汽车防撞控制系统
基于超声波的汽车防撞系统的设计
基于超声波的汽车防撞系统的设计目录1 绪论 (1)2 课题简介及其发展现状 (3)2.1 课题研究现状及其发展意义 (3)2.2 超声波简介 (4)3 总体设计方案 (5)3.1 设计总体思路概况 (5)3.2 超声波测距原理 (6)3.3 超声波传感器 (7)3.4 控制系统框图 (9)3.5 超声波发射装置设计 (9)3.6 超声波接收装置设计 (11)3.7 温度补偿 (13)3.8 显示电路设计 (14)3.9 报警装置设计 (17)4 软件设计 (18)4.1 软件工作流程 (18)4.2 主程序流程图 (19)4.3 超声波的发生子程序和中断程序 (20)5 硬件设计 (20)5.1 芯片的功能及其测距原理 (21)5.1.1 AT89C51的功能特点 (21)5.1.2 单片机实现测距的原理 (22)5.1.3 系统的特点 (22)5.2 超声波测距系统元器件清单 (23)结束语 (25)参考文献 (26)附录 (20)附录1 汽车防撞测距仪原理图 (24)附录2 程序清单 (25)1 绪论曾几何时,汽车对很多家庭来说是不敢想象的。
但随着社会生产力的发展和经济水平的大幅度提高,百姓的收入日益增加,解决了温饱问题的家庭开始奔向小康,表现最明显的是交通工具的升级换代:一些家庭开始购买汽车作为代步工具。
近几年我国汽车保有量逐年增加,2009年的保有量为6300万辆,2010年达到7400多万辆。
按保守估计,未来国内汽车保有量将达到4.9亿辆左右,即大约350辆/千人。
对于汽车数量的大副度攀升,尽管国家在公路设施上不断地改进,但道路上的车辆仍然还是越来越多,尤其在上下班时段完全避免不了汽车拥挤的现状。
再加上汽车设计中车速的不断提高,虽然公路上各路段都有限速,但撞车事件仍然在广大人民的生活中屡屡发生,给人们带来巨大的人身伤亡和社会财产损失。
针对汽车拥挤的现状,设计一种反应快,稳定性好而且经济实用的汽车防撞测距仪对当今汽车行驶安全现状势在必行。
汽车防碰撞控制系统设计与实现
汽车防碰撞控制系统设计与实现李占锋【摘要】随着科学技术的日新月异与汽车工业的快速发展,汽车给人们的生活带来了一定的便捷,与此同时,也给交通安全带来了新的挑战,汽车主动避撞控制系统的研究一直受到人们广泛关注.开展对汽车防撞系统的研发能够有效的降低交通事故的发生,减少人员以及财产的损失.主要对汽车主动避撞控制系统进行分析,设计相应的控制系统,来操控汽车主动避让前方的危险交通状况,有效的提高汽车行驶的安全性,在实际应用中具有非常重要意义.【期刊名称】《微型电脑应用》【年(卷),期】2018(034)008【总页数】3页(P64-66)【关键词】主动避撞;防撞系统;研究分析【作者】李占锋【作者单位】陕西交通职业技术学院汽车工程学院,西安71018【正文语种】中文【中图分类】U463.60 引言根据交通管理科学研究所所发布的我国近几年的交通事故数据统计,近80%的交通碰撞事故都是由于驾驶员反映不及时所造成的,在人、路、车交通三要素中,人是可知性最差的一个环节,也是不可控的一个要素。
当驾驶员发现前方障碍物时为时已晚,造成严重的经济损失与人员伤亡。
所以,结合当今先进的科学技术、传感技术以及控制理论,为汽车设计主动避让系统成为科研工作者的热门话题。
在发生紧急交通事故时,驾驶员大多采用紧急制动或者安全转向来避免。
在汽车智能化发展的趋势下,本文主要以制动及转向避撞为基础,来设置汽车避撞方式决策机制,根据汽车的实际行驶状况来设定合理的避撞模式[1]。
1 国内外汽车避撞控制系统研究现状及特征运用信息的感知、动态辨识、控制技术等提高汽车的主动安全性,是先进汽车控制与安全系统的主要研究内容,世界各大汽车公司都在开展这方面的研究工作。
日本各大汽车制造企业如丰田、本田、三菱等公司,都致力于新型安全汽车技术研究开发并且取得了非常重要的进展。
丰田汽车公司使用毫米波雷达和CCD摄像机对车距进行动态检测,当两车距离小于规定值时,将会发出直观的警报信号告知驾驶员。
汽车自动防撞系统历史
维基百科,自由的百科全书【摘】汽车防撞系统(英语:collision avoidance system)是一种利用通讯、控制与资讯科技侦测车辆周遭的动态状况,以辅助汽车驾驶人的安全科技。
依各家车厂不同的命名,另有预防碰撞系统(pre-crash system)、前方碰撞预警系统(forward collision warning system)、减少碰撞系统(collision mitigating system)等异称。
∙车道变换辅助系统(Audi Side Assist):车尾的雷达感测器可侦测是否有车辆位于盲点区域,若系统侦测有车辆,能在驾驶人打方向灯并变换车道时,快速闪烁车侧后视镜的LED灯号,以警告侧边有来车接近。
∙车道偏离警示系统(Audi Lane Assist):运用摄影机侦侧车道标线,若系统发现车辆开始偏移,便以震动方向盘的方式警告驾驶人;万一仍不修正偏移,则会介入并让车辆维持在车道之中。
∙预防追撞前车系统(Audi Pre Sense Front):以雷达侦测与前车的距离,若系统判断车距过近,先是透过警示信号提醒驾驶人减速;若驾驶人并未减速,刹车辅助系统便会介入刹车,甚至加强刹车力道。
假设碰撞无可避免,此系统能够在碰撞发生前0.5秒完成所有的减速,大约可降低车速达40km/hr,同时启动警示灯后告知后方来车,且维持紧闭车窗与天窗、紧缩安全带,以减少追撞意外对乘员的伤害。
BMW德国BMW在2013年中期发表互联驾驶系统(BMW ConnectedDrive),整合了资讯、娱乐、行车辅助等多项功能,其中跟汽车防撞相关的功能包含下列:∙主动式定速控制系统(Active Cruise Control):此系统可与碰撞警示暨刹车启动系统、车道变换警示系统、怠速熄火功能等一同连动。
在巡航定速的状态下,当前方车辆进入感测器的监控范围时,系统会自动降速以保持安全间距;等到前方车道净空时又恢复原先设定的时速。
汽车防碰撞控制装置系统分析
