高等数学C1-期末考试卷-A-(答案)

合集下载

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

⼤⼀⾼等数学期末考试试卷及答案详解⼤⼀⾼等数学期末考试试卷(⼀)⼀、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为(). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-?的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)⼀定可导(C)可能可导 (D)必⽆极限⼆、填空题(共12分)1.(3分)平⾯上过点(0,1),且在任意⼀点(,)x y 处的切线斜率为23x 的曲线⽅程为 .2. (3分) 1241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极⼤值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +?(1),f x dx -?其中,1,()1cos 1, 1.x xx f x xe x ?≤?=+??+>?5. (6分)设函数()y f x =由⽅程0cos 0yxte dt tdt +=??所确定,求.dy6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +?7. (6分)求极限3lim 1.2nn n →∞+四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ??=-≤≤与x 轴所围成图形绕着x 轴旋转⼀周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线⽅程.4. (7分)求函数y x =+[5,1]-上的最⼩值和最⼤值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbab a f x dx f a f b x a x b f x dx -''=++--?(⼆)⼀、填空题(每⼩题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第类间断点.2.函数()21ln x y +=,则='y.3. =?+∞→xx x x 21lim.4.曲线xy 1=在点2,21处的切线⽅程为 . 5.函数2332x x y -=在[]4,1-上的最⼤值,最⼩值 . 6.=+?dx xx21arctan . ⼆、单项选择题(每⼩题4分,共20分) 1.数列{}n x 有界是它收敛的() . () A 必要但⾮充分条件; () B 充分但⾮必要条件; () C 充分必要条件; () D ⽆关条件. 2.下列各式正确的是() .() A C e dx e x x +=--?; () B C xxdx +=?1ln ; () C ()C x dx x +-=-?21ln 2211; () D C x dx xx +=?ln ln ln 1. 3.设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数().() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是().() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去⼼邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每⼩题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ?+dx xx 221. 5. ?xdx x cos .6.⽅程yxx y 11=确定函数()x f y =,求y '.四、(10分)已知2x e 为()x f 的⼀个原函数,求()?dx x f x 2.五、(6分)求曲线x xe y -=的拐点及凹凸区间. 六、(10分)设()()C e x dx x f x++='?1,求()x f .(三)⼀、填空题(本题共5⼩题,每⼩题4分,共20分).(1) 21(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平⾏的切线⽅程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线⽅程为 .9131-=x y(5)微分⽅程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y⼆、选择题 (本题共5⼩题,每⼩题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=?-dx x (B) 21112-=?-dx x(C) +∞=?∞+141dx x (D) +∞=?∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所⽰,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy y y x '''--=(B )23e .xy y y '''--= (C )23e .x y y y x '''+-= (D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是( A ).(A) (())().f x dx f x '=? (B) ()().=?df x f x (C) [()]().d f x dx f x =(D) ()().fx dx f x '=?三、计算题(本题共4⼩题,每⼩题6分,共24分). 1.求极限) ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x xx ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分分2.⽅程??+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与2 2dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------??分分(分4.计算定积分?++3011dx xx.解 ??-+-=++3030)11(11dx x x x dx x x ?+--=30)11(dx x (3分)35)1(3(或令t x =+1)四、解答题(本题共4⼩题,共29分).1.(本题6分)解微分⽅程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征⽅程分特征解.分次⽅程的通解Y =C 分令分代⼊解得,所以分所以所求通解C 分2.(本题7分)⼀个横放着的圆柱形⽔桶(如图4-1),桶内盛有半桶⽔,设桶的底半径为R ,⽔的⽐重为γ,计算桶的⼀端⾯上所受的压⼒.解:建⽴坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------??分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =?,试求()()b a222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平⾯图形D. (1) (3) 求D 的⾯积A;(2) (4) 求D 绕直线e x =旋转⼀周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线⽅程是).(1ln 000x x x x y -+=1分yxyO1e 1D由该切线过原点知 01ln 0=-x ,从⽽.0e x =所以该切线的⽅程为.1x e y =平⾯图形D 的⾯积 ?-=-=10.121)(e dy ey e A y 2分(2)切线xe y 1=与x 轴及直线e x =所围成的三⾓形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(?-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=?e e dy e e e V V V y πππ 1分五、证明题(本题共1⼩题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法⼀:2112xe e x x xξ=++≥+解法⼆:设() 1.x f x e x =--则(0)0.f = 1分因为() 1.xf x e '=- 1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。

高等数学期末试题(含答案)

高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。

选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。

3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。

4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。

5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。

二。

填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。

2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。

3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。

4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。

12级高数(i)期末考试题a卷及答案.doc

12级高数(i)期末考试题a卷及答案.doc

西南财经大学本科期末考试试卷(A)课程名称:高等数学担任教师:谢果等考试学期:2012 - 2013学年第1学期专业:全校各专业学号:年级:2012 姓名:考试时间:2012年月曰(星期)午出题教师必填:1、考试类型:闭卷[7]开卷[](____ 页纸开卷)2、本套试题共五道大题,共—页,完卷时间120分钟。

3、考试用品中除纸、笔、尺子外,可另带的用具有:计算器[]字典[]__________ 等(请在下划线上填上具体数字或内容,所选[]内打钩〉考生注意事项:1、出示学生证或身份证于桌而左上角,以备监考教师查验。

