八年级数学上册第三章测试题

合集下载

初二数学上册第三章测试卷

初二数学上册第三章测试卷

一、选择题(每题2分,共20分)1. 在下列各数中,是正数的是()A. -3B. 0C. 1.5D. -2.52. 若a < b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 > b + 2D. a - 2 < b - 23. 下列代数式中,与(2x + 3y)2相等的代数式是()A. 4x2 + 9y2 + 12xyB. 4x2 + 6xy + 9y2C. 4x2 + 12xy + 9y2D. 4x2 + 9y2 - 12xy4. 下列关于一元一次方程的解法,错误的是()A. 乘法原理B. 除法原理C. 移项原理D. 平方差公式5. 已知x - 2 = 5,则x的值是()A. -3B. 3C. 7D. -76. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 57. 若a、b是实数,且a < b,则下列不等式中正确的是()A. a2 < b2B. a2 > b2C. |a| < |b|D. |a| > |b|8. 下列各数中,是有理数的是()A. πB. √2C. 1/2D. √39. 若x2 - 4x + 4 = 0,则x的值是()A. 2B. -2C. 0D. ±210. 下列各数中,是无理数的是()A. √2B. √3C. 1/2D. π二、填空题(每题2分,共20分)11. 若a、b是实数,且a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 1 > b + 1D. a - 1 < b - 112. 若a、b是实数,且a < b,则下列不等式中正确的是()A. a2 < b2B. a2 > b2C. |a| < |b|D. |a| > |b|13. 若x - 2 = 5,则x的值是()A. -3B. 3C. 7D. -714. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 515. 若a、b是实数,且a < b,则下列不等式中正确的是()A. a2 < b2B. a2 > b2C. |a| < |b|D. |a| > |b|16. 下列各数中,是有理数的是()A. πB. √2C. 1/2D. √317. 若x2 - 4x + 4 = 0,则x的值是()A. 2B. -2C. 0D. ±218. 下列各数中,是无理数的是()A. √2B. √3C. 1/2D. π三、解答题(每题10分,共30分)19. (10分)已知a、b是实数,且a < b,求证:a2 < b2。

第三章 勾股定理数学八年级上册-单元测试卷-苏科版(含答案)

第三章 勾股定理数学八年级上册-单元测试卷-苏科版(含答案)

第三章勾股定理数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,等边△ABC在平面直角坐标系中的位置如图所示,其中顶点,,则顶点C的坐标为()A. B. C. D.2、如图,在中,以点为圆心,任意长为半径作弧,交射线于点,交射线于点,再分别以、为圆心,的长为半径,两弧在的内部交于点,作射线,若,则两点之间距离为()A.10B.12C.13D.3、如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B 与点A重合,折痕为DE,则BE的长为( )A.4cmB.5cmC.6cmD.10cm4、如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是()A. B. C. D.5、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,OC=8cm,则BE+CG的长等于()A.13B.12C.11D.106、如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7、绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m8、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是()A.y= &nbsp;B.y=C.y=D.y=9、以下列线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6B.a=1,b= ,c=C.a=5,b=6,c=8 D.a= ,b=2,c=10、若为△ABC的三边,且,则△ABC的形状不可能是().A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形11、如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A. B. C. D.12、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形13、如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.414、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cmB.6cmC.3 cmD.6 cm15、底面周长为12cm,高为8cm的圆柱体上有一只小蚂蚁要从A点爬到B点,则蚂蚁爬行的最短距离是()cm.A.10B.8C.5D.4二、填空题(共10题,共计30分)16、如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为________.17、如图,为直角三角形,其中,则的长为________。

第三章 勾股定理数学八年级上册-单元测试卷-苏科版(含答案)

第三章 勾股定理数学八年级上册-单元测试卷-苏科版(含答案)

第三章勾股定理数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、由线段a,b,c组成的三角形是直角三角形的是()A.a = 3, b = 4, c = 6B.a = 6, b = 9, c = 10C.a = 8,b = 15, c = 17D.a = 13, b = 14, c = 152、如图是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形.其中最大的直角三角形两直角边长分别为2,3,则正方形A,B,C,D的面积之和为()A.13B.26C.47D.943、如图,在以O为圆心的两个同心圆中,A为大圆上任意一点,过A作小圆的割线AXY,若AX•AY=4,则图中圆环的面积为()A.16πB.8πC.4πD.2π4、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A. B. C.4 D.35、如图,在矩形ABCD中,DE⊥AC+于E,∠EDC:∠EDO=1:2,且AC=10,则DE的长度是A.3B.5C.D.6、如图,为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OA n的长度为()A.()nB.()n﹣1C.()nD.()n﹣17、直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6B.6.5C.6或6.5D.6或2.58、如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A. cmB.4cmC. cmD. cm9、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.5,12,13C.1,4,9D.5,11,1210、下列各数中,是勾股数的是()A.0.3,0.4,0.5B.6,8,10C. ,,D.10,15,1811、如图,已知△ABC 中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3 上,且 l1,l2 之间的距离为 1,l2,l3 之间的距离为 3,则 AC 的长是()A. B. C. D.512、如图,在△中,,将△绕点顺时针旋转,得到△,连接,若,,则线段的长为()A. B. C. &nbsp; D.13、如图,已知在中,是边上的高线,平分,交于点是上一动点,,则的最小值是()A.10B.7C.5D.414、如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD 上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.615、若△ABC三边长口,b,c满足+l| b-a-1|+(c-5)2=0,则△ABC是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形二、填空题(共10题,共计30分)16、如图中,由一个直角三角形和两个正方形组成,如果大正方形的面积为41,AB=5,则小正方形的面积为________.17、在等腰直角中,,,如果以的中点为旋转中心,将这个三角形旋转180°,点落在点处,则的长度为________.18、如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD,AB上的动点,则BM+MN的最小值是________.19、如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3 M2,对角线A1 M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n________.20、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是边AC的中点,点E,F在边AB上,当△DEF是等腰三角形,且底角的正切值是时,△DEF腰长的值是________.21、如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为________.22、若直角三角形的两直角边长分别为,,则斜边的长为________cm.23、如图,在中,,,,垂足为,点,分别是线段,上的动点,且,则线段的最小值为________.24、如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是________.25、如图,在△ABC中,AB=BC=4,S△ABC=4 ,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。

八年级数学上册第三章试卷

八年级数学上册第三章试卷

八年级数学上册第三章试卷 姓名得分一填空(每题3,共39分) 1. 点P ( x ,-y )在第三象限,则 Q ( -x ,y3 )在第 象限.2.已知点 M (2+x ,9-x2 )在x轴的负半轴上,则点M 的坐标是 ______________ 3已知线段 AB 平行于x 轴,若点A 的坐标为(-2,3),线段AB 的长为5,则点 是_______________________________ 。

4点P ( 1,2)关于x 轴对称的点的坐标是12.如图,O 为坐标原点,四边形 OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点, 点P 在BC 上运动,当厶ODP 是腰长为5的等腰三角形时,贝U P 点的坐标 为 _______________________ .___________ ?B 的坐标点P ( 1,2)关 于原点对称的点的坐标是 __________ , 5.已知点P ( a+3,7+a )位于二、四象限的角平分线上,贝U7. 一个点在 y 轴上,距原点的距离 是 _________ 。

8..如果点 p 在直角坐标系中到 x 轴的距离为2,至Ua= ______ . 6,则这个点y 轴的距离为 3,则点的坐标p 的坐标坐标(一3,0),贝U C 点的坐标9. ____________________________________________________________________________ 已知点 A ( 0,2) , B ( 4,1),点P 是x 轴上的一点,则PA+PB 的最小值是 ______________________________________________________________________________________11.正方形ABCD 在平面直角坐标系中的位置如图所示,已知 A 点的坐标(0,4),B 点的13.已知点A ( 2, 1), O ( 0, 0),请你在数轴上确定点 P ,使得△ AOP 成为等腰三角形, 写出所有存在的点 P 的坐标。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。

(苏科版)初中数学八年级上册 第3章综合测试(含答案)

(苏科版)初中数学八年级上册 第3章综合测试(含答案)