即从激光 扫描雷达所获 “ 距 离与方位 ” 的大量 数据组 中抽取有用 数据。第二步是进行安全危险判定 , 即判断追尾碰撞的危 险程度 。 2 雷 达 防碰 撞 装 置 车辆行驶 路径是根据后 面的汽车 动力学特征 , 如 车速 、 转 向角及 雷达是利用 目 标对电磁波的反射来发现 目标并测定其位置的。 横 向摆动速率等来估算 的。 2 . 1 雷达系统的组成及工作原理 。 雷达的组成及简单工作原理如 根据路 面状 况 、 后 面车速及 相对 车速 , 计 算 出“ 临界 车 间距 离” , 该值 是由路径估算方法确定的车间距离的微分值 。 判 定安全, 图1 所 示 危险 的方法 , 就是将 实际测量的车间距离与临界车 间距 离进 行 比 较 。在临界车间距离非常接近实 际测量 的车间距 离的某一时刻 , 报警器发出警告信号 。当临界车间距离等于或小于实际测量 的车 间距离时 , 自动制动控制系统启动 。 3 . 3 带有 自动制动操作机构 的车辆控制 。由安全, 危险预警 信号 控制 的 自动制动操 作机构 , 配有 防抱死 制动 系统 , 并 采用高 速电 图1 雷达 的 组 成及 简单 工作 原 理 磁 阀进行纵 向加速度反馈控制 。该 自动制动操作机构的优点是 , 如果驾驶员 的脚 制动力大于 自 雷达工作 时 , 定时器触发调制器 , 调制器 产生调制脉 冲 , 使振 当 自动操作机构处于工作状态 时 , 那么驾驶员 的脚制动力有效 。一旦 自动 荡器产生大功率脉冲信号经 天线 向空 间辐射电磁波。在天线控制 动制动控制 的前动力 时, 脚 制动系统并 不受影响 , 由于采用液压 制动 系统 的作用 下 , 天线波束按规定 方式在空 间扫描 。若 电磁波遇到 制 动操作机构失灵 , 目标 , 则 目标反射 回来 的回波信号经 天线 接入接 收机 , 在通 过信 分泵 , 不会使两液压 回路之间产生压差 。 号处理后 , 最后送到终端设备 , 得 到 目标 的坐标工作原理。 通过试验使用表 明, 这 种基于汽车间 的距离 、 相对速度 、 后面 2 . 2 电磁波雷达 防撞装置 。在 汽车行驶过程 中 , 当发射机采用微 车辆 的速度及道路状 况等信息建立 的安全/ 危险情况 判定法 , 不仅 波调频连续波体 制发射 电磁波时 , 雷达窄波束 向前发 射调频连续 可避免与前 面暂停车辆或停驻 车辆 的追尾碰撞 , 而且还 能防止与 波信 号。当发射信号遇到 目标时 , 被反射 回来 的电磁 波被 同一天 前 面实施紧急制动的车辆之 间的追尾碰撞 。这个系统在保护乘客
汽车防碰倒车撞报警系统设计.
目录摘要 (1)目录 (1)绪论 (3)第一章汽车防撞报警系统设计简介 (4)1.1 设计概要 (4)1.1.1设计任务与要求 (4)1.1.2研究方法 (4)1.1.3解决的关键问题 (4)1.2 汽车防撞报警系统设计的意义 (5)第二章设计思路分析 (7)2.1 系统总体方案 (7)2.2 工作原理 (8)2.3 控制器AT89C2051的功能特点 (8)第三章系统硬件电路设计 (9)3.1 系统硬件方案设计 (9)3.2 遥控器控制框图 (10)3.3 工作原理剖析 (11)3.3.1传感器的选择 (11)3.3.2超声波的发射与接收电路 (11)3.3.3测速原理 (12)3.4 实物设计所能达到的功能及操作说明 (12)第四章系统软件电路设计 (14)4.1 主程序 (14)4.2 串口通信模块——transplant.C (15)4.3 程序编写 (16)第五章调试与测试 (18)总结 (19)参考文献 (20)附录1 (20)附录2 (22)致谢 (25)绪论随着时代的发展及社会的进步,越来越多的汽车进入了普通人的家庭。
汽车逐渐成为人们生活中不可缺少的一部分。
尽管公路条件在不断地改进,但仍然避免不了公路上汽车拥挤的现状,再加上设计车速不断提高,恶性交通事故无时无刻不在发生,给人们和社会带来了巨大的生命与财产损失。
汽车防撞报警系统也因此应用而生。
汽车防撞报警系统是一种当汽车离障碍物较近时向司机预先发出报警信号的装置,通常系统的各个探测器安装于汽车的几个关键的车身部位,能探测到接近车身的行人、车辆和周围的障碍物,能向司机或乘客提前发出即将发生撞车危险的信号,促使司机甚至撇开司机采取应急措施处理特殊险情,避免损失。
同时当汽车发生故障时,可以通过按动警示信号键向过往的车辆发送无线警示信号,提醒过往车辆的司机注意,从而更有效地避免交通事故的发生。
汽车的各种方便性正不断地被人们所接受,现如今如同是一般的家用电器一样地进入平常百姓的家中,开发本系统,可以广泛地安装于各种家用轿车、客车、货车等,如与车载微型电脑相配合,可以实现更多的人工智能化操作,是实现汽车无人驾驶必不可少的一个组成部分,也是未来汽车的发展方向,因此运用前景是相当可观。
防撞雷达--汽车防碰撞系统的核心
防撞雷达--汽车防碰撞系统的核心随着汽车的智能化和自动化程度不断提升,汽车防碰撞系统越来越受到人们的关注。
而防撞雷达则是汽车防碰撞系统中的核心部件之一。
本文将从防撞雷达的基本原理、不同类型、应用现状等方面展开论述。
一、防撞雷达的基本原理防撞雷达是一种利用无线电波实现距离检测的装置,其工作原理基于雷达信号的反射。
当发射的无线电波遇到障碍物并被反射回来后,系统通过测量反射信号的强度、频率和相位等参数计算出障碍物的距离和方位。
通过不断扫描周围环境,防撞雷达可以实时监测到汽车周围的障碍物,并根据其距离和方位发出警示或控制汽车的行驶路线,从而避免碰撞事故的发生。
二、不同类型的防撞雷达目前市场上常见的防撞雷达有超声波雷达、毫米波雷达和激光雷达三种类型。
超声波雷达主要基于超声波的反射原理,具有响应速度快、成本低等特点,但其检测距离较短,且易受到环境噪声的干扰,因此在实际应用中受到了一定的限制。
毫米波雷达则利用毫米波信号实现距离测量,具有高精度、高灵敏度和抗干扰能力强等诸多优点,被广泛应用于自动驾驶汽车及其他智能化汽车领域。
激光雷达最大的优势是其精度非常高,可以实现高精度三维地图构建。
但由于成本较高,一般只被用于高档车型或自动驾驶领域等特定场合。
三、防撞雷达的应用现状近年来,随着智能化汽车的流行,防撞雷达的应用范围也越来越广泛。
目前,防撞雷达已成为主流汽车防碰撞系统的核心部件,且将在未来持续发挥着重要作用。
