工业机器人组成及工作原理
工业机器人结构原理
工业机器人结构原理工业机器人是一种可以执行特定任务的智能机械设备。
它们通常由多个主要部分组成,包括机械结构、控制系统、执行器和传感器。
机械结构是工业机器人的重要组成部分,它为机器人提供了身体支持和运动能力。
通常,机械结构由连杆、关节和框架等元件组成。
连杆用于连接不同的关节,使机器人能够执行复杂的动作。
关节是机器人的可动连接点,允许机械结构在不同的方向上旋转或运动。
框架则起到支撑作用,保证机械结构的稳定性和可靠性。
控制系统是控制工业机器人动作和功能的核心。
它通常由硬件和软件两部分组成。
硬件包括中央处理器、存储器、输入输出接口和电源等。
中央处理器是控制系统的主要组成部分,它接收和处理来自传感器的输入信号,并发送指令给执行器。
存储器用于存储程序和数据,以及记录机器人的状态信息。
输入输出接口用于与外部设备进行通信,例如与计算机或其他机器人进行数据交换。
电源则提供所需的能量给控制系统。
执行器是机器人的执行部件,它们负责将控制系统发送的指令转化为动态的机械运动。
常见的执行器包括电动机、液压缸和气动缸等。
电动机是最常用的执行器,它通过电能转变为机械能,驱动机械结构实现各种动作。
液压缸和气动缸则利用液体和气体的压力来实现运动控制,适用于一些需要大力矩或冲击力的操作。
传感器是机器人的感知装置,它们用于获取外部环境的信息,并将信息传递给控制系统。
常见的传感器包括光电传感器、压力传感器、温度传感器和力传感器等。
光电传感器用于检测物体的位置和距离,压力传感器用于测量力的大小,温度传感器用于监测环境的温度变化,力传感器则可测量机器人施加的力。
综上所述,工业机器人的结构原理包括机械结构、控制系统、执行器和传感器等多个方面。
这些部分相互配合,使机器人能够进行复杂的动作和任务执行。
工业机器人工作知识点总结
工业机器人工作知识点总结工业机器人是一种能够自动执行工业任务的机器人系统,其主要应用于制造业,以替代人工劳动力,提高生产效率,降低成本。
工业机器人的使用范围非常广泛,涉及到汽车制造、电子设备生产、食品加工、包装和物流等各个领域。
对于工业机器人的使用者来说,了解其工作知识点是非常重要的,可以帮助他们更好地安装、操作、维护和优化机器人系统。
本文将对工业机器人的工作知识点进行总结,包括工作原理、分类、安全、编程、故障排查、维护等方面,希望可以为工业机器人使用者提供一些参考和帮助。
一、工作原理1. 传感器工业机器人通常配备有各种传感器,用于感知周围的环境和检测工作对象的位置、形状、尺寸等信息。
常见的传感器包括视觉传感器、力传感器、触觉传感器等。
通过传感器获取的信息可以帮助机器人系统做出实时的动作调整,以适应各种不同的工作情况。
2. 控制系统工业机器人的控制系统通常由一台或多台工控机和编程器组成,用于控制机器人的运动、执行任务和与外部设备的通信。
控制系统的主要功能包括路径规划、动作控制、协作控制等,其性能直接影响到机器人的精度、速度和稳定性。
3. 末端执行器末端执行器是工业机器人的“手”,用于执行各种任务,如抓取、装配、焊接、研磨等。
不同的末端执行器适用于不同的工作任务,可以根据实际需要进行更换和调整。
4. 机器人臂机器人臂是工业机器人的主要机械部件,通常由多个自由度的关节以及连接关节构成。
机器人臂的设计直接影响到机器人的工作范围、精度和适应性。
5. 轨迹规划工业机器人通常需要按照规定的轨迹进行运动和执行任务,轨迹规划是机器人控制系统的关键部分之一。
通过轨迹规划,可以确保机器人在执行任务时能够在规定的时间内完成,并且避免碰撞和冲突。
二、分类工业机器人根据其结构和功能可以分为多种不同的类型,主要包括以下几类:1. 固定式机器人固定式机器人通常安装在固定的工作位置,只能在指定的范围内进行运动和执行任务。
固定式机器人适用于一些重复性的工作任务,如焊接、点胶、搬运等。
工业机器人原理及应用实例
工业机器人原理及应用实例一、工业机器人概念工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用机械装置;由计算机控制,是无人参与的自主自动化控制系统;他是可编程、具有柔性的自动化系统,可以允许进行人机联系。
可以通俗的理解为“机器人是技术系统的一种类别,它能以其动作复现人的动作和职能;它与传统的自动机的区别在于有更大的万能性和多目的用途,可以反复调整以执行不同的功能。
”二、组成结构工业机器人由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。