第3章综合测试一、选择题(共10小题,满分30分,每小题3分) 1.以下列各组数据为边长,可以构成直角三角形的是( ) A .3,5,6B .2,3,4C .1.5,2,2.5D .6,7,92.在ABC △中,若90B C ∠+∠=︒,则( ) A .BC AB AC =+B .222AC AB BC =+C .222AB AC BC =+D .222BC AB AC =+3.如图,分别以直角ABC △三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .454.已知直角三角形的两条直角边的长分别为3和5,则斜边的长为( )A .3B .4C .5D 5.在直角三角形ABC 中,::2::4A B C m ∠∠∠=,则m 的值是( ) A .3B .4C .2或6D .2或46.如图,直线AB CD ∥,等腰直角三角形的直角顶点E 在AB 上,若1290∠+∠=︒,则图中与1∠互余的角的个数是( )A .5B .6C .7D .87.如图,甲船以20海里/时的速度从港口O 出发向西北方向航行,乙船以15海里/时的速度同时从港口O 出发向东北方向航行,则2小时后,两船相距( )A .40海里B .45海里C .50海里D .55海里8.如图,Rt ABC △中,90ACB ∠=︒,5AB =,3AC =,把Rt ABC △沿直线BC 向右平移3个单位长度得到'''A B C △,则四边形''ABC A 的面积是( )A .15B .18C .20D .229.如图,用4个相同的直角三角形与一个小正方形拼成的大正方形,若图中直角三角形较短的直角边长是5,小正方形的边长是7,则大正方形的面积是( )A .121B .144C .169D .19610.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为a ,b ,h ,则下列关系式成立的是( )A .222221a b h +=B .222111a b h +=C .2h ab =D .222h a b =+二、填空题(共6小题,满分24分,每小题4分)11.ABC △的三边分别是6,8,10,则这个三角形的最大内角的度数是________. 12.在Rt ABC △中,斜边10BC =,则222BC AB AC ++=________.13.如图,一架2.5 m 长的梯子斜靠在垂直的墙AO 上,这时AO 为2 m .如果梯子的顶端A 沿墙下滑0.5 m ,那么梯子的底端B 向外移动________m .14.如图,Rt ABC △中,90ACB ∠=︒,12AC =,5BC =,延长BC 至点D ,连接AD ,若ABD △是以AD 为其中一腰的等腰三角形,则线段DC 的长等于________.15.如图,一根长20 cm 的吸管置于底面直径为9 cm ,高为12 cm 的圆柱形水杯中,吸管露在杯子外面的长度最短是________cm .16.如图,已知1OB =,以OB 为直角边作等腰直角三角形1A BO ,再以1OA 为直角边作等腰直角三角形21A A O ,如此下去,则线段2020OA 的长度为________.三、解答题(共8小题,满分66分)17.(7分)学校校内有一块如图所示的三角形空地ABC ,其中13AB =米,14BC =米,15AC =米,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为60元,学校修建这个花园需要投资多少元?18.(7分)如图,四边形ABCD 中,AB AD ⊥,已知3cm AD =,4cm AB =,12cm CD =,13cm BC =,求四边形ABCD 的面积.19.(7分)如图,ABC DBE △≌△,60CBE ∠=︒,30DCB ∠=︒.求证:222DC BE AC +=.20.(8分)我们规定:三角形任意一条边的“线高差”等于这条边与这条边上的高之差.如图①,在ABC △中,CD 为AB 边上的高,AB 的“线高差”等于AB CD -,记为()h AB .(1)如图②,在ABC △中,AB AC =,AD BC ⊥,垂足为D ,6AD =,4BD =,则()h BC =________; (2)如图③,在ABC △中,90C ∠=︒,6AC =,8BC =,求()h AB .21.(8分)在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB BC =,由于某种原因,由C 到B 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D (A 、D 、B 在同一条直线上),并新修一条路CD ,测得 6.5CA =千米,6CD =千米, 2.5AD =千米. (1)问CD 是否为从村庄C 到河边最近的路?请通过计算加以说明; (2)求原来的路线BC 的长.22.(8分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.23.(10分)如图,ABC △中,90ACB ∠=︒,10AB =,6BC =,若点P 从点A 出发,以每秒1个单位长度的速度沿折线A C B A ---运动,设运动时间为t 秒()t >0.(1)若点P 在AC 上,且满足PA PB =时,求此时t 的值; (2)若点P 恰好在BAC ∠的平分线上,求t 的值.24.(11分)(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a ,较小的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为2c ,也可以表示为()2142ab a b ⨯+-,所以()22142ab a c b ⨯+-=,即222a b c +=.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则222a b c +=.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC 的两直角边长为3和4,则斜边上的高为________.(3)试构造一个图形,使它的面积能够解释()222244a b a ab b -=-+,画在上面的网格中,并标出字母a ,b 所表示的线段.第3章综合测试答案解析一、 1.【答案】C【解析】解:A .222356+≠,∴不可以构成直角三角形;B .222234+≠,∴不可以构成直角三角形;C .2221.52 2.5+=,∴可以构成直角三角形;D .222679+≠,∴不可以构成直角三角形.故选:C .2.【答案】D【解析】解:在ABC △中,若90B C ︒∠+∠=,90A ∴∠=︒,222BC AB AC =+∴,故选:D . 3.【答案】A【解析】解:在Rt ABC △中,222AB BC AC =+,21S AB =,22S BC =,23S AC =,123S S S ∴=+.27S =,32S =,1729S ∴=+=.故选:A .4.【答案】D【解析】解:直角三角形的两条直角边的长分别为3和5,∴故选:D . 5.【答案】C【解析】解:设A ∠、B ∠、C ∠的度数分别为2x 、mx 、4x ,当C ∠为直角时,24x mx x +=,解得,2m =,当B ∠为直角时,24x mx x +=,解得,6m =,故选:C . 6.【答案】C 【解析】解:FEG △是等腰直角三角形,90FEG ︒∴∠=,1390︒∴∠+∠=,直线AB CD ∥,378∴∠=∠=∠,4256∠=∠=∠=∠,1290︒∠+∠=,2345678∴∠=∠=∠=∠=∠=∠=∠,∴图中与1∠互余的角的个数是7个,故选:C .7.【答案】C【解析】解:两船行驶的方向是西北方向和东北方向,90BOC ∴∠=︒,两小时后,两艘船分别行驶了20240⨯=海里,15230⨯=50=(海里).故选:C .8.【答案】A 【解析】解:把Rt ABC △沿直线BC 向右平移3个单位长度得到''''A B C △,''5A B AB ∴==,''3A C AC ==,'''90A C B ACB ∠=∠=︒,''3A A CC ==,''4B C ∴==,''AC A C ∥,∴四边形''ACC A 是矩形,∴四边形'''ABC A 的面积()11''(343)31522AA BC AC =+⋅=⨯++⨯=,故选:A . 9.【答案】C【解析】解:直角三角形较短的直角边长是5,小正方形的边长是7,∴直角三角形的较长直角边5712=+=,∴直角三角形斜边长13=,∴大正方形的边长是13,∴大正方形的面积是1313169⨯=.故选:C . 10.【答案】B【解析】解:设斜边为c ,根据勾股定理得出c =,1122ab ch =,ab h ∴=,即222222a b a h b h =+,222222222222222a b a h b h a b h a b h a b h ∴=+,即222111a b h+=.故选:B .二、11.【答案】90【解析】解:2226810+=,∴以6,8,10为边能组成直角三角形,最大的角的度数是90︒,故答案为:90.12.【答案】200【解析】解:在Rt ABC △中,斜边10BC =,222100AB AC BC ∴+==,22222200BC AB AC BC ∴++==.故答案是:200. 13.【答案】0.5【解析】解:Rt OAB △中, 2.5 m AB =, 2 m AO =, 1.5 m OB ∴==;同理,Rt OCD △中,2.5 m CD =,20.5 1.5 m OC =-=, 2 m OD ∴===,2 1.50.5(m)BD OD OB ∴=-=-=.答:梯子底端B 向外移了0.5米,故答案为:0.5.14.【答案】5或11910【解析】解:Rt ABC △中,90ACB ∠=︒,12AC =,5BC =,13AB ∴===,ABD △是以AD 为其中一腰的等腰三角形,∴分两种情况:①当AD AB =时,AC BD ⊥,5DC BC ∴==.②当AD BD =时,设DC x =,则5AD BD x ==+.Rt ADC △中,90ACD ∠=︒,222DC AC AD ∴+=,即22212(5)x x +=+,解得11910x =.综上所述,线段DC 的长等于5或11910.故答案为:5或11910.15.【答案】5【解析】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h 最短,此时15(cm)AB =,故 20155(cm)h =-=最短;故答案为:5.16.【答案】10102【解析】解:1OBA △为等腰直角三角形,1OB =,11BA OB ∴==,1OA ==12OA A △为等腰直角三角形,121A A OA ∴==212OA ==,23OA A △为等腰直角三角形,2322A A OA ∴==,32OA =34OA A △为等腰直角三角形,343A A OA ∴==434OA ==,45OA A △为等腰直角三角形,4544A A OA ∴==,54OA ==,56OA A △为等腰直角三角形,56542A A OA ∴==-,658OA =.n OA ∴的长度为n .当2020n =时,2020101020202OA ==,故答案为:10102. 三、17.【答案】解:过点A 作AD BC ⊥于点D ,设BD x =,则14CD x =-,在Rt ABD △与Rt ACD △中,222AD AB BD =-,222AD AC CD =-,2222AB BD AC CD ∴-=-,即22221315(14)x x -=--,解得5x =,22222135144AD AB BD ∴=-=-=,12()AD ∴=米,∴学校修建这个花园的费用11412605040()2=⨯⨯⨯=元.答:学校修建这个花园需要投资5040元.18.【答案】解:连接BD , 4 cm AD =, 3 cm AB =,AB AD ⊥,5(cm)BD ∴=()216cm 2ABD S AB AD ∴=⋅=△.在BDC △中,22251213+=,即222BD BC CD +=,BDC ∴△为直角三角形,即90DBC ∠=︒,()2130cm 2DBC S BD BC ∴=⋅=△.()230624cm BDC ABD ABCD S S S ∴=-=-=△△四边形. :四边形ABCD 的面积为224 cm .19.【答案】证明:ABC DBE △≌△,BE BC ∴=,AC ED =;连接EC .则BCE △为等边三角形,BC CE ∴=,60BCE ∠=︒,30DCB ︒∠=,90DCE ︒∴∠=,在Rt DCE △中,222DC CE DE +=,222DC BE AC ∴+=.20.【答案】(1)在ABC △中,AB AC =,AD BC ⊥,2248BC BD ∴==⨯=,()2h BC BC AD =-=.(2)在 ABC △中,90C ∠=︒,6AC =,8BC =,10AB ∴=,()10 4.8 5.2h AB =-=.21.【答案】(1)是,理由:2226 2.5 6.5+=,222CD AD AC ∴+=,ADC ∴△为直角三角形,CD AB ∴⊥,CD ∴是从村庄C 到河边最近的路.(2)设BC x =千米,则()2.5BD x =-千米,CD AB ⊥,2226( 2.5)x x ∴+-=,解得:8.45x =,答:路线BC 的长为8.45千米. 22.【答案】(1)ABE ACD △≌△. 证明:ABE △与AED △均为等腰直角三角形,AB AC ∴=,AE AD =,90BAC EAD ︒∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠.即BAE CAD ∠=∠,在ABE △与ACD △中,AB ACBAE CAD AE AD ∠∠=⎧⎪=⎨⎪=⎩,ABE ACD ∴△≌△.(2)证明ABE ACD △≌△,45ACD ABE ︒∴∠=∠=,又45ACB ︒∠=,90BCD ACB ACD ∴∠=∠+∠=︒,DC BE ∴⊥.23.【答案】(1)如图1,PA PB =,在Rt ACB △中,8AC =,设AP t =,则8PC t =-,在Rt PCB △中,依勾股定理得:222(8)6t t -+=,解得254t =,即此时t 的值为254. (2)分两种情况:①点P 在BC 上时,如图2所示:过点P 作PE AB ⊥,则8PC t =-,14PB t =-,AP初中数学 八年级上册 11 / 11 平分BAC ∠且PC AC ⊥,PE PC ∴=,在ACP △与AEP △中,C AEP CAP EAP AP AP ∠∠∠∠=⎧⎪=⎨⎪=⎩,()ACP AEP AAS ∴△≌△,8AE AC ∴==,2BE ∴=,在Rt PEB △中,依勾股定理得:222PE EB PB +=,即:222(8)2(14)t t -+=- 解得:323t =. ②点P 又回到A 点时,861024AC BC AB ++=++=,24t ∴=. 综上所述,点P 在BAC ∠的平分线上时,t 的值为323秒或24秒.24.【答案】(1)梯形ABCD 的面积为22111()()222a b a b a ab b ++=++,也利用表示为2111222ab c ab ++,2221111122222a ab b abc ab ∴++=++,即222a b c +=. (2)直角三角形的两直角边分别为3,4,∴斜边为5,设斜边上的高为h ,直角三角形的面积为1134522h ⨯⨯=⨯⨯,125h ∴=,故答案为125. (3)图形面积为:222(2)44a b a ab b -=-+,∴边长为2a b -,由此可画出的图形为:。

