三角形内角和定理(第2课时) 教学设计
5.5三角形内角和定理(2)
八年级数学导学稿第五章几何证明初步5.5三角形内角和定理(2)开发区初中八年级数学备课组学习目标:1、掌握直角三角形的性质定理及其逆命题。
2、经历探索直角三角形的性质定理及其逆命题的推理的过程,进一步培养学生的推理能力.从而使他们灵活应用所学知识。
重点:直角三角形的性质定理及其逆命题。
难点:灵活应用所学知识证明直角三角形的性质定理及其逆命题。
教学过程:【温故知新】1、三角形内角和定理的内容是什么?2、取一副三角尺,你能说出每个三角尺的两个锐角的度数吗?同一副三角尺的两个锐角的和是多少度?【探索新知】1、已知:在直角△ABC中,∠ACB=900,求证:∠A+∠B =9002、合作探究:直角三角形的性质定理: ------------------3、你能说出直角三角形的性质定理的逆命题吗?它是真命题还是假命题?如果是真命题,请加以证明;如果是假命题,请举一反例。
4、例1:已知:在直角△ABC中, ∠ACB=900, DC⊥AB,垂足是D求证:∠ACD =∠BD CB A【巩固提升】如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D,则∠B=∠________,∠C=∠________.【课堂小结】【达标检测】1、将一副常规的三角尺按如图方式放置,则图中∠AOB 的度数为A .75°B .95°C .105°D .120°2.已知:如图,在Rt △ABC 和Rt △BAD 中,AB 为斜边,AC=BD,BC,AD 相交于点E(1) 求证:AE=BE;(2) 若∠AEC= 45,AC=1,求CE 的长。
AC【我的反思】。
《三角形的内角和》教学设计(最新5篇)
《三角形的内角和》教学设计(最新5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
7.5三角形的内角和定理第2课时教案
3.空间观念:通过画辅助线转化不规则图形,培养学生的空间想象力和图形分析能力。
4.数据分析:在解决实际问题时,能对数据进行整理和分析,提高学生的数据分析能力。
5.数学抽象:理解并掌握特殊三角形的内角和性质,提高学生的数学抽象和概括能力。
本节课将帮助学生将这些核心素养内化为自身的数学素养,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-核心知识:三角形内角和定理的理解与应用。
-重点内容:
a.确保学生理解并掌握三角形的三个内角之和为180度。
b.学会运用三角形内角和定理计算未知角度。
c.能够通过画辅助线,将不规则图形转化为含有三角形的图形,进而求解。
c.对特殊三角形的内角和性质的理解,以及如何将这些性质应用于解决问题。
举例解释:
a.对于定理证明的难点,教师可以通过动画或实物模型演示,帮助学生直观理解定理的成立。
b.在识别和构造三角形的难点上,教师可以提供多个不同难度的例题,引导学生逐步学会观察图形,识别关键信息。
c.对于特殊三角形的内角和,教师可以通过构造具体例子,如等腰三角形的底角相等,等边三角形的三个角都相等,让学生通过实际操作和观察,加深理解。
五、教学反思
在今天的教学中,我发现学生们对三角形内角和定理的理解和应用方面存在一些问题。首先,部分学生在理解定理的证明过程上感到困惑,尤其是对于逻辑推理的步骤。在今后的教学中,我需要更加注重逐步引导,通过生动的例子和直观的演示,帮助他们理清证明思路。
其次,学生在解决实际问题时,还不太会主动地构造三角形来简化问题。这可能是因为他们对图形的观察和分析能力还不够强。因此,我计划在接下来的课程中,增加一些关于图形识别和分析的训练,让学生在动手实践中逐步提高解决问题的能力。
北师大版八年级上册数学《三角形内角和定理》平行线的证明说课教学课件(第2课时)
综合能力提升练
拓展探究突破练
知识点2 三角形的外角性质
4.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于( C )
A.60° B.70°
C.80° D.90°
5.如图所示,在△ABF中,D,E分别是AB,AF上的点.DE的延长线与BF的延长线相交于点
C,∠1=30°,∠B=60°,∠C=20°,则∠2= 50° ,∠A= 70° .
7.5 三角形内角和定理
第2课时
学习目标
1.了解并掌握三角形的外角的定义.(重点)
2.掌握三角形的外角的性质,利用外角的性
质进行简单的证明和计算.(难点)
知识回顾
• 三角形内角和定理
在△ABC中,∠A +∠B +∠C =180°.
A
B
E
C
∠ACD 是△ABC 的外角
D
知识讲解
1.三角形的外角
外角的定义:△ABC 内角的一条边与另一条边的反向延
A.15° B.20°
C.25° D.30°
第七章
7.5 三角形内角和定理
知识要点基础练
综合能力提升练
拓展探究突破练
-33-
12.如图所示,在△ABC中,∠ABC=50°,∠ACB=70°,D为边BC上一点( 点D与点B,C不重合 ),
连接AD,∠ADB的平分线所在直线分别交直线AB,AC于点E,F.求证:2∠AED-∠CAD=170°.
∠AEC= ∠ADC+ ∠BAE.