大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
三、分类工业机器人按臂部的运动形式分为四种。
直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。
点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。
工业机器人按程序输入方式区分有编程输入型和示教输入型两类。
编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。
在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
工业机器人机构及其机械原理
工业机器人机构及其机械原理一、工业机器人机构1.旋转关节:旋转关节允许连接的两个部件相对旋转。
其常见的工作方式有单自由度(DOF)和多DOF。
单DOF的旋转关节只能以一个轴向进行旋转;而多DOF旋转关节则可以在一个平面内进行多向旋转。
2.滑动关节:滑动关节允许两个部件在平行轴线上相对滑动。
与旋转关节不同,滑动关节是沿着直线路径进行移动的关节。
3.旋转-滑动关节:旋转-滑动关节结合了旋转关节和滑动关节的特点,可以实现旋转和滑动两种运动方式。
这种关节结构适用于需要在旋转和滑动两个方向上进行运动的任务。
除了关节,机器人的机构还包括其他附属装置,如力传感器、末端执行器等。
二、工业机器人机械原理1.驱动系统:驱动系统负责提供机器人关节运动所需的动力。
常见的驱动系统包括电动机和气动/液压驱动。
电动驱动广泛应用于工业机器人中,可以通过电能转换为机械能,驱动机器人的关节进行运动。
气动和液压驱动则适用于一些需要较大力矩和力量的机器人任务。
2.传动系统:传动系统负责传递动力和控制关节的运动。
常见的传动方式有齿轮传动、皮带传动、链传动等。
齿轮传动一般用于需要高精度的机器人任务,具有传动效率高、精度高等优点;皮带传动则适用于速度较高的机器人任务,具有运动平稳、噪声小等特点;链传动适用于承受大力矩的机器人任务。
3.执行系统:执行系统是机器人执行任务的最终部分,决定了机器人的实际功能。
执行系统包括末端执行器、夹持工具等。
末端执行器是机器人与工件进行接触的部分,可以根据不同的任务进行定制,如机器人手爪、机器人刷子等。
夹持工具是机器人用于抓取和固定工件的工具,可以根据工件的形状和尺寸进行设计。
工业机器人组成及工作原理
(2)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运 的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。
控制信息
• 顺序信息:各种动作单元(包括机械手和外围设备) 按动作先后顺序的设定、检测等。
• 位置信息:作业之间各点的坐标值,包括手爪在该 点上的姿态,通常总称为位姿(POSE)。
• 时间信息:各顺序动作所需时间,即机器人完成各 个动作的速度。
二、工业机器人的技术参数
表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、 运动精度、运动特性、动态特性等。
例:电装(DENSO)机械手
• 系统组成感知系统1感受系统由内部传感器4
模块和外部传感器模块
组成, 用以获取内部和
外部环境状态中有意义
的信息。
2
智能传感器的使用提高
了机器人的机动性、适
应性和智能化的水准。
3
智能传感器的使用提高了
机器人的机动性、适应性
和智能化的水准。
对于一些特殊的信息, 传 感器比人类的感受系统 更有效。
“自主控制”方式:是机器人控制中最高级、最复杂的控制方 式,它要求机器人在复杂的非结构化环境中具有识别环境和自 主决策能力,也就是要具有人的某些智能行为。
示教再现
– 示教-再现 即分为示教-存储-再现-操作四步进行。 • 示教:方式有两种:(1) 直接示教-手把手; (2) 间接示教-示教盒控制。 • 存储:保存示教信息。 • 再现:根据需要,读出存储的示教信息向机器人发 出重复动作的命令。
机器人的组成结构及原理
机器人的组成结构及原理机器人是一种能够自动执行任务的机械设备。
它们可以被用于各种各样的任务,从工业制造到医疗保健和军事应用等。
机器人的组成结构和原理是机器人技术的核心,这篇文章将会介绍机器人的组成结构和原理,以及机器人的应用领域。
一、机器人的组成结构机器人通常由以下几个部分组成:1. 机械结构:机械结构是机器人的骨架,它包括机器人的机身、关节、连接器、执行器等。
