人教版八年级数学下册第十六章综合测试卷03答案
2021年春季人教版八年级数学下册 第十六章 二次根式(基础卷) 单元测试题 (含答案))
2021年春季人教版八年级数学下册第十六章二次根式单元测试(基础卷)单元测试题注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单选题(共12小题)1.二次根式,则a的取值范围是()A.a≤2B.a≤﹣2C.a>2D.a<02.要使有意义,则()A.x≥﹣5B.x≤﹣5C.x<﹣5D.x>﹣53.若代数式+|b﹣1|+c2+a在实数范围内有意义,则此代数式的最小值为()A.0B.5C.4D.﹣54.下列运算正确的是()A.8÷4×=2B.=×=6C.=2﹣D.﹣=5.已知a>b,化简二次根式的正确结果是()A.b2B.b2C.﹣b2D.﹣b26.若数a使关于x的不等式组有且只有四个整数解,且关于a的代数式+有意义,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.27.若,则的值是()A.3B.±3C.D.±8.当m=3时,m+的值等于()A.6B.5C.3D.19.从“+,﹣,×,÷”中选择一种运算符号,填入算式“(+1)□x”的“□”中,使其运算结果为有理数,则实数x不可能是()A.+1B.5﹣1C.﹣2D.1﹣10.小明在作业本上做了4道题:①=﹣5;②±=4;③=9:④=﹣6,他做对的题有()A.1道B.2道C.3道D.4道11.如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k12.下列说法中:①直角三角形两边长为3和4,则第三边长是5;②所有的有理数和无理数都可以在数轴上找到唯一的对应点;③﹣8没有立方根;④有意义的条件是b为正数;其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共4小题)13.代数式有意义,则x的取值范围是.14.已知x,y是实数,且满足y=++,则的值是.15.若最简根式与是同类根式,则a=.16.我们在二次根式的化简过程中得知:=﹣1,=﹣,=﹣,……,则(+++…+)(+1)=.三、解答题(共7小题)17.计算:(1).(2).18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣.19.已知正实数x,y,z满足方程组求该方程组的所有实数解.20.计算:(1)(2﹣3)÷;(2)(﹣)×+;(3)已知:x=+2,y=﹣2.求x2+xy+y2的值.21.数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S=,其中p=(a+b+c),这个公式称为“海伦公式”.数学应用:如图,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AC边上的高为h1,BC边上的高h2,求h1+h2的值.22.若三个实数x,y,z满足xyz≠0,且x+y+z=0,则有:=|++|.例如:==|++|=请解决下列问题:(1)求的值.(2)设S=++…+,求S的整数部分.(3)已知x+y+z=0(xyz≠0,x>0),且y+z=3yz,当+|﹣﹣|取得最小值时,求x 的取值范围.23.阅读下列解题过程:===﹣1;===﹣.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①=;②=;(2)应用:求++++…+的值;(3)拓广:﹣+﹣=.参考答案一、单选题(共12小题)1.二次根式,则a的取值范围是()A.a≤2B.a≤﹣2C.a>2D.a<0【答案】A【分析】根据负数没有平方根确定出a的范围即可.【解答】解:二次根式有意义,可得2﹣a≥0,解得:a≤2,故选:A.【知识点】二次根式有意义的条件2.要使有意义,则()A.x≥﹣5B.x≤﹣5C.x<﹣5D.x>﹣5【答案】A【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+5≥0,解得x≥﹣5.故选:A.【知识点】二次根式有意义的条件3.若代数式+|b﹣1|+c2+a在实数范围内有意义,则此代数式的最小值为()A.0B.5C.4D.﹣5【答案】B【分析】利用二次根式的定义、绝对值、平方数的性质分析得出答案.【解答】解:代数式,+|b﹣1|+c2+a在实数范围内有意义,则a﹣5≥0,|b﹣1|≥0,c2≥0,所以代数式,+|b﹣1|+c2+a的最小值是a,a=5,故选:B.【知识点】二次根式有意义的条件、代数式求值4.下列运算正确的是()A.8÷4×=2B.=×=6 C.=2﹣D.﹣=【答案】D【分析】利用二次根式的乘除法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断;根据二次根式的加减法对D进行判断.【解答】解:A、原式=2=,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式=﹣2,所以C选项的计算错误;D、原式=2﹣=,所以D选项的计算正确.故选:D.【知识点】二次根式的混合运算、分母有理化5.已知a>b,化简二次根式的正确结果是()A.b2B.b2C.﹣b2D.﹣b2【答案】B【分析】根据二次根式有意义的条件和a>b得出b≤0,再根据二次根式的性质进行化简即可.【解答】解:∵a>b,∴中﹣ab5≥0,∴b≤0,∴=b2,故选:B.【知识点】二次根式的性质与化简6.若数a使关于x的不等式组有且只有四个整数解,且关于a的代数式+有意义,则符合条件的所有整数a的和为()A.﹣3B.﹣2C.1D.2【答案】C【分析】先表示出不等式组的解集,根据不等式有且只有4个整数解确定出a的值,再由分式有意义的条件和二次根式有意义的条件求出满足题意整数a的值,进而求出之和即可.【解答】解:,不等式组的解集是:≤x<5,∵不等式组有且只有四个整数解,∴0<≤1,解得:﹣2<a≤3,即整数a=﹣1,0,1,2,3,∵关于a的代数式+有意义,∴a≤2且a≠1,∴符合条件的所有整数a的值是﹣1,0,2,∴符合条件的所有整数a的和为:﹣1+2=1;故选:C.【知识点】二次根式有意义的条件、一元一次不等式组的整数解、分式有意义的条件7.若,则的值是()A.3B.±3C.D.±【答案】A【分析】先()2=x+2+=7+2=9,再开平方,可得结论.【解答】解:∵,∴()2=x+2+=7+2=9,∵>0,∴=3,故选:A.【知识点】分式的加减法、二次根式的化简求值、平方根8.当m=3时,m+的值等于()A.6B.5C.3D.1【答案】B【分析】利用二次根式的性质得到原式=m+|m﹣1|,然后把m的值代入计算即可.【解答】解:原式=m+=m+|m﹣1|,当m=3时,原式=3+|3﹣1|=3+2=5.故选:B.【知识点】二次根式的化简求值9.从“+,﹣,×,÷”中选择一种运算符号,填入算式“(+1)□x”的“□”中,使其运算结果为有理数,则实数x不可能是()A.+1B.5﹣1C.﹣2D.1﹣【答案】B【分析】根据题意,添上一种运算符号后逐一判断即可.【解答】解:A、(+1)﹣(+1)=0,故本选项不合题意;B、无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C、(+1)﹣(﹣2)=3,故本选项不合题意;D、(+1)(1﹣)=﹣2,故本选项不合题意.故选:B.【知识点】分母有理化10.小明在作业本上做了4道题:①=﹣5;②±=4;③=9:④=﹣6,他做对的题有()A.1道B.2道C.3道D.4道【答案】A【分析】分别根据立方根、平方根及二次根式的性质与化简法则计算分析即可得出答案.【解答】解:①=﹣5,正确;②±=±4,故②错误;③≠9,故③错误:④=6,故④错误.∴他做对的题有1道.故选:A.【知识点】立方根、二次根式的性质与化简、平方根11.如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k【答案】D【分析】求出k的范围,化简二次根式得出|k﹣6|﹣|2k﹣5|,根据绝对值性质得出6﹣k﹣(2k﹣5),求出即可.【解答】解:∵一个三角形的三边长分别为、k、,∴﹣<k<+,∴3<k<4,﹣|2k﹣5|,=﹣|2k﹣5|,=6﹣k﹣(2k﹣5),=﹣3k+11,=11﹣3k,故选:D.【知识点】二次根式的性质与化简、绝对值、三角形三边关系12.下列说法中:①直角三角形两边长为3和4,则第三边长是5;②所有的有理数和无理数都可以在数轴上找到唯一的对应点;③﹣8没有立方根;④有意义的条件是b为正数;其中正确的有()A.1个B.2个C.3个D.4个【答案】A【分析】直接利用勾股定理以及实数与数轴的性质和立方根的定义、二次根式的性质分别分析得出答案.【解答】解:①直角三角形两边长为3和4,则第三边长是5或,故此选项错误;②所有的有理数和无理数都可以在数轴上找到唯一的对应点,正确;③﹣8的立方根是﹣2,故此选项错误;④有意义的条件是b为非负数,故此选项错误;故选:A.