例如,在一些高端车型中,防撞雷达已经被用于实现自适应巡航和自动泊车等功能;在一些中低端车型中,防撞雷达也被广泛地应用于倒车雷达、前方障碍物检测等功能。
据统计,到2025年,全球汽车雷达市场规模将达到480亿美元,其中防撞雷达的市场份额将占据更大比例,可见其广泛应用的前景。
综上所述,防撞雷达作为汽车防碰撞系统的核心部件之一,具有重要意义。
其基本原理、不同类型以及应用现状的了解,将有助于我们更好地理解汽车防碰撞系统的工作原理,掌握防撞雷达的选型与应用技能,提高汽车的安全性和智能化程度。
汽车防撞预警系统设计
汽车防撞预警系统设计一、系统概述汽车防撞预警系统主要由传感器、控制器、报警装置和执行机构四部分组成。
传感器负责实时监测车辆周围的环境信息,控制器对收集到的信息进行处理和分析,判断是否存在碰撞风险,如有风险,立即启动报警装置并控制执行机构进行干预。
二、传感器选型与布局1. 传感器选型为实现全天候、全方位的监测,本系统选用毫米波雷达、摄像头和超声波传感器三种传感器。
毫米波雷达具有穿透力强、抗干扰能力强等优点,适用于雨雾等恶劣天气;摄像头可识别道路标志、行人和车辆等目标;超声波传感器则用于检测车辆周围的近距离障碍物。
2. 传感器布局根据车辆结构和行驶需求,本系统将传感器均匀分布在车辆的前后左右四个方向,确保无死角监测。
具体布局如下:(1)前方:安装两个毫米波雷达,分别位于车辆前保险杠两侧,覆盖前方120°的监测范围。
(2)后方:安装一个毫米波雷达,位于车辆后保险杠中央,覆盖后方60°的监测范围。
(3)左右两侧:各安装一个摄像头,分别位于车辆左右两侧,覆盖左右两侧60°的监测范围。
(4)四周:安装四个超声波传感器,分别位于车辆前后保险杠和左右两侧,用于检测近距离障碍物。
三、控制器设计1. 算法设计(1)数据预处理:对传感器采集到的数据进行去噪、滤波等处理,提高数据质量。
(2)目标检测与识别:通过摄像头识别道路标志、行人和车辆等目标,结合毫米波雷达和超声波传感器数据,确定目标的位置、速度等信息。
(3)碰撞风险评估:根据目标的位置、速度等信息,计算与本车的相对距离和相对速度,预测未来一段时间内可能发生的碰撞情况。
(4)预警决策:根据碰撞风险评估结果,判断是否触发预警。
2. 硬件设计控制器硬件部分主要包括处理器、存储器、通信接口等。
处理器选用高性能、低功耗的嵌入式芯片,满足系统实时性和稳定性的需求;存储器用于存储算法模型和运行数据;通信接口负责与传感器、报警装置和执行机构进行数据交互。
汽车自动防撞系统工作原理
汽车自动防撞系统工作原理
汽车自动防撞系统通过集成传感器(如毫米波雷达、激光雷达、超声波传感器和摄像头)实时监测车辆前方及周边的障碍物距离、速度和运动方向。
当系统预测到可能发生碰撞时,即计算出的安全距离不足或碰撞时间(TTC)过短时,数据处理单元会迅速分析并发出预警信号,必要时控制刹车系统进行自动减速或紧急制动,以避免或减轻碰撞损害。
整个过程包括实时监测、信息处理、风险评估和主动干预等阶段,旨在提升行车安全。
主动防撞预警系统概述
主动防撞预警系统概述作者:李文娜来源:《时代汽车》 2018年第5期摘要:随着汽车产业的迅速发展,数量急剧上升,交通事故的发生率也越来越高,为了更好的保证人们的生命财产安全,主动安全技术越来越受到关注。
《中国制造2025》中也指出“到2020年,掌握智能辅助驾驶总体技术及各项关键技术,初步建立智能网联汽车自主研发体系及生产配套体系。
”主动防撞预警系统作为智能辅助驾驶的一个重要方面,也受到人民关注。
本文主要对主动防撞预警系统类型、组成功用、工作过程等进行阐述。
关键词:主动安全;防撞预警;辅助驾驶1 主动防撞预警系统类型主动防撞预警系统类型较多,按照控制方向分为:1.1 纵向制动主动防撞系统这种形式的主动防撞主要是针对正向碰撞,当前方出现当危险情况,驾驶员未及时采取相应措施,纵向制动防撞系统就会工作,实现汽车制动甚至停车从而有效的避免碰撞的发生或减小碰撞过程中车辆的损坏。
1.2侧向转向主动防撞系统通过检测及判断确定前方有危险情况时,侧向转向主动防撞系统能够接管驾驶,是汽车主动转向躲避前方危险车辆,同时要对危险目标的位置进行确认,使自车能够安全的绕过前车。
1.3复合型智能主动防撞系统这种主动防撞预警系统所需的算法及操纵机构要复杂很多,出现危险情况时,该系统会先计算需要进行制动还是转向操作,是主动防撞效果达到最优,从而避免碰撞的发生或减轻碰撞损坏程度。
2主动防撞预警系统的组成主动防撞预警系统包括车辆行驶信息感知模块、车辆控制分析模块、车辆控制辅助执行模块三部分构成,三者即使独立的又相互联系,各个模块即时通讯并采取相应动作,实现车辆安全驾驶。
车辆行驶信息感知模块主要是对车辆前方的行驶状况进行探测,包括:目标速度,目标位置、两车距离等信息。
车辆行驶信息感知模块得到的关键信息,通过CAN总线传递到车辆控制分析模块,车辆控制分析模块对数据进行相应的分析,最终得到危险级别等级,将对车辆进行的控制指令传递给车辆控制辅助执行模块。
汽车开门防撞预警系统研究解读
03
汽车开门防撞预警系统技术研究
传感器技术
超声波传感器
01
利用超声波的特性,检测车辆周围的障碍物,具有测量距离远
、体积小、价格低等特点。
毫米波雷达
02
工作在毫米波频段,具有测量距离远、抗干扰能力强、体积小
、价格高等特点,适合用于检测高速移动的物体。
摄像头
03
通过图像识别技术,识别车辆周围的物体和环境,具有信息量
可扩展性原则
系统设计应考虑到未来的扩展和升 级,方便添加新的功能和适应更多 的车型。
系统硬件设计
传感器模块
控制器模块
包括超声波传感器、红外传感器等,用于检 测车辆周围的环境和障碍物。
包括微处理器、存储器等,用于处理传感器 数据和控制执行机构。
执行机构
电源模块
包括报警器、灯光等,用于发出预警信号和 提示信息。
大、直观、易于理解等特点。
信号处理技术
数字信号处理
对采集到的原始信号进行数字化处理,包括滤波、放大、采样等 操作,将其转化为计算机能够处理的数字信号。
特征提取
从处理后的信号中提取出与目标相关的特征,如速度、距离、角 度等。
信号分类识别