所以∠AEC= ∠B+∠BCE+ ∠BAE=45 °+20
°+36 °=101 °.
C
4 .如图,D是△ABC的BC边上一点,
11.2.1,三角形的内角(2)教案
11.2.1,三角形的内角(2)教案篇一:11.2.1三角形的内角(教案)八年级数学教学设计篇二:11.2.1三角形的内角(教案)11.2.1三角形的内角学习目标:1、经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2、能应用三角形内角和定理解决一些简单的实际问题新课导学:【问题1】在△aBc中,∠a+∠B+∠c等于多少度?你是如何得到这一结论呢?【问题2】如何用剪拼的方法验证三角形内角和为180o?(提示:在所准备的三角形硬纸片上标出三个内角的编码,动手把三角形的两个角剪下进行拼接,得到180o。
)动画演示如下图所示:图1图2图3【问题3】如图1,直线mn有什么特点?它存在吗?【问题4】由刚才图1的剪拼办法,可以想出怎样的证明方法来说明上面的结论的正确性呢?d?已知?aBc,求证:?a??B??c?180【问题5】结合图2、图3,你能得到怎样的证明方法?还有其他的证明方法吗?写出你能想到的所有证法的证明过程。
应用新知,解决问题:例题:如图,c岛在a岛的北偏东50(:11.2.1,三角形的内角(2)教案)方向,B岛在a岛的北偏东80方向,c岛在B岛的北偏西40方向,从c岛看a、B两岛的视角?acB是多少度????篇三:11.2.1三角形的内角---教案11.2.1三角形的内角和篇四:11.2.1三角形的内角教案11.2.1三角形的内角教学目标1经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2能应用三角形内角和定理解决一些简单的实际问题重点:三角形内角和定理难点:三角形内角和定理的推理的过程课前准备每个学生准备好二个由硬纸片剪出的三角形教学过程一、做一做1在所准备的三角形硬纸片上标出三个内角的编码2让学生动手把一个三角形的两个角剪下拼在第三个角的顶点处(图1),用量角器量出?Bcd的度数,可得到?a??B??acB?180?图13剪下?a,按图2拼在一起,从而还可得到?a??B??acB?180?图24把?B和?c剪下按图3拼在一起,用量角器量一量?man的度数,会得到什么结果。
八年级数学上册7.5三角形的内角和定理第2课时三角形的外角说课稿 (新版北师大版)
八年级数学上册7.5三角形的内角和定理第2课时三角形的外角说课稿(新版北师大版)一. 教材分析《八年级数学上册7.5三角形的内角和定理第2课时三角形的外角》这一节,主要介绍了三角形的外角的性质和定理。
通过这一节的学习,让学生能够理解三角形的外角的定义,掌握三角形外角的性质,能够运用三角形的外角定理解决一些几何问题。
二. 学情分析学生在学习这一节之前,已经学习了三角形的基本概念,角的性质,以及一些基本的几何证明方法。
但是,对于三角形的外角的性质和定理,可能还存在一些理解上的困难。
因此,在教学过程中,需要注重引导学生理解三角形外角的性质,并通过例题让学生熟练运用外角定理解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握三角形的外角的定义,理解三角形外角的性质,能够运用三角形的外角定理解决一些几何问题。
2.过程与方法目标:通过观察、思考、证明等过程,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的严谨性和美感,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:三角形的外角的定义,三角形外角的性质,三角形外角定理的应用。
2.教学难点:三角形外角的性质的证明,三角形外角定理的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、几何画板等辅助教学,直观展示三角形的外角的性质和定理。
六. 说教学过程1.导入:通过复习三角形的基本概念和角的性质,引出三角形的外角的定义。
2.探究:引导学生观察三角形的外角的性质,让学生通过几何画板软件自主探索,发现三角形外角的性质。
3.证明:引导学生用已学的知识证明三角形外角的性质,培养学生的逻辑思维能力。
4.应用:通过例题讲解,让学生熟练运用三角形的外角定理解决实际问题。
5.总结:对本节课的主要内容进行总结,强调三角形外角的性质和定理。
《三角形内角和定理》教学设计
三角形内角和定理》教学设计、教材分析一)教学内容的地位本节课是在研究了三角形的有关概念和学生在对“三角形的内角和等于1800”有感性认识的基础上,对该定理进行推理论证。
它是进一步研究三角形及其它图形的重要基础,此外,在它的证明中引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。
二)教学重点、难点:三角形内角和等于180 度,是三角形的一条重要性质,有着广泛的应用。
虽然学生在小学已经知道这一结论,但没度的证明及应用是本节课的重点。
有从理论的角度进行推理论证,因此三角形内角和等于180另外,由于学生还没有正式学习几何证明,而三角形内角和等于180 度的证明难度又较大,因此证明三角形内角和等于180 度也是本节课的难点。
突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。
二.教学目标基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。
一)知识与技能目标:会用平行线的性质与平角的定义证明三角形的内角和等于1800,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
二)过程与方法目标:经历拼图试验、合作交流、推理论证的过程,发展学生的合情推理能力和逻辑思维能力。
三)情感、态度价值观目标:通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。
、学情分析七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了用三角形内角和等于180 度这一结论,只是没有从理论的角度去研究它,学生通过前面的学习已经具备了简单说理的能力,同时已学习了平行线的讨论交流,尝试说理做好了准备。