【知识点】勾股定理、实数与数轴、二次根式有意义的条件二、填空题(共4小题)13.代数式有意义,则x的取值范围是.【答案】x>1【分析】根据二次根式和分式有意义的条件可得x﹣1>0,再解不等式即可.【解答】解:由题意得:x﹣1>0,解得:x>1,故答案为:x>1.【知识点】分式有意义的条件、二次根式有意义的条件14.已知x,y是实数,且满足y=++,则的值是.【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=++,∴x﹣2≥0,2﹣x≥0,∴x=2,y=,则原式=×==,故答案为:【知识点】二次根式的化简求值、二次根式有意义的条件15.若最简根式与是同类根式,则a=.【答案】±1【分析】根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行解答即可.【解答】解:∵最简根式与是同类根式,∴4a2+1=6a2﹣1,解得:a=±1.故答案为:±1.【知识点】最简二次根式、同类二次根式16.我们在二次根式的化简过程中得知:=﹣1,=﹣,=﹣,……,则(+++…+)(+1)=.【答案】2019【分析】先分母有理化,然后合并后利用平方差公式计算.【解答】解:原式=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2020﹣1=2019.故答案为2019.【知识点】分母有理化、二次根式的混合运算、规律型:数字的变化类三、解答题(共7小题)17.计算:(1).(2).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用多项式乘多项式展开,然后合并即可.【解答】解:(1)原式=3﹣5+=﹣;(2)原式=3﹣5+3﹣﹣2=﹣2.【知识点】二次根式的混合运算18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣.【分析】根据a、b在数轴上的位置,可得a、b、a﹣b的符号,再根据绝对值和二次根式的性质进行化简即可.【解答】解:由数轴可知:a<0,b>0,a﹣b<0所以|a﹣b|﹣=|a﹣b|﹣|b|=b﹣a﹣b=﹣a.【知识点】实数与数轴、二次根式的性质与化简19.已知正实数x,y,z满足方程组求该方程组的所有实数解.【分析】令x≥y,根据二次根式的性质和分母有理化的知识进行化简即可.【解答】解:不妨令x≥y,有,得,∴z≥x,∴z≥y,∴,得,∴y≥x,∴y=x,∴x=y=z,代入解得:x=y=z=.【知识点】分母有理化、二次根式的应用20.计算:(1)(2﹣3)÷;(2)(﹣)×+;(3)已知:x=+2,y=﹣2.求x2+xy+y2的值.【分析】(1)根据二次根式的除法法则计算;(2)根据二次根式的混合运算法则计算;(3)根据二次根式的加法法则、乘法法则分别求出x+y,xy,根据完全平方公式把原式变形,代入计算得到答案.【解答】解:(1)(2﹣3)÷=(8﹣9)÷=﹣÷=﹣1;(2)(﹣)×+=×﹣3×+3=3﹣3+3=3;(3)∵x=+2,y=﹣2,∴x+y=+2+﹣2=2,xy=(+2)(﹣2)=1,∴x2+xy+y2=(x+y)2﹣xy=20﹣1=19.【知识点】分母有理化、二次根式的化简求值21.数学阅读:古希腊数学家海伦曾提出一个利用三角形三边之长求面积的公式:若一个三角形的三边长分别为a、b、c,则这个三角形的面积为S=,其中p=(a+b+c),这个公式称为“海伦公式”.数学应用:如图,在△ABC中,已知AB=9,AC=8,BC=7.(1)请运用海伦公式求△ABC的面积;(2)设AC边上的高为h1,BC边上的高h2,求h1+h2的值.【分析】(1)根据海伦公式,代入解答即可;(2)根据三角形面积公式解答即可.【解答】解:(1)AB=c=9,AC=b=8,BC=a=7,p=,∴;(2)∵,∴,,∴.【知识点】二次根式的应用、数学常识22.若三个实数x,y,z满足xyz≠0,且x+y+z=0,则有:=|++|.例如:==|++|=请解决下列问题:(1)求的值.(2)设S=++…+,求S的整数部分.(3)已知x+y+z=0(xyz≠0,x>0),且y+z=3yz,当+|﹣﹣|取得最小值时,求x 的取值范围.【分析】(1)根据范例中提供的计算方法进行计算即可;(2)将++…+进行化简,再确定整数部分;(3)将原式化简为|+3|+|﹣3|,再根据|+3|+|﹣3|取最小值时,确定x的取值范围.【解答】解:(1)==|++|=;(2)S=++…+=++…+=|1+1﹣|+|1+﹣|+…+|1+﹣|=1+1﹣+1+﹣+1+﹣+…+1+﹣=2020+,故整数部分为2020;(3)由题意得,+|﹣﹣|=|++|+|﹣﹣|=|+|+|﹣|,又y+z=3yz,原式=|+3|+|﹣3|,因为|+3|+|﹣3|取最小值,所以﹣3≤≤3,而x>0,因此,0<x≤,答:x的取值范围为0<x≤.【知识点】分式的加减法、实数的运算、估算无理数的大小、规律型:数字的变化类、二次根式有意义的条件23.阅读下列解题过程:===﹣1;===﹣.请回答下列问题:(1)归纳:观察上面的解题过程,请直接写出下列各式的结果.①=;②=;(2)应用:求++++…+的值;(3)拓广:﹣+﹣=.【分析】(1)①直接利用找出分母有理化因式进而化简求出答案;②直接利用找出分母有理化因式进而化简求出答案;(2)直接利用找出分母有理化因式进而化简求出答案;(3)直接利用找出分母有理化因式进而化简求出答案.【解答】解:(1)①==﹣;②==﹣;故答案为:﹣;﹣;(2)++++…+=﹣1+﹣+﹣+…+﹣=﹣1;(3)﹣+﹣=﹣+﹣=﹣+﹣==﹣1.故答案为:﹣1.【知识点】分母有理化。
人教版八年级数学下册第十六章二次根式达标测试卷
人教版八年级数学下册第十六章二次根式达标测试卷一、选择题。
1.计算(1524555⎛÷- ⎝的结果为( ) A .7 B .-5 C .5 D .-72.如图,数轴上的点可近似表示6306÷( )A .点AB .点BC .点CD .点D3.已知xy >0,化简二次根式2xy y --) A x B x - C .x - D .x --4.下列式子中,一定属于二次根式的是( ) A .B .C .D .5.下列各式:①,②,③,④中,最简二次根式有( ) A .1个B .2个C .3个D .4个6.实数a ,b 在数轴上的对应点如图所示,化简+|a +b |的结果为( )A .2a ﹣bB .﹣3bC .b ﹣2aD .3b7.实数a 、b 在数轴上的位置如图所示,化简+﹣的结果为( )A .2a+2bB .﹣2aC .﹣2bD .2a ﹣2b8.若0,0mn m n >+<,则化简nmn m÷=( ) A .mB .-mC .nD .-n9.从“+,﹣,×,÷”中选择一种运算符号,填入算式“()□”的“□”中,使其运算结果为有理数,则应选择的运算符号是( ) A .+ B .﹣C .×D .÷10.若a =﹣1,b =+1.则代数式a 3b ﹣ab 3的值是( )A .4B .3C .﹣3D .﹣411.使式子在实数范围内有意义,则实数m 的取值范围是( )A .m ≥1B .m >1C .m ≥1且m ≠3D .m >1且m ≠312.已知实数a 、b 在数轴上的位置如图所示,化简|a+b|-(b −a)2 ,其结果是( )A.-2aB.2aC.2bD.-2b二、填空题。
1.计算 √8−√92 的结果是 .2.已知223y x x =-+-+,则xy 的值为__________.3.若11xxx x =--,则x 的取值范围是______. 4.已知35,35m n =+=-,则22m n mm +-的值为______. 5.已知a ,b 在数轴上位置如图,化简﹣= .6.已知y =1++,则2x +3y 的算术平方根为 .7.已知实数m 满足(2−m)2 +m −4 =m2 ,则m=______.8.已知a <b <0<c ,化简式子:|a+b|+|a ﹣b|﹣|a ﹣c|﹣= .9.对于实数a,b,定义运算“◆”:a◆b=22,(),()a b a bab a b-≥<⎪⎩,例如3◆2,因为3>2,所以3◆22232-5x,y满足方程组2353210x yx y+=⎧⎨+=⎩,则(x◆y)◆x=__.三、解答题。
人教版八年级数学下册单元测试题全套(含答案)
人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。
人教版八年级数学下册第十六章学情评估 附答案 (3)
