平分线,直线平行,三角形的内角和。

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=2 4.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.(3分)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.57.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:xy﹣2y2=.12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.(4分)若m<2<m+1,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB =AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1【分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.【解答】解:原式=1﹣3=﹣2.故选:C.2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于68000有5位,所以可以确定n=5﹣1=4.【解答】解:68000=6.8×104.故选:A.3.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=2【分析】分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°【分析】过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.(3分)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.5【分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.7.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD【分析】根据对角线垂直的平行四边形是菱形,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【分析】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm2【分析】过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.10.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:xy﹣2y2=y(x﹣2y).【分析】用提公因式法进行因式分解即可.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为12cm.【分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=5,然后利用勾股定理计算OC的长即可.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.(4分)若m<2<m+1,且m为整数,则m=5.【分析】估计2的大小范围,进而确定m的值.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.【分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x﹣12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为7.5m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于2028.【分析】根据一元二次方程的解的概念和根与系数的关系得出x12﹣4x1=2020,x1+x2=4,代入原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)计算可得.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=﹣3.【分析】由于一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB =AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.【分析】(1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;(2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC =30°,然后根据含30度的直角三角形三边的关系求OA的长.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.【分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第二小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约922人;(2)对这两个小组的调查统计方法各提一条改进建议.【分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1﹣7.8%)就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.【分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【分析】(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出====,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP ∽△EBF,利用相似三角形的性质求解即可.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.【分析】(1)由题意可得0=4a+2b+c①,﹣=1②,△=(b﹣1)2﹣4ac=0③,联立方程组可求a,b,c,可求解析式;(2)由n<﹣5,可得点B,点C在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.【分析】(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin∠CAD的值.(2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD为对余四边形.(3)过点D作DH⊥x轴于点H,先证明△ABE∽△DBA,得出u与AD的关系,设D (x,t),再利用(2)中结论,求出AD与t的关系即可解决问题..【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∴∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。

2020年江苏省南通市中考数学试题(教师版含解析)

2020年江苏省南通市中考数学试题(教师版含解析)

2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=1﹣3=﹣2.故选:C.2.【解答】解:68000=6.8×104.故选:A.3.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.【解答】解:∵这组数据2,4,6,x,3,9的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(3+4)÷2=3.5.故选:B.7.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,由图2可知当x=14时,点Q与点C重合,∴BC=14,∴矩形的面积为14×6=84.故选:B.10.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分) 11.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明) 19.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。

2020年江苏省南通市中考数学试题(word版,含解析)

2020年江苏省南通市中考数学试题(word版,含解析)

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算13--,结果正确的是( ) A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( ) A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( ) A .532-=B .3+2=32C .623÷=D .6223⨯=4.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( ) A .3B .3.5C .4D .4.57.下列条件中,能判定ABCD 是菱形的是( ) A .AC =BDB .AB ⊥BCC .AD =BDD .AC ⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )9.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1cm /s .现P ,Q 两点同时出发,设运动时间为x (s ),△BPQ 的面积为y (cm 2),若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .96cm 2B .84cm 2C .72cm 2D .56cm 210.如图,在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为( )A 6B .22C .3D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分) 11.分解因式:22=xy y - .12.已知⊙O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 cm . 13.若271m m <<+,且m 为整数,则m = .14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 . 15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 .16.如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是 1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:(第14题) (第16题)17.若x 1,x 2是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于 .18.将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线()20y kx k k =-->相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)= .三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)()()()22322m n m n m n +-+-; (2)22x y y xy x x x ⎛⎫--÷+ ⎪⎝⎭.20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC . (2)如图②,A 为⊙O 上一点,按以下步骤作图: ①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ; ③在射线OB 上截取BC =OA ; ④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:3y x =+与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示: 第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过A (2,0),B (3n ﹣4,y 1),C (5n +6,y 2)三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根. (1)求抛物线的解析式;(2)若5n <-,试比较y 1与y 2的大小;(3)若B ,C 两点在直线x =1的两侧,且12y y >,求n 的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设AEuBE,点D的纵坐标为t,请直接写出u关于t的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=1﹣3=﹣2.故选:C.2.【解答】解:68000=6.8×104.故选:A.3.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.【解答】解:∵这组数据2,4,6,x,3,9的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(3+4)÷2=3.5.故选:B.7.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,由图2可知当x=14时,点Q与点C重合,∴BC=14,∴矩形的面积为14×6=84.故选:B.10.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG =4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。

江苏省南通市2020年中考数学试卷(word版,含解析)

江苏省南通市2020年中考数学试卷(word版,含解析)

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣12.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=24.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.(3分)一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.57.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:xy﹣2y2=.12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.(4分)若m<2<m+1,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B 表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E 在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=1﹣3=﹣2.故选:C.2.【解答】解:68000=6.8×104.故选:A.3.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.【解答】解:∵这组数据2,4,6,x,3,9的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(3+4)÷2=3.5.故选:B.7.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,由图2可知当x=14时,点Q与点C重合,∴BC=14,∴矩形的面积为14×6=84.故选:B.10.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。