性质和判定及平角的定义,这就为学生自主探究,动手实验,四、教学方法与学法指导:根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作一观察实验一猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
《三角形内角和》数学教案设计
《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。
2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。
3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。
二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。
教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。
三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。
然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。
2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。
然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。
最后,教师给出三角形内角和定理的定义和证明方法。
3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。
4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。
5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。
四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。
五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。
以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。
《三角形的内角和〉教学设计
《三角形的内角和〉教学设计《三角形的内角和〉教学设计作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
那么大家知道规范的教学设计是怎么写的吗?下面是店铺收集整理的《三角形的内角和〉教学设计,希望对大家有所帮助。
《三角形的内角和〉教学设计篇1设计理念:本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。
同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。
教学内容:《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。
学情与教材分析:该内容是本册教材第五单元关于三角形内角和的教学。
它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。
通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。
教材重视知识的探索与发现,安排了一系列的实验操作活动。
教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
教学目标:1.通过量、剪、拼等方法,探索和发现三角形内角和是180°。
2.在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:引导学生发现三角形内角和是180°。
教学难点:用不同方法验证三角形的内角和是180°。
《三角形内角和定理》第2课时示范公开课教学课件【北师大数学八年级上册】
归纳
三角形的外角应具备的条件:
(1)角的顶点是三角形的顶点; (2)角的一边是三角形的一边; (3)另一边是三角形中一边的延长线.
要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.
证明:∵∠EAC=∠B+∠C (三角形的一个外角等于和它不相邻的两个内角的和), ∠B=∠C (已知), ∴∠C= ∠EAC(等式的性质). ∵AD平分 ∠EAC(已知). ∴∠DAC= ∠EAC(角平分线的定义). ∴∠DAC=∠C(等量代换). ∴AD∥BC(内错角相等,两直线平行).
2.如图,AB//CD,∠A=37°,∠C=63°,那么∠F等于 ( ) A.26° B.63°C.37° D.60°
∵ ∠BFC是△BEF的一个外角,
∴ ∠BFC= ∠ABD+ ∠BEF,∵ ∠ABD=28° ,∠BEC=91°,∴ ∠BFC=119°.
解:
F
A
C
D
E
B
三角形内角和定理
三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角.
△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角. 注意:每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.
教科书 第183页习题7.7 第2、3题
三角形内角和定理第2课时
准备好了吗?一起去探索吧!
三角形内角和定理
1.了解三角形外角的定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理的推论即外角的两个定理进行几何证明与计算.3.引导学生从内和外、相等和不等的不同角度对三角形的角作全面的思考,体会几何中简单不等关系的证明.4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识.