初二上册数学第三章试卷

初二上册数学第三章试卷

一、选择题(每题3分,共30分)1. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 4, 9, 16, 25D. 3, 6, 9, 12, 152. 等差数列{an}中,若a1=2,d=3,则第10项a10的值为()A. 29B. 31C. 33D. 353. 等比数列{bn}中,若b1=2,q=3,则第5项b5的值为()A. 54B. 18C. 6D. 24. 一个等差数列的前三项分别是1, 4, 7,那么它的第10项是()A. 27B. 29C. 31D. 335. 一个等比数列的第四项是24,公比是2,那么它的第二项是()A. 4B. 6C. 8D. 126. 若等差数列{an}的公差d=2,且a1+a5=24,则a3的值为()A. 10B. 12C. 14D. 167. 若等比数列{bn}的公比q=1/2,且b3=32,则b1的值为()A. 64B. 128C. 256D. 5128. 一个等差数列的前n项和为S,公差为d,首项为a1,则S与n的关系是()A. S = (a1 + an) n / 2B. S = (a1 + an) n / 2 + dC. S = (a1 + an) n / 2 - dD. S = (a1 + an) n / 2 + 2d9. 一个等比数列的前n项和为S,公比为q,首项为a1,则S与n的关系是()A. S = a1 (1 - q^n) / (1 - q)B. S = a1 (1 - q^n) / (1 - q) + qC. S = a1 (1 - q^n) / (1 - q) - qD. S = a1 (1 - q^n) / (1 - q) + 2q10. 若一个等差数列的前n项和为S,公差为d,首项为a1,且S=100,d=2,则a1的值为()A. 30B. 32C. 34D. 36二、填空题(每题3分,共30分)11. 等差数列{an}中,若a1=5,d=3,则第7项a7的值为______。

八年级数学上册第三章试卷

八年级数学上册第三章试卷

一、选择题(每题3分,共30分)1. 下列选项中,不是第三章所学内容的是()A. 平行四边形B. 矩形C. 三角形D. 菱形2. 在平行四边形ABCD中,如果∠A=80°,则∠C的度数是()A. 80°B. 100°C. 140°D. 180°3. 下列图形中,既是矩形又是菱形的是()A. 矩形B. 菱形C. 正方形D. 以上都是4. 在平行四边形ABCD中,如果AD=BC,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 正方形5. 如果一个矩形的对角线相等,那么这个矩形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形6. 下列说法正确的是()A. 所有平行四边形都是矩形B. 所有矩形都是菱形C. 所有菱形都是正方形D. 所有正方形都是矩形7. 在平行四边形ABCD中,如果AB=CD,那么四边形ABCD是()A. 平行四边形B. 矩形C. 菱形D. 正方形8. 下列图形中,对角线互相垂直的是()A. 矩形B. 菱形C. 正方形D. 以上都是9. 如果一个正方形的边长为a,那么它的对角线长为()A. aB. 2aC. √2aD. √3a10. 下列图形中,对角线互相平分的是()A. 矩形B. 菱形C. 正方形D. 以上都是二、填空题(每题5分,共20分)11. 平行四边形的对边长度相等,对角线互相()。

12. 矩形的四个角都是()度。

13. 菱形的四条边都相等,对角线互相()。

14. 正方形的四个角都是()度。

15. 一个平行四边形的面积是8平方厘米,底边长是4厘米,那么高是()厘米。

三、解答题(每题10分,共30分)16. 已知平行四边形ABCD,其中AB=8cm,BC=6cm,求对角线AC的长度。

17. 在矩形EFGH中,E点坐标为(2,3),F点坐标为(6,3),求对角线EH的长度。

18. 一个菱形ABCD,边长为10cm,求对角线BD的长度。

数学试卷八年级上册第三章

数学试卷八年级上册第三章

一、选择题(每题4分,共20分)1. 下列代数式中,表示x与y的差的是()A. x + yB. x - yC. 2x - yD. 3x + 2y2. 若a = 2,b = 3,则代数式a^2 - 2ab + b^2的值为()A. 1B. 2C. 3D. 43. 下列方程中,正确的是()A. 2x + 3 = 5B. 3x - 4 = 7C. 4x + 5 = 8D. 5x - 6 = 94. 若方程2(x - 3) = 4的解为x,则x的值为()A. 1B. 2C. 3D. 45. 下列关于x的方程中,是一元一次方程的是()A. x^2 + 2x - 3 = 0B. 2x - 3 = 5C. x^2 + 4x + 4 = 0D. 3x + 2 = 0二、填空题(每题5分,共20分)6. 若a = 5,b = 2,则代数式3a - 2b的值为______。