2020年江苏省南通市中考数学试卷

2020年江苏省南通市中考数学试卷

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|1|3--,结果正确的是( )A .4-B .3-C .2-D .1-2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km .将68000用科学记数法表示为( )A .46.810⨯B .56.810⨯C .50.6810⨯D .60.6810⨯3.(3分)下列运算,结果正确的是( )A .532-=B .3232+=C .623÷=D .6223⨯=4.(3分)以原点为中心,将点(4,5)P 按逆时针方向旋转90︒,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.(3分)如图,已知//AB CD ,54A ∠=︒,18E ∠=︒,则C ∠的度数是( )A .36︒B .34︒C .32︒D .30︒6.(3分)一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.(3分)下列条件中,能判定ABCD 是菱形的是( )A .AC BD =B .AB BC ⊥ C .AD BD = D .AC BD ⊥8.(3分)如图是一个几体何的三视图(图中尺寸单位:)cm ,则这个几何体的侧面积为( )A .248cm πB .224cm πC .212cm πD .29cm π9.(3分)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ ∆的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm10.(3分)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A 6B .22C .23D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:22xy y -= .12.(3分)已知O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 cm .13.(4分)若271 m m<<+,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,ABC∆和DEF∆的顶点都在网格线的交点上.设ABC∆的周长为1C,DEF∆的周长为2C,则12CC的值等于.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50︒.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin500.77︒≈,cos500.64︒≈,tan50 1.19)︒≈17.(4分)若1x,2x是方程2420200x x--=的两个实数根,则代数式211222x x x-+的值等于.18.(4分)将双曲线3yx=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k=-->相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(1)(2)a b-+=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)2(23)(2)(2)m n m n m n+-+-;(2)22()x y y xy x x x--÷+. 20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD AE =,B C ∠=∠.求证:AB AC =. (2)如图②,A 为O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交O 于点B ;③在射线OB 上截取BC OA =;④连接AC .若3AC =,求O 的半径.21.(12分)如图,直线1:3l y x =+与过点(3,0)A 的直线2l 交于点(1,)C m ,与x 轴交于点B .(1)求直线2l 的解析式;(2)点M 在直线1l 上,//MN y 轴,交直线2l 于点N ,若MN AB =,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”, B 表示“良好”, C 表示“合格”, D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,8AB =,12AD =.将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求AP DE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过(2,0)A ,1(34,)B n y -,2(56,)C n y +三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根.(1)求抛物线的解析式;(2)若5n <-,试比较1y 与2y 的大小;(3)若B ,C 两点在直线1x =的两侧,且12y y >,求n 的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD 中,5AB =,6BC =,4CD =,连接AC .若AC AB =,求sin CAD ∠的值;(2)如图②,凸四边形ABCD 中,AD BD =,AD BD ⊥,当2222CD CB CA +=时,判断四边形ABCD 是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点(1,0)A -,(3,0)B ,(1,2)C ,四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于ABC ∆内部,90AEC ABC ∠=︒+∠.设AE u BE=,点D 的纵坐标为t ,请直接写出u 关于t 的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|1|3--,结果正确的是()A.4-B.3-C.2-D.1-【分析】首先应根据负数的绝对值是它的相反数,求得|1|1-=,再根据有理数的减法法则进行计算.【解答】解:原式132=-=-.故选:C.【点评】本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km.将68000用科学记数法表示为() A.4⨯C.56.810⨯B.56.810⨯0.6810⨯D.60.6810【分析】科学记数法的表示形式为10na<,n为整数.确定n的值a⨯的形式,其中1||10是易错点,由于68000有5位,所以可以确定514n=-=.【解答】解:4=⨯.68000 6.810故选:A.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.(3分)下列运算,结果正确的是()A=B.3C3=D=【分析】分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.【解答】解:AB.3不是同类二次根式,不能合并,此选项错误;CD=【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.(3分)以原点为中心,将点(4,5)P按逆时针方向旋转90︒,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据旋转的性质以原点为中心,将点(4,5)P按逆时针方向旋转90︒,即可得到点Q 所在的象限.【解答】解:如图,点(4,5)P按逆时针方向旋转90︒,得点Q所在的象限为第二象限.故选:B.【点评】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.5.(3分)如图,已知//E∠的度数是()∠=︒,则C∠=︒,18AAB CD,54A.36︒B.34︒C.32︒D.30︒【分析】过点E作//EF AB,利用“两直线平行,内错角相等”EF AB,则//EF CD,由//可得出AEF∠的度数,结合CEF AEF AECEF CD,利∠=∠-∠可得出CEF∠的度数,由//用“两直线平行,内错角相等”可求出C∠的度数.【解答】解:过点E作//EF CD,如图所示.EF AB,则//54AEF A ∴∠=∠=︒,541836CEF AEF AEC ∠=∠-∠=︒-︒=︒.又//EF CD ,36C CEF ∴∠=∠=︒.故选:A .【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.6.(3分)一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.5【分析】先根据众数是一组数据中出现次数最多的数据,求得x ,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:这组数据2,4,6,x ,3,9的众数是3,3x ∴=,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(34)2 3.5+÷=.故选:B .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.(3分)下列条件中,能判定ABCD 是菱形的是( )A .AC BD =B .AB BC ⊥ C .AD BD = D .AC BD ⊥【分析】根据对角线垂直的平行四边形是菱形,即可得出答案.【解答】解:四边形ABCD 是平行四边形,∴当AC BD ⊥时,四边形ABCD 是菱形;【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.8.(3分)如图是一个几体何的三视图(图中尺寸单位:)cm ,则这个几何体的侧面积为( )A .248cm πB .224cm πC .212cm πD .29cm π【分析】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6, 所以这个几何体的侧面积216824()2cm ππ=⨯⨯⨯=. 故选:B .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.(3分)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ ∆的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm【分析】过点E 作EH BC ⊥,由三角形面积公式求出6EH AB ==,由图2可知当14x =时,点Q 与点C 重合,则14BC =,可得出答案.【解答】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⨯=⨯⨯=, 解得6EH AB ==,由图2可知当14x =时,点Q 与点C 重合,14BC ∴=,∴矩形的面积为14684⨯=.故选:B .【点评】本题考查了动点问题的函数图象,三角形的面积等知识,熟练掌握数形结合思想方法是解题的关键.10.(3分)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A 6B .22C .23D .32【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【解答】解:如图,过点C 作CK l ⊥于点K ,过点A 作AH BC ⊥于点H , 在Rt AHB ∆中,60ABC ∠=︒,2AB =,1BH ∴=,3AH =,在Rt AHC ∆中,45ACB ∠=︒,2222(3)(3)6AC AH CH ∴=+=+=,点D 为BC 中点, BD CD ∴=,在BFD ∆与CKD ∆中, 90BFD CKD BDF CDKBD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BFD CKD AAS ∴∆≅∆, BF CK ∴=,延长AE ,过点C 作CN AE ⊥于点N , 可得AE BF AE CK AE EN AN +=+=+=, 在Rt ACN ∆中,AN AC <, 当直线l AC ⊥6, 综上所述,AE BF +6. 故选:A .【点评】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:22xy y -= (2)y x y - . 【分析】用提公因式法进行因式分解即可. 【解答】解:22(2)xy y y x y -=-, 故答案为:(2)y x y -.【点评】本题考查提公因式法因式分解,找出公因式是正确分解的前提.12.(3分)已知O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 12 cm . 【分析】如图,作OC AB ⊥于C ,连接OA ,根据垂径定理得到152AC BC AB ===,然后利用勾股定理计算OC 的长即可.【解答】解:如图,作OC AB ⊥于C ,连接OA , 则152AC BC AB ===, 在Rt OAC ∆中,2213513OC =-=, 所以圆心O 到AB 的距离为12cm . 故答案为12.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 13.(4分)若271m m <+,且m 为整数,则m = 5 . 【分析】估计27m 的值. 【解答】解:2728252836 5276∴<,又271m m <+,5m ∴=,故答案为:5.【点评】本题考查无理数的估算,理解27介在哪两个整数之间是正确求解的关键. 14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,ABC ∆和DEF ∆的顶点都在网格线的交点上.设ABC ∆的周长为1C ,DEF ∆的周长为2C ,则12C C 的值等于 22.【分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可. 【解答】解:22211DE AB ==+22222EF BC +== 222242231DF AC +==+∴2DE EF DF AB BC AC=== ABC DEF ∴∆∆∽,∴1222C AB C DE ==, 2. 【点评】本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似. 15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 (12)864x x -= . 【分析】由长和宽之间的关系可得出宽为(12)x -步,根据矩形的面积为864平方步,即可得出关于x 的一元二次方程,此题得解.【解答】解:长为x 步,宽比长少12步,∴宽为(12)x -步.依题意,得:(12)864x x -=.【点评】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50︒.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 7.5 m .(结果保留小数点后一位,参考数据:sin500.77︒≈,cos500.64︒≈,tan50 1.19)︒≈【分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.【解答】解:如图,过点D 作DE AB ⊥,垂足为点E ,则5DE BC ==, 1.5DC BE ==, 在Rt ADE ∆中, tan AEADE DE∠=, tan tan505 1.195 5.96AE ADE DE ∴=∠=︒⨯≈⨯=(米), 5.95 1.57.5AB AE BE ∴=+=+≈(米),故答案为:7.5.【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.17.(4分)若1x ,2x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于 2028 .【分析】根据一元二次方程的解的概念和根与系数的关系得出21142020x x -=,124x x +=,代入原式221112111242242()x x x x x x x x =-++=-++计算可得. 【解答】解:1x ,2x 是方程2420200x x --=的两个实数根, 124x x ∴+=,211420200x x --=,即21142020x x -=,则原式21112422x x x x =-++2111242()x x x x =-++ 202024=+⨯ 20208=+2028=,故答案为:2028.【点评】本题主要考查根与系数的关系,解题的关键是掌握1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12cx x a=.18.(4分)将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(1)(2)a b -+= 3- .【分析】由于一次函数2(0)y kx k k =-->的图象过定点(1,2)P -,而点(1,2)P -恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解答】解:一次函数2(0)y kx k k =-->的图象过定点(1,2)P -,而点(1,2)P -恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k =-->相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为3(1,)1a a --,3(2b +,2)b +, 312a b ∴-=-+, (1)(2)3a b ∴-+=-,故答案为:3-.【点评】本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)2(23)(2)(2)m n m n m n +-+-;(2)22()x y y xyx x x--÷+.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得; (2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得. 【解答】解:(1)原式22224129(4)m mn n m n =++-- 222241294m mn n m n =++-+ 21210mn n =+;(2)原式222()x y x y xyx x x--=÷+222x y x xy y x x --+=÷2()x y xx x y -=- 1x y=-. 【点评】本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD AE =,B C ∠=∠.求证:AB AC =. (2)如图②,A 为O 上一点,按以下步骤作图: ①连接OA ;②以点A 为圆心,AO 长为半径作弧,交O 于点B ;③在射线OB 上截取BC OA =; ④连接AC .若3AC =,求O 的半径.【分析】(1)根据“AAS “证明ABE ACD ∆≅∆,然后根据全等三角形的性质得到结论; (2)连接AB ,如图②,由作法得OA OB AB BC ===,先判断OAB ∆为等边三角形得到60OAB OBA ∠=∠=︒,再利用等腰三角形的性质和三角形外角性质得到30C BAC ∠=∠=︒,然后根据含30度的直角三角形三边的关系求OA 的长. 【解答】(1)证明:在ABE ∆和ACD ∆中 B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABE ACD AAS ∴∆≅∆, AB AC ∴=;(2)解:连接AB ,如图②, 由作法得OA OB AB BC ===, OAB ∴∆为等边三角形, 60OAB OBA ∴∠=∠=︒, AB BC =, C BAC ∴∠=∠, OBA C BAC ∠=∠+∠, 30C BAC ∴∠=∠=︒90OAC ∴∠=︒,在Rt OAC ∆中,3333OA AC = 即O 3【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.21.(12分)如图,直线1:3l y x =+与过点(3,0)A 的直线2l 交于点(1,)C m ,与x 轴交于点B . (1)求直线2l 的解析式;(2)点M 在直线1l 上,//MN y 轴,交直线2l 于点N ,若MN AB =,求点M 的坐标.【分析】(1)把点C 的坐标代入3y x =+,求出m 的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M 、N 两点的横坐标,利用两点间距离公式求出M 的坐标. 【解答】解:(1)在3y x =+中,令0y =,得3x =-, (3,0)B ∴-,把1x =代入3y x =+得4y =, (1,4)C ∴,设直线2l 的解析式为y kx b =+,∴430k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线2l 的解析式为26y x =-+;(2)3(3)6AB=--=,设(,3)MN y轴,得(,26)M a a+,由//N a a-+,=+--+==,|3(26)|6MN a a AB解得3a=-,a=或1∴或(1,2)(3,6)M-.【点评】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第二小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.【分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(17.8%)-就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;⨯-=⨯=(人),1000(17.8%)10000.922922故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【点评】本题考查样本估计总体,样本的抽取要具有代表性和普遍性,才能够准确地反映总体.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.【分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐标到甲车的概率,然后进行比较即可得出答案.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲, 则张先生坐到甲车的概率是2163=; 由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是2163=; 所以两人坐到甲车的可能性一样.【点评】此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)矩形ABCD 中,8AB =,12AD =.将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求AP DE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.【分析】(1)如图①中,取DE 的中点M ,连接PM .证明POM DCP ∆∆∽,利用相似三角形的性质求解即可.(2)如图②中,过点P 作//GH BC 交AB 于G ,交CD 于H .设EG x =,则4BG x =-.证明EGP PHD ∆∆∽,推出41123EG PG EP PH DH PD ====,推出23PG EG x ==,4DH AG x ==+,在Rt PHD ∆中,由222PH DH PD +=,可得222(3)(4)12x x ++=,求出x ,再证明EGP EBF ∆∆∽,利用相似三角形的性质求解即可.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .四边形ABCD 是矩形,90BAD C ∴∠=∠=︒,由翻折可知,AO OP =,AP DE ⊥,23∠=∠,90DAE DPE ∠=∠=︒,在Rt EPD ∆中,EM MD =,PM EM DM ∴==,3MPD ∴∠=∠,1323MPD ∴∠=∠+∠=∠,23ADP ∠=∠,1ADP ∴∠=∠,//AD BC ,ADP DPC ∴∠=∠,1DPC ∴∠=∠,90MOP C ∠=∠=︒,POM DCP ∴∆∆∽, ∴82123PO CD PM PD ===, ∴2223AO PO DE PM ==.(2)如图②中,过点P 作//GH BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG x =,则4BG x =-90A EPD ∠=∠=︒,90EGP DHP ∠=∠=︒,90EPG DPH ∴∠+∠=︒,90DPH PDH ∠+∠=︒,EPG PDH ∴∠=∠,EGP PHD ∴∆∆∽, ∴41123EG PG EP PH DH PD ====, 23PG EG x ∴==,4DH AG x ==+,在Rt PHD ∆中,222PH DH PD +=,222(3)(4)12x x ∴++=, 解得165x =(负值已经舍弃), 164455BG ∴=-=,在Rt EGP ∆中,125GP =, //GH BC ,EGP EBF ∴∆∆∽, ∴EG GP EB BF=, ∴1612554BF=, 3BF ∴=.【点评】本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.25.(13分)已知抛物线2y ax bx c =++经过(2,0)A ,1(34,)B n y -,2(56,)C n y +三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根.(1)求抛物线的解析式;(2)若5n <-,试比较1y 与2y 的大小;(3)若B ,C 两点在直线1x =的两侧,且12y y >,求n 的取值范围.【分析】(1)由题意可得042a b c =++①,12b a-=②,△2(1)40b ac =--=③,联立方程组可求a ,b ,c ,可求解析式;(2)由5n <-,可得点B ,点C 在对称轴直线1x =的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.【解答】解:(1)抛物线2y ax bx c =++经过(2,0)A ,042a b c ∴=++①,对称轴是直线1x =,12b a∴-=②, 关于x 的方程2ax bx c x ++=有两个相等的实数根,∴△2(1)40b ac =--=③,由①②③可得:1210a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为212y x x =-+; (2)5n <-,3419n ∴-<-,5619n +<-∴点B ,点C 在对称轴直线1x =的左侧, 抛物线212y x x =-+, 102∴-<,即y 随x 的增大而增大, (34)(56)2102(5)0n n n n --+=--=-+>,3456n n ∴->+,12y y ∴>;(3)若点B 在对称轴直线1x =的左侧,点C 在对称轴直线1x =的右侧时,由题意可得3415611(34)561n n n n -<⎧⎪+>⎨⎪--<+-⎩,503n ∴<<, 若点C 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时,由题意可得:3415613411(56)n n n n ->⎧⎪+<⎨⎪--<-+⎩,∴不等式组无解, 综上所述:503n <<. 【点评】本题考查了抛物线与x 轴的交点,二次函数的性质,根的判别式,待定系数法求解析式,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD 中,5AB =,6BC =,4CD =,连接AC .若AC AB =,求sin CAD ∠的值;(2)如图②,凸四边形ABCD 中,AD BD =,AD BD ⊥,当2222CD CB CA +=时,判断四边形ABCD 是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点(1,0)A -,(3,0)B ,(1,2)C ,四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于ABC ∆内部,90AEC ABC ∠=︒+∠.设AE u BE=,点D 的纵坐标为t ,请直接写出u 关于t 的函数解析式.【分析】(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin CAD ∠的值. (2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD 为对余四边形.(3)过点D 作DH x ⊥轴于点H ,先证明ABE DBA ∆∆∽,得出u 与AD 的关系,设(,)D x t ,再利用(2)中结论,求出AD 与t 的关系即可解决问题..【解答】解:(1)过点A 作AE BC ⊥于E ,过点C 作CF AD ⊥于F .AC AB =,3BE CE ∴==,在Rt AEB ∆中,2222534AE AB BE =-=-=,CF AD ⊥,90D FCD ∴∠+∠=︒,90B D ∠+∠=︒,B DCF ∴∠=∠,90AEB CFD ∠=∠=︒,AEB DFC ∴∆∆∽, ∴EB AB CF CD =, ∴354CF =, 125CF ∴=, 12125sin 525CF CAD AC ∴∠===.(2)如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM DC ⊥,使得DM DC =,连接CM .四边形ABCD 中,AD BD =,AD BD ⊥,45DAB DBA ∴∠=∠=︒,45DCM DMC ∠=∠=︒,90CDM ADB ∠=∠=︒,ADC BDM ∴∠=∠,AD DB =,CD DM =,()ADC BDM SAS ∴∆≅∆,AC BM ∴=,2222CD CB CA +=,22222CM DM CD CD =+=,222CM CB BM ∴+=,90BCM ∴∠=︒,45DCB ∴∠=︒,90DAB DCB ∴∠+∠=︒,∴四边形ABCD 是对余四边形.(3)如图③中,过点D 作DH x ⊥轴于H .(1,0)A -,(3,0)B ,(1,2)C ,1OA ∴=,3OB =,4AB =,22AC BC ==,222AC BC AB ∴+=,90ACB ∴∠=︒,45CBA CAB ∴∠=∠=︒,四边形ABCD 是对余四边形,90ADC ABC ∴∠+∠=︒,45ADC ∴∠=︒,90135AEC ABC ∠=︒+∠=︒,180ADC AEC ∴∠+∠=︒,A ∴,D ,C ,E 四点共圆,ACE ADE ∴∠=∠,45CAE ACE CAE EAB ∠+∠=∠+∠=︒,EAB ACE ∴∠=∠,EAB ADB ∴∠=∠,ABE DBA ∠=∠,ABE DBA ∴∆∆∽, ∴BE AE AB AD =, ∴AE AD BE AB=, 4AD u ∴=, 设(,)D x t ,由(2)可知,2222BD CD AD =+,222222(3)2[(1)(2)](1)x t x t x t ∴-+=-+-+++,整理得22(1)4x t t +=-,在Rt ADH ∆中,AD =,4)4AD u t ∴==<<,即4)u t <<. 【点评】本题属于四边形综合题,考查了对余四边形的定义,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.。