人教版八年级数学下册第十六章学情评估一、选择题(每小题3分,共30分)1.下列各式一定是二次根式的是()A.-10B.33a C.b2+1 D.ab2.下列式子正确的是()A.(7)2=7 B.(-7)2=-7C.73=7 D.(-7)2=-7 3.下列各式中是最简二次根式的是()A.0.2B.12C.6x3D.x2+14.若代数式x-2x-3有意义,则x的取值范围是()A.x>2且x≠3 B.x≥2C.x≠3 D.x≥2且x≠35.下列二次根式中,能与3合并的二次根式是()A.18B.13 C.24 D.0.36.下列运算正确的是()A.5-3= 2B.419=213C.8-2= 2D.(2-5)2=2- 57.估计5+2×10的值在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x为实数,在“(3+1)x”的“”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算结果为有理数,则x不可能是()A.3+1B.3-1 C.2 3 D.1- 39.字母b的取值如图所示,化简|b-2|+b2-10b+25的结果是()A .2b -7B .3C .7-2bD .-310.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .5 二、填空题(每小题3分,共15分) 11.计算:3÷3×13=__________. 12.比较大小:-3 2________-2 3(填“>”“<”或“=”). 13.能使等式x x -2=x x -2成立的x 的取值范围是________. 14.若规定符号“*”的意义是a *b =ab -b 2,则2*(2-1)的值是________. 15.观察下列各式:①1+13=213;②2+14=314;③3+15=415;…,请用含n (n ≥1且n 为整数)的式子写出你猜想的规律:______________.三、解答题(一)(每小题8分,共24分) 16.计算:(1)24-54+(2-1)0+⎝ ⎛⎭⎪⎫12-2;(2)(248-327)÷6-|32-4 3|.17.已知x =3+1,y =3-1,求下列各式的值: (1)x 2-y 2;(2)x 2-3xy +y 2.18.已知y =2x -3+3-2x +2,求xy 的值.四、解答题(二)(每小题9分,共27分)19.先化简,再求值:⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1),其中a =2-1.20.若|a-2|+b2+4b+4+c2-c+14=0,求b2÷a×c的值.21.已知长方形的周长为(48+72)cm,其中长为(3+12)cm.(1)求长方形的宽;(2)求长方形的面积.五、解答题(三)(每小题12分,共24分)22.阅读下面解题过程:例:若代数式(a-1)2+(a-3)2的值是2,求a的取值范围.解:原式=|a-1|+|a-3|,当a<1时,原式=(1-a)+(3-a)=4-2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a-1)+(3-a)=2=2,符合条件;当a>3时,原式=(a-1)+(a-3)=2a-4=2,解得a=3(舍去).所以a的取值范围是1≤a≤3.上述解题过程主要运用了分类讨论的方法,请你根据上述方法,解答下列问题:(1)当2≤a≤5时,化简:(a-2)2+(a-5)2=________;(2)若等式(3-a)2+(a-7)2=4成立,则a的取值范围是__________;(3)若代数式(a+1)2+(a-5)2的值是8,求a的值.23.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×2×1+12=2-2 2+1=3-2 2;反之,3-2 2=2-2 2+1=(2-1)2,∴3-2 2=2-1.(1)化简3+2 2;(2)化简4+2 3;(3)化简4-12;(4)若a±2 b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C 2.A 3.D4.D 提示:根据题意,得⎩⎨⎧x -2≥0,x -3≠0,解得x ≥2且x ≠3.5.B 6.C 7.B 8.C 9.B10.C 提示:∵m -n =(1+2)-(1-2)=2 2,mn =(1+2)(1-2)=-1,∴m 2+n 2-3mn =(m -n )2-mn =(2 2)2-(-1)=9=3. 二、11.1 12.< 13.x >2 14.4 2-5 15.n +1n +2=(n +1)1n +2三、16.解:(1)原式=2 6-3 6+1+4=-6+5.(2)原式=(8 3-9 3)÷6-|4 2-4 3|=-3÷6-(4 3-42)=-22-4 3+4 2=7 22-4 3. 17.解:因为x =3+1,y =3-1,所以x +y =2 3,xy =2,x -y =2. (1)原式=(x +y )(x -y )=2 3×2=4 3. (2)原式=(x -y )2-xy =22-2=2.18.解:根据题意,得⎩⎨⎧2x -3≥0,3-2x ≥0,解得x =32.当x =32时,y =2.所以x y =322=64.四、19.解:原式=(a -1)(a +1)+2a +1·1a 2+1=a 2-1+2a +1·1a 2+1=1a +1,当a =2-1时,原式=12-1+1=22.20.解:因为|a -2|+b 2+4b +4+c 2-c +14=0,所以|a -2|+(b +2)2+⎝ ⎛⎭⎪⎫c -122=0.所以a -2=0,b +2=0,c -12=0.所以a=2,b =-2,c =12.所以b 2÷a ×c =(-2)2÷2×12=1.21.解:(1)根据题意,得12(48+72)-(3+12)=3 2-3(cm).答:长方形的宽为(3 2-3)cm.(2)根据题意,得(3 2-3)×(3+12)=9 6-9(cm 2). 答:长方形的面积为(9 6-9)cm 2. 五、22.解:(1)3 (2)3≤a ≤7(3)原式=|a +1|+|a -5|,当a ≤-1时,a +1≤0,a -5<0,所以原式=-a -1-(a -5)=8,所以a =-2,符合题意;当-1<a <5时,a +1>0,a -5<0,所以原式=a +1-(a -5)=8,此方程无解,故-1<a <5不符合题意;当a ≥5时,a +1>0,a -5≥0,所以原式=a +1+a -5=8,所以a =6,符合题意.综上所述,a =-2或a =6.23.解:(1)3+2 2=(2+1)2=2+1.(2)4+2 3=(3+1)2=3+1.(3)4-12=4-2 3=(3-1)2=3-1.(4)⎩⎨⎧m +n =a ,mn =b .理由:把a ±2 b =m ±n 两边平方,得a ±2 b =m +n ±2mn ,∴⎩⎨⎧m +n =a ,mn =b .湘教版八年级数学下册期中学情评估一、选择题(每题3分,共30分)1.在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是( )A .60°B .30°C .50°D .40°2.以下有关勾股定理证明的图形中,不是中心对称图形的是( )3.在▱ABCD 中,AC ,BD 是它的两条对角线,下列条件中,能判定这个平行四边形是矩形的是()A.AB=BC B.∠DCA=∠DACC.∠BAC=∠ABD D.AC⊥BD4.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是()A.AC=3 cm B.BC=6 cmC.AB=6 cm D.AC=AD=3 cm(第4题)(第6题)5.已知▱ABCD的周长为20,且AB BC=23,则CD的长为() A.4 B.5 C.6 D.86.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1 C.32 D. 37.如图,OF是∠AOB内的一条射线,点E是射线OF上一点,EC⊥OA于点C,ED⊥OB于点D,若DE=CE,则下列结论不一定成立的是()A.OE平分∠AOBB.∠OED=∠OECC.OE=2CED.OE是线段CD的垂直平分线8. 已知下列命题,其中真命题有()①对角线相互垂直的四边形是菱形;②成中心对称的两个图形是全等形;③平行四边形的对称中心是对角线的交点;④正方形的对角线平分一组对角.A.1个B.2个C.3个D.4个9.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为()A.10 B.12 C.13 D.8 3(第9题)(第10题)(第12题)10.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD 一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共15分)11.正五边形每个外角的大小是________度.12.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN =BC,测得MN=200 m,则A,B间的距离为________m.13. 如图,已知AB⊥CF于点B,DE⊥CF于点E,CE=FB,AC=DF,运用所给条件判定△ABC≌△DEF的依据为________.