2、拿到试卷后清点并检查试卷页数,如有重页、页数不足、空白页及刷模糊等举手向监考教师示意调换试卷。

3、做题前请先将专业、年级、学号、姓名填写完整。

4、考生不得携带任何通讯工具进入考场。

5、严格遵守考场纪律。

-、填空题(每小题2分,共20分)Vsinx + 1 -1 门--------------- x 01.函数/(%) = < ln(l + x) _____________ 在兀=0处连续,贝%二ax = 02. 设厂(1) = 3,则 lim /(1)7(1-力) __________________ . 2 X 3・1HB 竺fZ 1 -兀2兀2 —14. ____________________________________________ 函数门劝=—的无穷间断点为 _________________________________________________ ・— 3x + 25•设/(x)可导 y = f(e x ),则 y"=7. _____________________________________________________ 已知 f\e x) = \ + x,则/(x) = ___________________________________________________ . 8・a= ___________ , b = ____________ 时,点(1,3)是曲线y = ax 3+bx 2的拐点。

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C)及参考答案

《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C )一、选择题(每题4分,共40分) 1.设函数()f x 在0x 处可导,则极限000()()lim2h f x h f x h h→+−−=A .0()f x ′B .02()f x ′C .01()2f x ′D .20[()]f x ′2.函数11(e e)tan ()(e e)xxx f x x +⋅=−在区间[π,π]−上的第一类间断点是A .0B .1C..π23.设sin 20()sin d xf x t t =∫,34()g x x x =+,则当0x →时,()f x 是()g x 的A .等价无穷小B .同阶但非等价无穷小C .高阶无穷小D .低阶无穷小4.设()d arcsin xf x x x C =+∫,则1d ()x f x =∫A .3223(1)4x C −−+B .2233(1)4x C −+C .3221(1)3x C −−+D .2232(1)3x C −+5.微分方程3232e x y y y x ′′′−+=−有特解形式 A .e x ax b + B .e x ax b c ++ C .e x ax bx + D .e x ax b cx ++6.已知函数()f x 在[0,1]上二阶可导,且10()d 0f x x =∫,则A .当()0f x ′<时,102f<B . 当()0f x ′′<时,102f<C .当()0f x ′>时,102f<D . 当()0f x ′′>时,102f<7.已知1()(12ln )f x x x ′=+,且(1)1f =,则()f x =A .ln |12ln |1x ++B .1ln |12ln |12x ++C .1ln |12ln |2x +.2ln |12ln |1x ++8.把24y ax =及00(0)xx x >所围成的图形绕x 轴旋转,所得旋转体的体积V =A .20πaxB .02πaxC .30πaxD .202πax9.设π40ln sin d I x x =∫,π40ln cos d J x x =∫,π40ln cot d K x x =∫,则 A .I J K << B .I J K >> C .J I K << D .J I K >>10.函数()f x 为连续函数,则21d ()d d f x t t x +=∫ A .0B .(2)(1)f f −C .(2)(1)f x f x +−+D .(2)f x +二、填空题(每题4分,共24分)1.极限30tan sin lim ln(1)x x xx →−=+___________.2.设函数()f x 连续,20()()d x x xf t t ϕ=∫,若(1)1ϕ=,(1)5ϕ′=,则(1)f =___________.3.已知2121x y f x − = +,2()arctan f x x ′=,则0d x y ==___________.4.定积分41220201sin 3||d 1x x x x x x − += +∫___________.5.广义积分2=∫___________.6.设()d ()f x x F x C =+∫,则(2)d f x x =∫___________.三、解答题(每题6分,共36分)1.设函数()y f x =是由方程21e yx y −+=所确定的隐函数,求22d d x yx=.2. 由3y x =,2x =,0y =所围成的平面图形分别绕x 轴和y 轴旋转一周,计算所得几何体的体积.3.计算定积分.(1)10x x ∫.(2)x ∫.4.求微分方程d 24d yxy x x=−+满足(0)0y =的特解.5.证明:当0x >时,arctan ln(1)1xx x+>+.6.设函数()f x 在[,]a b 上连续,在(,)a b 内具有一阶和二阶导数.证明:若在(,)a b 内()0f x ′′>,则对12[,]x x a b ∀∈,有12121212()()3333f x x f x f x +<+ .《高等数学Ⅰ(一)》课程期末考试试卷(模拟卷C )解答参考一、选择题(每题4分,共40分) 1.设函数()f x 在0x 处可导,则极限000()()lim2h f x h f x h h→+−−=A .0()f x ′B .02()f x ′C .01()2f x ′D .20[()]f x ′答案 A 解析 000000000()()()()()()1limlim ()22h h f x h f x h f x h f x f x h f x f x h h h →→+−−+−−−′=+= −,故本题选A . 2.函数11(e e)tan ()(e e)xxx f x x +⋅=−在区间[π,π]−上的第一类间断点是A .0B .1C..π2答案 A解析 在区间[π,π]−上()f x 的间断点有0,π2±,显然,π2±均为第二类间断点(无穷间断点),下面考察0x =.因1100e e e e lim ()lim lim 1e e e e txt t x x x f x ++→+∞→→++===−−,1100e e e elim ()lim lim 1e e e et xt t x x x f x −−→−∞→→++===−−−, 所以0x =是函数的第一类间断点(跳跃间断点),故本题选A . 3.设sin 20()sin d xf x t t =∫,34()g x x x =+,则当0x →时,()f x 是()g x 的A .等价无穷小B .同阶但非等价无穷小C .高阶无穷小D .低阶无穷小答案 B 解析 因sin 2222043323232000000sin d ()sin(sin )sin 11lim lim limlim lim lim ()434343433xx x x x x x t t f x x x x g x x x x x x x x x x →→→→→→======+++++∫, 所以当0x →时,()f x 是()g x 的同阶但非等价无穷小,故选B 项.4.设()d arcsin xf x x x C =+∫,则1d ()x f x =∫A .3223(1)4x C −−+B .2233(1)4x C −+C .3221(1)3x C −−+D .2232(1)3x C −+答案 C解析 因为()d arcsin xf x x x C =+∫,两边求导得()xf x =所以1()f x =.因此3222111d )(1)()23x x x x C f x =−−=−−+∫∫,5.微分方程3232e x y y y x ′′′−+=−有特解形式 A .e x ax b +B .e x ax b c ++C .e x ax bx +D .e x ax b cx ++答案 D解析 原方程对应齐次方程的特征方程为21232012r r r r −+=⇒==,.考虑2112323e e x x y y y x y ax b c c ′′′−+⇒+++,考虑2112322e e e e x x x x y y y y cx c c ′′′−+=−⇒=++,根据线性微分方程的叠加原理可知,原方程通解为212e e e x x x ax b cx c c ++++,故选D 项.6.已知函数()f x 在[0,1]上二阶可导,且10()d 0f x x =∫,则A .当()0f x ′<时,102f<B . 当()0f x ′′<时,102f<C .当()0f x ′>时,102f<D . 当()0f x ′′>时,102f<答案 D思路分析 条件中出现二阶可导,可尝试泰勒公式.