2020年江苏省南通市中考数学试题及参考答案(word解析版)

2020年江苏省南通市中考数学试题及参考答案(word解析版)

南通市2020年初中毕业、升学考试试卷数学(满分:150分,考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=24.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.57.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E ﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.若m<2<m+1,且m为整数,则m=.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:y =x+3与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌等级 人数 百分比 A 17 18.9% B 38 42.2% C 28 31.1% D 7 7.8% 合计 90100%握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin ∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【知识考点】绝对值;有理数的减法.【思路分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.【解题过程】解:原式=1﹣3=﹣2.故选:C.【总结归纳】本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.2.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于68000有5位,所以可以确定n=5﹣1=4.【解题过程】解:68000=6.8×104.故选:A.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=2【知识考点】二次根式的混合运算.【思路分析】分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.【解题过程】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.【总结归纳】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】坐标与图形变化﹣旋转.【思路分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.【解题过程】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°【知识考点】平行线的性质.【思路分析】过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.【解题过程】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.【总结归纳】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.5【知识考点】中位数;众数.【思路分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解题过程】解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD【知识考点】平行四边形的性质;菱形的判定.【思路分析】根据对角线垂直的平行四边形是菱形,即可得出答案.【解题过程】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.【总结归纳】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【知识考点】圆锥的计算;由三视图判断几何体.【思路分析】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【解题过程】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD 的面积是()A.96cm2B.84cm2C.72cm2D.56cm2【知识考点】动点问题的函数图象.【思路分析】过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.【解题过程】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.【总结归纳】本题考查了动点问题的函数图象,三角形的面积等知识,熟练掌握数形结合思想方法是解题的关键.10.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【知识考点】垂线段最短;全等三角形的判定与性质;平移的性质.【思路分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【解题过程】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.【总结归纳】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.【知识考点】因式分解﹣提公因式法.【思路分析】用提公因式法进行因式分解即可.【解题过程】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).【总结归纳】本题考查提公因式法因式分解,找出公因式是正确分解的前提.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.【知识考点】勾股定理;垂径定理.【思路分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=5,然后利用勾股定理计算OC的长即可.【解题过程】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.【总结归纳】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.13.若m<2<m+1,且m为整数,则m=.【知识考点】估算无理数的大小.【思路分析】估计2的大小范围,进而确定m的值.【解题过程】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.【总结归纳】本题考查无理数的估算,理解2介在哪两个整数之间是正确求解的关键.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.【知识考点】相似三角形的判定与性质.【思路分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.【解题过程】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.【总结归纳】本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由长和宽之间的关系可得出宽为(x﹣12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.【解题过程】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.【知识考点】根与系数的关系.【思路分析】根据一元二次方程的解的概念和根与系数的关系得出x12﹣4x1=2020,x1+x2=4,代入原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)计算可得.【解题过程】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.【总结归纳】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.【知识考点】反比例函数与一次函数的交点问题.【思路分析】由于一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y =向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k >0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解题过程】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.【总结归纳】本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).【知识考点】完全平方公式;平方差公式;分式的混合运算.【思路分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解题过程】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.【总结归纳】本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;切线的判定与性质;作图—基本作图.【思路分析】(1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;(2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB =∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA的长.【解题过程】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.【解题过程】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).【总结归纳】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A 17 18.9%B 38 42.2%C 28 31.1%D 7 7.8%合计90 100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.【知识考点】用样本估计总体;统计表;条形统计图.【思路分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1﹣7.8%)就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解题过程】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【总结归纳】本题考查样本估计总体,样本的抽取要具有代表性和普遍性,才能够准确地反映总体.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.【知识考点】列表法与树状图法.【思路分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.【解题过程】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.【总结归纳】此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出====,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.【解题过程】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG =x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.【总结归纳】本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.【知识考点】根的判别式;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点.【思路分析】(1)由题意可得0=4a+2b+c①,﹣=1②,△=(b﹣1)2﹣4ac=0③,联立方程组可求a,b,c,可求解析式;(2)由n<﹣5,可得点B,点C在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.【解题过程】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.【总结归纳】本题考查了抛物线与x轴的交点,二次函数的性质,根的判别式,待定系数法求解析式,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】。