(第13题)(第14题)(第15题)14.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.15. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是边BC上的一动点,则AP的最小值为________.三、解答题(第16~17题每题6分,第18~20题每题8分,第21~22题每题12分,第23题15分,共75分)16.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,ED⊥BC于点D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.17.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.(1)求AB,AC,BC的长;(2)判断△ABC的形状,并说明理由.18. 如图,D,E,F分别是△ABC各边的中点.(1)四边形ADEF是怎样的四边形?证明你的结论.(2)若∠A=90°,且AB=AC,判断四边形ADEF是怎样的四边形?证明你的结论.19.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=3,求S△ABC.20.如图,把矩形ABCD沿对角线BD折叠使点C落在F处,BF交AD于点E.(1)求证:△BEA≌△DEF;(2)若AB=2,AD=4,求AE的长.21.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于12BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)根据条件与作图信息知四边形ABEF是________;A.非特殊的平行四边形B.矩形C.菱形D.正方形(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)证明:四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.答案一、1.C 2.A 3.C 4.C 5.A6.B提示:∵∠ACB=90°,∠A=30°,∴AB=2BC=4.又∵D是AB的中点,∴CD=12AB=2.∵E,F分别是AC,AD的中点,∴EF为△ACD的中位线,∴EF=12CD=1.7.C8.C9.B提示:如图,连接CD交OE于点F,连接DE,CE,由作图过程可知OC=OD=DE=CE,∴四边形ODEC是菱形.∴OE⊥CD,OF=FE=12OE=8.∵OC=10,∴CF=DF=102-82=6,∴CD=2CF=12.10.C二、11.7212.10013.HL14.415.4.8三、16.解:∵ED⊥BC,∴∠BDE=90°.又∵∠E=35°,∴∠B=55°.∵∠BAC=90°,AD是边BC上的中线,∴DA=DB,∴∠B=∠DAB=55°,∴∠BDA=180°-55°-55°=70°.17.解:(1)根据勾股定理,得AB=5,AC=5,BC=10.(2)△ABC是等腰直角三角形.理由如下:∵AB2+AC2=5+5=10=BC2,∴△ABC是直角三角形.又∵AB=AC,∴△ABC是等腰直角三角形.18.解:(1)四边形ADEF 是平行四边形.证明:∵D ,E ,F 分别是△ABC 各边的中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形.(2)四边形ADEF 是正方形.证明:由(1)知,四边形ADEF 是平行四边形.∵∠A =90°,∴▱ADEF 是矩形.∵AB =AC ,D ,F 分别是AB ,AC 的中点,∴AD =AF ,∴矩形ADEF 是正方形.即四边形ADEF 是正方形.19.解:(1)∵在△ABC 中,∠B =50°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-50°-70°=60°.∵AD 是△ABC 的角平分线,∴∠BAD =12∠BAC =12×60°=30°.∵DE ⊥AB ,∴∠DEA =90°,∴∠EDA =180°-∠BAD -∠DEA =180°-30°-90°=60°.(2)过点D 作DF ⊥AC 于点F .∵AD 是△ABC 的角平分线,DE ⊥AB ,∴DF =DE =3.又∵AB =10,AC =8,∴S △ABC =12AB ×DE +12AC ×DF=12×10×3+12×8×3=27.20.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠C =90°.由折叠的性质,得DF =CD ,∠F =∠C =90°,∴AB =FD ,∠A =∠F .在△BEA 和△DEF 中,⎩⎨⎧∠AEB =∠FED ,∠A =∠F ,AB =FD ,∴△BEA ≌△DEF .(2)解:∵△BEA ≌△DEF ,∴BE =DE =AD -AE =4-AE .在Rt △BAE 中,由勾股定理,得AB 2+AE 2=BE 2.设AE =x ,则BE =4-x ,∴22+x 2=(4-x )2.解得x =32,故AE 的长为32.21.解:(1)C(2)易知AE ⊥BF ,OB =OF ,AO =EO ,BE =EF ,AB ∥EF .∵BF =4,∴OB =12BF =2.∵四边形ABEF 的周长为16,四边形ABEF 是菱形,∴BE =4.在Rt △OBE 中,根据勾股定理,得OE =2 3,∴AE =2OE =4 3.∵BE =BF =EF =4,∴△BEF 是等边三角形,∴∠FEB =60°.∵四边形ABCD 是平行四边形,∴AB ∥CD .∵AB ∥EF ,∴CD ∥EF ,∴∠C =∠BEF =60°.22.(1)证明:∵AF ∥BC ,∴∠AFE =∠DBE .∵E 是AD 的中点,∴AE =DE .在△AFE 和△DBE 中,⎩⎨⎧∠AFE =∠DBE ,∠FEA =∠BED ,AE =DE ,∴△AFE ≌△DBE .∴AF =DB .∵D 是BC 的中点,∴DB =DC ,∴AF =CD .又∵AF ∥DC ,∴四边形ADCF 是平行四边形.∵∠BAC =90°,D 是BC 的中点,∴AD =12BC =DC ,∴四边形ADCF 是菱形.(2)解:连接DF .∵AF ∥BC ,且由(1)知AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∴S 菱形ADCF =12AC ×DF =12×4×5=10.23.(1)证明:过点E 作EP ⊥CD 于点P ,EQ ⊥BC 于点Q .∵四边形ABCD 为正方形,∴∠DCA =∠BCA ,∴EQ =EP .由题易知∠QEF +∠FEC =45°,∠PED +∠FEC =45°,∴∠QEF =∠PED .在△EQF 和△EPD 中,⎩⎨⎧∠QEF =∠PED ,EQ =EP ,∠EQF =∠EPD =90°,∴△EQF ≌△EPD ,∴EF =ED ,∴矩形DEFG 是正方形.(2)解:由题意知AC =2 2.∵CE =2,∴AE = 2.∴AE =CE .∴点F 与点C 重合,此时△DCG 是等腰直角三角形,易知CG = 2.(3)解:∠EFC =120°或30°.。
【3套】人教版数学八年级下册第十六章测试(含解析答案)
人教版数学八年级下册第十六章测试(含解析答案)一、选择题1.下列各式中,属于二次根式的有( )①; ②;③;④;⑤;⑥(a≤0).A.2个B.3个C.4个D.5个2. (2014·聊城模拟)函数y=中自变量x的取值范围是( )A.x>2B.x<2C.x≠2D.x≥23. (2014·广州模拟)已知|a-1|+=0,则a+b=( )A.-8B.-6C.6D.84.若1≤a≤,则+|a-2|的值是( )A.6+aB.-6-aC.-aD.15.化简×+的结果是( )A.5B.6C. D.56.下列根式中不是最简二次根式的是( )A. B. C. D.7.若x-y=-1,xy=,则代数式(x-1)(y+1)的值等于( )A.2+2B.2-2C.2D.28.(2013·昆明)下列运算正确的是( )A.x6+x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.-=9.(2014·杭州模拟)已知m=×(-2),则有( )A.5<m<6B.4<m<5C.-5<m<-4D.-6<m<-510.计算÷的结果是( )A.-B.C.D.二、填空题11.如图所示,矩形内两相邻正方形的面积分别是3和8,那么矩形内阴影部分的面积是 (结果可用根号表示).12.当x 时,=1-2x.13.计算:-= .14.我们赋予“※”一个实际含义,规定a ※b=·+,则3※5= . 15.(7-5)2 012×(-7-5)2 013= .16.