根据不同的特征,将目标分为不同的类别,如车辆、行人、障碍 物等。
05
汽车开门防撞预警系统性能评估与优 化
系统性能评估方法
评估指标
评估汽车开门防撞预警系统的性能,需要综合考虑多个指标,包括准确率、误报率、漏报 率、F1分数等。
实验测试
通过实验测试来评估系统的性能,需要设计合理的实验方案,包括样本选择、实验场景、 实验人员等。
数据分析
对实验测试结果进行数据分析,以全面评估系统的性能,包括对评估指标的计算和分析、 对系统性能的横向和纵向比较等。
基于激光雷达汽车防撞预警系统的设计与实现
基于激光雷达汽车防撞预警系统的设计与实现一、激光雷达汽车防撞预警系统的原理激光雷达是一种通过测量光的时间差来确定目标距离的传感器。
在汽车防撞预警系统中,激光雷达主要用来探测前方障碍物的距离和速度,从而实现对潜在碰撞危险的监测和预警。
激光雷达汽车防撞预警系统的工作原理如下:当汽车发动机启动后,激光雷达系统开始工作,通过激光发射器发出一束激光,在宽度范围内扫描前方的障碍物。
当激光束遇到障碍物时,一部分激光会被反射回来,激光雷达系统通过接收器接收反射回来的激光,并通过测量激光的时间差来确定障碍物的距离和速度。
系统会将这些数据与车辆自身的速度和加速度等信息结合起来,通过算法分析得出可能的碰撞危险,并及时做出警告或者自动刹车等措施,从而避免碰撞事故的发生。
1. 系统硬件设计激光雷达汽车防撞预警系统的硬件主要包括激光发射器、接收器、信号处理器、控制器等组成部分。
激光发射器用于产生激光束,接收器用于接收反射回来的激光,信号处理器用于对接收到的激光信号进行处理,控制器用于系统的整体控制和数据处理。
在设计时,需要根据汽车的实际情况和需要,选择合适的硬件设备,并设计相应的电路和系统结构。
激光雷达汽车防撞预警系统的软件设计包括激光雷达信号处理算法、碰撞检测算法、预警系统算法等。
激光雷达信号处理算法主要用于对接收到的激光信号进行滤波、增强和去噪等处理,以提高系统的性能和稳定性。
碰撞检测算法主要用于对处理后的激光信号进行分析,判断潜在的碰撞危险。
预警系统算法主要用于根据检测到的碰撞危险,做出相应的警告和控制决策。
软件设计时需要根据系统的实际需求和硬件设备的特点,选择合适的算法,并进行相应的优化和调试,以确保系统的准确性和稳定性。
3. 系统集成与测试在硬件和软件设计完成后,需要对系统进行集成和测试。
集成阶段主要包括硬件设备的安装和连接,软件的加载和配置等。
测试阶段主要包括系统的功能测试、性能测试和稳定性测试等。
通过集成和测试,可以发现和解决系统中可能存在的问题,确保系统能够正常工作和达到预期的效果。
汽车防撞系统概述
摘要随着社会的发展,经济的进步,越来越多的汽车涌上了街头,随之带来交通事故的增多。
因此汽车防撞系统受到了跟多人的重视。
而由毫米波雷达、激光雷达以及CCD立体视觉系统组成的汽车防撞系统因成本高而无法应用与普通的汽车。
超声波测距系统组成的汽车防撞系统,具有成本低、受外界影响小的优点,因此研究大作用距离超声波测距系统组成的汽车防撞系统具有十分重要的意义。
本文采用超声换能器组成的超声波测距系统设计实现汽车防撞系统。
整个系统包括超声波发射与接收系统,单片机控制器,LED显示部分,扫描驱动部分。
b5E2RGbCAP关键词:汽车防撞系统超声换能器大作用距离测距系统AbstractWith the development of social and economic progress, an increasing number of cars appear on the streets, which bring more and more traffic accidents. As a result, vehicle collisi on avoida nee systems are paid great atte nti on to. But the vehicle collisi on avoidanee system composed of millimeter-wave radar, laser radar and CCD three-dimensional visual system are too expensive to be used in ordinary cars. The vehicle collision avoidanee system using Ultrasonic Ranging has two great adva ntages, such as low cost and not subject to outside in flue nee. So the study of vehicle collision avoidanee system composed of ultrasonic ranging system is significant. plEanqFDPw In this paper, the vehicle collision avoidanee system contains ultrasonic ranging system composed of ultras onic tran sducer. The system eon sists of Ultras onic launching and receiving systems, SCM eontroller, LED display part and the seanning driver.DXDiTa9E3dKeywords: Automobile collision avoidance system Ultrasonic transducer Large sensing-range Distance measurement system crpUDGiT目录第一章绪论.......................................................... 2..5.PCZVD7HXA1.1 研究背景与课题来源...............................................2..jLBHrnAILg1.1.1 各类车载测距传感器及其性能................................. 