2020年江苏省南通市中考数学试卷

2020年江苏省南通市中考数学试卷

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|1|3--,结果正确的是( )A .4-B .3-C .2-D .1-2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km .将68000用科学记数法表示为( )A .46.810⨯B .56.810⨯C .50.6810⨯D .60.6810⨯3.(3分)下列运算,结果正确的是( )A .532-=B .3232+=C .623÷=D .6223⨯=4.(3分)以原点为中心,将点(4,5)P 按逆时针方向旋转90︒,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限5.(3分)如图,已知//AB CD ,54A ∠=︒,18E ∠=︒,则C ∠的度数是( )A .36︒B .34︒C .32︒D .30︒6.(3分)一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( )A .3B .3.5C .4D .4.57.(3分)下列条件中,能判定ABCD 是菱形的是( )A .AC BD =B .AB BC ⊥ C .AD BD = D .AC BD ⊥8.(3分)如图是一个几体何的三视图(图中尺寸单位:)cm ,则这个几何体的侧面积为( )A .248cm πB .224cm πC .212cm πD .29cm π9.(3分)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ ∆的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm10.(3分)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )A 6B .22C .23D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:22xy y -= .12.(3分)已知O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 cm .13.(4分)若271 m m<<+,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,ABC∆和DEF∆的顶点都在网格线的交点上.设ABC∆的周长为1C,DEF∆的周长为2C,则12CC的值等于.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50︒.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin500.77︒≈,cos500.64︒≈,tan50 1.19)︒≈17.(4分)若1x,2x是方程2420200x x--=的两个实数根,则代数式211222x x x-+的值等于.18.(4分)将双曲线3yx=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线2(0)y kx k k=-->相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(1)(2)a b-+=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)2(23)(2)(2)m n m n m n+-+-;(2)22()x y y xy x x x--÷+. 20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD AE =,B C ∠=∠.求证:AB AC =. (2)如图②,A 为O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交O 于点B ;③在射线OB 上截取BC OA =;④连接AC .若3AC =,求O 的半径.21.(12分)如图,直线1:3l y x =+与过点(3,0)A 的直线2l 交于点(1,)C m ,与x 轴交于点B .(1)求直线2l 的解析式;(2)点M 在直线1l 上,//MN y 轴,交直线2l 于点N ,若MN AB =,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”, B 表示“良好”, C 表示“合格”, D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,8AB =,12AD =.将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图①,若点P 恰好在边BC 上,连接AP ,求AP DE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过(2,0)A ,1(34,)B n y -,2(56,)C n y +三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根.(1)求抛物线的解析式;(2)若5n <-,试比较1y 与2y 的大小;(3)若B ,C 两点在直线1x =的两侧,且12y y >,求n 的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD 中,5AB =,6BC =,4CD =,连接AC .若AC AB =,求sin CAD ∠的值;(2)如图②,凸四边形ABCD 中,AD BD =,AD BD ⊥,当2222CD CB CA +=时,判断四边形ABCD 是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点(1,0)A -,(3,0)B ,(1,2)C ,四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于ABC ∆内部,90AEC ABC ∠=︒+∠.设AE u BE =,点D 的纵坐标为t ,请直接写出u 关于t 的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|1|3--,结果正确的是( )A .4-B .3-C .2-D .1-【解答】解:原式132=-=-.故选:C .2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约268000km .将68000用科学记数法表示为( )A .46.810⨯B .56.810⨯C .50.6810⨯D .60.6810⨯【解答】解:468000 6.810=⨯.故选:A .3.(3分)下列运算,结果正确的是( )A B .3C 3 D =【解答】解:AB .3C .D =故选:D .4.(3分)以原点为中心,将点(4,5)P 按逆时针方向旋转90︒,得到的点Q 所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:如图,点(4,5)P 按逆时针方向旋转90︒,得点Q所在的象限为第二象限.故选:B.5.(3分)如图,已知//∠=︒,则C∠的度数是()EAB CD,54A∠=︒,18A.36︒B.34︒C.32︒D.30︒【解答】解:过点E作//EF CD,如图所示.EF AB,则//EF AB,//AEF A∴∠=∠=︒,54∠=∠-∠=︒-︒=︒.CEF AEF AEC541836又//EF CD,∴∠=∠=︒.C CEF36故选:A.6.(3分)一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是() A.3B.3.5C.4D.4.5【解答】解:这组数据2,4,6,x,3,9的众数是3,3x ∴=,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(34)2 3.5+÷=.故选:B .7.(3分)下列条件中,能判定ABCD 是菱形的是( )A .AC BD =B .AB BC ⊥ C .AD BD = D .AC BD ⊥【解答】解:四边形ABCD 是平行四边形,∴当AC BD ⊥时,四边形ABCD 是菱形;故选:D .8.(3分)如图是一个几体何的三视图(图中尺寸单位:)cm ,则这个几何体的侧面积为( )A .248cm πB .224cm πC .212cm πD .29cm π【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6, 所以这个几何体的侧面积216824()2cm ππ=⨯⨯⨯=. 故选:B .9.(3分)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ ∆的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm【解答】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =, 过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⨯=⨯⨯=, 解得6EH AB ==, 22221068AE BE AE ∴=-=-=,由图2可知当14x =时,点P 与点D 重合,8412AD AE DE ∴=+=+=,∴矩形的面积为12672⨯=.故选:C .10.(3分)如图,在ABC ∆中,2AB =,60ABC ∠=︒,45ACB ∠=︒,D 是BC 的中点,直线l 经过点D ,AE l ⊥,BF l ⊥,垂足分别为E ,F ,则AE BF +的最大值为( )。

2020年江苏省南通市中考数学试卷和答案解析

2020年江苏省南通市中考数学试卷和答案解析

2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1解析:首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.参考答案:解:原式=1﹣3=﹣2.故选:C.点拨:本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值是易错点,由于68000有5位,所以可以确定n=5﹣1=4.参考答案:解:68000=6.8×104.故选:A.点拨:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=2解析:分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.参考答案:解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.点拨:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限解析:根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.参考答案:解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.点拨:本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°解析:过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF ﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.参考答案:解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.点拨:本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.6.(3分)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.5解析:先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.参考答案:解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.点拨:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD 解析:根据对角线垂直的平行四边形是菱形,即可得出答案.参考答案:解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.点拨:本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2解析:先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.参考答案:解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.点拨:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B 出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC 运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x 的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm2解析:过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.参考答案:解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.点拨:本题考查了动点问题的函数图象,三角形的面积等知识,熟练掌握数形结合思想方法是解题的关键.10.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3解析:把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.参考答案:解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.点拨:本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:xy﹣2y2=y(x﹣2y).解析:用提公因式法进行因式分解即可.参考答案:解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).点拨:本题考查提公因式法因式分解,找出公因式是正确分解的前提.12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为12cm.解析:如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC =BC=AB=5,然后利用勾股定理计算OC的长即可.参考答案:解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.点拨:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.13.(4分)若m<2<m+1,且m为整数,则m=5.解析:估计2的大小范围,进而确定m的值.参考答案:解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.点拨:本题考查无理数的估算,理解2介在哪两个整数之间是正确求解的关键.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.解析:先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.参考答案:解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.点拨:本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为x(x﹣12)=864.解析:由长和宽之间的关系可得出宽为(x﹣12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.参考答案:解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.点拨:本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为7.5m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解析:作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.参考答案:解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.点拨:本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于2028.解析:根据一元二次方程的解的概念和根与系数的关系得出x12﹣4x1=2020,x1+x2=4,代入原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)计算可得.参考答案:解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.点拨:本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a ﹣1)(b+2)=﹣3.解析:由于一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.参考答案:解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.点拨:本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).解析:(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.参考答案:解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.点拨:本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.解析:(1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;(2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA的长.参考答案:(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.点拨:本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.解析:(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.参考答案:解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).点拨:本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第二小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约922人;(2)对这两个小组的调查统计方法各提一条改进建议.解析:(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1﹣7.8%)就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.参考答案:解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.点拨:本题考查样本估计总体,样本的抽取要具有代表性和普遍性,才能够准确地反映总体.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.解析:(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.参考答案:解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.点拨:此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.解析:(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出====,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.参考答案:解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.点拨:本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c =x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.解析:(1)由题意可得0=4a+2b+c①,﹣=1②,△=(b﹣1)2﹣4ac=0③,联立方程组可求a,b,c,可求解析式;(2)由n<﹣5,可得点B,点C在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.参考答案:解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.点拨:本题考查了抛物线与x轴的交点,二次函数的性质,根的判别式,待定系数法求解析式,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC 内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.解析:(1)先构造直角三角形,然后利用对余四边形的性质和相似三角形的性质,求出sin∠CAD的值.(2)通过构造手拉手模型,即构造等腰直角三角形,通过证明三角形全等,利用勾股定理来证明四边形ABCD为对余四边形.(3)过点D作DH⊥x轴于点H,先证明△ABE∽△DBA,得出u 与AD的关系,设D(x,t),再利用(2)中结论,求出AD与t 的关系即可解决问题..参考答案:解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD 于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u =,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD ===2,∴u ==(0<t<4),即u =(0<t<4).点拨:本题属于四边形综合题,考查了对余四边形的定义,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.第31页(共31页)。