解析 将()f x 泰勒展开:21111()()2222f x f f x f x ξ ′′′=+−+−  ,(0,1)ξ∈,所以 21101111()d ()d 2222f x x ff x f x x ξ′′′=+−+− ∫∫ 21110001111d d ()d 2222f x f x x f x x ξ ′′′+−+−  ∫∫∫210110()d 022f f x x ξ′′++−=∫,所以当()0f x ′′>时,102f< ,故本题选D .7.已知1()(12ln )f x x x ′=+,且(1)1f =,则()f x =A .ln |12ln |1x ++B .1ln |12ln |12x ++C .1ln |12ln |2x +.2ln |12ln |1x ++答案 B 解析 因为111111()(1)()d (1)d 1d(12ln )(12ln )212ln xx x f x f f t t f t t t t t=+=+=++++∫∫∫ 1111[ln(12ln )]ln |12ln |122x t x =++=++,8.把24y ax =及00(0)xx x >所围成的图形绕x 轴旋转,所得旋转体的体积V =A .20πaxB .02πaxC .30πaxD .202πax答案 D解析 由旋转体体积公式可得022πd π4d 2πx x V y x ax x ax ==⋅=∫∫,故本题选D . 9.设π40ln sin d I x x =∫,π40ln cos d J x x =∫,π40ln cot d K x x =∫,则 A .I J K <<B .I J K >>C .J I K <<D .J I K >>答案 A解析 当π0,4x∈时,1cos sin 0x x >>>,cos cot cos sin x x x x =>,所以I J K <<,故本题选A .10.函数()f x 为连续函数,则21d ()d d f x t t x +=∫ A .0 B .(2)(1)f f − C .(2)(1)f x f x +−+ D .(2)f x +答案 C解析 令u x t =+,则2211()d ()d x x f x t t f u u +++=∫∫,所以2211d d ()d()d (2)(1)d d x x f x t t f u u f x f x x x +++==+−+∫∫, 故本题选C .二、填空题(每题4分,共24分)1.极限30tan sin lim ln(1)x x xx →−=+___________.答案12解析 方法一 由泰勒公式知,当0x →时,33tan ()3x x x o x =++,33sin ()6x x x o x =−+,故3333331tan sin ()()()362x x x x x o x x o x x o x −=++−−+=+ ,于是可知31tan sin ~2x x x −,又33ln(1)~x x +,故 333001tan sin 12lim lim ln(1)2x x xx x x x →→−==+. 方法二 2332200001tan sin sin (1cos )1cos 12lim lim lim lim ln(1)cos 2x x x x xx x x x x x x x x x →→→→−−−====+⋅. 2.设函数()f x 连续,2()()d x x xf t t ϕ=∫,若(1)1ϕ=,(1)5ϕ′=,则(1)f =___________.答案 2解析 由题可知20()()d x x x f t t ϕ=∫,220()()d 2()x x f t t x f x ϕ′=+∫,故1(1)()d 2(1)f t t f ϕ′=+∫,1(1)()d 1f t t ϕ==∫, 则(1)(1)2(1)5f ϕϕ′=+=,所以(1)2f =.3.已知2121x y f x − = +,2()arctan f x x ′=,则0d x y ==___________.答案 πd x解析 令21212121x u x x −==−++,故 2d 4d (21)u x x =+, 当0x =时,1u =−,所以000d d d ()(1)πd d d x x x y u u f u f xx x ===′′=⋅=−⋅= ,因此0d πd x y x ==.4.定积分41220201sin 3||d 1x x x x x x − += +∫___________. 答案32解析 441112220202020111sin sin 3||d d 3||d 11x x x x x x x x x x x x x −−− +=+ ++∫∫∫. 第一个积分被积函数是奇函数,积分区间对称,故积分值为0;第二个积分被积函数为偶函数,积分区间对称,所以14112342020100sin 333||d 23d 2142x x x x x x x x x − +==⋅= + ∫∫. 5.广义积分2=∫___________.答案 π思路分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当2∫3∫均收敛时,原反常积分才收敛.解析 因为32222π[arcsin(3)]lim arcsin(3)2xx x++→=−=−−=∫∫,43334π[arcsin(3)]lim arcsin(3)2xx x−−→−=−=∫∫,所以2πππ22=+=∫.6.设()d()f x x F x C=+∫,则(2)df x x=∫___________.答案1(2)2F x C+解析令2t x=,则111(2)d()d()(2)222f x x f t t F t C F x C==+=+∫∫.三、解答题(每题6分,共36分)1.设函数()y f x=是由方程21e yx y−+=所确定的隐函数,求22ddxyx=.解将0x=代入方程21e yx y−+=解得0y=.对方程21e yx y−+=两边求导得2e yx y y′′−=①将0x=,0y=代入①得(0)0y′=.式①两端再求导得22e e()y yy y y′′′′′−=+②将0x=,0y=,(0)0y′=代入②得22d1dxyx==.2.由3y x=,2x=,0y=所围成的平面图形分别绕x轴和y轴旋转一周,计算所得几何体的体积.解所求体积为222600128ππdπd7xV y x x x===∫∫.1258882228333000564ππ28πd32ππ()d32ππd32ππ[]35yV x y y y y y y=⋅⋅−=−=−=−⋅=∫∫∫.或用柱壳法计算2224500164π2πd2πd2π55yV xy x x x x====∫∫.3.计算定积分.(1)1x x ∫.解令sinx t=,则ππ1424222000sin cos d sin(1sin)dx x t t t t t t=−∫∫∫ππ46220031π531ππsin d sin d422642232t t t t=−=⋅⋅−⋅⋅⋅=∫∫.注这里用到了华里士公式ππ22001321,123sin d cos d131π,222n nnn n nn nI x x x xn n nn n−−××××−===−−××××−∫∫为大于的奇数为正偶数.(2)x∫.解令tanx t=,则πππ2444000sec1ππd d csc d(1tan)sec sin cos44tx t t t tt t t t==++++ ∫∫∫π4ππln csc cot44t t+−+=.4.求微分方程d24dy xy xx=−+满足(0)0y=的特解.解易知该方程对应的齐次方程d2dy xyx=−的通解为2e xy C−=,设原方程的解为2()e xy u x−=,代入原方程整理得2()4e xu x x′=,两端积分得2()2e xu x C=+,进而可得原方程的通解为22e xy C−=+.又因为(0)20y C=+=,故2C=−.所以满足条件的特解为222e xy−=−.5.证明:当0x>时,arctanln(1)1xxx+>+.证令()(1)ln(1)arctanf x x x x=++−,[0,)x∈+∞.显然函数()f x在[0,)x∈+∞时可导,且7 21()ln(1)10(0)1f x x x x ′=++−>>+, 所以函数()f x 在[0,)+∞上单调增加,故()(0)0f x f >=,从而 arctan ln(1)1x x x+>+. 6.设函数()f x 在[,]a b 上连续,在(,)a b 内具有一阶和二阶导数.证明:若在(,)a b 内()0f x ′′>,则对12[,]x x a b ∀∈,有12121212()()3333f x x f x f x +<+ . 证 设12x x <.令0121233x x x =+,根据拉格朗日中值定理可得,110202(,)(,)x x x x ξξ∃∈∈,,使得 011011212()()()()()()3f x f x f x x f x x ξξ′′−=−=−, 202012211()()()()()()3f x f x f x x f x x ξξ′′−=−=−. 于是01202112211222[()()]2[()()]()[()()]()()()033f x f x f x f x x x f f x x f ξξξξξ′′′′−−−=−−=−−<. 故0123()()2()0f x f x f x −−<,所以01212()()()33f x f x f x <+,即得 12121212()()3333f x x f x f x +<+ .。