初中数学人教版八年级上册11三角形的内角和(2课时) 教案
11.2与三角形有关的角三角形的内角第1课时三角形的内角和一、教学目标1.探索并掌握三角形内角和定理.2.学会运用三角形内角和定理.二、教学重难点1.三角形内角和定理.2.三角形内角和定理的推导过程.三、教学设计◆活动1新课导入1.问题:三角形的内角和是多少度?2.在直角△ABC中,∠C=90°,则∠A与∠B的关系是____∠A+∠B=90°__.3.三角形的三个内角之比为1∶3∶5,那么这个三角形的最大内角为__100°__.本节课我们一起学习有关三角形内角和的有关知识.◆活动2探究新知1.现在有一副三角板.提出问题:(1)每个三角板的每个角各是多少度?(2)每个三角板三个内角的和各是多少度?(3)猜一猜,任意一个三角形的三个内角和都相同吗?等于多少度?学生完成并交流展示.2.教材P11探究.提出问题:(1)在图(1)中,直线l与△ABC的边BC有什么关系?(2)在图(2)中,直线l与△ABC的边AB有什么关系?(3)利用图(1)或图(2)能证明三角形的内角和定理吗?这样证明的依据是什么?(4)你还能想出其他方法证明三角形的内角和定理吗?学生完成并交流展示.◆活动3知识归纳三角形的内角和定理:__三角形三个内角的和等于180°__.◆活动4例题与练习例1教材P12例1.例2教材P12例2.例3若△ABC的一个内角∠A是另一个内角∠B的23,也是第三个内角∠C的45,求△ABC三个内角的度数.解:依题意,得∠A=23∠B,∠A=45∠C,∴∠B=32∠A,∠C=54∠A.∵∠A+∠B+∠C=180°,∴∠A+32∠A+54∠A=180°,∴∠A=48°,∠B=72°,∠C=60°.例4如图,将△ABC沿EF折叠,使点C落在点C′处,试探求∠1,∠2与∠C的数量关系.解:由折叠的性质,得∠CEF=∠C′EF,∠CFE=∠C′FE.∴∠1=180°-2∠CEF,∠2=180°-2∠CFE,∴∠1+∠2=360°-2(∠CEF+∠CFE)=360°-2(180°-∠C)=2∠C,即∠1+∠2=2∠C.练习1.教材P13练习第1,2题.2.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是(C) A.80° B.70° C.60° D.50°(第2题图)(第3题图) 3.如图,AB∥CD,AD平分∠BAC.若∠BAD=70°,则∠ACD的度数是(A)A.40° B.35° C.50° D.45°4.当三角形中的一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__30°__.5.如图,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC 的度数.解:∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP,∴∠2+∠BCP=∠2+∠ABP=∠ABC=70°,∴∠BPC=180°-(∠2+∠BCP)=180°-70°=110°.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结三角形的内角和定理.四、作业和反思1.作业布置(1)教材P16习题11.2第3,9题;(2)《名师测控》对应课时练习.2.教学反思第2课时直角三角形的两个锐角互余一、教学目标1.了解直角三角形两个锐角的关系.2.掌握直角三角形的判定.二、教学重难点1.了解直角三角形两个锐角的关系,掌握直角三角形的判定.2.掌握直角三角形的判定,会运用直角三角形的性质和判定进行相关计算.三、教学设计◆活动1新课导入三角形中求角的度数问题,当角之间存在数量关系时,一般根据三角形内角和为180°建立方程来解决.◆活动2探究新知1.教材P13练习下面的内容.提出问题.(1)在△ABC中,∠C=90°,∠A与∠B之间有什么关系?(2)你能证明吗?如何证明?学生完成并交流展示.2.在△ABC中,若∠B+∠A=90°,那么△ABC是什么形状的三角形?并说明理由.学生完成并交流展示.◆活动3知识归纳1.直角三角形的两个锐角__互余__.2.有两个角互余的三角形是__直角__三角形.◆活动4例题与练习例1教材P14例3.例2如图,点E是△ABC中AC边上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴△ADE是直角三角形,∴∠1+∠A=90°.又∵∠1=∠2,∴∠2+∠A=90°,∴∠C=180°-(∠2+∠A)=180°-90°=90°,∴△ABC是直角三角形.例3(1)如图①,在△ABC中,AD⊥BC于点D,CE⊥AB于点E.试猜测∠1与∠2的关系,并说明理由;(2)如图②,在△ABC中,如果∠BAC是钝角,BD⊥AC于点D,CE⊥AB于点E,那么(1)中的结论是否仍然成立?请说明理由.解:(1)∠1=∠2.理由如下:∵AD⊥BC,CE⊥AB,∴△ABD和△BCE都是直角三角形,∴∠1+∠B=90°,∠2+∠B=90°,∴∠1=∠2;(2)结论仍然成立.理由如下:∵BD⊥AC,CE⊥AB,∴∠D=∠E=90°,∴∠1+∠4=90°,∠2+∠3=90°.又∵∠3=∠4,∴∠1=∠2.练习1.教材P14练习第1,2题.2.如图,在△ABC中,AD是边BC上的高,BE平分∠ABC交边AC于点E,∠BAC=60°,∠ABE=25°,则∠DAC的度数是(B)A.15° B.20° C.25° D.30°(第2题图)(第3题图) 3.如图,将有一块含有60°角的直角三角板的两个顶点分别放在长方形的对边上.如果∠1=18°,那么∠2的度数是__12°__.4.如图,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,试说明△EPF为直角三角形.解:∵AB∥CD,∴∠BEF+∠DFE=180°.∵EP为∠BEF的平分线,FP为∠DFE的平分线,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°,∴△EPF为直角三角形.◆活动5完成《名师测控》随堂反馈手册◆活动6课堂小结1.直角三角形的性质——两锐角互余.2.直角三角形的判定——有两角互余的三角形是直角三角形.四、作业与反思1.作业布置(1)教材P16习题11.2第4,10题;(2)《名师测控》对应课时练习.2.教学反思。