2020年江苏省南通中考数学试卷-答案

2020年江苏省南通中考数学试卷-答案

2020年江苏省南通市初中毕业、升学考试数学答案解析一、 1.【答案】C【解析】解:原式132=-=-.故选:C . 2.【答案】A【解析】解:468000 6.810=⨯.故选:A . 3.【答案】D【解析】解:A B .3不是同类二次根式,不能合并,此选项错误;C D 算正确;故选D . 4.【答案】B【解析】解:如图,点()4,5P 按逆时针方向旋转90︒,得点Q 所在的象限为第二象限.故选:B . 5.【答案】A【解析】解:过点E 作EF AB ∥,则EF CD ∥,如图所示.EF AB ∥,54AEF A ︒∴∠=∠=,541836CEF AEF AEC ︒︒︒∠=∠-∠=-=.又EF CD ∥,36C CEF ︒∴∠=∠=.故选:A .6.【答案】B【解析】解:这组数据2,4,6,x ,3,9的众数是3,3x ∴=,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是342 3.5+÷=().故选:B . 7.【答案】D【解析】解:四边形ABCD 是平行四边形,∴当AC BD ⊥时,四边形ABCD 是菱形;故选:D .8.【答案】B【解析】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积()216824cm 2ππ=⨯⨯⨯=.故选B . 9.【答案】B【解析】解:从函数的图象和运动的过程可以得出:当点P 运动到点E 时,10x =,30y =,过点E 作EH BC ⊥,由三角形面积公式得:11103022y BQ EH EH =⨯=⨯⨯=,解得6EH AB ==,由图2可知当14x =时,点Q 与点C 重合,14BC ∴=,∴矩形的面积为14684⨯=.故选:B .10.【答案】A【解析】解:如图,过点C 作CK l ⊥于点K ,过点A 作AH BC ⊥于点H ,在Rt AHB △中,60ABC ∠=︒,2AB =,1BH ∴=,AH =,在Rt AHC △中,45ACB ∠=︒,AC ∴===点D 为BC 中点,BD CD ∴=,在BFD △与CKD △中,90BDF CKD BDF CDK BD CD ∠=∠=⎧⎪∠=∠⎨⎪=⎩︒,()BFD CKD AAS ∴△≌△,BF CK ∴=,延长AE ,过点C 作CN AE ⊥于点N ,可得AE BF AE CK AE EN AN +=+=+=,在Rt ACN △中,AN AC <,当直线l AC ⊥时,,综上所述,AE BF +.故选A . 二、11.【答案】()2y x y -【解析】解:()222xy y y x y -=-,故答案为:()2y x y -.12.【答案】12【解析】解:如图,作OC AB ⊥于C ,连接OA ,则152AC BC AB ===,在Rt OAC △中,13OC =,所以圆心O 到AB 的距离为12 cm .故答案为12.13.【答案】5【解析】解:2528<<56∴<,又271m m +<<,5m ∴=,故答案为:5. 14.【解析】解:1DE AB ==2EF BC==DF AC ==DE EF DF AB BC AC ∴===ABC DEF ∴△≌△,122C AB C DE∴==. 15.【答案】864 【解析】解:长为x 步,宽比长少12步,∴宽为()12x -步.依题意,得:()12864x x -=.16.【答案】7.5【解析】解:如图,过点D 作DE AB ⊥,垂足为点E ,则5DE BC ==, 1.5DC BE ==,在Rt ADE △中,tan AEADE DE∠=,tan tan505 1.195 5.96AE ADE DE ∴=∠⋅=⨯⨯=︒≈(米),5.95 1.57.5AB AE BE ∴=+=+≈(米),故答案为:7.5.17.【答案】2 028 【解析】解:1x ,2x 是方程2420200x x --=的两个实数根,124x x ∴+=,211420200x x --=,即21142020x x -=,则原式()1211121122=84220242220242008202x x x x x x x x -++=-++=+⨯=+=,故答案为:2 028. 18.【答案】3-【解析】解:一次函数()20y kx k k =-->的图象过定点()1,2P -,而点()1,2P -恰好是原点()0,0P 向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线()20y kx k k =-->相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为31,1a a ⎛⎫- ⎪-⎝⎭,3,22b b ⎛⎫+ ⎪+⎝⎭,312a b ∴-=-+,(1)(2)3a b ∴-+=-,故答案为:3-. 三、19.【答案】(1)原式()222241294m mn n m n=++--222241294m mn n m n =++-+21210mn n =+(2)原式222x y x y xy x x x ⎛⎫--=÷+ ⎪⎝⎭222x y x xy y x x --+=÷2()x y xx x y -=-1x y=-20.【答案】(1)证明:在ABE △和ACD △中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE ACD AAS ∴△≌△,AB AC ∴=.(2)解:连接AB ,如图②,由作法得OA OB AB BC ===,OAB ∴△为等边三角形,60OAB OBA ∴∠=∠=︒,AB BC=,C BAC∴∠=∠,OBA C BAC ∠=∠+∠,30C BAC ∴∠=∠=︒90OAC ∴∠=︒,在Rt OAC △中,3OA AC ===.即O的半径为21.【答案】解:(1)在3y x =+中,令0y =,得3x =-,(3,0)B ∴-,把1x =代入3y x =+得4y =,()1,4C ∴,设直线2l 的解析式为y kx b =+,430k b k b +=⎧∴⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线2l 的解析式为26y x =-+.(2)()336AB =--=,设(),3M a a +,由MN y ∥轴,得(),26N a a -+,()|326|6MN a a AB =+--+==,解得3a =或1a =-,(3,6)M ∴或()1,2-. 22.【答案】(1)二 922(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【解析】(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000(17.8%)10000.922922⨯-=⨯=(人),故答案为:二,922.(2)具体解题过程参照答案.23.【答案】(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种. (2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是2163=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是2163=;所以两人坐到甲车的可能性一样.24.【答案】(1)如图①中,取DE 的中点M ,连接PM四边形ABCD 是矩形,90BAD C ︒∴∠=∠=,由翻折可知,AO OP =,AP DE ⊥,23∠=∠,90DAE DPE ︒∠=∠=,在Rt EPD △中,EM MD =,PM EM DM ∴==,3MPD ∴∠=∠,1323MPD ∴∠=∠+∠=∠,23ADP ∠=∠,1ADP ∴∠=∠,AD BC ∥,ADP DPC ∴∠=∠,1DPC ∴∠=∠,90MOP C ∠=∠︒=,POM DCP ∴△∽△,82123PO CD PM PD ∴===,2223AO PO DE PM ∴==. (2)如图②中,过点P 作GH BC ∥交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG x =,则4BG x =-90A EPD ︒∠=∠=,90EGP DHP ︒∠=∠=,90EPG DPH ︒∴∠+∠=,90DPH PDH ︒∠+∠=, EPG PDH ∴∠=∠,EGP PHD ∴△∽△,41123EG PG EP PH DH PD ∴====,23PG EG x ∴==,4DH AG x ==+,在Rt PHD △中,222PH DH PD +=,222(3)(4)12x x ∴++=,解得165x =(负值已经舍弃),164455BG ∴=-=,在Rt EGP △中,125GP =,GH BC ∥,EGP EBF ∴△∽△,EG GP EB BF∴=,121654BF∴=,3BF ∴=. 25.【答案】(1)抛物线2y ax bx c =++经过()2,0A ,042a b c ∴=++①,对称轴是直线1x =,12ba∴-=②,关于x 的方程2ax bx c x ++=有两个相等的实数根,2(1)40b ac ∴∆=--=③,由①②③可得:1210a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为212y x x =-+.(2)5n -<,3419n ∴--<,5619n +-<,点B ,点C 在对称轴直线1x =的左侧,抛物线212y x x =-+,102∴-<,即y 随x 的增大而增大,(34)(56)2102(5)0n n n n --+=--=-+>,3456n n ∴-+>,12y y ∴>. (3)若点B 在对称轴直线1x =的左侧,点C 在对称轴直线1x =的右侧时,由题意可得()3415611341(56)n n n n ⎧-⎪+⎨⎪---+⎩><<,503n <<,若点C 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时,由题意可得:3415613411(56)n n n n -⎧⎪+⎨⎪---+⎩><<,∴不等式组无解,综上所述:503n <<.26.【答案】(1)过点A 作AE BC ⊥于E ,过点C 作CF AD ⊥于F .AC AB =,3BE CE ∴==,在Rt AEB △中,4AE =,CF AD ⊥,90D FCD ︒∴∠+∠=,90B D ︒∠+∠=,B DCF ∴∠=∠,90AEB CFD ︒∠=∠=,AEB DFC ∴△∽△,EB AB CF CD ∴=,354CF ∴=,125CF ∴=,1212sin 525CF CAD AC ∴∠===. (2)如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM DC ⊥,使得DM DC =,连接CM .四边形ABCD 中,AD BD =,AD BD ⊥,45DAB DBA ︒∴∠=∠=,45DCM DMC ︒∠=∠=,90CDM ADB ︒∠=∠=,ADC BDM ∴∠=∠,AD DB =,CD DM =,()ADC BDM SAS ∴△≌△,AC BM ∴=,2222CD CB CA +=,22222CM DM CD CD =+=,222CM CB BM ∴+=,90BCM ︒∴∠=,45DCB ︒∴∠=,90DAB DCB ︒∴∠+∠=,∴四边形ABCD 是对余四边形.(3)如图③中,过点D 作DH x ⊥轴于H .(1,0)A -,(3,0)B ,(1,2)C ,1OA ∴=,3OB =,4AB =,AC BC ==,222AC BC AB ∴+=,90ACB ︒∴∠=,45CBA CAB ︒∴∠=∠=,四边形ABCD 是对余四边形,90ADC ABC ︒∴∠+∠=,45ADC ︒∴∠=,90135AEC ABC ︒∠=+∠=︒,180ADC AEC ︒∴∠+∠=,A ∴,D ,C ,E 四点共圆,ACE ADE ∴∠=∠,45CAE ACE CAE EAB ︒∠+∠=∠+∠=,EAB ACE ∴∠=∠,EAB ADB ∴∠=∠,ABE DBA ∠=∠,ABE DBA ∴△∽△,BE AE AB AD ∴=,AE AD BE AB ∴=,4ADu ∴=,设(),D x t ,由(2)可知,2222BD CD AD =+,222222(3)2(1)(2)(1)x t x t x t ⎡⎤∴-+=-+-+++⎣⎦,整理得22(1)4x t t +=-,在Rt ADH △中,AD 4)4AD u t ∴==<<,即4)u t =<<.。