大一第一学期高数1试题A及答案

大一第一学期高数1试题A及答案

2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。

沈阳航空航天大学高等数学期末考试试卷(含答案)

沈阳航空航天大学高等数学期末考试试卷(含答案)

沈阳航空航天大学高等数学期末考试试卷(含答案)一、高等数学选择题1.设函数,则().A、B、C、D、【答案】A2.极限().A、B、C、D、【答案】C3.不定积分().A、B、C、D、【答案】D4.设曲线如图示,则在内( ).A、没有极大值点B、有一个极大值点C、有两个极大值点D、有三个极大值点【答案】B5.设,不定积分(1)(2)(3)则上述解法中().A、第(1)步开始出错B、第(2)步开始出错C、第(3)步出错D、全部正确【答案】A6.设为上的连续函数,且,则定积分().A、B、C、D、【答案】D一、一选择题7.设,则微分.A、正确B、不正确【答案】B二、二选择题8.不定积分 ( ).A、B、C、D、【答案】C9.函数的图形如图示,则是函数的( ).A、极小值点也是最小值点B、极小值点但非最小值点C、最大值点D、极大值点【答案】A10.函数的定义域为.A、正确B、不正确【答案】A11.是偶函数.A、正确B、不正确【答案】B12.设,则.A、正确B、不正确【答案】B二、二选择题13.是微分方程.A、正确B、不正确【答案】A14.不定积分.A、正确B、不正确【答案】A二、二选择题15.不定积分.A、B、C、D、【答案】B。