《三角形内角和定理》 教学设计
《三角形内角和定理》教学设计一、教学目标1、知识与技能目标学生能够理解和掌握三角形内角和定理的内容,即三角形的内角和等于 180°,并能运用定理进行相关的计算和推理。
2、过程与方法目标通过测量、剪拼、折叠等实验活动,培养学生的动手操作能力和观察分析能力,引导学生经历猜想、验证、归纳的数学思维过程,体会转化的数学思想方法。
3、情感态度与价值观目标在探究三角形内角和定理的过程中,激发学生学习数学的兴趣,培养学生的合作交流意识和创新精神,让学生体验数学活动的乐趣,感受数学的严谨性和科学性。
二、教学重难点1、教学重点掌握三角形内角和定理的内容及证明方法。
2、教学难点三角形内角和定理的证明思路及辅助线的添加方法。
三、教学方法讲授法、实验法、讨论法四、教学过程1、导入新课通过多媒体展示一些三角形的图片,如三角形的屋顶、三角形的交通标志等,引导学生观察并思考三角形的角之间有什么关系。
提问:三角形的三个内角之和是多少度呢?2、探索新知(1)实验探究让学生分组进行实验,采用测量、剪拼、折叠等方法,探究三角形内角和的度数。
测量法:学生用量角器分别测量三角形的三个内角,然后计算内角和。
剪拼法:学生把三角形的三个内角剪下来,拼在一起,观察拼成的角的度数。
折叠法:学生把三角形的三个角向内折叠,使三个角的顶点重合,观察折叠后的情况。
(2)归纳猜想各小组汇报实验结果,教师引导学生观察发现,不管采用哪种方法,三角形的内角和都接近 180°,从而提出猜想:三角形的内角和等于180°。
(3)证明定理引导学生思考如何用数学方法证明三角形内角和定理。
提示:可以通过作辅助线,将三角形的三个内角转化为一个平角。
方法一:过三角形的一个顶点作其对边的平行线。
如图,过点 A 作直线 EF∥BC。
因为 EF∥BC,所以∠B =∠EAB,∠C =∠FAC(两直线平行,内错角相等)因为∠EAB +∠BAC +∠FAC = 180°(平角的定义)所以∠B +∠BAC +∠C = 180°,即三角形的内角和等于 180°。
八年级数学上册7.5三角形的内角和定理第2课时三角形的外角教学设计 (新版北师大版)
八年级数学上册7.5三角形的内角和定理第2课时三角形的外角教学设计(新版北师大版)一. 教材分析本节课的主要内容是三角形的外角性质。
学生已经学习了三角形的内角和定理,对三角形的内角有了深入的理解。
在此基础上,引入三角形的外角性质,既是对学生已有知识的巩固,也是对知识体系的拓展。
二. 学情分析八年级的学生已经具备了一定的数学基础,对图形有了一定的认识。
但是,对于三角形的外角性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解并掌握三角形的外角性质。
三. 教学目标1.知识与技能:使学生掌握三角形的外角性质,能运用外角性质解决一些简单问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的观察能力、操作能力、猜想能力和验证能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、严谨求实的科学态度。
四. 教学重难点1.重点:三角形的外角性质。
2.难点:三角形的外角性质的证明和应用。
五. 教学方法采用问题驱动法、情境教学法、合作学习法等,引导学生主动探究,合作交流,从而掌握三角形的外角性质。
六. 教学准备1.教师准备:教材、课件、黑板、粉笔、三角板等。
2.学生准备:笔记本、尺子、三角板等。
七. 教学过程1. 导入(5分钟)教师通过回顾上节课的内容,引导学生复习三角形的内角和定理。
然后,提出问题:“同学们,你们知道三角形还有一个重要的性质吗?那就是三角形的外角。
”从而引出本节课的内容。
2. 呈现(10分钟)教师通过课件或黑板,呈现三角形的外角性质,让学生初步感知。
3. 操练(15分钟)教师引导学生通过观察、操作,尝试证明三角形的外角性质。
学生在操作过程中,可以发现三角形的外角等于它不相邻的两个内角之和。
4. 巩固(10分钟)教师通过一些例子,让学生运用外角性质解决实际问题,巩固所学知识。
5. 拓展(10分钟)教师引导学生思考:三角形的外角性质有哪些应用?可以解决哪些问题?从而拓展学生的知识视野。
第七章5 三角形内角和定理第2课时
重点典例研析
7
重点1利用三角形的外角性质求角的度数(运算能力、推理能力、几何直观) 【典例1】如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD于点E, 若∠C=68°,则∠BED=___5_6_°___.
8
【举一反三】 1.一副三角板叠放在一起,如图所示,则∠α的度数为___7_5_°___.
2. (2024·湛江质检)如图,在△ABC中,∠ACB=80°,点D在AB上,将△ABC沿CD折 叠,点B落在边AC的点E处.若∠ADE=24°,则∠A的度数为____3_8___°.
9
重点2 用三角形外角证明不等关系(推理能力、运算能力、几何直观) 【典例2】如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,点E是AD上一点. 求证:∠BED>∠C. 【自主解答】∵∠BAC=90°, ∴∠BAD+∠DAC=90°, ∵AD⊥BC,∴∠C+∠DAC=90°, ∴∠BAD=∠C, ∵∠BED>∠BAD,∴∠BED>∠C.
10
【举一反三】
1.如图,AB和CD相交于点O,则下列结论正确的是( A )
A.∠1=∠2
B.∠2=∠3
C.∠1>∠4+∠5
D.∠2<∠5
2.(2024·珠海质检)如图,D,E在边AB上,∠A,∠1,∠2的大小关系是
___∠__2_>_∠__1_>_∠__A____.
11
【技法点拨】 应用推论注意事项 (1)应用推论时,一定要注意“不相邻”这一条件. (2)推论二一般用来证明角的不等关系. (3)在利用推论二证明角的不等关系时,常用到不等关系的传递性, 即如果∠A>∠B,∠B>∠C则∠A>∠C.