最新2020江苏省南通市中考数学试卷及答案

最新2020江苏省南通市中考数学试卷及答案

9.(3分)如图①,E为矩形ABCD的边AD上一点,点P从B出发沿折线B-E-D运动到点D 停止,点Q从点B出发沿BC运动到C停止,它们的运动速度都是1cm/s,现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为,若y与x对应关系如图②所示,则矩形ABCD的面积是()10.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线经过点D,AE⊥,BF⊥,垂足分别为E,F,则AE+BF的最大值为()一、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.(3分)分解因式: .12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为 cm.13.(4分)若,且为整数,则= .14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上,设△ABC的周长为△DEF的周长为,的值等于 .15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°,若测角仪的高度是1.5m,则建筑物AB的高度约为 m.(结果保留小数点后一位,参考数据:)17.(4分)若是方程的两个实数根,则代数式的值等于 .18.(4分)将双曲线向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与相交于两点,其中一个点的横坐标为,另一个点的纵坐标为,则= .三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1);(2)20.(11分)(1)如图①点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC. (2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA,AO长为半径作弧,交⊙O于B点;②在射线OB上截取BC=OA;③连接AC.若AC=3,求⊙O的半径.21.(12分)如图,直线与过点A(3,0)的直线交于点C(1,m),与x轴交于点B.(1)求直线的解析式;(2)点M在直线上,MN//y轴,交直线于点N,若MN=AB,求点M的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类“知识掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:等级人数百分比A 17 18.9%B 38 42.2%C 28 31.1%D 7 7.8%合计90 100%第一小组统计图若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类“知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发所有的可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12,将矩形折叠,使点A落在点P处,折痕为DE. (1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若点E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线经过点三点,对称轴是直线x=1.关于x的方程有两个相等实数根.(1)求抛物线的解析式;(2)若,试比较与的大小;(3)若B,C两点在直线x=1的两侧,且,求的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线. 【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD 的值;(2)如图②,凸四边形ABCD上,AD=BD,AD⊥BD,当时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(-1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,设,点D的纵坐标为,请直接写出u关于t的函数解析式.1.答案:C2.答案:A3.答案:D4.答案:B5.答案:A6.答案:可知x=3,原数据排序为:2,3,3,4,6,9,故中位数为选B7.答案:D8.答案:B9.答案:分析:容易得知当x=14时面积为稳定最大向减小转化,故BC=14;当x=10时面积图象为抛物线,所以得知BE=BK=10时,面积为30,所以可求出EF=6、故矩形ABCD面积为:选B10. 答案:如图AE+BF的最小值即为AE+CG的最小值,易知即为AC,故选A11. 答案:12. 答案:1213. 答案:514. 答案:相似三角形的周长比=对应边长比=15. 答案:16. 答案:7.517. 答案:由题意可知:,将代入原方程可得:即:,所求代数式即为18. 答案:双曲线平移后为,由于直线为,故原图象即为双曲线与直线相交的图经过平移得到.由于两交点横纵坐标相乘,所以,19.(1)答案:(2)答案:20. 答案:(1)证明:(2)21. 答案:(1)设的解析式为,将(1,m)代入,得m=4,将(3,0)(1,4)代入得(2)易知AB=6;的解析式为:,由于M点在上,故可设,N点在上故可设,由于,所以,故,所以,,,所以M点坐标为22. 答案:(1)第二组合理,符合抽样调查标准;合格及以上人数合计为,占百分比总和为,该学校合格及以上人数为人.(2)第一组应在全校三个年级中抽样,而不是在一个年级中抽样;第二组应扩大有效问卷数量,这样计算更加精确.23. 答案:(1)出发顺序(2)张先生坐甲车的概率为:,李先生乘坐甲车的概率为:,两人乘坐甲车的概率相同.24. 答案:(1),所以,,(2),,25. 答案:(1)由于抛物线对称轴为,由于抛物线经过点,所以另一点坐标为故可设抛物线解析式为化为一般形式为所以,又已知解得:所以,抛物线解析式为(2),由于所以,两点均在抛物线对称轴的左侧由于抛物线图象开口向下,所以对称轴左侧随增大而增大,故(3)情况I:当B点在对称轴左侧,C点在对称轴右侧时解得:情况II:当B点在对称轴右侧,C点在对称轴左侧时解得:无解26. 答案:(1)(2)D逆时针旋转90°,可知AC=BE,∠EDC=90°连接EC,易知,由于,所以,(4)求得依据上问结果可知:所以,。