7. 方程2x - 5 = 3的解为______。

8. 若方程x + 3 = 7的解为x,则x的值为______。

9. 代数式(2x + 3)^2展开后,x^2的系数为______。

10. 方程x - 4 = 0的解为______。

三、解答题(每题10分,共30分)11. 简化下列代数式:(1) 3a - 2(a + b)(2) 2(x - y) + 3xy(3) (x + 2)(x - 1)12. 求下列方程的解:(1) 2x + 5 = 9(2) 3(x - 2) = 12(3) 4x - 3 = 2x + 513. 求下列代数式的值,其中a = 2,b = 3:(1) a^2 - 2ab + b^2(2) (2a - b)(a + 2b)(3) (a + b)(a - b)四、应用题(每题10分,共20分)14. 甲、乙两数之和为30,甲数比乙数多5,求甲、乙两数。

15. 某商店进购一批苹果,每千克进价为10元,售价为15元。

现以8折优惠出售,求每千克利润是多少?答案:一、选择题1. B2. D3. B4. C5. B二、填空题6. 77. 48. 79. 110. 4三、解答题11. (1) a - 2b(2) 2x^2 - xy - 3y(3) x^2 + x - 212. (1) x = 2(2) x = 4(3) x = 213. (1) 1(2) 14a - 4b(3) a^2 - b^2四、应用题14. 甲数 = 20,乙数 = 1015. 每千克利润为2元。

初中数学八年级上学期习题与答案 第三章达标测试卷

初中数学八年级上学期习题与答案 第三章达标测试卷

第三章达标测试卷一、选择题(每题3分,共30分)1.根据下列表述,能确定位置的是()A.光明剧院2排 B.某市人民路C.北偏东40°D.东经112°,北纬36°2.已知点M到x轴的距离为3,到y轴的距离为2,且在第四象限内,则点M 的坐标为()A.(-2,3) B.(2,-3) C.(3,2) D.(3,-2) 3.点P(m+3,m-1)在x轴上,则点P的坐标为()A.(0,-2) B.(2,0) C.(4,0) D.(0,-4) 4.如图,如果“仕”所在位置的坐标为(-1,-2),“相”所在位置的坐标为(2,-2),那么“炮”所在位置的坐标为()A.(-3,1) B.(1,-1) C.(-2,1) D.(-3,3)(第4题)(第7题)5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是() A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1) 6.下列与点(-1,5)相连得到的直线与y轴平行的点为()A.(1,-5) B.(-1,2) C.(4,-5) D.(2,5) 7.如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,3),则该平面直角坐标系的原点在()A.E点处B.F点处C.G点处D.EF的中点处8.已知点A(1,0),B(0,2),点P在x轴上,且△P A B的面积为5,则点P的坐标为()A.(-4,0) B.(6,0)C.(-4,0)或(6,0) D.无法确定9.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1 km(小圆半径是1 km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是()A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)10.如图,弹性小球从点P(0,3)出发,沿箭头所示方向运动,每当小球碰到长方形OA B C的边时反弹,反弹时反射角等于入射角.小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,点P3的坐标是(8,3),则点P2 021的坐标是()A.(8,3)B.(7,4) C.(5,0) D.(1,4) 二、填空题(每题3分,共30分)11.点(-3,-4)在第________象限,到y轴的距离为________.12.已知点A在y轴上,且OA=1,则点A的坐标为________________.13.若点P(x,y)满足x<0,y≠0,则点P在第____________象限.14.已知△A B C在直角坐标系中的位置如图所示,如果△A′B′C′与△A B C关于y 轴对称,那么点A的对应点A′的坐标为________.(第14题) (第17题)(第18题)(第19题) (第20题) 15.在平面直角坐标系中,一只青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为__________.16.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=________,n=________.17.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横、纵坐标仍是整数,则移动后点A的坐标为__________(写出一个即可).18.如图,平行四边形ABCD的面积为9,点A,B的坐标分别为(-4,0),(-1,0),点D在y轴上,则点C的坐标为________.19.如图,四边形OABC为正方形,边长为6,点A,C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,则PD+P A的最小值是________.20.如图,在平面直角坐标系中,长方形OABC的顶点A,C的坐标分别为(6,0),(0,4),点P是线段BC上的动点.当△OP A是等腰三角形时,P点的坐标是________________________________.三、解答题(22题7分,25题14分,26题12分,其余每题9分,共60分) 21.在如图所示的平面直角坐标系中描出下列各点:(1,1),(3,1),(4,2),(2,2),(2,4),(1,2),(0,2),(1,1),并将这些点用线段依次连接起来.(1)观察所得图案,你觉得它像什么?(2)每个点的横坐标保持不变,纵坐标分别乘-1,画出所得的图案.22.小林放学后,先向东走了300 m,再向北走了200 m,到书店A买了一本书;然后向西走了500 m,再向南走了100 m,到快餐店B买了零食;又向南走了400 m,再向东走了800 m,到了家C.请建立适当的平面直角坐标系,在平面直角坐标系中画出点A,B,C的位置,并写出A,B,C三点的坐标.23.在平面直角坐标系中,已知A(2,a+3),B(b,b-3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴距离的2倍时,求点B所在的象限.24.已知等边三角形A B C的两个顶点坐标分别为A(-4,0),B(2,0).求:(1)顶点C的坐标;(2)△A B C的面积.25.下图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为(-2,4),点B的坐标为(-4,2);(2)在第二象限内的格点上找一点C,使点C与线段A B组成一个以A B为底的等腰三角形,且腰长是无理数,画出△A B C,则点C的坐标是________,△A B C 的周长是________(结果保留根号);(3)作出△A B C关于x轴对称的△A′B′C′.26.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点称为整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AO B内部(不包括边界)的整点个数为m.(1)当m=3时,求点B的坐标的所有可能情况;(2)当点B的横坐标为4n(n为正整数)时,用含n的代数式表示m.答案一、1.D 2.B 3.C 4.A 5.B 6.B7.A8.C9.C10.D二、11.三;312.(0,1)或(0,-1)13.二或三14.(4,2)15.(1,2)16.3;-417.(-1,1)(答案不唯一)18.(3,3)19.21020.(3,4),(25,4)或(6-25,4)【点拨】由题意得OA=BC=6,OC=AB=4.△OP A为等腰三角形,可分为三种情况:(1)当OP=AP时,易知PC=PB,则PC=12BC=3,故点P的坐标为(3,4);(2)当OP=OA=6时,PC=OP2-OC2=62-42=25,故点P的坐标为(25,4);(3)当P A=OA=6时,PB=P A2-AB2=62-42=25,则PC=BC-PB=6-25,故点P的坐标为(6-25,4).三、21.解:如图所示.(1)像“帆船”.(2)如图所示.22.解:(答案不唯一)以学校门口为坐标原点、向东为x轴的正方向、向北为y 轴的正方向,建立平面直角坐标系,各点的位置和坐标如图所示.23.解:(1)由题意得a+3=2,解得a=-1.(2)由题意得|b-3|=2|b|,解得b=-3或b=1.当b=-3时,b-3=-6,则点B(-3,-6)在第三象限;当b=1时,b-3=-2,则点B(1,-2)在第四象限.24.解:(1)由题可知点A和点B都在x轴上,且AB=6.如图,当点C在x轴上方时,过点C作CD⊥AB于点D.因为△ABC是等边三角形,所以AD=BD=3,AC=6.由勾股定理得CD=AC2-AD2=3 3.易得点C的坐标为(-1,33).同理,当点C在x轴下方时,可得点C的坐标为(-1,-33).故顶点C的坐标为(-1,33)或(-1,-33).(2)△ABC的面积为12×6×33=9 3.25.解:(1)如图所示.(2)如图所示.(-1,1);210+22(3)如图所示.26.解:(1)如图①,当点B的横坐标分别为3或4时,m=3.即当m=3时,点B的坐标的所有可能情况是(3,0)或(4,0).(2)如图②,当点B的横坐标为4n=4时,n=1,m=0+1+2=3;当点B的横坐标为4n=8时,n=2,m=1+3+5=9;当点B的横坐标为4n=12时,n=3,m=2+5+8=15;….当点B的横坐标为4n时,m=(n-1)+(2n-1)+(3n-1)=6n-3.。