机械结构的设计直接影响机器人的稳定性、精度和速度。
2. 传感器:传感器是机器人的感知器,它们能够感知环境中的信息并将其转化为机器人能够理解的数据。
传感器包括摄像头、激光雷达、声音传感器、触摸传感器等。
3. 控制系统:控制系统是机器人的大脑,它负责控制机器人的运动和行为。
控制系统包括计算机、控制器、运动控制器等。
4. 能源系统:能源系统是机器人的动力源,它提供机器人所需的能量。
能源系统包括电池、液压系统、气压系统等。
二、机器人的原理机器人的原理是通过机械结构、传感器和控制系统的协同作用来实现机器人的运动和行为。
机器人的运动和行为通常通过以下几个步骤来实现:1. 感知环境:机器人通过传感器感知环境中的信息,并将其转化为机器人能够理解的数据。
2. 分析数据:机器人的控制系统对感知到的数据进行分析,并根据分析结果制定相应的行动计划。
3. 运动控制:机器人的控制系统通过运动控制器控制机械结构的运动,从而实现机器人的运动和行为。
4. 反馈控制:机器人在运动和行为过程中,通过传感器不断反馈环境的变化信息给控制系统,从而实现机器人的自适应控制。
三、机器人的应用领域机器人的应用领域非常广泛,以下是几个典型的应用领域:1. 工业制造:机器人在工业制造中的应用非常广泛,如汽车制造、电子制造、食品加工等。
机器人能够提高生产效率、降低成本、提高产品质量。
2. 医疗保健:机器人在医疗保健中的应用也越来越广泛,如手术机器人、康复机器人、护理机器人等。
机器人能够提高手术精度、减少手术创伤、提高康复效果。
工业机器人组成及工作原理
工业机器人组成及工作原理
首先,工业机器人通过传感器感知其周围环境。
常见的传感器包括摄像头、激光传感器、力传感器等。
摄像头可以用于视觉对象识别和测量,激光传感器可以用于障碍物检测和距离测量,力传感器可以用于精确控制操作力度。
通过这些传感器,机器人能够获取有关环境的信息。
其次,机器人根据感知到的环境信息,进行决策制定。
这一步骤通常由控制系统完成。
控制系统是机器人的大脑,它接收传感器的信息,经过处理和分析,生成相应的决策。
例如,当机器人需要进行抓取任务时,控制系统首先会对目标进行识别,然后计算最佳抓取点和抓取力度。
最后,机器人根据决策结果执行相应的操作。
执行器是机器人的手臂或爪子,用于执行具体操作。
通过电机和传动系统,执行器能够实现精确的位置和速度控制。
例如,当决策结果是抓取物体时,执行器会根据计算出的抓取点和抓取力度,准确地将手臂伸展并抓取物体。
除了以上的工作原理外,工业机器人还可以与人进行交互。
通过人机交互界面,人们可以直观地与机器人进行沟通和控制。
例如,通过显示屏和按钮,人们可以设定机器人的工作任务和参数。
通过语音输入和语音反馈,人们可以与机器人进行语音交流。
这样的交互功能使得机器人在工业生产中更加灵活和易于操作。
总体而言,工业机器人的工作原理是基于感知环境、决策制定和执行操作的过程。
通过传感器的感知,控制系统的决策和执行器的操作,工业机器人能够高效地完成各种任务,大大提高生产效率和质量。
工业机器人内部结构及基本组成原理详解
工业机器人内部结构及基本组成原理详解展开全文工业机器人详解你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关---在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。
关于工业机器人定义什么可以被认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。
不是在工业环境中使用的每个机电设备都可以被认为是机器人。
根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。
这几乎是在谈论工业机器人时被接受的定义。
工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。
随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV等新手铺路。
我们经常说典型的工业机器人由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。
那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。
控制面板和示教器构成用户环境。
工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。