3.xHAQX74J0X1.1.2 课题的提出.................................................... LD3AYtRyKfE 1.2 汽车防撞系统的现状............................................... Z5zz6ZB2Ltk 1.3 超声波测距系统................................................... d6vzfvkwMI11.3.1 可变阈值与回波包络检波法...................................... rq6yn14ZNXI1.3.2 基于互相关函数的时延估计法................................. 7..EmxvxOtOco1.3.3 谱线分析法与自适应时延估计................................... 7..SixE2yXPq5 1.4 超声波测距与定位技术的发展概况................................... 67ewMyirQFL 1.5 主要研究工作及内容............................................... k8avU42VRUs第二章超声波发射与接收电路.......................................... 9..Y6V3ALOS892.1 大作用距离超声波换能器........................................... M92ub6vSTnP2.1.1 超声波物理特性与换能器技术指标............................. 9..0YujCfmUCw 2.2 超声波发射电路的设计........................................... 1..1eUts8ZQVRd2.2.1 推挽变换器的工作原理 ...................................... 1..2sQsAEJkW5T2.2.2 推挽变换器的转换效率........................................ 1G2MsIasNXkA 2.3 超声波接收电路的设计........................................... 1..3TIrRGchYzg2.3.1 低噪声前端放大器............................................ 173EqZcWLZNX2.3.2 滤波放大电路与电源............................................ 1lz5q7IGf02E第三章超声波测距系统............................................... 1..5ZVPGEQJ1HK3.1 超声波测距算法分析............................................... 1N6rpoJac3v13.1.1 问题分析.................................................... 1..6. 1nowfTG4KI 3.2 超声波测距系统的实现............................................. 1fj7nFLDa5Zo3.2.1单脉冲数字相关测距............................................ 1tf7nNhnE6e5第四章超声波测距汽车防撞系统的设计............................... 1. 8HBMVN777SL4.1 系统硬件设计................................................... 1..9V7l4jRB8Hs4.1.1 系统硬件总体框图............................................ 1839lcPA59W94.1.2超声波发射部分.............................................. 2..0. mZkklkzaaP4.1.3超声波接收部分................................................ 2AV0ktR43bpw4.1.4 单片机控制部分............................................. 2..1ORjBnOwcEd 4.2系统软件设计 ................................................... 2..2. 2MiJTy0dTT 4.3 系统的调试与优化................................................. 2..3gIiSpiue7A 总结................................................................. U2E4H0U1YFMH 致谢................................................................. IA2G59QLSGBX 参考文献.......................................................... 2..6.WWGHWVVHPE第一章绪论随着社会经济的发展,越来越多的人拥有了自己的私家车,越来越多的汽车涌上了公路,可随之而来的是交通事故也越来越多,不少人也因此谈车色变。
基于单片机的汽车防撞报警系统设计
第1章概述1.1 课题研究背景和意义汽车业与电子业是世界工业的两大金字塔,随着汽车工业与电子工业的不断发展,在现代汽车上,电子技术的应用越来越来广泛,汽车电子化的程度越来越高。