将一组数,2,,2,,…,2按如下方法进行排列:2 2 23 2 22 4 6若3在第2行第3列的位置记为(2,3),2在第3行第2列的位置记为(3,2),则这组数中最大的有理数的位置记为 .三、解答题17.计算下列各题: (1)÷×;(2)(-2)(+2);(3)--+.18.先化简,再求值:÷,其中a=5-,b=-3+.19.若x,y为实数,且y=++,求-的值.20.已知M=-,N=.甲、乙两个同学在y=++18的条件下分别计算了M和N的值.甲说M的值比N 大,乙说N的值比M大.请你判断谁的结论是正确的,并说明理由.21.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上形如,,的式子,其实我们还可以将其进一步化简:==;(一)==;(二)===-1.(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得= ;②参照(四)式得= .(2)化简:+++…+.参考答案1.答案:D 解析:属于二次根式的有①②③⑤⑥,共5个.2.答案:A 解析:根据题意得x-2≥0且x-2≠0.解得x>2.3.答案:B 解析:因为|a-1|+=0,所以a-1=0,7+b=0,解得a=1,b=-7,所以a+b=-6.4.答案:D 解析:原式=|a-1|+|a-2|=a-1-(a-2)=1.5.答案:D 解析:×+=+=+=3+2=5.6.答案:C 解析:==2,被开方数中含有开得尽方的因数,因此不是最简二次根式.7.答案:B 解析:(x-1)(y+1)=xy+x-y-1=+-1-1=2-2.8.答案:D解析:A.本选项不能合并,错误;B.=-2,本选项错误;C.(x+2y)2=x2+4xy+4y2,本选项错误;D.-=3-2=,本选项正确.9.答案:A 解析:m=×(×)=×()2×=2,因为25<28<36,所以<2<,即5<2<6.10.答案:A 解析:原式=÷=-÷=-.11.答案:2-3 解析:S阴影=(-)×=2-3.12.答案:≤解析:由题意得1-2x ≥0,解得x≤.13.答案:2 解析:原式=2+-=2.14.答案:解析:3※5=×+=+=.15.答案:-7-5解析:原式=[(7-5)×(-7-5)]2 012×(-7-5)=(50-49)2 012×(-7-5)=-7-5.16.答案:(17,2) 解析:将各个数都还原为带有根号的式子,不难发现,被开方数是连续的偶数.2=,因为204÷2÷6=17,即2是(17,6),所以是最大的有理数,即(17,2).17.解:(1)÷×==;(2)(-2)(+2)=2-12=-10;(3)--+=2-3-+=-.18.解:化简得原式=,因为a=5-,b=-3+,所以原式===1.19.答案: 解:由已知可得x=,y=,化简得原式=2,把x,y的值代入,可得原式=2=.20.解:乙的结论正确.理由:由y=++18,可得x=8,y=18.因此,M=-==-=-=-;N===0.所以M<N,即N的值比M大.21.解:(1)①===-;②====-.(2)原式=+++…+=+++…+=.人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版(湖北)八年级数学下册:第十六章单元检测题一、选择题(每小题3分,共30分)1.下列式子一定是二次根式的是(C)A.3-xB.-5C.x2+1D.3 42.下列二次根式中,x的取值范围是x≥3的是(C)A.3-xB.6+2xC.2x-6D.1 x-33.下列二次根式中,是最简二次根式的是(A)A.2xy B.ab2 C.0.1 D.x4+x2y24.下列二次根式,不能与12合并的是(B)A.48B.0.3C.113D.-755.下列各式运算正确的是(C) A.2+3= 5 B.2+2=2 2C.3 2-2=2 2 D.18-82=9-4=3-2=16.设5=a,6=b,用含a,b的式子表示 2.7,则下列表示正确的是(A) A.0.3ab B.3ab C.0.1ab2D.0.1a2b7.化简(-4)2+32-(-2 3)2的结果是(A)A.-5 B.18 C.-13 D.118.等式x+1x-1=x+1x-1成立的条件是(A)A.x>1 B.x<-1 C.x≥1 D.x≤-19.已知y<2x-6+6-2x+3,化简(y-3)2+2x-y2-8y+16为(C)A.2y-13 B.13-2y C.5 D.310.已知正整数a,m,n满足a2-42=m-n,则这样的a,m,n的取值(A)A.有一组B.有两组C.多于两组D.不存在二、填空题(每小题3分,共18分)11.化简:18x2y3(x>0,y>0)=.12.比较大小:2 3__<__3 2.13.如果最简二次根式3a-8与17-2a能够合并,那么a的值为__5__.14.若(2a-1)2=1-2a,则a的取值范围为________.15.观察下列式子:1+112+122=112,1+122+132=116,1+132+142=1112……根据此规律,若1+1a2+1b2=1190,则a2+b2=__181__.16.已知a ,b ,c 满足a =2b +2,且ab +32c 2+14=0,则bc a 的值为__0__. 三、解答题(共72分)17.(8分)计算:(1) 27-12+13; (2) (48-75)×113; 【解析】原式=4 33. 【解析】原式=-2.(3) (48+4 6)÷27; (4) (23-5)(23+5)-(5-3)2.【解析】原式=43+432. 【解析】原式=-1+2 15.18.(8分)先化简,再求值:(a -1+2a +1)÷(a 2+1),其中a =2-1. 【解析】原式=1a +1=22.19.(8分)已知a +1a =6,求a -1a ,a 2-1a2的值. 【解析】(a +1a )2=a 2+1a 2+2=6,∴a 2+1a 2=4.∴(a -1a )2=a 2+1a 2-2=2.∴a -1a=±2.∵(a 2+1a 2)2=a 4+1a 4+2=16,∴a 4+1a 4=14.∴(a 2-1a 2)2=a 4+1a 4-2=12,∴a 2-1a 2=±2 3.20.(8分)一个三角形的三边长分别为23 27x ,24 x 12,1x75x 3,其中x >0. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.【解析】(1)周长=113x.(2)当x =3时,周长=33.21.(8分)化简求值:(1)已知x =5-12,求x 2+x -1的值; 【解析】原式=0.(2)已知x +y =-4,xy =2,求x y +y x的值. 【解析】原式=(x +y )xy xy=-2 222.(10分)已知长方形的长a =1232,宽b =1318. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【解析】(1)2(a +b)=2×(1232+1318)=2×(2 2+2)=6 2.故长方形的周长为6 2.(2)4 ab =4 12 32×13 18=4 2 2×2=4×2=8.因为6 2>8,所以长方形的周长大.23.(10分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,请问冰川约是多少年前消失的?【解析】(1)d =7×t -12,当t =16时,d =7×16-12=14.即冰川消失16年后苔藓的直径为14厘米.(2)在d =7×t -12中,当d =35时,35=7×t -12,即t -12=5,解得t =37.即苔藓的直径是35厘米时,冰川约是37年前消失的.24.(12分)解答下列各题:(1)已知x =3+23-2,y =3-23+2,求x 3-xy 2x 4y +2x 3y 2+x 2y 3的值; 【解析】x =(3+2)2=5+2 6,y =(3-2)2=5-2 6,∴x -y =4 6,xy =1,x +y =10.∴原式=x -y xy (x +y )=2 65.(2)当x =1-2时,求x x 2+a 2-x x 2+a 2+2x -x 2+a 2x 2-x x 2+a 2+1x 2+a 2的值. 【解析】令m =x 2+a 2,则x 2+a 2=m 2.原式=x m (m -x )+2x -m x (x -m )+1m =(m -x )2mx (m -x )+1m =1x=-1- 2.。
最新新人教版数学教师教学用书八年级下册第16—20章测试题讲解学习
7.命题“在同一个三角形中,等边对等角”的逆命题是_________________
_______________________,是____________(填“真命题”或“假命题”).
8.已知一个直角三角形的两条直角边长分别为6和8,那么这个直角三角形斜边上的高为__________.
(1)如果每人分别买门票,求y与x之间的函数关系式;
(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;
(3)请根据人数变化设计一种比较省钱的购票方案.