高数下期末考试试题及答案解析

高数下期末考试试题及答案解析

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( ). (A )-=0a b (B)+=0a b (C)0⋅=a b (D )⨯=0a b 2.极限2222001lim()sinx y x y x y→→+=+( ). (A) 0 (B ) 1 (C) 2 (D)不存在 3.下列函数中,d f f =∆的是( ).(A)(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D)(,)e x yf x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A)驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D)非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2D I σ=,3DI σ=,则有( )。

(A )123I I I << (B)123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A ) l (B ) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( ).(A )该级数收敛 (B)该级数发散 (C )该级数可能收敛也可能发散 (D )该级数绝对收敛 8.下列四个命题中,正确的命题是( )。

(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散 (B )若级数21nn a ∞=∑发散,则级数1nn a ∞=∑也发散 (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 。

最新大一下学期高等数学期末考试试题及答案

最新大一下学期高等数学期末考试试题及答案

最新大一下学期高等数学期末考试试题及答案院(系)别班级 学号 姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= .2、设ln()z x xy =,则32zx y ∂=∂∂ .3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dSz ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f x y z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 30()lim t F t t+→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷.高等数学A(下册)期末考试试题【A 卷】参考解答与评分标准一、填空题【每小题4分,共20分】 1、4-; 2、21y-;3、2414x y z ++=; 4、3,0; 5二、试解下列各题【每小题7分,共35分】1、解:方程两边对x 求导,得323dydz y z x dx dx dy dz y z xdxdx ⎧+=-⎪⎪⎨⎪-=-⎪⎩, 从而54dy x dx y =-,74dz x dx z =…………..【4】 该曲线在()1,1,2-处的切向量为571(1,,)(8,10,7).488T == (5)故所求的切线方程为1128107x y z -+-==………………..【6】 法平面方程为()()()81101720x y z -+++-= 即 810712x y z ++= (7)2、解:2222226z x y z x y⎧=+⇒⎨=--⎩222x y +=,该立体Ω在xOy 面上的投影区域为22:2xy D x y +≤.…..【2】 故所求的体积为Vdv Ω=⎰⎰⎰222620202(63)6d d dz d πρρθρπρρπ-==-=⎰⎰ (7)3、解:由11lim lim ln(1)lim ln(1)10nn n n n n u n n n →∞→∞→∞=+=+=>,知级数1n n u ∞=∑发散 (3)又111||ln(1)ln(1)||1nn u u n n +=+>+=+,1lim ||lim ln(1)0n n n u n→∞→∞=+=.故所给级数收敛且条件收敛.【7】4、解:121211()0z f y f yf f x y y∂''''=⋅+⋅+=+∂, …………………………………【3】 2111122212222211[()][()]z x xf y f x f f f x f x y y y y y ∂''''''''''=+⋅+⋅--+⋅+⋅-∂∂111222231.x f xyf f f y y''''''=+--【7】 5、解:∑的方程为z =,∑在xOy 面上的投影区域为2222{(,)|}xy D x y x y a h =+≤-.=…..………【3】故22222200xy D dS adxdy d a d z a x y a πρρθρ∑==---⎰⎰⎰⎰⎰22012ln()2ln 2aa a a hπρπ⎡=--=⎢⎥⎣⎦..【7】三、【9分】解:设(,,)M x y z 为该椭圆上的任一点,则点M到原点的距离为d =【1】令22222(,,)()(1)L x y z x y z z x y x y z λμ=+++--+++-,则由22220220201x y z L x x L y y L z z x yx y z λμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=+⎪++=⎪⎩,解得12x y -±==,23z =.于是得到两个可能极值点121111(,(2222M M --+---+…………………【7】 又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.故max 2min 1||||d OM d OM ==== (9)四、【10分】 解:记L 与直线段OA 所围成的闭区域为D ,则由格林公式,得22(sin )(cos )8x x DL OAI e y m dx e y mx dy m d ma πσ+=-+-=-=-⎰⎰⎰. (5)而1(sin )(cos )ax xOAI e y m dx e y mx dy m dx ma =-+-=-=-⎰⎰ (8)∴221(sin )(cos ).8x x Le y m dx e y mx dy I I ma ma π-+-=-=-⎰ (10)五、【10分】解:()1131limlim 3133n n n n n na n R a n ρ++→∞→∞===⇒=+,收敛区间为 (3,3)-…………【2】 又当3x =时,级数成为11n n∞=∑,发散;当3x =-时,级数成为()11nn n ∞=-∑,收敛.……【4】 故该幂级数的收敛域为[)3,3- (5)令()13nn n x s x n ∞==∑(33x -≤<),则11111111()()33331/33n n n n n x x s x x x -∞∞-=='====--∑∑, (||3x <) ……【8】 于是()()000()()ln 3ln 3ln 33x xx dxs x s x dx x x x '===--=---⎰⎰,(33x -≤<) (10)六、【10分】解:取1∑为220(1)z x y =+≤的下侧,记∑与1∑所围成的空间闭区域为Ω,则由高斯公式,有()()133222222316I x dydz y dzdx z dxdy x y z dv ∑+∑Ω=++-=++⎰⎰⎰⎰⎰ (5)()2211262d d z dz πρθρρρπ-=+=⎰⎰⎰ (7)而()()221133221122313133x y I x dydz y dzdx z dxdy z dxdy dxdy π∑∑+≤=++-=-==⎰⎰⎰⎰⎰⎰ (9)2123.I I I πππ∴=-=-=- (10)七、【6分】解:()()2224000sin cos tF t d d r f r r dr ππθϕϕϕ⎡⎤=+⎣⎦⎰⎰⎰….… 【2】 ()3224400002sin cos sin t t d r dr d f r r dr πππϕϕϕϕϕ⎡⎤=+⎢⎥⎣⎦⎰⎰⎰⎰(()422028tt r f r dr π⎡⎤=+⎢⎥⎣⎦⎰….… 【4】 故()(3222320002()222limlim lim ().333t t t t t f t F t f t a t t π+++→→→⎡⎤+⎢⎥-⎣⎦=== 【6】。