随着交通运输向高密度发展,电子控制技术进一步应用于汽车的乘坐安全性和导航方面。
电子技术在汽车安全控制系统的应用主要是为了增强汽车的安全性。
汽车中应用的电子技术主要有:电子控制安全气囊,智能记录仪,雷达式距离报警器,中央控制门锁,自动空调,自动车窗、车门、座椅、刮水器,车灯控制,电源控制以及充电器等。
近年来汽车的自动调速系统[1],汽车防撞系统,汽车监测和自诊断系统以及汽车导航系统被人们广泛应用。
在过去20~30年中,人们主要把精力集中于汽车的被动安全性方面,例如,在汽车的前部或后部安装保险杠、在汽车外壳四周安装某种弹性材料、在车内相关部位安装各种形式的安全带及安全气囊等等[2],以减轻汽车碰撞带来的危害。
安装防撞保险杠固然能在某种程度上减轻碰撞给本车造成损坏,却无法消除对被撞物体的伤害;此外,车上安装的安全气囊系统,在发生车祸时不一定能有效地保护车内乘车人员的安全。
所有这些被动安全措施都不能从根本上解决汽车在行驶中发生碰撞造成的问题。
为预防撞车事故的发生,必须在提高汽车主动安全性方面下功夫。
汽车发生碰撞的主要原因是由于汽车距其前方物体(如汽车、行人或其他障碍物)的距离与汽车本身的距离近而相对速度太高。
为了防止汽车与前方物体发生碰撞,汽车与前方物体之间要保持一定的距离。
这样就会大大提高汽车行驶的安全性,减少车祸的发生。
发展汽车防撞技术,对提高汽车智能化水平有重要意义[3]。
据统计,危险境况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%。
1秒钟的预警时间可防止90%的追尾碰撞和60%的迎头碰撞。
理论上,汽车防撞装置可在任何天气、任何车速状态下探测出将要发生的危险情况并及时提醒司机及早采取措施或自动紧急制动[4],避免严重事故发生。
汽车防碰撞预警及自控与救援系统
汽车防碰撞预警及自控与救援系统汪齐齐张金伟*(安徽理工大学计算机科学与工程学院安徽淮南232001)摘要:该文考虑实现汽车行驶过程中探测危险信号、及时发出报警等待响应或根据周围环境自动处理、碰撞发生后数据的云端交互。
此系统考虑使用多种传感器、预警系统、GPS、多CPU处理器、IOT等技术实现信息生成、传输、处理及应用,以达到更好地探测危险、发出预警、自动控制、求助救援的目的。
该文思路可应用于其他相关领域,如危险品监测预警,自动驾驶汽车中如优化安全感知、自动处理、信息联网等技术。
关键词:汽车防碰撞物联网预警自控与救援道路安全中图分类号:U463.6文献标识码:A文章编号:1672-3791(2022)08(a)-0035-03 Automobile Anti-collision Early Warning and Automatic Controland Rescue SystemWANG Qiqi ZHANG Jinwei*(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan,Anhui Province,232001China)Abstract:This paper considers the realization of detecting danger signals,sending out alarm in time,waiting for response or automatic processing according to the surrounding environment,and cloud interaction of data after collision.The system considers using a variety of sensors,early warning system,GPS,multi CPU processor,IOT and other technologies to realize information generation,transmission,processing and application,so as to better detect hazards,issue early warning,automatic control and help rescue.The idea of this paper can be applied to other re‐lated fields:dangerous goods monitoring and early warning;autonomous vehicles:optimization of security aware‐ness,automatic processing,information networking and other technologies.Key Words:Automobile anti-collision;Internet of things;Early warning;Automatic control and rescue;Road safety道路上正出现越来越多的车辆,截止到2022年初,中国的汽车保有量突破3亿辆。
汽车主动避撞控制论文
高速公路汽车防撞自动报警制动系统【摘要】针对我国高速公路交通安全的需要,以及国内外汽车电子技术的应用现状和发展趋势,综合汽车工程学、汽车电子技术、通讯技术和控制技术等多学科理论,从必要性、可行性、实用性和经济性等角度出发,提出开发研制汽车防撞报警系统。
目的在于当行车处于危险状态时,发出报警,提醒驾驶员或自动采用相应措施,从而减少或避免高速公路碰撞事故的发生。
本设计的系统包括传感器感知子系统、中央处理子系统和信息输出子系统组成。
通过分析高速公路上行驶的前后两车的三种相对行车状态,提出合理的安全跟车距离计算数学模型;通过对车间距离、相对速度和自车车速的测量方案比较及误差分析,确定采用多普勒调频连续波雷达传感器来测量两车间的实际车速;进而通过中央处理子系统对各传感器信息进行采集和处理,然后做出信息输出和控制安全判读。
考虑到系统的实时性、精确性和可靠性,采用性价比比较高的八位微处理器AT89S52作为系统的控制中心,由此而组成中央处理子系统的核心。