新版人教版八年级数学下册第二十章数据分析测试卷
(时间:45分钟,满分:100分)
一、选择题(每小题6分,共36分)
1.数据2,3,5,5,4的众数是( )
新人教版八年级数学下册第十八章平行四边形测试卷
(时间:45分钟,满分:100分)_
一、选择题(每小题5分,共30分)
1.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()
A.AB=DC,AD=BC B.AB∥DC,AD∥BC
C.AB∥DC,AD=BC D.AB∥DC,AB=DC
2.如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论中不一定成立的是()
A.2 B. C. D.1
5.某油箱容量为50L的汽车,加满汽油后开了200km时,油箱中的汽油大约消耗了 .如果加满汽油后汽车行驶的路程为xkm,油箱中的剩油量为yL,则y与x之间的函数关系式和自变量取值范围分别是()
A. , >0 B. , >0
C. , D. ,
6.食用油沸点的温度远高于水的沸点温度(1000C).小明为了用刻度不超过1000C的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
人教版八年级数学下册第十六章测试卷及答案
人教版八年级数学下册第十六章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.在下列各式中,不是二次根式的有( )同号,且A.3个 B.2个 C.1个 D.0个2.( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-13. 下列式子中,为最简二次根式的是( )A4. 下列计算错误的是( )A BC D5.下列计算正确的是( )A.32=6 B.(-25)3=-85C.(-2a2)2=2a4 D6.若实数a,b满足ab>0,则化简( )A7.( )A.5和6之间 B.6和7之间C.7和8之间 D.8和9之间8.若x<0,( )A.0 B.-2 C.0或2 D.29.已知a,b,c为△ABC的三边长,|b-c|=0,则△ABC的形状是( ) A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10. 已知实数x,y满足:y( )A..5二.填空题(共8小题,每小题3分,共24分)11.计算_______.12. 已知a <2,_________.13.如图是一个简单的数值运算程序,当输入x ,则输出的值为________.输入x →→输出14.在△ABC 中,a,b,c 为三角形的三边长,化简2|c -a -b|=________.15.x 的取值范围是________.16.实数a,b 在数轴上对应点的位置如图所示,______.17.某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B 处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n(n >1)倍,且钢梁保持水平,则弹簧秤读数为________(N)(用含n,k 的代数式表示).18.已知三角形的三边长分别为a,b,c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S 其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 若一个三角形的三边长分别为2,3,4,则其面积是________.三.解答题(共7小题, 66分)19.(8分) 计算下列各式:;20.(8分) 先化简,再求值:a 2-b 2a ÷(a -2ab -b 2a ),其中a 2,b 2.21.(8分) 已知x 2,求(9+2-2)x +4的值.22.(8分) 已知实数a,b 满足(4a -b +11)20,求1的值.23.(10分)如图,用两个边长均为的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长.宽之比为4∶3,且面积为720 cm 2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.24.(10分) 先阅读材料,再回答问题:已知x1,求x2+2x-1的值.计算此题时,若将x1直接代入,则运算非常麻烦.仔细观察代数式,发现由x1,得x+1所以(x+1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x1,得x+1∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x2,求6-2x2+8x的值.25.(14分) (1)用"="">""<"填空:4++16________2+5________2(2)由(1)中各式猜想m+n与,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成长方形的花圃,如图所示,花圃恰好可以借用一段墙体,为了围成面积为200 m2的花圃,所用的篱笆至少为多少米?参考答案1-5BABCD 6-10ABDBD12. 2-a14. -a -3b +3c15. x>216. -2a 17.k n19. 解:(1)原式=2=5;(2)原式=20.解:原式=(a +b)(a -b)a ÷a 2-2ab +b 2a =(a +b)(a -b)a ·a(a -b)2=a +b a -b .当a 2,b 2时,21. 解:原式=(9+2)2-2)+4=(9+--1+4=81-80-1+4=422. 解:由题意得{4a -b +11=013b -4a -3=0解得{a =14b =12.则1==14×14×223. 解:(1)30(cm)(2)不能,理由如下:设长方形纸片的长为4x cm,宽为3x cm,则4x·3x =720,解得x =∴4x =30,∴不能剪出符合要求的长方形纸片24. 解:由x 2,得x -2∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x)=6-2×1=4.25. 解:(1)>;>;=(2)m 理由如下:当m≥0,n≥0时2≥0,∴2-2≥0.∴m -∴m (3)设花圃平行于墙的一边长为a m,垂直于墙的一边长为b m,则a >0,b >0,ab =200.根据(2)中的结论可得a 2×20=40,∴所用的篱笆至少为40 m.。
初中数学同步训练必刷题(人教版八年级下册 第十六章 二次根式 全章测试卷)(学生版)
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
人教版八年级数学下册第16章二次根式质量评估试卷(含答案)
第十六章质量评估试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.代数式x+1x-1有意义,则x的取值范围是()A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1D.x≥-12.下列运算正确的是()A.4+9=4+9B.12×6=62 C.32-2=3 D.24÷3=23 3.下列二次根式中,可以与2合并的是() A. 4 B.2aC.29 D.124.下列计算正确的是()A.83×23=16 3 B.53×52=56 C.43×22=6 5 D.32×23=665.在24,ab,x2-y2,a2-2a+1,3x中,最简二次根式的个数为()A.1 B.2C.3D.46.计算32×12+2×5的结果估计在()A.10与11之间 B.9与10之间C.8与9之间D.7与8之间7.按如图1所示的程序计算,若开始输入的n的值为2,则最后输出的结果是( )图1A .14 B.16 C.8+5 2D.14+28.若x =3+12 2 019,y =3-12 2 019,则x 2+2xy +y 2的值为( )A .12 B.8 C. 3D. 2 0199.已知x ,y 是实数,3x -y +y 2-6y +9=0,则y 2x 的值是( ) A.13 B.9 C.6D.1610.甲、乙两人对题目“先化简再求值:1a +1a2+a 2-2,其中a =15”有不同的解答. 甲的解答是:1a +1a 2+a 2-2=1a +⎝ ⎛⎭⎪⎫1a -a 2=1a +1a -a =2a -a=495; 乙的解答是:1a +1a 2+a 2-2=1a +⎝ ⎛⎭⎪⎫1a -a 2=1a +a -1a =a =15.在两人的解答中( ) A .甲正确 B.乙正确 C.都不正确D.无法确定二、填空题(每小题4分,共24分)11.一般地,若x 4=a (a ≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个,它们互为相反数,记为±4a .若4m 4=10,则m = .12.若最简二次根式2x -1能与3合并,则x 的值为 .13. 如果(2+2)2=a +b 2(a ,b 为有理数),则a = ,b = .14. 若实数x ,y 满足y =2x -1+1-2x +13,则代数式x 2-2x+y 2= .15.若5的整数部分为a ,小数部分为b ,则a -1b -ab 的值为 .16.对于任意两个正数m ,n ,定义运算※为:m ※n =⎩⎪⎨⎪⎧m -n (m ≥n ),m +n (m <n ).计算(8※3)×(18※27)的结果为_________. 三、解答题(共66分)17.(8分)把下列各式化为最简二次根式: (1)200;(2)438;(3)24a 3b 2c (a >0,b >0,c >0);(4)16a 3+32a 2(a >0).18.(9分)计算:(1)()32+||-2-()π-20;(2)⎝⎛⎭⎪⎫8-12×6;(3)(-3)0-27+|1-2|+13+2.19.(8分)已知a =(3-1)(3+1)+|1-2|,b =8-2+⎝ ⎛⎭⎪⎫12-1,求b -a 的算术平方根.20.(9分)计算:(1)(1+3)(1-3)(1+2)(1-2);(2)(3+2)2(3-2)2;(3)(3+32-6)(3-32-6).21.(10分)已知x =2+3,y =2-3,求⎝ ⎛⎭⎪⎫1x +1y ⎝ ⎛⎭⎪⎫1x -1y 的值.22.(10分)阅读理解:对于任意正实数a ,b ,∵(a -b )2≥0,∴a -2ab +b ≥0,∴a +b ≥2ab ,只有当a =b 时,等号成立.∴在a +b ≥2ab 中,只有当a =b 时,a +b 有最小值2ab .根据上述内容,解答下列问题:(1)若a +b =9,求ab 的取值范围(a ,b 均为正实数).(2)若m >0,当m 为何值时,m +1m 有最小值?最小值是多少?23.(12分)先阅读下面的材料,再解答问题. ∵(a +b )(a -b )=a -b , ∴a -b =(a +b )(a -b ). 特别地,(14+13)(14-13)=1, ∴114-13=14+13.当然,也可以利用14-13=1,得1=14-13, ∴114-13=14-1314-13=(14)2-(13)214-13=(14+13)(14-13)14-13=14+13.这种变形叫做将分母有理化. 利用上述思路方法计算下列各式:(1)⎝ ⎛⎭⎪⎫12+1+13+2+14+3+…+12 021+ 2 020×( 2 021+1);(2)34-13-613-7-23+7.参考答案1.A 2.B 3.C 4.D 5.B 6.D 7.C 8.A 9.B 10.A 11.±10 12.2 13.6 4 14.-233615.6-5 16.3+3617.(1)102 (2)6 (3)4ab ac (4)4a a +2 18.(1)4 (2)33 (3)-23 19.1 20.(1)2 (2)1 (3)-9-62 21.-83 22.(1)0<ab ≤92(2)当m =1时,m +1m 有最小值,最小值是2. 23.(1)2 020 (2)1。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12. 2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14. 231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析