中国石油大学(北京)高等数学期末考试试卷(含答案)

中国石油大学(北京)高等数学期末考试试卷(含答案)

中国石油大学(北京)高等数学期末考试试卷(含答案)
一、高等数学选择题
1.设函数,则.
A、正确
B、不正确
【答案】B
2.设函数,则().
A、
B、
C、
D、
【答案】D
3.函数的图形如图示,则函数
( ).
A、有一个极大值
B、有两个极大值
C、有四个极大值
D、没有极大值
【答案】A
4.极限().
A、
B、
C、
D、
【答案】C
5.设函数,则.
A、正确
B、不正确
【答案】A
6.设函数,则().A、
B、
C、
D、
【答案】B
7.极限().
A、
B、
C、
D、
【答案】B
8.不定积分.
A、正确
B、不正确
【答案】A
9.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】D
10.函数的定义域为.
A、正确
B、不正确
【答案】A
11.函数在点处连续.
A、正确
B、不正确
【答案】A
12.是偶函数.
A、正确
B、不正确
【答案】A
13.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
14.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】A
一、一选择题
15..
A、正确
B、不正确
【答案】B。

高数I(一)A及答案

高数I(一)A及答案

1 ⎧ ⎪ 1+ x , x ≥ 0 ⎪ 2.设 f ( x ) = ⎨ ⎪ cos x , x < 0 ⎪ ⎩ 2 + sin x

∫π

4
f ( x )dx .
2
序号

3.设函数 y = f ( x) 由参数方程 ⎨ 班级
⎧ x = ln(1 + t 2 ) dy d 2 y 所确定,求 、 . 2 d x d x = − y t t arctan ⎩
…… 5 分 …… 6 分
sin x (cos x ln x + )dx x
= ln( 2 +
序号
sin x ) − π + ∫
2
2t dt 01+ t
2
…… 4 分 …… 6 分
= ln 2 + 4 − 2 ln 3 3、已知 f ( x) 的一个原函数是 解:
⎧ x = ln(1 + t 2 ) dy d 2 y 3、设函数 y = f ( x) 由参数方程 ⎨ 所确定,求 、 . dx d x 2 ⎩ y = t − arctan t
. .
2.设 f ( x) =
e x −1 e +1
1 x
,则 x = 0 是 f ( x) 的( B. 跳跃间断点; D. 连续点.
) .
1.函数 y = 学号
2 − x + ln( x − 1) 的定义域为
A. 可去间断点; C. 第二类间断点; 3. lim(e + x) x =(
x x →0 1
2015 年秋季学期 《高等数学 (一)》课程期末考试试卷(A 卷)
注意:1、本试卷共 3 页; 3、姓名、学号必须写在指定地方; 2、考试时间 110 分钟; 4、阅卷负责人签名: 1.设 f ( x) = x + ln(1 + x) ,当 x → 0 时,有(

大学高等数学期末考试题A卷(答案)

大学高等数学期末考试题A卷(答案)

广东海洋大学2006 —— 2007 学年第 二学期《高等数学》试题答案(A 卷)一、填空题。

(每小题3分,共24分) 1.曲线2x y =与直线xy 2= 所围成的平面图形面积为A= 34;2.设向量{}2,3,1-=a,{}2,2,1-=b,则a·b= -3 ;3. 函数221yx z--=的定义域为 }1),({22≤+y x y x ;4.过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程为: 3x -7y +5z -4=0 ;5.设函数x y Z cos =,则yx Z ∂∂∂2= -sinx ;6.改变累次积分I=⎰⎰102),(xx dy y x f dx 的次序为I = ⎰⎰10),(X yy d y x f dy ;7. 设曲线方程为⎩⎨⎧=+-=++0380422222z y x z y x ,该曲线在Oxy 面上的投影方程为: ⎩⎨⎧==+0042z y x .8. 写出函数x x f sin )(=的幂级数展开式,并注明收敛域:x sin = )(,)!12()1(!5!312153R x n xxxx n n ∈+--+-+---二、选择题。