关键词:安全跟车距离模型防撞报警系统PC机模拟通信声光报警2 系统分析与数学模型建立2.1.1系统结构图2-1 汽车防撞系统示意图图 2-1 为 汽车防撞报警系统的结构示意图,整个系统由传感器感知、中央处理以及信息输出三个子系统构成。
传感器感知子系统由车辆上的各种传感器组成,用于收集车辆的内外环境信息;中央处理子系统由信息采集单元与主控制单元组成,用于评估车辆行驶的安全状态;信息输出子系统由声光报警模块与显示模块组成,为驾驶员提供汽车行驶的安全状态信息汽车防撞报警系统的工作原理:利用安装在汽车前保险杠上的雷达传感器实时测量自车与前方目标物间的距离和相对速度等信息,并通过采集传送至信息采集单元;利用安装在变速箱输出轴的霍尔车速传感器获得与转轴同速的脉冲信号,输出至信息采集单元进行车速计算:制动、油门位置及路面附着系数以开关量的形式输入至信息采集单元;信息采集单元对各种传感器信息进行处理,并把处理结果传送至主控制单元;主控制单元判断当前的行车安全状态,采取相应的报警方式,警示驾驶员当前的行车状况及需要采取的措施。
汽车防碰撞报警系统毕业论文
毕业论文课题:汽车防碰撞报警系统摘要论文介绍了一种基于单片机的超声波汽车防撞测距报警系统,此系统利用AT89S52单片机作为主控制器,结合超声波测距原理,来实现智能汽车防撞测距报警功能,并进行了系统硬件和软件的设计。
通过多种发射接收电路设计方案比较,得出了最佳的设计方案,并对系统各个单元的原理进行了介绍。
对组成的各系统电路的芯片进行了介绍,并阐述了它们的工作原理。
此系统具有结构简单,精度高,使用方便等特点。
介绍了系统软件结构,通过编程来实现系统功能。
AbstractPaper describes a microcontroller-based ultrasonic ranging automotive anti-collision warning system, this system uses AT89S52 microcontroller as the main controller, combined with ultrasonic distance measurement principle, to achieve the smart car crash ranging alarm, and make the system hardware and software design. Through a variety of transmitting and receiving circuit design compared to arrive at the best design, and system the principle of each unit are described. Circuit composed of the various systems on a chip was introduced, and explained how they work. This system has a simple structure, high precision, easy to use and so on. Describes the system software architecture, programmed to achieve system functionality.目录摘要 (II)Abstract (III)目录 (IV)第1章绪论 (1)1.1 背景 (1)1.1.1 超声波测距发展综述 (1)1.2 研究内容 (2)第2章超声波测距原理及构想 (3)2.1 超声波传感器介绍 (3)2.1.1 超声波传感器的特性 (4)2.2超声波测距的原理 (5)2.3系统设计原理 (5)2.4系统主要参数 (7)2.4.1 测距仪的工作频率 (7)2.4.2声速 (7)2.4.3 发射脉冲宽度 (7)2.4.4 测量盲区 (7)第3章超声波测距系统方案设计 (9)3.1 发射与接收电路的设计方案 (9)3.2 显示报警单元方案设计 (10)3.2.1系统报警电路设计 (11)3.3 单片机复位电路 (11)3.4 时钟电路 (12)3.5 温度补偿电路 (13)3.6 74HC04N芯片介绍 (14)3.7 探头介绍 (14)第4章系统软件结构 (15)第5章结论 (17)5.1 误差产生原因分析 (18)5.1.1 温度对超声波声速的影响 (18)5.2 针对误差产生原因的系统改进方案 (19)致谢 (21)参考文献 (22)附录1 原理图 (24)附录2源代码 (25)附录3 电子器件列表清单 (30)第1章绪论1.1 背景随着社会经济的发展,交通运输业日益兴旺,汽车的数量在大副攀升。
汽车开门防撞预警系统
测试系统的各项功能是否正常,如传感器是否能够正确采集数 据,报警提示是否准确等。
测试系统的性能指标是否达到预期要求,如响应时间、检测精 度等。
测试系统在不同车型、不同路况下的表现,以确保系统的兼容 性。
测试系统的可靠性、稳定性及寿命等指标,以确保系统在长时 间使用过程中不会出现故障。
测试结果与分析
提高系统稳定性与可靠性
要点一
总结词
提高系统的稳定性和可靠性是保障汽车开门防撞预警系统 长期有效运行的关键。这需要从硬件、软件以及系统架构 等多个方面进行综合考虑和优化。
要点二
详细描述
采用高可靠性的硬件设备和材料,如工业级芯片、密封性 好的电子元件等,确保系统在各种环境条件下能够稳定运 行。优化软件算法和数据处理流程,提高系统的响应速度 和准确性。采用容错设计和备份机制,避免因某一部件故 障而导致整个系统失效。同时,对系统进行定期的测试和 验证,确保其始终保持良好的工作状态。
改进报警装置可靠性
总结词
报警装置的可靠性直接影响到汽车开门防撞预警系统的有效性。通过改进报警装置的硬件和软件设计,提高其准 确性和及时性。
详细描述
采用声音、灯光、震动等多种报警方式,以醒目的颜色和声音提醒驾驶员注意碰撞危险。优化报警装置的触发条 件和触发时机,确保在潜在碰撞危险发生时能够及时发出警报。同时,对报警装置进行定期维护和检查,确保其 始终保持良好的工作状态。
06
CATALOGUE