2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。
人教版八年级数学下册第十六章《二次根式》单元测试卷附答案
第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)16.计算:3√5+2√12−√20.17.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=√2ℎg(不考虑风速的影响,g≈10 m/s2).(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J的动能)23.阅读下列材料,然后解答问题:√5=√5√5×√5=3√55.(一)√2 3=√2×3√3×3=√63.(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化.。
人教版八年级数学下册第十六章综合素质评价附答案
人教版八年级数学下册第十六章综合素质评价一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列式子是二次根式的是()A.x B.18 C.314 D.-10 2.若二次根式x-5有意义,则x的取值范围是()A.x>-5 B.x≥5 C.x≤5 D.x>5 3.下列二次根式中,是最简二次根式的是()A. 2 B.12 C.12D.94.下列计算错误的是()A.2+2 2=3 2 B.12-3= 3C.3×6=2 3 D.6÷2= 35.设10的小数部分为b,则(10+3)b的结果是()A.1 B.一个无理数 C.3 D.无法确定6.【教材P19复习题T8改编】若75n是整数,则正整数n的最小值是() A.2 B.3 C.4 D.5 7.【2022·深圳校级月考】已知a≠0且a<b,化简二次根式-a3b的正确结果是() A.a ab B.-a ab C.a-ab D.-a-ab 8.【教材P15习题T6变式】已知a=3+2 2,b=3-2 2,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-4 2 9.如图,数轴上表示1,2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.2-1 B.1- 2 C.2- 2 D.2-210.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A. 2 B.2 C.2 2 D.6二、填空题:本大题共5小题,每小题3分,共15分.11.【2022·新兴县期末】计算:123÷56=________.12.计算(5-2)2 022(5+2)2 023的结果是________.13.使(6-x)(x-4)2=(4-x)6-x成立的条件是________.14.在△ABC中,a,b,c为三角形的三边长,化简(a-b+c)2-2|c-a-b|=________.15.【2022·深圳南山区校级月考】规定运算符号“△”的意义:当a>b时,a△b=a +b;当a≤b时,a△b=a-b,其他运算符号的意义不变,计算:(3△2)-(2 3△3 2)=________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.求下列二次根式中字母的取值范围:(1)2k-1;(2)1k+1.17.计算:(1)18-8+18(2)(6-23)×(- 6 ).18.化简求值:a2-1a2-2a+1+2a-a2a-2÷a,其中a=2+1.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知实数a,b,c在数轴上的位置如图,化简:a2-|a-b|+(b+c)2.20.如果最简二次根式2m+n+3与m-n-1m+10是可以合并的,求正整数m,n 的值.21.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?五、解答题(三):本大题共2小题,每小题12分,共24分.22.【教材P19复习题T5拓展】先阅读材料,再回答问题:已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1,得x+1=3,所以(x +1)2=3.整理,得x2+2x=2.再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,∴(x+1)2=3.整理,得x2+2x=2,∴x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.23.观察下列等式:①12+1=2-1(2+1)(2-1)=-1;②13+2=3-2(3+2)(3-2)=3- 2③14+3=4-3(4+3)(4-3)=4- 3……(1)利用你观察到的规律,化简:16+5=____________,123+11=____________;(2)计算:11+2+12+3+13+2+…+12022+2023答案一、1.B2.B3.A4.C5.A6.B7.D8.C9.C提示:∵表示1,2的对应点分别为A,B,∴圆的半径为2-1.∵以AB为半径的圆交数轴于点C,∴点C表示的数是1-(2-1)=2-2.10.B提示:由题意可得,大正方形的边长为8=2 2,小正方形的边长为2,∴图中阴影部分的面积为2×(2 2-2)=2.二、11.212.5+213.x≤414.-a-3b+3c提示:∵a,b,c为三角形的三边长,∴a+c>b,a+b>c,∴a-b+c>0,c-a-b<0.∴(a-b+c)2-2|c-a-b|=(a-b+c)+2(c-a-b)=-a-3b+3c.15.-3+4 2提示:∵当a>b时,a△b=a+b;当a≤b时,a△b=a-b,3>2,2 3<3 2,∴(3△2)-(2 3△3 2)=3+2-(2 3-3 2)=-3+4 2.三、16.解:(1)由题可得,2k-1≥0,解得k≥1 2.(2)由题可得k+1>0,解得k>-1.17.解:(1)18-8+1 8=3 2-2 2+2 4=5 2 4.(2) (6-23)×(-6)=6×(-6)-23×(-6)=-6+2=-4. 18.解:原式=(a +1)(a -1)(a -1)2+a (2-a )a -2·1a =a +1a -1-1=2a -1. 当a =2+1时,原式=22+1-1=2. 四、19.解:由实数a ,b ,c 在数轴上的位置可得a <-1,-1<c <0,b >1,∴a <0,a -b <0,b +c >0,∴a 2-|a -b |+(b +c )2=-a -(b -a )+b +c =c .20.解:根据题意,得⎩⎨⎧m -n -1=2,2m +n +3=m +10, 解得⎩⎨⎧m =5,n =2. 即m ,n 的值分别为5,2.21.解:(1)12×(8+32)×3=12×(2 2+4 2)×3=12×6 2×3=3 6(m 2). 答:横断面的面积为3 6 m 2. (2)3003 6=1006=100 66×6=100 66=50 63(m). 答:可修50 63 m 长的拦河坝.五、22. 解:由x =5+2,得x -2=5,∴(x -2)2=5.整理,得x 2-4x =1,∴6-2x 2+8x =6-2(x 2-4x )=6-2×1=4.23.解:(1)6-5;2 3-11(2)原式=(2-1)+(3-2)+(2-3)+…+( 2 023- 2 022)= 2 023-1.。
八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)
八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.(−√5)2的值为( )A .5B .−5C .√5D .−√52.已知√18n 是整数,正整数n 的最小值为( )A .2B .0C .3D .43.下列式子中,属于最简二次根式的是( )A .√4B .√5C .√12D .√13 4.下列运算正确的是( )A .(13)−2=−19B .2√2×√2=3√2C .(−2x)3=−8x 3D .a 9÷a 3=a 3(a ≠0)5.代数式√x+1有意义时,x 应满足的条件为( )A .x ≠−1B .x >−1C .x <−1D .x ≤−1 6.下列计算正确的是( )A .√6+√2=√8B .√6−√2=2C .√6×√2=3√2D .√6÷√2=√37.已知x +y =√6+√10,xy =√15则x −y 的值为( )A .−4B .4C .±4D .±28.如图,在长方形ABCD 中无重叠放人面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为( )A .(−12+8√3)cm 2B .(16−8√3)cm 2C .(8−4√3)cm 2D .(4−2√3)cm 2二、填空题9.式子√x +3有意义,则x 的取值范围是 .10.计算:2√3×(−√6)= .11.把(a −1)√−1a−1中根号外的(a −1)移入根号内得 .12.已知√7.84=2.8,若√m =280,则m = .13.若√x −2023+√y +2023=2,其中x ,y 均为整数,则x +y = .三、解答题14.计算:(1)√−13+√(−2)2−|2−√3|(1)√(−3)33+√3(√3√3)15.