机器人手臂基本上是移动工具的东西。
但并不是每个工业机器人都像一个手臂。
不同机器人有不同类型的结构。
控制面板---操作员使用控制面板来执行一些常规任务。
(例如:改变程序或控制外围设备)。
应用“机器人工人”----什么时候应该使用工业机器人而不是人工?相信这个问题大家思考的次数并不少了。
理想情况下,这应该是双赢的。
想快速看到效果,你需要知道什么是别人最不喜欢的工作。
想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。
如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。
工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。
工业机器人工作原理及其基本构成
工业机器人工作原理及其基本构成工业机器人是一种能够自动执行一系列生产操作的多关节机械设备。
其工作原理基于计算机控制与机械结构相结合,具备感知、决策和执行的能力,实现高效、精准和灵活的生产作业。
下面将详细介绍工业机器人的工作原理及其基本构成。
一、工作原理1.传感器控制:工业机器人通过安装各种传感器,如视觉传感器、力传感器、接触传感器等,来感知周围环境和工件的状态。
传感器采集到的信息会传送给控制系统进行处理。
2.控制系统:控制系统是工业机器人的核心部分,它由计算机和程序控制器组成。
计算机负责处理各种传感器采集到的数据,并进行实时监控和控制。
程序控制器根据预设的工艺参数和任务要求,决策机器人的动作轨迹和运动方式。
3.执行机构:执行机构是工业机器人实现动作的关键部分。
根据机器人的不同结构和工作任务,可以采用电机、液压驱动或气动驱动等方式实现机械臂的运动。
4.末端执行器:末端执行器是机器人最终与工件接触并执行作业的部分。
根据不同的应用需求,可以采用夹具、吸盘、焊枪等各种类型的末端执行器。
5.编程操作:工业机器人的工作需要编写适应不同任务的程序。
编程操作可以通过在线编程、离线编程或教导示教等方式实现,以确保机器人按照预期工艺参数和任务要求执行工作。
二、基本构成1.机械结构:机器人的机械结构一般包括基座、臂架和末端执行器。
臂架是由多个关节连接而成的,关节可以实现不同方向和角度的运动。
机械结构的设计和布局直接影响机器人的灵活性和作业范围。
2.传感器系统:工业机器人的传感器系统用于感知周围环境和工件状态。
常用的传感器包括视觉传感器、力传感器、接触传感器等。
视觉传感器可以识别工件的位置和形状,力传感器可以测量机器人与工件之间的力,接触传感器可以检测到机器人和工件的接触。
3.控制系统:控制系统包括计算机和程序控制器。
计算机负责处理传感器采集到的数据,并进行实时监控和控制。
程序控制器负责根据预设的工艺参数和任务要求,决策机器人的动作轨迹和运动方式。
工业机器人的工作原理
工业机器人的工作原理
工业机器人的工作原理基于其核心技术,包括传感器、控制系统和执行器等关键组件。
1. 传感器:工业机器人通常搭载各种传感器,如视觉传感器、力量传感器、接触传感器等。
这些传感器用于感知周围环境和工件的位置、形状、力量等信息。
2. 控制系统:工业机器人的控制系统是其大脑,通常由计算机和软件组成。
控制系统接收传感器提供的数据,并根据预先设定的程序和算法进行计算和决策,控制机器人的各个动作。
3. 执行器:执行器是工业机器人实现各种动作的关键部件,包括电动机、液压装置、气压装置等。
执行器接收控制系统发出的指令,通过产生力或转动力矩,将机器人的关节或末端执行器移动到指定位置,实现各种操作任务。
工业机器人的工作原理可以简单概括为感知-计算-执行的闭环过程。
机器人首先通过传感器感知工作环境和工件的状态,然后将感知到的信息传输给控制系统。
控制系统根据预先设定的程序和算法对感知信息进行处理和分析,并做出相应的决策与控制指令。
执行器根据控制指令产生相应的动力输出,将机器人移动到指定位置,完成各种操作任务。
总的来说,工业机器人的工作原理依赖于传感器的感知、控制系统的计算和决策,以及执行器的动力输出,通过这些组件的协作实现机器人的复杂操作。
工业机器人组成及工作原理
例:库卡工业机器人控制器KRC4
KRC4性能参数:
全部采用总线形式 处理器库卡(工业)PC(2.6GHZ ) 操作系统微软WINDOWS XP 控制轴数8个 AC伺服马达驱动 与外围设备通讯接口: Profinet, Profibus,Interbus,EtherCAT, Ethernet 编程及控制库卡SmartPAD
机器人关节
?