2020年江苏省南通市中考数学测试试题附解析

2020年江苏省南通市中考数学测试试题附解析

O xy 2020年江苏省南通市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.反比例函数与二次函数在同一平面直角坐标系中的大致图象 如图所示,它们的解析式可能分别是( ) A .y =k x ,y =kx 2-x B .y =kx ,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-kx,y =-kx 2-x 2.抛物线212y x =的函数值是( ) A . 大于零 B .小于零 C . 不大于零 D . 不小于零 3.在等腰梯形ABCD 中,AD ∥BC ,∠C=60°,AD=15,BC=32,则AB 的长为( )A .1lB .13C .15D .174.S 型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x ,则下列方程中正确的是( ) A .1500 (1+x )2=980 B .980(1+x )2=1500 C .1500 (1-x )2=980 D .980(1-x )2=15005.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x - 1 0 1 y1m-16. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司的产品成本与销售量的关系,当该公司赢利(收人大于成本)时,销售量( ) A . 小于 3tB . 大于3tC .小于4tD . 大于4t7.在平面直角坐标系中,下列各结论不成立的是( )A .平面内一点与两坐标轴的距离相等,则这点一定在某象限的角平分线上B .若点P (x ,y )坐标满足0xy=,则点P 一定不是原点 C 点P (a ,b )到x 轴的距离为b ,到y 轴的距离为aD .坐标(-3,4)的点和坐标(-3,-4)的点关于x 轴对称 8.已如图是L 型钢条截面,它的面积是( ) A .ct lt +B .2()c t t lt ct lt t -+=+-C . 2()()2c t t l t t ct lt t -+-=+-D .2()()22l c t c t l t l c +++-+-=+9.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是( ) A .小明家有3口人B .小明家一年的费用需要2万元C .小明家生活方面费用占总费用的35%D .小明家的收入很高10.下列多项式中不能分解因式的是( ) A .33a b ab -B .2()()x y y χ-+-C .210.3664x -D ..21()4x -+二、填空题11.已知点112233()()()A x y B x y C x y ,,,,,是函数2y x=-图象上的三点,且1230x x x <<<,则123y y y ,,的大小关系是 .12.函数25(2)ay a x -=+是反比例函数,则a 的值是 .13.请写出命题“直角三角形的两个锐角互余”的逆命题: . 14.当2x =-时,二次根式24x -的值是 .15.已知某一次函数的图象经过点(-1,2),且函数y 的值随自变量x 减小,请写出一个符合上述条件的函数解析式: .16.如图所示,∠AOB=85°,∠AOC=10°,0D 是∠BOC 的平分线,则∠BOD 的度数为 .17.已知长方形的周长是b a 45+,长是a b 3+,则宽是__________. 18.化简:(7y - 3z)- (8y - 5z)= . 19.3 的相反数是 ,3的相反数是 .20.如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A 点开始按ABCDEFCGA 的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在 点.三、解答题21.如图,PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,PA=10cm ,PB =5cm ,求⊙O 的直径.22.已知反比例函数3my x=-和1y kx =-的图象都经过点 P(m —3m). (1)求点 P 的坐标和这个一次函数的关系式;(2)若点 M(a ,y 1)和点 N(a+1,y 2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的性质说明 y 1<y 2(其中 a>0).23.某校为了了解本校八年级学生一天中在家里做作业所用的时间,随机抽查了本校八年级的40名学生,并把调查所得的所有数据(时间)进行整理,分成五组,绘制成频数分布直方图(如图). 请结合图中所提供的信息,回答下列问题:(1)被抽查的学生中做作业所用的时间在150.5~l8O.5min 范围的人数有多少人? (2)补全频数分布直方图,并请指出这组数据(时间)的中位数在哪一个时间段内? (3)估计被抽查的学生做作业的平均时间(精确到个位).24.解不等式组523483x x x x -<+⎧⎪+⎨≥-⎪⎩,并写出它的非负整数解.25.新年晚会举办时是我们最快乐的时候,会场上悬挂着站五彩缤纷的小装饰品,其中有各种各样的立体图形,如图所示:请你数一下上面图中每一个立体图形具有的顶点数(V),棱数(E)和面数(F),并把结果填入下表中:名称 各面形状 顶点数(V) 面数(F) 棱数(E)V+F —E正四面体 正三角形 正方体 正方形正八面体正三角形正十二边形 正五边形归纳出这个相等关系吗?26. 在学完“分式”这一章后,老师布置了这样一道题:“先化简再求值: 22241()244x x x x x -+÷+--,其中2x =-”. 婷婷做题时把“2x =-”错抄成了“2x =”,但她的计算结果是正确的,请你通过计算解释其中的原因.27.如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结论,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.已知:结沦:理由:28.某商场计划拨款 9 万元从厂家购进 50 台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台 1500 元,乙种每台 2100 元,丙种每台2500 元.(1)若商场同时购进其中两种不同型号的电视机 50 台,用去9万元,请研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150 元,销售一台乙种电视机可获利200 元,销售一台丙种电视机可获利250 元,在同时购进两种不同型号电视机的方案中,为使销售时获利最多,你选择(1)中的哪种进货方案?29.计算:(1)(-4)×5×(-0. 25 );(2)(-4)×8×(-2.5)×O. 1×(-0.125)×1O;(3)3137 ()(3)(4) 8888-⨯--⨯-;(4)71199(36)72⨯-;(5)111()(24) 346+-⨯-30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.B6.D7.C8.B9.C10.D二、填空题11.132y y y >> 12.213.两个角互余的三角形是直角三角形14.15.如1y x =-+(答案不唯一)16.37.5°17.0.5a+b18.2y z -+19.-3,3-20.A三、解答题 21.连结 OA .设⊙O 的半径为r ,∵PA 为⊙O 的切线,PA=10 cm ,PB=5 cm. ∴∠OPA=90°, OP= (r+5) cm ,∵22210(5)r r +=+,r=7.5 cm , 2r=15cm ,∴⊙O 的直径是 15.22.(1)∵3my x=-和1y kx =-的图象都经过点 P(m ,一3m). ∴233m m -=-,∴m= 1.,∴k= -2,∴P(1,,-3),y= -2x.- 1.(2)∵3y x=-,∴x>0 时,y 随x 的增大而增大. ∵ a+ 1>a ,∴12y y <23.(1)8人 (2)补图略,中位数在120.5~15O.5 min (3)131min24.-2≤x<3,x=0,l ,225.4,4,6,2;8,6,12,2;6,8,12,2;20,12,30,2;V+F —E=226.化简结果为24x +,当2x =-或2x =时,代入求得的值都是827.①③④,②,BE=CF ,则BC=EF ,ΔABC ≌ΔDEF (SAS ).28.(1)该商场共有两种进货方案,方案一:购甲种型号电视机 25 台,乙种型号电视机 25 台;方案二:购甲种型号电视机 35 台,丙种型号电视机 15 台;(2)为使销售利润最多,应选择(1)中的方案二进29.(1)5 (2)-10 (3)3 (4)135992- (5)-1030.陈华同学的说法正确,理由略。

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试题(解析版)

2020年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)说明: 1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为【 】 A .-20m B .-40m C .20m D .40m 【答案】B.【考点】相反数。

【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。

故根据相反数的定义,可直接得出结果2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】【答案】C .【考点】轴对称图形,中心对称图形。

【分析】根据轴对称图形和中心对称图形的定义,可知A 是中心对称图形而不是轴对称图形;B 也是中心对称图形而不是轴对称图形;C 既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D 既不是轴对称图形也不是中心对称图形。

3.计算327的结果是【 】A .±3 3B .3 3C .±3D .3 【答案】D .【考点】立方根。

【分析】根据立方根的定义,因为33=273。

4.下列长度的三条线段,不能组成三角形的是【 】 A .3,8,4 B .4,9,6 C .15,20,8 D .9,15,8 【答案】A .【考点】三角形的构成条件。

A .【分析】根据三角形任两边之和大于第三边的构成条件,A 中3+4<8,故A 的三条线段不能组成三角形。

5.如图,AB ∥CD ,∠DCE =80°,则∠BEF =【 】A .120°B .110°C .100°D .80°【答案】C .【考点】平行线的性质。

【分析】根据同旁内角互补的平行线性质,由于AB ∥CD ,∠DCE 和∠BEF 是同旁内角,从而∠BEF =00018080100-=。

江苏省南通市2020年中考数学试题(含解析

江苏省南通市2020年中考数学试题(含解析

江苏省南通市2020年中考数学试题注意事项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分150分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。

3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的)1.计算:(﹣5)+3的结果是()A.﹣8 B.﹣2 C.2 D.82.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9)B.(m+3)(m﹣3)C.m(m+3)(m﹣3) D.(m﹣3)23.在下面几何体中,其俯视图是三角形的是()A.B.C.D.4.2016年国庆节期间,沈阳共接待游客约657.9万人次,657.9万用科学记数法表示为()A.0.6579×103 B.6.579×102 C.6.579×106 D.65.79×1055.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次B.3.5次C.4次D.4.5次6.在平面直角坐标系中,点A在第一象限,点B在x轴正半轴上,∠AOB=60°,OA=8.点A的坐标是()A .(4,8)B .(4,4)C .(4,4)D .(8,4)7.如图,正五边形ABCDE 的对角线BD.CE 相交于点F ,则下列结论正确的是( )A .∠BCE =36°B .△BCF 是直角三角形C .△BCD ≌△CDE D .AB ⊥BD 8.分式方程=的解是( )A .x =﹣2B .x =﹣3C .x =2D .x =39.已知点A (﹣2,y1)、B (﹣4,y2)都在反比例函数y =(k <0)的图象上,则y1.y2的大小关系为( )A .y1>y2B .y1<y2C .y1=y2D .无法确定10.二次函数y =ax2+bx+c 的图象如图所示,下列结论:①a+c >b ;②4ac <b2;③2a+b >0.其中正确的有( )A .①②B .①③C .②③D .②二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程)11.计算:=--2132)( . 12.5G 信号的传播速度为300000000m/s ,将300000000用科学记数法表示为 . 13.分解因式:=-x x 3.14.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF= 度.15.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为 .16.已知圆锥的底面半径为2cm ,侧面积为10πcm 2,则该圆锥的母线长为 cm . 17.如图,过点C (3,4)的直线b x y +=2交x 轴于点A ,∠ABC=90°,AB=CB ,曲线)(0>=x xky 过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为 . 18.如图,ABCD 中,∠DAB=60°,AB=6,BC=2,P 为边CD 上的一动点,则PD PB 23+的最小值等于 .三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式:1314>--x x ,并在数轴上表示解集. 20.(本小题满分8分)先化简,再求值:2244m m m m m +÷⎪⎭⎫ ⎝⎛++,其中22-=m . 21.(本小题满分8分)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD=CA .连接BC 并延长到点E ,使CE=CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?22.(本小题满分9分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.23.(本小题满分8分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格. 24.25.24.(本小题满分10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).平均分 方差 中位数 众数 合格率 优秀率 一班 7.2 2.11 7 6 92.5% 20% 二班6.854.288885%10%(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?25.(本小题满分9分)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=1,以边AC 上一点O 为圆心,OA 为半径的⊙O 经过点B . (1)求⊙O 的半径;(2)点P 为⌒AB 中点,作PQ⊥AC,垂足为Q ,求OQ 的长; (3)在(2)的条件下,连接PC ,求tan∠PCA 的值.26.(本小题满分10分)已知:二次函数为常数)(a a x x y 2342++-=.(1)请写出该二次函数图像的三条性质;(2)在同一直角坐标系中,若该二次函数的图像在4≤x 的部分与一次函数12-=x y 的图像有两个交点,求a 的取值范围.27、(13分)如图,矩形ABCD 中,AB=2,AD=4,E,FF 分别在AD,BC 上,点A 与点C 关于EF 所在的直线对称,P 是边DC 上的一动点, (1)连接AF ,CE ,求证四边形AFCE 是菱形; (2)当PEF ∆的周长最小时,求CPDP的值; (3)连接BP 交EF 于点M ,当︒=∠45EMP 时,求CP 的长。

2020年江苏省南通市中考数学试卷附解析

2020年江苏省南通市中考数学试卷附解析

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.计算|−1|−3,结果正确的是()A. −4B. −3C. −2D. −12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A. 6.8×104B. 6.8×105C. 0.68×105D. 0.68×1063.下列运算,结果正确的是()A. √5−√3=√2B. 3+√2=3√2C. √6÷√2=3D. √6×√2=2√34.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,已知AB//CD,∠A=54°,∠E=18°,则∠C的度数是()A. 36°B. 34°C. 32°D. 30°6.一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是()A. 3B. 3.5C. 4D. 4.57.下列条件中,能判定▱ABCD是菱形的是()A. AC=BDB. AB⊥BCC. AD=BDD. AC⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A. 48πcm2B. 24πcm2C. 12πcm2D. 9πcm29.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B−E−D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()第1页,共18页。