八年级数学上《第三章位置与坐标》单元测试题(含答案)

八年级数学上《第三章位置与坐标》单元测试题(含答案)

第三章位置与坐标第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述: 甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( ) A .向南直走300米,再向西直走200米 B .向南直走300米,再向西直走600米 C .向南直走700米,再向西直走200米 D .向南直走700米,再向西直走600米7.若点P(-m ,3)与点Q(-5,n)关于y 轴对称,则m ,n 的值分别为( ) A .-5,3 B .5,3 C .5,-3 D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0) 请将选择题答案填入下表:二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD 翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图91.B 2.B3.B 4.C 5.C6.A7.A8.C 9.C10.B11.一12.(-7,-7)13.关于x轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3)9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,3 3);同理,当点C在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3.16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0). 18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图. (1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0). (3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5, 所以S △ABC =12×5×2=5.(3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3). (2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3). 22.解:由题意,可知折痕AD 所在的直线是四边形OAED 的对称轴.在Rt △ABE 中,AE =OA =10,AB =8,所以BE =AE 2-AB 2=102-82=6, 所以CE =4,所以E (4,8). 在Rt △DCE 中,DC 2+CE 2=DE 2, 又DE =OD ,所以(8-OD )2+42=OD 2, 所以OD =5,所以D (0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A (-3,4),D (8,1),E (7,4),F (4,3),G (1,7).(2)连接BE 和CG 相交于点H ,由题意,得BE =72+42=65,CG =72+42=65,所以BE =CG . 借助全等及三角形内角和等性质可得∠BHC 的度数:∠BHC =90°.24.解:(1)△A 2B 2C 2的三个顶点的坐标分别是A 2(4,0),B 2(5,0),C 2(5,2).(2)①如图①,当0<a ≤3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

八年级数学上册第三章测试题

八年级数学上册第三章测试题

第三章单元检测一、选择题1、已知点P (1,-2),点Q(-1,2),点 R (-1,-2),点H(1,2),它们关于y 轴 对称的点是( ).A 、 P 和QB 、 P 和HC 、 Q 和RD 、 P 和R2、已知点M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为( ).A 、 (2,3)B 、(2,-3)C 、 (3,2)D 、 不能肯定3、若(a+2)2+3-b =0,则点M (a ,b )在( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限4、已知P (m-1,2-m )在第一象限,则m 的取值范围为( )A 、21<m < 2B 、 1<m <2C 、 m <2D 、 m >21 5、如图(一),在直角坐标系中,△AOB 是等边三角形,若B 点的坐标是(2,0),则A 点的坐标是( )A 、 (2,1)B 、(1,2)C 、(3,1 )D 、(1, 3 )6、一个平行四边形的三个极点的坐标别离是(0,0)、(2,0)(1,2),第四个极点在x 轴下方,则其坐标为( )A 、(-1,-2)B 、(1,-2)C 、(3,2)D 、(-1,2)7、若是点A (x,y )在第三象限,则点B (-x,y-1)在( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限8、将图(二)中各点的横坐标不变,纵坐标别离乘以-1,所得图形为( )9、将平面直角坐标系内某个图形的各点的横坐标乘以-1,纵坐标不变,所得图形与原图形的关系是( )A 、 关于x 轴对称B 、 关于y 轴对称C 、 关于原点对称D 、 重合10、坐标平面内有一点A (m ,n ),且m n=0,则点A 的位置在( )A 、 原点B 、x 轴上C 、y 轴上D 、 坐标轴上二、填空题(每空2分,共22分)1.若是点P 1(-1,3)与P 2(1,b )关于y 轴对称,则b= 。

八年级上册数学第3章检测题(含答案)

八年级上册数学第3章检测题(含答案)

八年级上册数学第3章检测题一、 精心选一选!(只有一个正确答案)1.在1y ,13 , , 4x+y , 23 x 2y, 2xy π 中,分式有﹙ ﹚ A .2个 B.3个 C.4个 D.5个2.若代数式(x-2)(x+1)|x|-1的值为零,则( ) A .x=2或x=-1 B. x=-1 C. x= D.x=23.下列各式成立的是( )① a+2b+2 =a b ② -x+y x-y =-1 ③ 0.2a-3a-1 =2a-30a-1 ④ A .①② B.②④ C. ②③ D. ①④4.下列分式中是最简分式的是( )A .ab-a 3ab B. C. - 51m 34m D. t-11-t 5. 若a b =c d,则下列结论错误的是( ) A.ad=bc B. C. D.a+m b+m =c d 6.下列关于x 的方程是分式方程的是( )A .-3= B.=3-xC.x a - a b =-D. 7.下列说法正确的是( )A. ,B.C.分式的和与差一定是分式,D.分式的和与差都有可能是整式8.甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,列方程得 ( )360480140x x =- B .360480140x x =- C .360480140x x += D .360480140xx -= 二.填空题9.已知当x=-2时,分式无意义,当x=4时,此分式的值为0, 则a=______,b=_________10.不改变分式的值,使下列分式的分子与分母的最高次项的系数变为正数。

(1) 212+x ±11112-=----x x x 22y x y x +-2222d c b a =ad c b ad 22=52+x 63x +ax +-77a b b x 1112=--x x )(22x 532y 的最简公分母是与x y x x +ab bb a 3a 613133的最简公分母是与ax b x +-____________6344)2(__________54722=---=-+-x x x a a11.分式________________。

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

2024-2025学年浙教版数学八年级上册第三章 一元一次不等式 单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则−5a <−5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x−2>y−2C .−2x >−2yD .x−y >03.将不等式组{x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x 3≥2x−15;④x−1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组{2x +3>12x−a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥−1时,关于x 的代数式ax−2恰好能取到两个非负整数值,则a 的取值范围是( )A .−4<a ≤−3B .−4≤a <−3C .−4<a <0D .a ≤−39.若整数m 使得关于x 的方程m x−1=21−x+3的解为非负整数,且关于y 的不等式组{4y−1<3(y +3)y−m⩾0至少有3个整数解,则所有符合条件的整数m 的和为( )A .7B .5C .0D .-210.对于任意实数p 、q ,定义一种运算:p@q =p-q +pq ,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x 的不等式组{2@x <4x@2≥m 有3个整数解,则m 的取值范围为是 ( )A .-8≤m<-5B .-8<m≤-5C .-8≤m≤-5D .-8<m<-5二、填空题11.关于x 的不等式3⩾k−x 的解集在数轴上表示如图,则k 的值为  .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M =3x 、N =2−8x ,且M 、N 不重合,M−N <0,则x 的取值范围是 .14.关于x 的不等式组{x >m−1x <m +2的整数解只有0和1,则m = .15.关于x 的不等式组{a−x >3,2x +8>4a 无解,则a 的取值范围是  .16.若数a 既使得关于x 、y 的二元一次方程组{x +y =63x−2y =a +3有正整数解,又使得关于x 的不等式组{3x−52>x +a 3−2x 9≤−3的解集为x ≥15,那么所有满足条件的a 的值之和为 .三、计算题17.(1)解一元一次不等式组:{x +3(x−2)⩽6x−1<2x +13.(2)解不等式组:{3(x +1)≥x−1x +152>3x,并写出它的所有正整数解.四、解答题18.先化简:a 2−1a 2−2a +1÷a +1a−1−a a−1; 再在不等式组{3−(a +1)>02a +2⩾0的整数解中选取一个合适的解作为a 的取值,代入求值.19.解不等式组{2−3x ≤4−x ,①1−2x−12>x 4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得−3x +x ≤4−2 第1步合并同类项,得−2x ≤2第2步两边都除以−2,得x ≤−1 第3步任务一:该同学的解答过程中第 ▲ 步出现了错误,这一步的依据是▲ ,不等式①的正确解是▲ .任务二:解不等式②,并写出该不等式组的解集.20. 由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x =4,而不等式组 {x−1>2x +2<7的解集为3<x <5,不难发现x =4在3<x <5的范围内,所以方程x−1=3是不等式组 {x−1>2x +2<7的“关联方程”.(1)在方程①3(x +1)−x =9;②4x−8=0;③x−12+1=x 中,关于x 的不等式组 {2x−2>x−13(x−2)−x ≤4的“关联方程”是;(填序号)(2)若关于x 的方程2x +k =6是不等式组{3x +1≤2x2x +13−2≤x−12的“关联方程”,求k 的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x >1被不等式x >0“容纳”;(1)下列不等式(组)中,能被不等式x <−3“容纳”的是________;A .3x−2<0 B .−2x +2<0C .−19<2x <−6D .{3x <−84−x <3(2)若关于x 的不等式3x−m >5x−4m 被x ≤3“容纳”,求m 的取值范围;(3)若关于x 的不等式a−2<x <−2a−3被x >2a +3“容纳”,若M =5a +4b +2c 且a +b +c =3,3a +b−c =5,求M 的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】−1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,解不等式x﹣1 <2x+13,3(x-1)<2x+1,3x-3<2x+1,x<4,∴ 不等式x ﹣1 <2x +13的解为:x <4,∴ 不等式组的解集为x≤3.(2)【答案】解:{3(x +1)≥x−1①x +152>3x②,由①得,x ≥−2,由②得,x <3,∴不等式组的解集为−2≤x <3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a <2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a <2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x ≥−1任务二:解不等式②,得x <65,∴不等式组的解为−1≤x <65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x 元.由题意得90000x=80000x−500解得x =4500经检验x =4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a 台,则乙种型号进(20−a)台.由题意得75000≤3500a +4000(20−a)≤76000解得8≤a ≤10⸪a为整数,⸫a为8,9,10⸫有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥822.【答案】(1)C(2)m≤2(3)19。