机器人控制器
控制器是根据指令以及传感器信息控制机器人完成一定动作或作业任务的 装置,是决定机器人功能和性能的主要因素,也是机器人系统中更新和发展 最快的部分。 其基本功能有:示教、记忆、位置伺服、坐标设定。 开发程度:封闭型、开放性和混合型。
【目前基本上都是封闭型系统(如日系)或混合型系统(如欧系)】 控制方式:集中式控制和分布式控制。
机器人的工作原理是一个比较复杂的问题。简单地说,机器人的原理 就是模仿人的各种肢体动作、思维方式和控制决策能力。从控制的角 度,机器人可以通过如下四种方式来达到这一目标。
“示教再现”方式:它通过“示教盒”或人“手把手”两种方 式教机械手如何动作,控制器将示教过程记忆下来,然后机器 人就按照记忆周而复始地重复示教动作,如喷涂机器人。
• 存储:保存示教信息。 • 再现:根据需要,读出存储的示教信息向机器人发出重复动作
的命令。
控制信息
• 顺序信息:各种动作单元(包括机械手和外围设备)按动作先 后顺序的设定、检测等。
• 位置信息:作业之间各点的坐标值,包括手爪在该点上的姿态, 通常总称为位姿(POSE)。
• 时间信息:各顺序动作所需时间,即机器人完成各个动作的速 度。
二、工业机器人的技术参数
表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、 运动精度、运动特性、动态特性等。
工业机器人系统组成原理
工业机器人系统组成原理
工业机器人系统一般由以下几个部分组成:
1. 机器人机械臂:机械臂是工业机器人的核心部分,它由多个活动关节和执行器组成,可以在三维空间内完成各种运动和工作任务。
2. 控制系统:控制系统是机器人系统的大脑,通过对机械臂的运动进行控制和调节。
控制器可以采用PLC (可编程逻辑控制器)、PC或者专用的嵌入式控制板等,它接收来自外部的指令
或传感器信号,并将其转化为机械臂的运动控制信号。
3. 传感器系统:传感器系统可以实时获取环境中的信息,如视觉传感器用于摄取图像或识别物体、力传感器用于控制机械臂的力量等。
传感器系统通常与控制系统相连接,提供必要的外部信息以便机器人执行相应的任务。
4. 执行器和末端执行工具:机械臂上的执行器用于驱动机械臂的关节,末端执行工具则可以根据工作需要进行更换,如夹具、吸盘等。
这些工具可以帮助机器人完成不同的任务,如抓取物体、组装产品等。
5. 轨迹规划与控制算法:机械臂的运动轨迹规划与控制算法是机器人系统的核心技术之一,它可以根据任务要求、工作空间等因素来确定机械臂的运动轨迹,并保证机械臂的稳定和精确运动。
6. 监控与安全系统:监控系统用于监测机器人运行过程中的参数,如电流、温度、速度等,以保证机器人的正常运作和安全性。
安全系统则可以通过设置安全围栏、传感器等来确保机器人系统在遇到异常情况时停止工作,以保护操作人员和设备的
安全。
总体来说,工业机器人系统通过机器人机械臂、控制系统、传感器系统、执行器和末端执行工具、轨迹规划与控制算法、监控与安全系统等多个部分的协同工作,实现了工业生产中的自动化、精确化和高效率化。
工业机器人各轴原理
工业机器人各轴原理
工业机器人是一种自动化设备,可以执行各种生产任务。
它由多个轴组成,每个轴都有不同的原理和作用。
1. 第一轴:常称为基座轴或底座轴。
它是机器人的基本支撑部分,通过转动提供机器人的整体定位和转向能力。
2. 第二轴:也称为肩部轴。
它使机器人能够在垂直方向上进行上下调整和定位。
3. 第三轴:通常被称为肘部轴。
它使机器人能够进行前后和后退的运动,从而改变机器人的工作范围。
4. 第四轴:也被称为手部或腕部轴。
它允许机器人进行旋转操作,以适应各种工作场景。
5. 第五轴:有时称为手部侧移轴或腕旋转轴。
它使机器人能够进行侧向或水平平移运动,以便更好地处理工作物件。
6. 第六轴:通常被称为手部抓取轴或末端执行器轴。
它使机器人能够打开和关闭手部或末端执行器,实现物件的抓取和释放。
这些轴能够通过联动运动实现机器人在三维空间内的高度灵活的动作。