2020年江苏省南通市中考数学试题和答案

2020年江苏省南通市中考数学试题和答案

2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算|﹣1|﹣3,结果正确的是()A.﹣4B.﹣3C.﹣2D.﹣1 2.(3分)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106 3.(3分)下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3D.×=24.(3分)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.(3分)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.57.(3分)下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD 8.(3分)如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2 9.(3分)如图①,E为矩形ABCD的边AD上一点,点P从点B 出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC 运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x 的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.(3分)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.(3分)分解因式:xy﹣2y2=.12.(3分)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.13.(4分)若m<2<m+1,且m为整数,则m=.14.(4分)如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.(4分)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.(4分)如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.(4分)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a ﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c =x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC 内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.参考答案:解:原式=1﹣3=﹣2.故选:C.2.参考答案:解:68000=6.8×104.故选:A.3.参考答案:解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.参考答案:解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.参考答案:解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.参考答案:解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.7.参考答案:解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.参考答案:解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.参考答案:解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.10.参考答案:解:如图,过点C作CK⊥l于点K,过点A作AH ⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.参考答案:解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.参考答案:解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.参考答案:解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.参考答案:解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.参考答案:解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.参考答案:解:如图,过点D作DE⊥AB,垂足为点E,则DE =BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.参考答案:解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.参考答案:解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P (1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.参考答案:解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.参考答案:(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.参考答案:解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.参考答案:解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.参考答案:解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.参考答案:解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.参考答案:解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.参考答案:解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所对应扇形的圆心角为度.
解析:(1)4000
(2)
补全统计图如下:
(3)90
22.(7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率.
解析:画出树形图如下:
从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.
如图, 中, , , , 于点 , 是线段 上一点, ,( ),连接 、 ,设 中点分别为 .
⑴求 的长;
⑵求 的长;
⑶若 与 交于点 ,请直接写出 的值.
解:解析:(1)易得 ∽ , ,由勾股定理得: ,
(2)如图1,取 中点 , 中点 ,连接 ,易得 ,
且 ,在 中,由勾股定理得:
(3)取 中点 , ∽ ,又
18、平面直角坐标系xOy中,已知点(a,b)在直线y=2mx+m2+2(m>0)上,且满足a2+b22(1+2bm)+4m2+b=0,则m=▲﹒
三、简答题:
19、(1)计算: ;
(2)解方程组:
20、解不等式组 并写出它的所有整数解﹒
21、某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图)﹒已知西瓜的重量占这批水果总重量的40%﹒
解析:(1) , , ,
由题意得: , ,
(2)过点 作 轴于点E,过点 作 轴于
点F.由 值的几何意义,得 ,
即: , ,
则 ,
将 ,代入,解得 ,则
(3)设 ,
直线 与 交于点N, , ,
,当 时,即
( );化简得
直线 与AB交于点N, , , ,
当 时,即 ,解得
直线 与BC交于点N, 位于 段, , ,
三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(本小题满分10分)
(1)计算 ;(2)解方程组:
考点:(1)非零数的零次幂等于1,实数运算
(2)二元一次方程的解法
解析:(1)原式=
(2)+,得: ;代入,得 ,
20.(8分)解不等式组 ,并写出它的所有所有整数解.
A﹒ B﹒ C﹒ D﹒
二、填空题:
11、计算:x3·x2=▲﹒
12、已知,如图,直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于▲度﹒
13、某几何体的三视图如图所示,则这个几何体的名称是▲﹒
14、如图,Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=▲﹒
考点:角平分线的性质,勾股定理,正方形
解析:BE平分 ,则GE=CE=1cm
DG=GE=1cm; cm,
BC=CD= cm; cm
18.平面直角坐标系 中,已知点 在直线 ( )上,且满足 ,则 .
考点:配方法;求根公式
解析:已知点 在直线 ( )上, (*)代入
整理得: 解得 回代到
(*)式得 ,即 ,解得 ,又 ,
(1) 四边形 是平行四边形, ,
又 , ,由 得

(2)由(1)得: 且 ,
四边形 是平行四边形
四边形 是平行四边形, ,
又 且 ,
, , 四边形 是矩形
26(10分)平面直角坐标系 中,已知抛物线 ,经过 、 两点,其中 为常数.
⑴求 的值,并用含 的代数式表示 ;
⑵若抛物线 与 轴有公共点,求 的值;
回答下列问题:
(1)这批水果总重量为kg;
(2)请将条形图补充完整;
(3)若用扇形图表示统计结果,则桃子所对应扇形的圆心角为度﹒
22、不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别﹒随机摸出一个小球后,放回并摇匀,再随机摸出一个﹒求两次都摸到红色小球的概率﹒
23、列方程解应用题:
某列车平均提速60km/h﹒用相同的时间,该列车提速前行驶200km,提速后比提速前多行驶100km﹒求提速前该列车的平均速度﹒
24、已知:如图,AM为⊙O的切线,A为切点﹒过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB﹒
(1)求∠AOB的度数;
(2)当⊙O的半径为2cm时,求CD的长﹒
25、如图,将□ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F﹒
(1)求证:△BEF≌△CDF;
(2)连接BD、CE,若∠BFD=2∠A,求证四边形BECD是矩形﹒
直角三角形 ,使点C在第一象限, .设点 的横坐标为
,点 的纵坐标为 ,则表示 与 的函数关系的图像大致是
考点:函数图象,数形结合思想
解析:过C点作 轴,易得 ≌ 全等;
设点 的横坐标为 ,点 的纵坐标为 ;则 ( );
( ),故选A
10.平面直角坐标系 中,已知 、 、 三点, 是一个动点,当
周长最小时, 的面积为
27、如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O﹒D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD,设BE、CD的中点分别为P、Q﹒
(1)求AO的长;
(2)求PQ的长;
(3)设PQ与AB的交点为M,请直接写出 的值﹒
28、如图,平面直角坐标系xOy中,点C(3,0),函数 的图象经过□OABC的顶点A(m,n)和边BC的中点D﹒
(1)求 的度数;
(2) 若⊙ 的半径为2 cm,求线段 的长.
考点:圆的切线,角平分线,直线平行,三角形的内角和.
解析:(1)∵OC平分∠AOB,∴∠AOC=∠COB,
∵AM切⊙O于点A,即OA⊥AM,又BD⊥AM,
∴OA∥BD,∴∠AOC=∠OCB
又∵OC=OB,∴∠OCB=∠B,∴∠B=∠OCB=∠COB=
9、如图,已知点A(0,1),点B是x轴正半轴上的一动点,以
AB为边作等腰直角三角形ABC,使点C在第一象限,∠BAC=90°﹒
设点B的横坐标为x,点C的纵坐标为y,则表示y与x的函数关系
的图象大致是(▲)
A B C D
10、平面直角坐标系xOy中,已知A(、B(30)、C(01)三点,D(1m)是一个动点,当△ACD周长最小时,△ABD的面积为(▲)
⑶设 、 是抛物线 两点,请比较 与 的大小,并说明理由.
解析:(1) 抛物线 ,经过 、 两点
两式相减,得 ,
(2) 抛物线 与 轴有公共点
,
(3) 抛物线 对称轴为
需分如下情况讨论:
当 时,由图像对称性得: ,
当 时, ,
当 时, ,
解法2: ,当 时, ;当 时, ;当 时,
27.(本小题满分13分)
(1)求m的值;
(2)若△OAD的面积等于6,求k的值;
(3)若P为函数 的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的□OABC的一边交于点N,设点P的横坐标为t,当 时,求t的值﹒
2016年南通市中考数学试卷及答案
一、选择题(每小题3分,共30分)
ACDCBBAD
9.如图,已知点 ,点B是 轴正半轴上一动点,以AB为边作等腰
15、已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是▲﹒
16、设一元二次方程x23x1=0的两根分别是x1,x2,则x1+x2(x223x2)=▲﹒
17、如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=▲cm﹒
考点:平均数,中位数
解析: , ,这组数据的中位数是9
16.设一元二次方程 的两根分别是 , ,则 =
考点:一元二次方程根的概念,一元二次方程根与系数的关系
解析: 是一元二次方程 的根, , ,

17.如图,BD为正方形ABCD的对角线,BE平分 ,交DC于点E,将 绕点C顺时针旋转 得到 ,若CE=1cm,则BF=cm
13.某几何体的三视图如图所示,则这个几何体的名称是.
14.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cos 的值是.
考点:直角三角形斜边中线等于斜边的一半,锐角三角函数
解析:直角三角形斜边中线等于斜边的一半,CD=2,则AB=4,
cos =
15.已知一组数据5,10,15, ,9的平均数是8,那么这组数据的中位数是.
A. B. C. D.
考点:最短路径问题
解析: 为直线 上一动点,点A、B关于直线 对称,连接BC
直线BC方程为: ,右图为 周长最小, 此时
的面积为 ,选C
二、填空题(每小题3分,共24分.)
11.计算 = .
12.已知,如图,直线AB,CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD等于30度.
26、平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数﹒
(1)求b的值,并用含m的代数式表示c;
(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;
(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2y1的大小,并说明理由﹒
顶端M的仰角为30°,向N点方向前进16m到达B处,在B处
测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于(▲)
A﹒ mB﹒ m
C﹒ mD﹒ m
8、如图所示的扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆
锥的高是4cm,则该圆锥的底面周长是(▲)
相关文档
最新文档