八年级上册数学第三章位置与坐标检测题(附答案和解释)

八年级上册数学第三章位置与坐标检测题(附答案和解释)

八年级上册数学第三章位置与坐标检测题(附答案和解释)同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇位置与坐标检测题,希望可以帮助到大家!一、选择题(每小题3分,共30分)1.在平面直角坐标系中,已知点 (2,-3),则点在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为( )A. M(-1,2),N(2,1)B.M(2,-1),N(2,1)C.M(-1,2),N(1,2)D.M(2,-1),N(1,2)第2题图第3题图3.如图,长方形的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 (2,0)同时出发,沿长方形的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2019次相遇点的坐标是( )A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点的坐标为,且点到两坐标轴的距离相等,则点的坐标是( )A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.(2019?天津中考)在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180&deg;,所得到的对应点P&prime;的坐标为( )A.(3,2)B.(2,-3)C.(-3,-2)D.(3,-2)6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原图案相比( )A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位长度C.图案向上平移了个单位长度D.图案向右平移了个单位长度,并且向上平移了个单位长度7.(2019?湖北孝感中考)在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1,再将点P1绕原点旋转90&deg;得到点P2,则点P2的坐标是( )A.(3, 3)B.( 3,3)C.(3,3)或( 3, 3)D.(3, 3)或( 3,3)第8题图8.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的,则点的对应点的坐标是( )A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)9.如果点在第二象限,那么点│ │)在( )A.第一象限B.第二象限C.第三象限D.第四象限10.(2019?湖南株洲中考)在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第步的走法是:当能被3整除时,则向上走1个单位;当被3除,余数是1时,则向右走1个单位,当被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点 (2, +1)一定在第象限.12点和点关于轴对称,而点与点C(2,3)关于轴对称,那么,,点和点的位置关系是 .13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .14.(2019?南京中考)在平面直角坐标系中,点A的坐标是(2, 3),作点A关于x轴的对称点,得到点A&prime;,再作点A&prime;关于y轴的对称点,得到点A&Prime;,则点A&Prime;的坐标是(____,____).15.已知是整数,点在第二象限,则 .16.如图,正方形的边长为4,点的坐标为(-1,1),平行于轴,则点的坐标为 _.17.已知点和不重合.(1)当点关于对称时,(2)当点关于原点对称时, = , = .第16题图18.(2019?山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A'的坐标是_______.第18题图三、解答题(共46分)19.(6分)如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.第19题图第20题图20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?21.(6分)在直角坐标系中,用线段顺次连接点A( ,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.22.(6分)如图,点用表示,点用表示.若用 &rarr; &rarr; &rarr; &rarr;表示由到的一种走法,并规定从到只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.23.(6分)(2019?湖南湘潭中考)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点的坐标为 ;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,点A1的坐标为 .第23题图24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗?(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么?25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.第三章位置与坐标检测题参考答案一、选择题1.D 解析:因为横坐标为正,纵坐标为负,所以点 (2,-3)在第四象限,故选D.2.A 解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D 解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1︰2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12&times;1,物体甲行的路程为12&times; =4,物体乙行的路程为12&times; =8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12&times;2,物体甲行的路程为12&times;2&times; =8,物体乙行的路程为12&times;2&times; =16,在边相遇;③第三次相遇物体甲与物体乙行的路程和为12&times;3,物体甲行的路程为12&times;3&times; =12,物体乙行的路程为12&times;3&times; =24,在点相遇,此时甲、乙回到出发点,则每相遇三次,两物体回到出发点.因为2 012&divide;3=670……2,故两个物体运动后的第2019次相遇点与第二次相遇点为同一点,即物体甲行的路程为12&times;2&times; =8,物体乙行的路程为12&times;2&times; =16,在DE边相遇,此时相遇点的坐标为:(-1,-1),故选D.4.D 解析:因为点到两坐标轴的距离相等,所以,所以a=-1或a=-4.当a=-1时,点P的坐标为(3,3);当a=-4时,点P的坐标为(6,-6).5.D 解析:把点P(-3,2)绕原点O顺时针旋转180&deg;,根据旋转的性质可得,PO=P&prime;O,而旋转角为180&deg;,点P与点P&prime;可以看作是关于点O成中心对称,所以点P&prime;的坐标为(3,-2).6.D7. D 解析:根据点的平移规律可得点P1的坐标是(3,3),因为题目条件中没有说明旋转的方向,所以可顺时针旋转,也可逆时针旋转,得点P2的坐标是(3, 3)或( 3,3).8.A 解析:点变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的,则点的对应点的坐标是(-4,3),故选A.9.A 解析:因为点在第二象限,所以所以︱︱&gt;0,因此点在第一象限.10.C 解析:在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位;(2)被3除,余数为1的数有34个,故向右走了34个单位;(3)被3除,余数为2的数有33个,故向右走了66个单位,故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处位置的横坐标为100,纵坐标为33.故选C.二、填空题11.一解析:因为 &ge;0,1&gt;0,所以纵坐标 +1&gt;0.因为点的横坐标2&gt;0,所以点一定在第一象限.12. 关于原点对称解析:因为点A(a,b)和点关于轴对称,所以点的坐标为(a,-b);因为点与点C(2,3)关于轴对称,所以点的坐标为(-2,3),所以a=-2,b=-3,点和点关于原点对称.13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2).14. 3 解析:点A关于x轴的对称点A&prime;的坐标是(2,3),点A&prime;关于y轴的对称点A&Prime;的坐标是( 2,3).15.-1 解析:因为点A在第二象限,所以,所以 .又因为是整数,所以 .16.(3,5) 解析:因为正方形的边长为4,点的坐标为(-1,1),所以点的横坐标为4-1=3,点的纵坐标为4+1=5,所以点的坐标为(3,5).17.(1)x轴 (2)-2 1 解析:两点关于x轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.18.(2,3) 解析:点A的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的,得到它的对应点A'的坐标是,即A'(2,3).三、解答题19.解:设△A1B1C1的三个顶点的坐标分别为A1( ,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为( ,由题意可得 =2, +4=4, -3=3, +4=3, -3=1,所以A1(-3,5),B1(0,6), .20. 解:(1)将线段向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段 .(2)将线段向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段 .21. 解:(1)因为点B(0,3)和点C(3,3)的纵坐标相同,点A 的纵坐标也相同,所以BC∥AD.因为,所以四边形是梯形.作出图形如图所示.(2)因为,,高,故梯形的面积是 .(3)在Rt△ 中,根据勾股定理,得,同理可得,因而梯形的周长是 .22.解:走法一: ;走法二: .答案不唯一.路程相等.第 11 页。

北师大版八年级上册数学第三章《位置与坐标》单元测试卷(含答案)

北师大版八年级上册数学第三章《位置与坐标》单元测试卷(含答案)