不同的机器人可能拥有不同数量和类型的轴,具体取决于其设计和应用需求。
这些轴的协调运动能够使机器人完成各种任务,例如组装、焊接、搬运、喷涂等,大大提高了生产效率和质量。
工业机器人组成及工作原理.. 共43页
“可编程控制”方式:工作人员事先根据机器人的工作任务和运 动轨迹编制控制程序,然后将控制程序输入给机器人的控制器, 起动控制程序,机器人就按照程序所规定的动作一步一步地去 完成,如果任务变更,只要修改或重新编写控制程序,非常灵 活方便。大多数工业机器人都是按照前两种方式工作的。
“遥控”方式:由人用有线或无线遥控器控制机器人在人难以 到达或危险的场所完成某项任务。如防暴排险机器人、军用机 器人、在有核辐射和化学污染环境工作的机器人等。
(3)运动精度(Accurucy) 机器人机械系统的精度主要涉及位姿精度、重复 位姿精度、轨迹精度、重复轨迹精度等。
(4)运动特性(Sped) 速度和加速度是表明机器人运动特性的主要指标。
(5)动态特性 结构动态参数主要包括质量、惯性矩、刚度、阻尼系数、固 有频率和振动模态。
定位精度(Positioning accuracy):指 机器人末端参考点实际到达的位置与 所需要到达的理想位置之间的差距。
(1)工作空间(Work space) 工作空间是指机器人臂杆的特定部位在一定 条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力 的大小。理解机器人的工作空间时,要注意以下几点:
(2)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运 的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。
机械结构简图
●S 轴(回旋) ●L 轴(下臂倾动) ●U 轴(上臂倾动) ●R 轴(手臂横摆) ●B 轴(手腕俯仰) ●T 轴(手腕回旋)
机器人关节
?
机器人控制器
控制器是根据指令以及传感器信息控制机器人完成一定动作或作业任务的 装置,是决定机器人功能和性能的主要因素,也是机器人系统中更新和发展 最快的部分。 其基本功能有:示教、记忆、位置伺服、坐标设定。 开发程度:封闭型、开放性和混合型。
说明工业机器人的基本组成及三大部分的关系
说明工业机器人的基本组成及三大部分的关系工业机器人的基本组成包括控制系统、机械结构和执行机构。
其中,控制系统是机器人的“大脑”,机械结构是机器人的“骨架”,而执行机构则是机器人的“手脚”,这三部分相互关联、相互作用。
1. 控制系统工业机器人的控制系统主要由控制器、编程器和传感器三部分组成。
其中,控制器是机器人的核心,其任务是接收指令、处理程序、控制执行机构完成正确的动作任务。
编程器是一种软件工具,用于编写机器人的操作程序。
传感器则用于收集数据并将其传输给控制器,以帮助机器人调整动作和位置。
2. 机械结构机械结构是机器人的支撑结构,包括基座、臂杆、关节和末端执行机构等部件。
基座是机器人的底座,作为固定机器人其他部分的支撑点。
臂杆可以分为单臂、双臂和平面型等多种类型,用于完成机器人的动作任务。
关节是机械臂的连接部分,连接机械臂的各个部分并帮助它们相互协调运动。
末端执行机构则是机器人的末端部分,根据不同的需要选择相应的夹具实现力矩输出。
3. 执行机构执行机构是机器人的“手脚”,根据不同的功能有多种类型。
常见的执行机构有电动伺服机构、气动执行机构和液压执行机构。
它们的作用是将控制器发出的指令转化为机械动作。
工业机器人的执行机构也包括传动部分和工具部分,传动部分负责将动力传输到工具部分,工具部分则完成抓取和放置等具体操作。
综上所述,控制系统、机械结构和执行机构是工业机器人的三大基本组成部分,它们之间紧密联系、相互作用,共同完成工业自动化生产的任务。
好的工业机器人不仅需要有强大的控制系统和精密的机械结构,还需要根据具体的工业需求选择合适的执行机构,达到更高的生产效率和精度。