已知:a +b =−2,ab =1求:b√b a +a √a b的值. 16.已知:a= √3+√2,b= √3−√2求a 2-ab+b 2的值.17.已知长方形的长是 3√5+2√3 宽是 3√5−2√3 ,求长方形的周长.18.如图,用两个边长为√18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为30cm 2?请说明理由.19.在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:(√1−3x)2−|1−x|.解:隐含条件1−3x ≥0,解得x ≤13∴1−x >0∴原式=1−3x −(1−x)=1−3x −1+x =−2x .(1)试化简:√(x −3)2−(√2−x)2;(2)已知a 、b 满足√(2−a)2=a +3,√a −b +1=a −b +1,求ab 的值.参考答案1.A2.A3.B4.C5.B6.D7.C8.A9.x≥−310.−6√211.−√1−a12.7840013.2或414.(1)解:(1)原式=−1+2−(2−√3)=−1+2−2+√3=√3−1(2)原式=−3+3+1=1 15.解:∵a+b=−2∴a<0,b<0∴b√ba +a√ab=−ba√ab−ab√ab=(−ba−ab)√ab=−(a2+b2ab)√ab=−(a+b)2+2abab⋅√ab当a+b=−2,ab=1时,原式=−(−2)2+2×11×√1=−2.16.解:a2-ab+b2=(a+b)2-3ab∵a+b=2√3,ab=1∴原式=(a+b)2-3ab=(2√3)2-3×1=917.解: 2×[(3√5+2√3)+(3√5−2√3)]=2×(3√5+2√3+3√5−2√3)=2×6√5=12√5 .即长方形的周长是 12√5 .18.解:不能∵大正方形纸片的面积为(√18)2+(√18)2=36(cm 2) ∴大正方形的边长为6cm设截出的长方形的长为2bcm ,宽为bcm∴2b 2=30∴b=√15(取正值)∵2b=2√15=√60>√36=6∴不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.19.(1)解:∵2−x ≥0,则x ≤2∴x −3<0∴√(x −3)2−(√2−x)2=|x −3|−(2−x)=3−x −2+x=1(2)解:∵√(2−a)2=a +3,√a −b +1=a −b +1 ∴|2−a|=a +3≥0∴a ≥−3,a −b +1≥0∴当−3≤a ≤2时则2−a =a +3,解得:a =−12∵√a −b +1=a −b +1∴a −b +1=0或a −b +1=1解得:b =12或b =−12∴ab =−14或ab =14当a>2时,则a−2=a+3无解,舍去综上:ab=−14或ab=14。
数学八年级(下册)人教4.第十六章综合检测卷+答案
数学第十六章综合检测卷槡3=槡(-2)2×3=槡12…(2-2八年级(下))∴2槡3=-2槡3…(3)时间:100分钟满分:120分∴2=-2…(4)题号一二三总分上面的推导中开始出错的步骤是()得分A.(1)B.(2)C.(3)D.(4)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)槡y=1槡b-9.已知槡b,则槡4y+y2的值是()1.在实数范围内分解因式4a3-8a的结果是()A.4a(a2-2)B.2a(a+2)(a-2)A.b+1bB.b-1bC.1b-1D.以上都不是C.4a(a+槡2)(a-槡2)D.a(a+2)(a-2)10.abab=现定义一种新的运算:对于任意不相等的两个非负实数和,2.下面关于二次根式槡16-2x的说法正确的是(A.没有最大值,最小值为0B.没有最大值,没有最小值)黑马卷,复印、盗版必究。
有奖举报电话:029-87569851(1)槡132-112;(2)-62;槡32y2(a>0,b>0);(4)20x(3)2槡4a3b2c槡5.z18.(本题满分6分)计算:槡50-41(1)(3槡18+15)÷槡32槡2;(2)(槡a2b+槡ab.槡a)(槡b-槡ab2)+5ab1槡a+ba-b,则下列关于这种运算的几个结论:①32=槡5;②ab+ba=0;C.最大值为4,最小值为0D.最大值为4,没有最小值其中③a(b+c)=ab+ac;④不存在这样的实数a和b,使得ab=0.槡2+13槡2-31错误结论的个数是()3.若x=槡2019,y=槡2019,则x2+2xy+y2的值为()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,计18分)A.12B.4C.2019D.84.全国数学联赛是展现学生优秀数学思维的重要平台.某班级对全班学生的数11.数学课上,小梦同学说:“因为槡9=3,所以槡9不是二次根式.”你认为小梦的学素质及思维进行了考察,规定100分为一类,80分为二类,60分为三类,40说法对吗?(填对或错).分及以下为四类,小琪的测试卷如图所示,如果你是老师,小琪应属于()12.神威·太湖之光是我国自主研发的超级计算机,其运算峰值已经达到每秒姓名小琪得分?12.5亿次,多次位居世界第一.某同学对此十分感兴趣,自己设计了一个简易的程序计算,若其开始输入的值是-2槡2,则最后输出的结果是.19.(本题满分10分)先化简,再求值:(1)5x槡5-54槡45x+x槡4x5,其中x=4;(2)a+槡ab槡ab-b,其中a=2+槡ab+b+槡3,b=2-槡3.a-槡ab20.(本题满分10分)1已知x为任意实数,试化简代数式x+1-槡x2-4x+4.填空(每小题20分,共100分)①|1-槡2|-(π-2)0=槡2②若x的平方根是±2,则x2=4③槡11+2的值在4和5之间④(-13)-2+1=-81214第题图第题图⑤16±4槡的平方根是13.已知槡a+9是最简二次根式,且它与槡32可以进行合并,则a=.第4题图14.实数a,b在数轴上对应点的位置如图所示,化简|a|+槡(b-a)2的结A.一类B.二类C.三类D.四类果是.槡x+x-+125.若x为负数,要使得1+有意义,则表示x的值是()15.方程4槡3(x+槡2)=2(槡3x-槡6)的解是.A.-2<x<-1B.-1≤x<0C.0<x<1D.-2<x<016.下面是小倩完成的作业题,请参考小倩的方法解答下面的问题.6.等腰三角形的两条边长分别为3槡5和5槡3,则这个三角形的周长为()A.6槡5+5槡3B.10槡3+3槡5(槡6-槡5)(槡6+槡5)2C.6槡5+5槡3或10槡3+3槡5D.4槡3+6槡5=(槡6-槡5)(槡6+槡5)(槡6+槡5)656565=-++[()()]()槡槡槡槡槡槡7.a=××化简可运用如下方法:原式111槡槡a=槡aa=槡a,那么化简槡a=(6-5)(槡6+槡5)a-5的结果是()=槡6+槡5.槡a槡aB.1aA.-5槡5C.-槡-5aD.-5槡-a计算:(槡6-5)2019×(槡6+5)2020=.槡槡8.数学探究课上,爱动脑筋的李晓强同学通过自己的“智慧”得出了“2=-2”的三、解答题(计72分)17.(本题满分8分)论断,下面是他的推导过程:∵2槡3=槡22×3槡12…(1)把下列各式化为最简二次根式:黑马卷,复印、盗版必究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学下册 第十六章
综合测试卷03
一、选择题(每小题5分,共30分)
1.(2013·x 的取值范围是( )
A .1x <
B .1x ≥
C .1x ≤-
D .1x >
2.(2013· )
A .3-
B .3
C .9-
D .9
3.对任意实数a ,则下列等式一定成立的是( )
A a =
B a =-
C a ±
D ||a =
4.0的结果为( )
A .2
B 1
C .3
D .5
5.下列各数中,与 )
A .2
B .1
C .2- D
6.如果2(2a =+a ,b 为有理数),那么a b +等于( )
A .2
B .3
C .8
D .10
二、填空题(每小题6分,共24分)
7.当2x =-的值是_________.
8.(2013·湖北襄阳)使代数式3x
-有意义的x 的取值范围是_________.
9.实数a 在数轴上的位置如图所示,则化简|2|a -___________.
10.(2014·福州)计算:1)=_________.
三、解答题(共46分)
11.(9分)计算:
(1;
(2);
(3)(2013·20(π2|
-+-.
12.(10分)已知a ,b 为等腰三角形的两条边长,且a ,b 满足4b =,求此三角形的周长.
13.(12分)已知2x =,2y =+求下列代数式的值:
(1)222x xy y ++(2)22x y -
14.(15分)先化简,再求值:
()()
x y y x y x x y -++,其中1x =,1y =.
第十六章综合测试
答案解析
1.【答案】B
【解析】根据题意,得10x -≥,即1x ≥时,二次根式有意义.
2.【答案】B 【解析】原式33=-=.
3.【答案】D
【解析】A 项,a 为负数时,没有意义,故本选项错误;B 项,a 为正数时不成立,故本选项错误;C 项,
a =,故本选项错误.故选D .
4.【答案】C
【解析】原式213=+=.
5.【答案】D
【解析】A 项,(26+⨯=+B 项,(26-⨯=为无理数;C 项,
(26-+⨯=-+为无理数;D 项,6=为有理数.
6.【答案】D
【解析】因为2(26+
=+2(2a +=+,所以6a =,4b =,所以6410a b +=+=. 7.【答案】5
【解析】当2x =-5=
==. 8.【答案】12
x ≥且3x ≠ 【解析】根据题意,得210x -≥,且30x -≠,解得12x ≥
,且3x ≠. 9.【答案】1
【解析】由题图可得,12a <<,则20a -<,10a ->,所以|2|112a a a -=-+=-.
10.【答案】1
【解析】原式211=-=
11.【答案】解:(1
=-
=
=
(2)
=+--
22=--
2(9=--
29=-+
7=-+
(3)原式312=-+-+-=-
12.
所以30260a a -⎧⎨-⎩……
所以3a =,所以4b =
当a 为腰时,三角形的周长为33410++=; 当b 为腰时,三角形的周长为44311++=.
13.【答案】因为2x =-2y =+, 所以4x y +=,
所以22222()416x xy y x y ++=+==.
(2)因为2x =-2y =+
所以4x y +=,x y -=-
所以22()()x y x y x y -=+-
4(=⨯-
=-
14.【答案】原式22
()()
x y xy x y xy x y =-++
22
()
x y xy x y -=+ ()()()x y x y xy x y -+=
+ x y xy
-=.
当1x =+,1y =时
x y xy -=221=
=。