北师大版八年级上册数学第三章《位置与坐标》单元测试卷(含答案)一、选择题(每题3分, 共30分)1.点P(-4, 3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.根据下列表述, 能确定位置的是( )A. 红星电影院2排B. 北京市四环路C. 北偏东30°D. 东经118°, 北纬40°3. 如图, 在直角坐标系中, 卡片盖住的点的坐标可能是( )A.(2, 3) B.(-2, 1) C.(-2, -2.5) D.(3, -2)(第3题) (第8题) (第10题)4. 若点A(m, n)在第三象限, 那么点B(-m, |n|)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知点A(-1, -4), B(-1, 3), 则( )A.点A, B关于x轴对称 B.点A, B关于y轴对称C. 直线AB平行于y轴D. 直线AB垂直于y轴6.已知点A(m+1, -2)和点B(3, m-1), 若直线AB∥x轴, 则m的值为( )A. 2B. -4C. -1D. 37.若点P(1, a)与点Q(b, 2)关于x轴对称, 则代数式(a+b)2 023的值为( )A. -1B. 1C. -2D. 28. 【中考·滨州】如图, 正五边形ABCDE放入某平面直角坐标系后, 若顶点A,B, C, D的坐标分别是(0, a), (-3, 2), (b, m), (c, m), 则点E的坐标是( )A. (2, -3)B. (2, 3)C. (3, 2)D. (3, -2)9. 已知点P的坐标为(2-a, 3a+6), 且点P到两坐标轴的距离相等, 则点P的坐标是( )A. (3, 3)B. (3, -3)C. (6, -6)D. (3, 3)或(6, -6)10. 在平面直角坐标系中, 一个智能机器人接到的指令是: 从原点O出发, 按“向上→向右→向下→向右”的方向依次不断移动, 每次移动1个单位长度, 其移动路线如图所示, 第一次移动到点A1, 第二次移动到点A2, …, 第n次移动到点An, 则点A2 023的坐标是( )A. (1 010, 0)B. (1 010, 1)C. (1 011, 0)D. (1 011, 1)二、填空题(每题3分, 共24分)11. 点(0, -2)在________轴上.12. 点(4, 5)关于x轴对称的点的坐标为__________.13. 一个英文单词的字母顺序分别对应如图中的有序数对:(5, 3), (6, 3),(7, 3), (4, 1), (4, 4), 则这个英文单词翻译成中文为__________.(第13题) (第17题) (第18题)14. 已知点A, B, C的坐标分别为(2, 4), (6, 0), (8, 0), 则△ABC的面积是________.15. 【教材P71复习题T1(3)改编】若点P到x轴的距离为4, 到y轴的距离为5, 且点P在y轴的左侧, 则点P的坐标为________________.16. 已知点N的坐标为(a, a-1), 则点N一定不在第________象限.17. 如图, 一束光线从点A(3, 3)出发, 经过y轴上的点C反射后经过点B(1, 0),则光线从点A到点B经过的路径长为________.18. 如图, 在△ABC中, 点A的坐标为(0, 1), 点B的坐标为(3, 1), 点C的坐标为(4, 3), 如果要使△ABD与△ABC全等, 那么点D的坐标为__________.三、解答题(19, 23, 24题每题12分, 其余每题10分, 共66分)19. 【教材P60随堂练习变式】如图, 标明了李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系, 写出学校、邮局的坐标.(2)某星期日早晨, 李华同学从家里出发, 沿着(-2, -1)→(-1, -2)→(1,-2)→(2, -1)→(1, -1)→(1, 3)→(-1, 0)→(0, -1)→(-2, -1)的路线转了一圈, 依次写出他路上经过的地方.(3)连接(2)中各点, 所形成的路线构成了什么图形?20. 已知点P(2m-6, m+2).(1)若点P在y轴上, 则点P的坐标为__________;(2)若点P的纵坐标比横坐标大6, 则点P在第几象限?21. 若点P, Q的坐标分别是(x1, y1), (x2, y2), 则线段PQ的中点坐标为. 如图, 已知点A, B, C的坐标分别为(-5, 0), (3, 0), (1, 4), 利用上述结论分别求出线段AC, BC的中点D, E的坐标, 并判断DE与AB的位置关系.22. 已知点P(2x, 3x-1)是平面直角坐标系内的点.(1)若点P在第三象限, 且到两坐标轴的距离和为11, 求x的值;(2)已知点A(3, -1), 点B(-5, -1), 点P在直线AB的上方, 且到直线AB的距离为5, 求x的值.23. 【教材P68例题变式】如图所示.(1)写出A, B, C三点的坐标.(2)若△ABC各顶点的纵坐标不变, 横坐标都乘-1, 请你在同一坐标系中描出对应的点A′, B′, C′, 并依次连接这三个点, 所得的△A′B′C′与△ABC有怎样的位置关系?(3)求△ABC的面积.24. 已知A(-3, 0), C(0, 4), 点B在x轴上, 且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P, 使得以A, C, P为顶点的三角形的面积为9?若存在, 求出点P的坐标;若不存在, 请说明理由.(3)在y轴上是否存在点Q, 使得△ACQ是等腰三角形?若存在, 请画出点Q的位置, 并直接写出点Q的坐标;若不存在, 请说明理由.参考答案一、1. B 2. D 3. D 4. A 5. C 6. C 7. A 8. C 9. D 10. C二、11. y 12. (4, -5) 13. 学习14. 415. (-5, 4)或(-5, -4) 16. 二17. 518. (4, -1)或(-1, 3)或(-1, -1)三、19.解: (1)学校的坐标为(1, 3), 邮局的坐标为(0, -1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略, 该图形为一条帆船.20. 解: (1)(0, 5)(2)根据题意, 得2m-6+6=m+2, 解得m=2.所以点P的坐标为(-2, 4).所以点P在第二象限.21. 解: 由题中所给结论及点A, B, C的坐标分别为(-5, 0), (3, 0), (1,4),得点D(-2, 2), E(2, 2).因为点D, E的纵坐标相等, 且不为0,所以DE∥x轴.又因为AB在x轴上,所以DE∥AB.22. 解: (1)当点P在第三象限时, 点P到x轴的距离为1-3x, 到y轴的距离为-2x. 故1-3x-2x=11, 解得x=-2.(2)易知直线AB∥x轴. 由点P在直线AB的上方且到直线AB的距离为5, 得3x-1-(-1)=5, 解得x=.23.解: (1)A(3, 4), B(1, 2), C(5, 1).(2)图略.△A′B′C′与△ABC关于y轴对称.(3)S△ABC=3×4-×2×2-×2×3-×1×4=5.24. 解: (1)因为点B在x轴上, 所以设点B的坐标为(x, 0).因为A(-3, 0), AB=4,所以|x-(-3)|=4,解得x=-7或x=1.所以点B的坐标为(-7, 0)或(1, 0).(2)在y轴上存在点P, 使得以A, C, P为顶点的三角形的面积为9. 设点P的坐标为(0, y),当点P在点C的上方时, S△ACP==9,解得y=10;当点P在点C的下方时, S△ACP==9,解得y=-2.综上所述, 点P的坐标为(0, 10)或(0, -2).(3)在y轴上存在点Q, 使得△ACQ是等腰三角形.如图, 点Q的坐标为(0, 9)或(0, -4)或或(0, -1).。

北师大版初中八年级数学上册第三章检测卷含答案

北师大版初中八年级数学上册第三章检测卷含答案

学校班级姓名第三章检测卷(时间:60分钟满分:100分)一、选择题(每小题4分,共32分)1.象棋盘的一部分如图所示,若“帅”位于点(2,-1),“相”位于点(4,-1)上,则“炮”位于点()上.A.(0,2)B.(0,3)C.(-1,3)D.(-1,2)2.若点P(m,-2),B(-4,n-3)关于x轴对称,则().A.m=-4,n=5B.m=-4,n=-5C.m=4,n=1D.m=4,n=-13.如图,在A,B两处观测到的C处的方位角分别是().A.北偏东60°,北偏西40°B.北偏东60°,北偏西50°C.北偏东30°,北偏西40°D.北偏东30°,北偏西50°(第3题图)4.如图所示,在平面直角坐标系中,正方形ABCD的顶点A,B的坐标分别为A(0,1),B(2,-1),若点C到y 轴的距离为m,点D到x轴距离为n,则m和n分别为().A.4,3B.3,4C.1,2D.1,3(第4题图)5.将△ABC的三个顶点的横坐标不变,纵坐标乘-1,则所得图形().A.与原图形关于x轴对称B.与原图形关于y轴对称C.与原图形关于原点对称D.向y轴的负方向平移了1个单位长度6.如图,在平面直角坐标系中,直线l过点A且平行于x轴,交y轴于点(0,1),△ABC关于直线l对称,点B 的坐标为(-1,-1),则点C的坐标为().A.(-2,1)B.(-1,3)C.(1,-3)D.(-3,1)(第6题图)7.五子连珠棋和象棋、围棋一样,深受同学们喜爱,其规则是:在15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.两个五子棋爱好者甲和乙的对弈图(甲执黑子先行,乙执白子后行),如图所示.观察棋盘,若点M的位置记作(8,4),甲必须在()处落子,才不会让乙在短时间内获胜.(第7题图)A.(1,8)B.(3,5)C.(1,7)或(5,3)D.(7,1)8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2 021次相遇地点的坐标是().A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)二、填空题(每小题4分,共24分)9.在数学活动中,张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(-200,300).王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m.10.若点M(2,a+3)与点N(2,2a-15)关于x轴对称,则a2-3=.。