工业机器人内部结构及基本组成原理详解
工业机器人内部结构及基本组成原理详解一、工业机器人的内部结构1.机械结构:工业机器人的机械结构是支撑和传输力量的基础,它由臂体、关节和末端执行器组成。
臂体是机器人的主要结构,一般由相互连接的柔性关节组成。
关节是进行转动的连接部件,通过电机和减速器实现驱动力。
末端执行器是机器人的工具,根据不同的任务可以配备不同的执行器,如夹持器、焊接枪、喷涂枪等。
2.控制系统:工业机器人的控制系统是实现机器人自动操作和运动能力的核心部分,它由控制器、电机和传动系统组成。
控制器是机器人的大脑,负责接收和处理传感器的信号,生成控制指令,并通过电机和传动系统实现机械结构的运动。
电机是驱动机械结构运动的动力源,通常使用伺服电机配合减速器实现精确控制。
传动系统是将电机的旋转运动转换为机械结构的线性运动的装置,常见的传动方式包括齿轮传动、皮带传动和丝杆传动等。
3.传感器:工业机器人的传感器用于感知和监测外部环境和机器人内部状态,以实现自适应和高精度的操作。
常见的传感器包括力传感器、视觉传感器、触觉传感器、温度传感器等。
力传感器用于测量机器人与周围环境之间的力量和力矩,以保证机器人操作的稳定性和安全性。
视觉传感器用于识别和定位目标物体,实现机器人的视觉引导和视觉跟踪。
触觉传感器用于模拟人类手的触摸感应能力,实现机器人的触觉控制和力适应操作。
温度传感器用于监测机器人的工作温度,以确保机器人的运行稳定和安全。
二、工业机器人的基本组成原理1.位置控制:工业机器人的位置控制是确定机器人末端执行器的位置和姿态,以实现精确的定位和操作。
位置控制通常采用正逆运动学的方法,正运动学是指已知机械结构的运动参数,通过计算得到末端执行器的位置和姿态;逆运动学是指已知末端执行器的位置和姿态,通过求解逆运动方程得到机械结构的运动参数。
2.路径规划:工业机器人的路径规划是确定机器人从初始位置到目标位置的最优路径,以实现高效的运动和操作。
路径规划通常采用离散采样的方法,将机器人的可行空间细分为多个离散的点,通过算法找到最短路径。
工业机器人工作原理及其基本构成
工业机器人工作原理及其基本构成工业机器人工作原理现在广泛应用的焊接机器人都属于第一代工业机器人,它的基本工作原理是示教再现。
示教也称导引,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数\工艺参数等,并自动生成一个连续执行全部操作的程序。
完成示教后,只需给机器人一个启动命令,机器人将精确地按示教动作,一步步完成全部操作。
这就是示教与再现。
实现上述功能的主要工作原理,简述如下:(1) 机器人的系统结构一台通用的工业机器人,按其功能划分,一般由 3 个相互关连的部分组成:机械手总成、控制器、示教系统,如图 1 所示。
机械手总成是机器人的执行机构,它由驱动器、传动机构、机器人臂、关节、末端操作器、以及内部传感器等组成。
它的任务是精确地保证末端操作器所要求的位置,姿态和实现其运动。
图 1 工业机器人的基本结构控制器是机器人的神经中枢。
它由计算机硬件、软件和一些专用电路构成,其软件包括控制器系统软件、机器人专用语言、机器人运动学、动力学软件、机器人控制软件、机器人自诊断、白保护功能软件等,它处理机器人工作过程中的全部信息和控制其全部动作。
示教系统是机器人与人的交互接口,在示教过程中它将控制机器人的全部动作,并将其全部信息送入控制器的存储器中,它实质上是一个专用的智能终端。
(2) 机器人手臂运动学机器人的机械臂是由数个刚性杆体由旋转或移动的关节串连而成,是一个开环关节链,开链的一端固接在基座上,另一端是自由的,安装着末端操作器 ( 如焊枪 ) ,在机器人操作时,机器人手臂前端的末端操作器必须与被加工工件处于相适应的位置和姿态,而这些位置和姿态是由若干个臂关节的运动所合成的。
因此,机器人运动控制中,必须要知道机械臂各关节变量空间和末端操作器的位置和姿态之间的关系,这就是机器人运动学模型。