(每小题3分,共15分)1.函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的( D )(A)必要而非充分条件 (B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 2.下列方程中,通解为12e e x x y C C x =+的微分方程是( A ). (A) 02=+'-''y y y (B) ''+'+=y y y 21; (C) '+=y y 0 (D) '=y y . 3. 设函数),(v x f Z=,),(y x v ϕ=,其中ϕ,f 都有一阶连续偏导数,则xZ ∂∂等于( B )班级:姓名:学号:试题共 页加白纸张密封线(A)xf ∂∂ ;(B)vf xf ∂∂+∂∂·x∂∂ϕ ; (C)xxf ∂∂+∂∂ϕ ; (D)xf ∂∂·x∂∂ϕ4.设函数),(y x f Z=在点(1,2)处有)2,1(='x f ,)2,1(='y f ,且1)2,1(="xx f ,0)2,1(="xy f ,2)2,1(="yy f ,则下列结论正确的是( D )(A ))2,1(f 不是极大值; (B ))2,1(f 不是极小值; (C ))2,1(f 是极大值; (D ))2,1(f 是极小值。

天津大学高等数学期末考试试卷(含答案)

天津大学高等数学期末考试试卷(含答案)

天津大学高等数学期末考试试卷(含答案)
一、高等数学选择题
1.点是函数的极值点.
A、正确
B、不正确
【答案】B
2.由曲线,直线,轴及所围成的平面图形的面积为.
A、正确
B、不正确
【答案】A
3.设,则=().
A、
B、
C、
D、
【答案】D
4.函数是微分方程的解.
A、正确
B、不正确
【答案】B
5..
A、正确
B、不正确
【答案】A
6.函数的单调增加区间是().A、
B、
C、
D、
【答案】B
7.设函数,则导数.
A、正确
B、不正确
【答案】B
8.().
A、
B、
C、
D、
【答案】C
9.极限().
A、
B、
C、
D、
【答案】B
10.是微分方程.
A、正确
B、不正确
【答案】B
11..
A、正确
B、不正确
【答案】A
12.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】D
13.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
14.设函数,则().A、
B、
C、
D、
【答案】D
15.不定积分.A、
B、
C、
D、
【答案】B。

高数 下 期末考试试卷及答案

高数 下 期末考试试卷及答案

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方3DI σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A) l (B) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( ).(A)该级数收敛 (B)该级数发散(C)该级数可能收敛也可能发散 (D)该级数绝对收敛8.下列四个命题中,正确的命题是( ).(A )若级数na∞发散,则级数2na∞也发散1n =7.将函数21,0()1,0x f x xx ππ--<≤⎧⎪=⎨+<≤⎪⎩以2π为周期延拓后,其傅里叶级数在点x π=处收敛于 .三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………三、综合解答题一(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤)1.设(,)x u xf x y =,其中f 有连续的一阶偏导数,求ux∂∂,u y ∂∂.解:2.求曲面e 3z z xy ++=3.4.设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间闭区域,求23d d d I xy z x y z Ω=⎰⎰⎰.解:11n nx∞-=的和函数()S x ,并求级数12nn n ∞=∑的和. 解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………四、综合解答题二(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为1的一切直角三角形中,求有最大周长的直角三角形.解 2.计算积分22(Lx y +⎰3.利用格林公式,计算曲线积分22()d (LI xy x =++⎰2x y =D4. 计算d x S ∑⎰⎰,∑为平面1=++z y x 在第一卦限部分.解:d d d d d d x y y z z x S++蝌,22x y =+介于平面0z =及1z =之间的部分的下侧.解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………xO 2y x =2x y =yD2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8个小题,每小题2分,共16分),则22(34)d L x y s +⎰ (A) ; (B) ; (C) l ; (D) .7.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( C )(A)该级数收敛; (B)该级数发散;(C)该级数可能收敛也可能发散; (D) 该级数绝对收敛.8.下列四个命题中,正确的命题是( D )(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散;(B )若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散; (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛;(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛.二、填空题(7个小题,每小题2分,共14分).222u x f y y∂'=-∂ . ………………7分 2.求曲面3z e z xy ++=在点(2,1,0)处的切平面方程及法线方程.解:令(),,e 3z F x y z z xy =++-,………………2分(,,)(,,e 1)z x y z F F F y x n ==+,(2,1,0)(1,2,2)n= ,………………4分所以在点(2,1,0)处的切平面方程为 (2)2(1)20x y z -+-+=,即 2240x y z ++-=;………………6分法线方程为21122x y z--==. ………………7分 3.交换积分次序,并计算二次积分0sin d d xyx y yππ⎰⎰; 解:0sin d d xyx y y ππ⎰⎰=00sin d d y y y x yπ⎰⎰ ………………4分=sin d 2y y π=⎰………………7分4.设Ω是由曲面1,,===x x y xy z 解:注意到曲面z =Ω={(,,):0x y z z xy ≤≤故1230d d d d I xy z x y z x Ω==⎰⎰⎰⎰5.求幂级数11n n nx∞-=∑解:()S x 有11()()(1nn S x x x ∞==='-∑12nn n ∞=∑=11122n n n ∞-=∑四、综合解答题二(5个小题,每小题1.从斜边长为1解 需求1C x y =++在约束条件设拉格朗日函数22(,,)1(1)L x y x y x y λλ=++++-,………………4分令22120,120,1,x y F x F y x y λλ=+=⎧⎪=+=⎨⎪+=⎩解方程组得2x y ==为唯一驻点, ………………6分 又最大周长一定存在,故当x y ==时有最大周长. ………………7分 2.计算积分22()d Lx y s +⎰,其中L 为圆周22x y ax += (0a >).解:L 的极坐标方程为 cos a ρθ=,22ππθ-≤≤;………………2分则d d s a θθ==,………………4分322232222()d d cos d 2La x y s a ππππθθθ-+===⎰⎰.………………7分((,0)2ax y =,L 的周长a π,2)d y s +=d Lax s ⎰=ax a π=32a π22()d (2)d LI x y x x xy y =+++⎰,其中L 是2y 所围成的区域D 的正向边界曲线.22()d (2)d Lxy x x xy y +++………………3分y ………………5分………………7分为平面1=++z y x 在第一卦限部分.)0,0(1:≥≥≤+y x y x D xy ,………………2分,1,1-=∂∂-yz故dxdy dS 3=,………………4分 1106xdx xdy -==⎰. ………………7分 11()336x y z dS dS ∑∑∑=++==⎰⎰⎰⎰ 5.利用高斯公式计算对坐标的曲面积分d d d d d d x y y z z x S++蝌,其中∑为锥面222z x y =+介于平面0z =及1z =之间的部分的下侧。