结论与展望
研究结论
01
汽车开门防撞预警系统能够有效地减少因开车门而引
发的交通事故。
02
该系统通过先进的传感器和算法能够实时监测车辆周
围环境,准确识别潜在的碰撞危险。
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.汽车雷达防撞系统发展状况 汽车雷达防撞系统在美国一些公司研制开发的时间较 长,有的已有十几年或几十年的历史,产品目前已进入 商品化实用性阶段。一些工业化国家如日本、澳大利亚、 法国和德国也都处于大力推广应用时期。我国在此方面 起步较晚,到目前为止开发出的产品仍处于初级阶段。
四、倒车雷达
1.倒车防碰撞系统的组成 汽车倒车防碰撞系统由超声波传感器(俗称探头)、控 制单元和显示器(或蜂鸣器)等部分组成,如图3-5所示。 奥迪等中高档车型倒车防碰撞装置在车辆前部有4个传感 器,如图3-6所示。在后保险杠上涂漆的区域装有4个超声 波传感器,即左后传感器、左后中传感器、右后中传传感 器外形如图3-7所示,可发送超声波和接收反射后的超声 波。电子系统利用发送和接收到的超声波计算汽车与障碍 物的距感器、右后传感器,如图3-7所示。离。
2.扫描式激光雷达 最早的前方用激光雷达都是发出多股激光光束,并依 靠前方车反光镜的反射时间来测定其距离。但是由于要 对前方车辆进行辨别,因而后来开始采用扫描式激光雷 达。这样,不但至前方车的距离可测,而且其横向的位 置也可以检测出来。此技术的进一步发展,可使扫描角 度成360°。这样,如果在车辆四角设置类似的扫描式激 光雷达,那么车辆四周的障碍物都可以测出。
汽车防碰撞控制系统如图3-1所示。
一、汽车防碰撞控制系统主要。
二、测定汽车行驶安全距离的主要方 法
(1)超声波测距。利用超声波回声测距的基本原理。 (2)雷达测距。利用电磁波反射来发现目标并测定其 位置。 (3)激光测距。其工作原理与雷达测距相似,具体的 测距方法有连续波和脉冲波两种。
任务二 汽车防撞控制系统的结构与工作原 理
一、超声波测距防撞控制系 统
1.超声波测距基本原理
超声波(声呐)是一种特殊的声波,具有声波传输的 基本物理特性,即反射、折射、干涉、衍射、散射。超声 波测距就是利用其反射特性。
超声波发射器不断地发射出40kHz超声波,超声波遇 到障碍物后反射回反射波,超声波接收器接收到反射波 信号,并将其转换为电信号,测出发射与接收到反射波 的时间差t,即可求出障碍物到汽车的距离s:
二、激光测距防撞控制系统
激光扫描雷达安装在车辆前端的中央位置,将测得 的车距和前面车辆方位信号送入防碰撞预测系统。激光扫 描雷达的扫描角和视域如图3-3所示,激光束的视域窄并 呈肩形,即在水平面上较薄,在垂直面上呈肩形。
1.防追尾碰撞激光报警装置 这种装置包括发光部、受光部、计算车间距离的激光 雷达、信号处理电路、显示装置以及车速传感器等。 能够更早地检测插入车流的车辆,同时还能识别弯道 上的标识物,随时发出警报,使之达到最优状态。 控制部分由微机进行下列运算,本车车速、前方行驶 车辆的车速、车间距离、根据车间距离和安全车间距离 比较发出警报声或报警灯闪烁。显示装置安装在仪表板 上进行距离显示。
任务一 汽车防撞控制系统概述 任务二 汽车防撞控制系统的结构与工作原理
学习目标
1.汽车车前防撞控制系统的结构。 2.汽车车前防撞控制系统工作原理。 3.熟练对倒车雷达进行安装与调试。 4.能运用仪器检修典型汽车车前防撞控制系统故障。
任务一 汽车防撞控制系统概述
是主动安全系统,是一种可向驾驶员预先发出视听警告 信号的探测装置,主要是解决汽车行驶的安全距离问题。
当发射信号遇到目标时,被反射回来为同一天线接 收,经混频放大处理后,可用其差拍信号间的相差来表 示雷达与目标的距离,把对应的脉冲信号经微处理器处 理计算可得到距离数值,再根据差频信号相差与相对速 度关系,计算出目标对雷达的相对速度。
微处理器将上述两个物理量代入危险时间函数数字 模型后,即可算出危险时间。
该系统能探测企图接近车身的行人、车辆或周围障碍物; 能向驾驶员及乘客提前发出即将发生撞车危险的信号,促使 驾驶员甚至撇开驾驶员采取应急措施来应对特殊险情,避免 损失。
在正常行驶时,该系统处于非工作状态。当本车的车头 非常接近于前车的车尾时,该系统将发出防追尾警告。
在发出警告后,如果驾驶员没有采取制动减速措施,该
三、雷达测距防撞控制系 统
汽车电磁波雷达防撞系统,是利用电磁波发射后遇 到障碍物反射的回波,对其不断检测和计算与前方或 后方障碍目标的相对速度和距离,经分析判断,对构 成危险的目标按程度不同进行报警,控制车辆自动减 速,直到自动制动。
1.汽车电磁波雷达防撞系统的工作原理 图3-4所示为该系统组成的方框图,当发射机采用微 波调频连续波体制时,在车辆行进中雷达窄波束向前发 射调频连续波信号。
当危险程度达到各种不同级别时,分别输出报警信 号或通过车辆控制电路去控制车速或制动。
2.汽车防撞雷达主要技术参数 (1)作用距离不少于100m,误差±0.5 m; (2)微波发射频率24.125 GHz。 3.汽车防撞雷达主要功能 (1)测速测距; (2)对前方100 m内危险目标提供声光报警; (3)兼备汽车黑匣子功能; (4)自动巡航系统(行驶过程中自动保持与前面行驶车辆 之间的距离); (5)紧急情况下起动自动制动系统。
式中:c——超声波音速。 超声波也是声波,c即为声速。声速c与温度有关,如表 3-1所示。
一般情况下,可以认为声速是基本不变的。如果测距精 度要求很高,可以通过温度补偿的方法加以校正。当将声速 作为常数时,只要测得超声波信号往返的时间,即可求得距 离,并将距离用数字显示出来,如图3-2所示。
超声波雷达倒车防撞系统组成: 超声波振荡器、 检测器、 控制器、 报警电路等。
三、汽车防碰撞控制系统的发展趋 势
将伴随微电子、光纤、红外等技术的进步而得到新的 发展。汽车防撞系统未来的发展方向为:
(1)为满足高速行驶,进一步增大探测距离; (2)降低成本和售价,供在用车改装和新车安装使用; (3)与自动驾驶仪形成反馈系统,按时间响应,排除 人为影响,正确保持车距或做出机动避让; (4)向智能化方向进一步拓展。