最新版初中数学教案《三角形内角和定理2》精品教案(2022年创作)
7.5 三角形内角和定理第1课时 三角形内角和定理第一环节:情境引入活动内容:〔1〕用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行〔图6-38〔1〕〕然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合〔图〔2〕、〔3〕〕,最后得图〔4〕所示的结果〔1〕 〔2〕 〔3〕 〔4〕试用自己的语言说明这一结论的证明思路。
想一想,还有其它折法吗? 〔2〕实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。
想一想,如果只剪下一个角呢? 活动目的:比照过去撕纸等探索过程,体会思维实验和符号化的理性作用。
将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知活动内容:① 用严谨的证明来论证三角形内角和定理.② 看哪个同学想的方法最多?方法一:过A 点作DE ∥BC∵DE ∥BC∴∠DAB=∠B ,∠EAC=∠C 〔两直线平行,内错角相等〕 ∵∠DAB+∠BAC+∠EAC=180°∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC 的延长线CD ,过点C 作射线CE ∥BA .A B C D E AB C ED∵CE∥BA∴∠B=∠ECD〔两直线平行,同位角相等〕∠A=∠ACE〔两直线平行,内错角相等〕∵∠BCA+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)活动目的:用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以到达证明的目的.第三环节:反响练习活动内容:〔1〕△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?假设有1个直角另外两角有什么特点?〔2〕△ABC中,∠C=90°,∠A=30°,∠B=?〔3〕∠A=50°,∠B=∠C,那么△ABC中∠B=?〔4〕三角形的三个内角中,只能有____个直角或____个钝角.〔5〕任何一个三角形中,至少有____个锐角;至多有____个锐角.〔6〕三角形中三角之比为1∶2∶3,那么三个角各为多少度?〔7〕:△ABC中,∠C=∠B=2∠A。
《三角形中角的关系》第2课时示范教学方案
第十三章三角形中的边角关系、命题与证明13.1 三角形中的边角关系第2课时三角形中角的关系一、教学目标1.理解和掌握三角形按照内角的度数的分类;2.通过操作活动,探究并掌握三角形内角和性质,并能应用三角形内角和性质解决一些简单的实际问题;3.经历观察、操作、想象、推理、交流,发展推理能力和有条理的表达能力.在操作中进行自觉思考,积累数学探索的经验.二、教学重点及难点重点:三角形内角和等于180度的证明及应用难点:证明三角形内角和等于180度(辅助线的添加)三、教学用具多媒体课件、直尺、三角形学具.四、相关资源《锐角、直角、钝角三角形》图片、《例题》图片、《例题1》图片、《例题2》图片.五、教学过程【课堂导入】教师带领学生进行操作:拿出三角形学具,将它的两个内角撕下,把三个内角拼合在一起看看,你能量得它们的和为180°吗?学生动手操作,总结规律.教师总结:拼角的实质其实就是将三角形的三个内角集中到某一个点,构成一个平角.设计意图:通过动手操作,得到三角形内角和为180°的直观认识,以提高对课题的认识,激发学生的兴趣.通过对拼图过程的引导与分析,为下面添加辅助线进行证明作好铺垫.本图片是微课的首页截图,本微课资源讲解了三角形内角和定理以及如何证明三角形的内角和定理.若需使用,请插入微课【知识点解析】三角形内角和定理.【新知讲解】1.定义.教师讲解:三角形中,三个角都是锐角的三角形叫做锐角三角形( acute triangle),有一个角是直角的三角形叫做直角三角形(right triangle) 、有一个角是钝角的三角形叫做钝角三角形( obtuse triangle)直角三角形中夹直角的两边叫做直角边,直角相对的边叫做斜边,直角三角形ABC 可以写成“Rt△ABC".插入图片《锐角、直角、钝角》设计意图:带领学生认识三角形中角的关系. 2.三角形按角分类.教师展示PPT 上习题,引导学生观察. 习题:下列说法中正确的是( ) A 三角形的内角中最多有2个锐角 B 三角形的内角中最多有2个钝角 C 三角形的内角中最多有1个直角 D 三角形的内角都大于60° 答案:A学生思考观察回答问题. 三角形按角分类可以分为:⎩⎪⎨⎪⎧按角分类:三角形⎩⎪⎨⎪⎧直角三角形斜三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形三角形的内角和等于180°设计意图:通过问题的解答,引导学生进行思考,明确三角形内角和定义. 【典型例题】例1 在△ABC 中, ∠A :∠B :∠C =1:2:3,则△ABC 的形状是_________.解:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解. 例2如图∠1+∠2+∠3+∠4=___________ .插入图片《例题》解:在三角形ADE 中 ∠1+∠2+40°=180° 在三角形ACB 中 ∠3+∠4+40°=180° ∴∠1+∠2=140°BAC D 413 2E40°∠ 3+∠4=140°∴∠1+∠2+∠3+∠4=280°例3:如图,在△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于( ) A .63° B .62° C .55° D .118°解:在△ABC 中,∠B =55°,∠C =63°,根据三角形的内角和定理,即可求得∠A 的度数,又由DE ∥AB ,根据两直线平行,同位角相等,即可求得∠DEC 的度数.故答案为B.插入图片《例题1》设计意图:了解三角形中角的关系的应用. 【随堂练习】1.如图AD //BC ,CE ⊥AB ,垂足为E ,∠A = 125°, 则∠BCE 的度数是_________. 解:∵ABCD 是梯形 ∴AD ∥BC ∴∠A +∠B =180°∠B =180°–∠A =180°–125°=55° ∵CE ⊥AB∴△BCE 是直角三角形 ∴∠BCE +∠B =90°∠BCE =90°–∠B =90°–55°=35°插入图片《习题2》2. 