八年级数学上《第三章位置与坐标》单元测试题(含答案)

八年级数学上《第三章位置与坐标》单元测试题(含答案)

第三章位置与坐标第Ⅰ卷(选择题共30分)一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是( )A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为( )图1A.(-4,6) B.(4,6)C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在( )A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]( )图2A.黑(3,7),白(5,3) B.黑(4,7),白(6,2)C.黑(2,7),白(5,3) D.黑(3,7),白(2,6)甲:从学校向北直走500米,再向东直走100米可到图书馆; 乙:从学校向西直走300米,再向北直走200米可到博物馆; 丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米B .向南直走300米,再向西直走600米C .向南直走700米,再向西直走200米D .向南直走700米,再向西直走600米7.若点P(-m ,3)与点Q(-5,n)关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A(1,0),B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)请将选择题答案填入下表:二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l 过点M(3,0)且平行于y 轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC 关于y 轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标;(2)如果点P 的坐标是(-a ,0),其中a >0,点P 关于y 轴的对称点是P 1,点P 1关于直线l 的对称点是P 2,求PP 2的长.图91.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C 10.B 11.一 12.(-7,-7) 13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4) 15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,3 3);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3.第三跳落到A3(4,2),第四跳落到A4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A5(9,6).到达A2n后,要向正东方向跳(2n+1)个单位长度落到A2n+1.17.解:答案不唯一,如以BC所在直线为x轴,过点B作BC的垂线为y轴建立平面直角坐标系,由图可知,点A(12,5),B(0,0),C(24,0).18.解:(1)由题意可得5+a+a-3=0,解得a=-1.(2)由题意可得|2-a|=|3a+6|,即2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点N的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB∥x轴,且AB=3-(-2)=5,1(3)存在.因为AB=5,S△ABP=10,所以点P到AB的距离为4.又因为点P在y轴上,所以点P的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m+4=0,解得m=-2,则m-1=-3,所以点P的坐标为(0,-3).(2)由题意,得m-1=0,解得m=1,则2m+4=6,所以点P的坐标为(6,0).(3)由题意,得m-1=(2m+4)+3,解得m=-8,则2m+4=-12,m-1=-9, 所以点P的坐标为(-12,-9).(4)由题意,得m-1=-3,解得m=-2,则2m+4=0,所以点P的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB =8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。

八年级数学上册第三章单元测试试题

八年级数学上册第三章单元测试试题

本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

第三章中心对称图形〔一〕本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

一.选择题:1.在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形的有 ( )A.1个 B.2个 C.3个 D.4个2.正方形具有而菱形不一定具有的性质是〔〕A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角3.平行四边形的对角线长为x、y,一边长为12,那么x、y的值可能是〔〕A.8和14 B.10和14 C.18和20 D.10和344.以下说法中,正确的选项是 ( ) A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形 D.对角线互相垂直平分的四边形是正方形5.以下说法中,不正确的选项是( )A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形6.下面说法正确的选项是〔〕本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

A .一个三角形中,至多只能有一个锐角B .一个四边形中,至少有一个锐角C .一个四边形中,四个内角可能全是锐角D .一个四边形中,不能全是钝角 7.如图:在□ABCD 中,AE⊥BC 于E ,AF⊥CD 于F 。

假设AE=4,AF=6,且□ABCD 的周长为40,那么ABCD 的面积为〔 〕 A .24B .36C .40D .488.顺次连接四边形四边中点所组成的四边形是菱形, 那么原四边形为〔 〕A .平行四边形B .菱形C .对角线相等的四边形D .直角梯形9.平行四边形ABCD 的周长为2a ,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大b ,那么AB 的长为〔 〕A .2ba -B .2ba +C .22ba + D .22ba + 10.假如菱形的边长是3,一条对角线的长也是3,那么菱形的一个锐角是 ( ) A .50° B .55° C .60° D 120° 11.菱形的周长为20cm ,两邻角的比为1:2,那么较长的对角线长为〔 〕 A .4.5 cmB .4 cmC .53 cmD .43 cm12.在四边形ABCD 中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD 中任选两个使四边形ABCD为平行四边形的选法有〔 〕 A .3B .4C .5D .6二.填空题 :13.一个正方形要绕它的中心至少旋转_______度,才能与原来的图形重合. 14.从数学对称的角度看:下面的几组大写英文字母:①ANEG;②KBXM;③XIHO;本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图(三) 第三章单元检测 一、选择题 1、已知点P (1,-2),点Q(-1,2),点 R (-1,-2),点H(1,2),它们关于y 轴 对称的点是( ).
A 、 P 和Q
B 、 P 和H
C 、 Q 和R
D 、 P 和R
2、已知点M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为( ).
A 、 (2,3)
B 、(2,-3)
C 、 (3,2)
D 、 不能确定
3、若(a+2)2+3-b =0,则点M (a ,b )在( )
A 、 第一象限
B 、 第二象限
C 、 第三象限
D 、 第四象限
4、已知P (m-1,2-m )在第一象限,则m 的取值范围为( )
A 、21<m < 2
B 、 1<m <2
C 、 m <2
D 、 m >2
1 5、如图(一),在直角坐标系中,△AOB 是等边三角形,若B 点的坐标是(2,0),则A 点的坐标是( )
A 、 (2,1)
B 、(1,2)
C 、(3,1 )
D 、(1, 3 )
6、一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)
(1,2),第四个顶点在x 轴下方,则其坐标为( )
A 、(-1,-2)
B 、(1,-2)
C 、(3,2)
D 、(-1,2)
7、如果点A (x,y )在第三象限,则点B (-x,y-1)在( )
A 、 第一象限
B 、 第二象限
C 、 第三象限
D 、 第四象限
8、将图(二)中各点的横坐标不变,纵坐标分别乘以-1,所得图形为( )
9、将平面直角坐标系内某个图形的各点的横坐标乘以-1,纵坐标不变,所得图形与原图形的关系是( )
A 、 关于x 轴对称
B 、 关于y 轴对称
C 、 关于原点对称
D 、 重合
10、坐标平面内有一点A (m ,n ),且m n=0,则点A 的位置在( )
A 、 原点
B 、x 轴上
C 、y 轴上
D 、 坐标轴上
二、填空题(每空2分,共22分)
1.如果点P 1(-1,3)与P 2(1,b )关于y 轴对称,则b= 。

2.若P )(y x 、在第二象限且2=x ,3=y ,则点P 的坐标是__________.
3.已知点P (5 -3),则P 点关于x 轴的对称点的坐标为 。

4.将点A (-3,2)沿x 轴正方向平移3个单位后得到点A ',则A '点的坐标为 。

5.点A (2,-3)到y 轴的距离是 。

6.点P (3,-4)与点Q (-3,4)关于 对称。

7.如图(三),正方形ABCD 的边长等于4,那么四个顶点坐标分别 为 、 、 、 。

(图一) (图二)
三、解答题
1.如图(四),OA=8,OB=6,求A 、B 的坐标。

2.如图等边三角形ABC 的顶点A (-32,0),B 、C 在y 轴上。

(1)写出B 、C 两点的坐标;
(2)求△ABC 的面积和周长。

3.(6分)如图所示的直角坐标系中,四边形ABCD 各个顶点坐标分别是)00(,A 、)6,3(B 、)8,14(C 、)016(,D ,求四边形ABCD 的面积.
13.△ABC 在平面直角坐标系中的位置如图.请画出△ABC 关于y 轴对称的△A 1B 1C 1,并求出A 1、B 1、C 1三点的坐标.再画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2.。

相关文档
最新文档