一台机器人机械臂几何结构确定后,其运动学模型即可确定,这是机器人运动控制的基础。
工业机器人的基本工作原理
工业机器人的基本工作原理工业机器人的基本工作原理是通过将计算机控制与机械技术相结合,实现对机器人的动作、力量和位置的精确控制。
工业机器人通常由以下几个主要部分组成:1. 机械结构:包括机器人的臂部、关节、连接件和末端执行器等机械部件。
这些部件通常由金属材料制成,具有较高的刚性和稳定性,能够承受机器人的运动和负载。
2. 传感器:机器人通常配备各种传感器,如视觉传感器、力传感器和位置传感器等。
这些传感器能够捕捉到机器人周围环境的信息,并将其转化为电信号,供控制系统使用。
3. 控制系统:机器人的控制系统通常由计算机、控制器和软件组成。
计算机负责对机器人的运动和操作进行精确的计算和控制,控制器用于指挥和控制机器人的各个动作,软件则用于编程和调整机器人的功能和性能。
4. 电动驱动系统:机器人通常使用电动驱动系统实现各个关节的运动。
这些驱动系统通常由电机、减速器和传动装置组成,能够提供足够的动力和速度来驱动机器人进行各种任务。
基于以上部分,机器人的工作原理可以简单描述为:1. 通过传感器获取环境信息:机器人通过搭载的传感器获取周围环境的信息,比如物体位置、形状、力量等。
2. 处理和解析信息:机器人的控制系统接收到传感器传来的信息,计算和解析这些信息,确定下一步操作的方式和路径。
3. 调整关节和执行器:机器人根据控制系统的指令,调整各个关节和执行器的位置和力量,以实现预定的任务,如抓取、移动、组装等。
4. 反馈系统:机器人通过传感器和控制系统之间的反馈系统,将当前的工作状态信息反馈给控制系统,实现机器人的闭环控制,以确保工作的准确性和稳定性。
总的来说,工业机器人通过传感器获取环境信息,通过控制系统按照预定义的程序完成各种任务,实现了高精度、高效率的自动化生产。
简述工业机器人的基本组成及作用
工业机器人是一种能够自动完成工业生产任务的智能化设备,具有高度的灵活性和精准性,被广泛应用于汽车制造、电子设备生产、化工生产等各个行业。
工业机器人的基本组成以及其作用是非常重要的,下面我们将对工业机器人的基本组成及作用进行简要的介绍。
一、基本组成1. 机械结构:工业机器人的机械结构包括机械臂、关节、执行器等部件。
机械臂是工业机器人的主体,它具有多个关节,可以实现自由度的运动。
通过执行器,机械臂可以完成抓取、移动、旋转等动作。
2. 传感器系统:工业机器人的传感器系统包括视觉系统、力传感器、接触传感器等。
视觉系统可以帮助机器人感知周围的环境,识别物体的位置和形状;力传感器和接触传感器则可以帮助机器人控制力度,避免因外力变化而产生意外伤害。
3. 控制系统:工业机器人的控制系统由计算机、控制器、编码器等组成。
计算机为机器人提供智能化的控制能力,控制器负责传输指令、监控系统运行情况,编码器则用于监测机械臂的位置和角度。
4. 末端执行器:末端执行器是工业机器人的“手”,用于实现与物体的接触和操作。
末端执行器的类型多种多样,包括夹爪、吸盘、焊枪等,根据具体的生产任务选择合适的末端执行器。
二、作用1. 自动化生产:工业机器人能够根据预先设定的程序自动完成各种生产任务,如搬运、装配、焊接、喷涂等。
它们可以持续、准确地执行任务,提高生产效率,降低生产成本。
2. 灵活适应:工业机器人具有较强的灵活性,可以根据生产需求进行快速、精准的调整。
不同类型的机器人可以根据需要更换末端执行器,实现不同的生产任务。
3. 人机协作:部分工业机器人能够支持人机协作,通过传感器系统感知人体位置,避让人员或与人员共同完成生产任务,提高生产效率的同时保障工人的安全。
4. 数据处理:工业机器人通过传感器系统获取大量的生产数据,可以实时监控生产过程,对生产参数进行调整,实现智能化的生产管理。
工业机器人作为现代工业生产的重要设备,具有复杂的机械结构和多样化的功能,其基本组成和作用对于提高生产效率、降低生产成本具有重要意义。