在△ABC 中,∠A 是∠B 的2倍,∠C 比∠A +∠B 大12°,求△ABC 各角度数.BA CDE解析:首先用代数式表示出每一个角,然后利用三角形内角和为180°,列出方程求解.解:设∠B=x°,则∠A=2x°,∠C=(x+2x+12)°,据题意得,x+2x+x+2x+12=180,解得x=28,∴∠B=28°,∠A=56°,∠C=96°.设计意图:通过学生练习,使教师及时了解学生对分段函数的理解情况,以便教师及时对学生进行矫正.六、课堂小结1.定义:三角形中,三个角都是锐角的三角形叫做锐角三角形( acute triangle),有一个角是直角的三角形叫做直角三角形(right triangle) 、有一个角是钝角的三角形叫做钝角三角形( obtuse triangle)直角三角形中夹直角的两边叫做直角边,直角相对的边叫做斜边,直角三角形ABC 可以写成“Rt△ABC".2.三角形的内角和等于180°设计意图:通过小结,回顾本节课所学新知,加深印象.七、板书设计第2课时三角形中角的关系按角分类:直角三角形、锐角三角形、钝角三角形三角形的内角和等于180°。
沪科版数学八年级上册《三角形内角和定理》教学设计2
沪科版数学八年级上册《三角形内角和定理》教学设计2一. 教材分析《三角形内角和定理》是沪科版数学八年级上册的一个重要内容。
本节课主要让学生通过探究三角形的内角和,归纳出三角形的内角和定理,并能够运用该定理解决一些实际问题。
教材通过生动的图形和丰富的例题,引导学生主动参与,发现规律,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经学习了多边形的概念、分类和性质,对多边形有一定的认识。
同时,学生已经掌握了四边形的内角和定理,这为本节课的学习提供了基础。
但是,学生对于三角形的内角和定理的理解还需要通过实例和操作来进一步加深。
三. 教学目标1.知识与技能目标:让学生掌握三角形的内角和定理,能够运用该定理解决一些实际问题。
2.过程与方法目标:通过观察、操作、探究、归纳等方法,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:三角形的内角和定理。
2.难点:对三角形的内角和定理的理解和运用。
五. 教学方法1.引导发现法:教师通过提问、引导,让学生发现三角形的内角和定理。
2.实例演示法:教师通过展示实例,让学生直观地理解三角形的内角和定理。
3.合作交流法:学生分组进行探究,分享彼此的发现和心得,培养团队合作意识。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,内容包括三角形的内角和定理的引入、讲解和练习题。
2.实例图片:教师准备一些三角形的实例图片,用于展示和解释三角形的内角和定理。
3.练习题:教师准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过展示一些三角形的实例图片,引导学生观察和思考三角形的内角和。
提问:你们知道三角形的内角和是多少吗?为什么?2.呈现(10分钟)教师通过PPT呈现三角形的内角和定理的定义和证明过程。
讲解三角形的内角和定理,并给出一些例子来解释该定理的应用。
三角形的内角和数学教学设计(精选4篇)
三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。
三角形内角和定理:三角形三个内角和等于180°。
用数学符号表示为:在△ABC中,△1+△2+△3=180°。
奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。
《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
六、课前准备1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章平行线的证明
5.三角形内角和定理(第2课时)
一、学生知识状况分析
学生技能基础:学生在前面的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,学习了三角形内角和定理的证明以及相关应用,有相关知识的基础,并具有一定的逻辑思维能力和严谨推理习惯,为今天的学习奠定了良好的基础.
活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流相结合、实践和理性证明相结合的学习方式,学生具有较熟悉的活动经验.
二、教学任务分析
在前面的学习中,学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《关注三角形的外角》旨在利用已经学习过的知识来推导出新的定理以及运用新的定理解决相关问题。
为此,本节课的教学目标是:
1.掌握三角形外角的两条性质;
2.进一步熟悉和掌握证明的步骤、格式、方法、技巧.
3.灵活运用三角形的外角和两条性质解决相关问题。
4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识。
5.通过在数学活动中进行教学,使学生能自主地“做数学”,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
三、教学过程分析
本节课的设计分为四个环节:情境引入——探索新知——反馈练习——课堂反思与小结
第一环节:情境引入
活动内容:
在证明三角形内角和定理时,用到了把△ABC的一边BC延长得到∠ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质.
活动目的:
引出三角形外角的概念,并对其进行研究,激发学生学习兴趣。
注意事项:
教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考。
第二环节:探索新知
活动内容:
①三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角,结合图形指明外角的特征有三:
(1)顶点在三角形的一个顶点上.
(2)一条边是三角形的一边.
(3)另一条边是三角形某条边的延长线.
②两个推论及其应用
由学生探讨三角形外角的性质:
问题1:如图,△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,能由∠A、∠B求出∠ACD吗?如果能,∠ACD与∠A、∠B有什么关系?