高等数学C1-期末考试卷-A-(答案)

高等数学C1-期末考试卷-A-(答案)

一、单项选择题1.D (解释:,)2.A (解释:在处连续,所以必须存在,也就是在处有定义。

)3.B (解释:,可以这样理解:。

)4.C,见书P90。

)5.D (解释:就是,定积分是一个常数,所以它的导数为0。

)将其它选项改为正。

二、填空题1.解:由的定义,;在处连续,是指:,也就是:2.解:先回顾导数的定义本题中:可以将看作,那么原极限可以变为:其中为:。

3.解:要求法线方程,可以先计算曲线在处的导GAGGAGAGGAFFFFAFAF数(也就是切线斜率),法线的导数是切线斜率的负倒数。

在点出导数,代入,得到得法线方程为:。

4.解:函数的正负变化情况(也就是讨论函数的递增递减区间)所以极大值:。

5.解:此题可先计算不定积分GAGGAGAGGAFFFFAFAF计算定积分:GAGGAGAGGAFFFFAFAF三、求解下列各题1.解:2.解:3.解:4.解:5.解:先对原等式两侧求微分,得到:GAGGAGAGGAFFFFAFAF整理后得到再计算即:,代入,并代入点得到:6.解:GAGGAGAGGAFFFFAFAF四、应用计算题1.解:设平均成本函数为GAGGAGAGGAFFFFAFAF的点可知:当为最小值。

边际成本函数为,代入,得到。

2.解:此题需要列表讨论函数的一二阶导数,并计算渐进线。

首先计算:用使上面两式等于0或者不成立的点分割区间:我们可以看到是这样的点,因此有下表:渐进线:1.是垂直渐进线;GAGGAGAGGAFFFFAFAF由可知,是其水平渐进线;2.3.无斜渐进线。

GAGGAGAGGAFFFFAFAF3.解:先计算,并作图曲线上的点的切线斜率为,切线方程则为,此线过原点,也就是说:代入能使等式成立,即:变换为:,所以切线位于曲线的切点坐标为:。

红色区域为所围成的区域,求此区域绕轴旋转一周形成的旋转体体积。

回顾:绕轴旋转一周的旋转体体积公式为:但此题中不能直接使用该公式,原因是红色区域的上边界(不含轴)不构成一个函数。

高等数学期末考试题和答案

高等数学期末考试题和答案

一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13.求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()答案一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x y e y xy xy y +''+++=cos()()cos()x yx ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:1033()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
一、 单项选择题
1. D (解释:,
2. A (解释:

处连续
,所以
必须存在,
也就是

处有定义。


3.
B (解释:
,可以这样理解:。


4. C
,见书P90。


5. D
就是
,定积分
是一个常数,
所以它的导数为0。

,。

二、
填空题
1. 解:由的定义,

处连续,是指:
,也就是:
2. 解:先回顾导数的定义
看作
,那么原极限可以变为:
计算两部分的极限,其中
所以答案为:。

3. 解:要求法线方程,可以先计算曲线在
处的导数(也就是切线斜率),法
线的导数是切线斜率的负倒数。

在点
出导数
,代入

得到,所以法线的斜率为。

4. 解:函数
的正负变化情况
所以极大值:。

5. 解:此题可先计算不定积分
计算定积分:
5
三、求解下列各题
1.解:
2.解:
3.解:
4.解:
5.解:先对原等式两侧求微分,得到:
整理后得到
再计算
即:,代入,并代入点
得到:
6.解:
5
5
7.解:可以令

代换原式得到:
8.解:第一步用凑微分的方法,就是
可知:当为最小
值。

边际成本函数为,代入。

2.解:此题需要列表讨论函数的一二阶导数,并计算渐进线。

首先计算:

用使上面两式等于0:
1.是垂直渐进线;
2.由可知,是其水平渐进线;
3.无斜渐进线。

3.解:先计算,并作图
曲线的切线斜率为
方程则为,此线过原点,也就是说:代入
,所以切线位于曲线的切点坐标为:。

红色区域为所围成的区域,求此区域绕轴旋转一周形成的旋转体体积。

回顾:绕轴旋转一周的旋转体体积公式为:
但此题中不能直接使用该公式,原因是红色区域的上边界(不含轴)不构成一个函数。

而应考虑为是一个圆锥体(在区间上绕轴形成)体积减去其中由抛物线在区间上绕轴形成的旋转体体积,即:五、证明题
证:构造函数,由条件可知:,且上连续,内可导,满足罗尔中值定理的使用条件,因此:必存在使得,而通过计算我们知道:
所以:,其中,所以.
5。

相关文档
最新文档