3.1.1变化率问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限
(数学术语)
编辑
本词条由“科普中国”百科科学词条编写与应用工作项目审核。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A
不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。
此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
极限思想
编辑
简介
极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:
对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计
极限思想的思维功能
极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
“无限”与’有限‘概念本质不同,但是二者又有联系,“无限”是大脑抽象思维的概念,存在于大脑里。
“有限”是客观实际存在的千变万化的事物的“量”的映射,符合客观实际规律的“无限”属于整体,按公理,整体大于局部思维。
“变”与“不变”反映了事物运动变化,与相对静止,两种不同状态,但它们在一定条件下又可相互转化,这种转化是“数学科学的有力杠杆之一”。
例如,物理学,求变速直线运动的瞬时速度,用初等方法无法解决,困难在于变速直线运动的瞬时速度是变量不是常量。
为此,人们先在小的时间间隔范围内用“匀速”计算方法代替“变速”状态的计算,求其平均速度,把较小的时间内的瞬时速度定义为求“速度的极限”,是借助了极限的思想方法,从“不变”形式来寻找“某一时刻变”的“极限”的精密结果。
曲线形与直线形图像有着本质的差异,但在一定条件下也可相互转化,正如恩格斯所说:“直线和曲线在微分中终于等同起来了”。
善于利用这种对立统一关系,是处理数学问题的重要手段之一。
用直线构成的图形的面积易求;但是求曲线组成的图形的面积,用初等数学是不能准确地解决的。
古人刘徽用“”圆内接多边形逼近圆面积”;人们用“变形为矩形的面积”来逼近曲边梯形的面积,等等,都是借助于极限的思想方法,从直线形来起步认识曲线形问题的解答。
无限逼近“真实值”(结论完全没有误差)思想,在数学研究工作中起着重要作用。
例如对任何一个圆内接正多边形来说,当它边数加倍后,得到圆面积的近似答案还是圆内接正多边形的面积。
人们不断地让其边数加倍增加,经过无限过程之后,多边形就“变”成一个与真实的圆面积相差不大的“假圆”,每一步“边数增加的变化”都可以使用原来的‘常量公式累计,得到越来越靠近真实值的“圆面积”,圆的边上的‘越来越多的新的小的三角形底边,变形中的数不清的三角形正反互补得到的矩形,其长边的总和的极限等于“圆周长的一半”与半径的乘积计算得到圆面积(就是极限概念的应用),趋势极限,愈来愈逼近圆面积。
这就是借助于极限的思想方法,化繁为简’解决求圆面积问题,其他问题思维方法一样。
用极限概念解决问题时,首先用传统思维,用‘低等数学思维的常量思维建立某一个函数(计算公式),再想办法进行图像总的面积不变的变形,然后把某一个对应的变量的极限求出,就可以解决问题了。
这种“恒等”转化中寻找极限数值,是数学应用于实际变量计算的重要诀窍。
前面所讲到的“部分和”、“平均速度”、“圆内接正多边形面积方法”,分别是相应的“无穷级数之趋近数值”、“瞬时速度”、“求圆面积”的最为精确的近似值的办法,用极限思想,可得到相应的无比精确的结论值。
这都是借助于极限的思想方法,人们用‘无限地逼近’也可以实现精密计算结果’,用此新方法——微积分的极限思维,可满意地解决‘直接用常量办法计算有变化量的函数但无现成公式可用,所以计算结果误差大’的问题。
函数极限
自变量趋近有限值时函数的极限:
的某一去心邻域内有定义,如果存在常数a,对于任定义:设函数f(x)在点x
意给定的正数ε,都,使不等式在时恒成立,那么常数就叫做函数当时的极限,记作。
[1] [2] 如果函数当时不以a为极限,则存在某个正数ε,对于任何正数δ当时,。
(解释:当时收敛于,我们一定
时,与极限的差距小于任意小的指定误差。
而当
能证明x足够接近x
的距离有多近,f(x)与a的差距都时不收敛于,我们就能证明无论x与x
无法小于指定的某个误差。
)
函数的左右极限:
1:如果当从点的左侧(即)无限趋近于时,函数无限趋数,就说是函数在点处的左极限,记作。
2:如果当x从点右侧(即)无限趋近于点时,函数无限趋于常数,就说是函数在点处的右极限,记作。
两个重要极限:
1、
2、
或
(其中
是一个无理数,也就是自然对数的底数)运算法则:
设
,
存在,且令
,则有以下运算法则:
线性运算:
加减:
数乘:
(其中c是一个常数)
非线性运算:
乘除:
( 其中B≠0 )
幂运算:。