问题2:任意一个△ABC的一个外角∠ACD与∠A、∠B的大小会有什么关系呢?
由学生归纳得出:
推论1: 三角形的一个外角等于和它不相邻的两个内角的和. 推论 2:三角形的一个外角大于任何一个和它不相邻的内角. 例1、已知:∠BAF ,∠CBD ,∠ACE 是△ABC 的三个外角.
求证:∠BAF+∠CBD+∠ACE=360°
分析:把每个外角表示为与之不相邻的两个内角之和即得证.
证明:(略).
例2、已知:D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于F,∠A=62°,∠ACD=35°,
∠ABE=20°.求:(1)∠BDC 度数;(2)∠BFD 度数. 解:(略). 活动目的:
通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考. 注意事项:
新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。
第三环节:课堂练习 活动内容:
① 已知,如图,在三角形ABC 中,AD 平分外角∠EAC ,∠B=∠C .求证:AD ∥BC 分析:要证明AD ∥BC ,只需证明“同位角相等”,即需证明∠DAE =∠B .
证明:∵∠EAC =∠B +∠C (三角形的一个外角等于和它不相邻的两个内角的和) ∠B =∠C (已知)
∴∠B =2
1∠EAC (等式的性质) ∵AD 平分∠EAC (已知)
∴∠DAE =21
∠EAC (角平分线的定义) ∴∠DAE =∠B (等量代换)
∴AD ∥BC (同位角相等,两直线平行) 想一想,还有没有其他的证明方法呢?
B
A
C
D
E
这个题还可以用“内错角相等,两直线平行”来证.
证明:∵∠EAC =∠B +∠C (三角形的一个外角等于和它不相邻的两个内角的和) ∠B =∠C (已知)
∴∠C =2
1∠EAC (等式的性质) ∵AD 平分∠EAC (已知)
∴∠DAC =21∠EAC (角平分线的定义) ∴∠DAC =∠C (等量代换)
∴AD ∥BC (内错角相等,两直线平行) 还可以用“同旁内角互补,两直线平行”来证.
证明:∵∠EAC =∠B +∠C (三角形的一个外角等于和它不相邻的两个内角的和) ∠B =∠C (已知)
∴∠C =21∠EAC (等式的性质) ∵AD 平分∠EAC (已知) ∴∠DAC =21∠EAC ∴∠DAC =∠C (等量代换) ∵∠B +∠BAC +∠C =180° ∴∠B +∠BAC +∠DAC =180° 即:∠B +∠DAB =180°
∴AD ∥BC (同旁内角互补,两直线平行)
② 已知:如图,在三角形ABC 中,∠1是它的一个外角,E 为边AC 上一点,延长BC 到D ,连接DE .求证:∠1>∠2.
证明:∵∠1是△ABC 的一个外角(已知)
∴∠1>∠ACB (三角形的一个外角大于任何一个和它不相邻的内角)
∵∠ACB 是△CDE 的一个外角(已知)
∴∠ACB>∠2(三角形的一个外角大于任何一个和它不相邻的内角) ∴∠1>∠2(不等式的性质)
A B
C D E
1
F
2
③.如图,求证:(1)∠BDC>∠A.
(2)∠BDC=∠B+∠C+∠A.
如果点D在线段BC的另一侧,结论会怎样?
[分析]通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.
证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.
∴∠1>∠3.
∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠1+∠2>∠3+∠4(不等式的性质)
即:∠BDC>∠BAC.
(2)连结AD,并延长AD,如图.
则∠1是△ABD的一个外角,∠2是△ACD的一个外角.
∴∠1=∠3+∠B
∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC
证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.
则∠BDC是△CDE的一个外角.
∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)
∵∠DEC是△ABE的一个外角(已作)
∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)
∴∠BDC>∠A(不等式的性质)
(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.
∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)
∵∠DEC是△ABE的一个外角
∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠BDC=∠B+∠C+∠BAC(等量代换)
活动目的:
让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.
注意事项:
学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。
第四环节:课堂反思与小结
活动内容:
由学生自行归纳本节课所学知识:
推论1:三角形的一个外角等于和它不相邻的两个内角的和.
推论2:三角形的一个外角大于任何一个和它不相邻的内角.
活动目的:
复习巩固所学知识,理清思路,培养学生的归纳概括能力.
注意事项:
学生对于三角形外角的两个推论以及它们的应用有一定的了解。
课后练习:课本第244页的随堂练习第1题,习题6.7题第1,2,3题。
思考题:课本245页第4题(给学有余力的同学做)
四、教学反思
教学中,帮助学生找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的关键是讲清定义,分析图形,变换位置,理清思路。
本节课的教学设计力图具有以下几个特色:
(1)充分挖掘学生的潜能,展示学生的思维过程,体现“学生是学习的主人”
这一主题;
(2)从特殊到一般,从不完全归纳到合情推理,展示了一个完整的思维过程;
(3)在整个教学中尽可能的避免教学的单调性,因此编排了一题多解的训练,为发散性思维创设情境,调动学生学习的极大热情。