专题:子弹打木块模型
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
高考物理模拟题训练碰撞与动量守恒专题04子弹打木块模型含解析
专题04 子弹打木块模型1.(2017福建霞浦一中期中)如图所示,在光滑水平面上有一辆质量M=8kg的平板小车,车上有一个质量m=1.9 kg的木块(木块可视为质点),车与木块均处于静止状态.一颗质量m0=0.1kg 的子弹以v0=200m/s的初速度水平向左飞,瞬间击中木块并留在其中.已知木块与平板之间的动摩擦因数μ=0.5,(g=10m/s2)求:(1)子弹射入木块后瞬间子弹和木块的共同速度(2)若木块不会从小车上落下,求三者的共同速度(3)若是木块刚好不会从车上掉下,则小车的平板至少多长?【解答】解:(1)子弹射入木块过程系统动量守恒,以水平向左为正,则由动量守恒有:m0v0=(m0+m)v1,解得:v1===10m/s;(2)子弹、木块、小车系统动量守恒,以向左为正方向,由动量守恒定律得:(m0+m)v1=(m0+m+M)v,解得:v===2m/s;(3)子弹击中木块到木块相对小车静止过程,由能量守恒定律得:(m0+m)v12=μ(m0+m)gL+(m0+m+M)v2,解得:L=8m;答:(1)子弹射入木块后瞬间子弹和木块的共同速度为10m/s.(2)若木块不会从小车上落下,三者的共同速度为2m/s.(3)若是木块刚好不会从车上掉下,则小车的平板长度至少为8m.2 . 如图所示,在光滑水平地面上的木块M紧挨轻弹簧靠墙放置。
子弹m以速度v0沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩劲度系数未知弹簧至弹簧最短.已知子弹质量为m,木块质量是子弹质量的9倍,即M=9m;弹簧最短时弹簧被压缩了△x;劲度系数为k、形变量为x的弹簧的弹性势能可表示为E p=12kx2。
求:(i)子弹射入木块到刚相对于木块静止的过程中损失的机械能;(ii)弹簧的劲度系数。
【名师解析】(1)设子弹射入木块到刚相对于木块静止时的速度为v,由动量守恒定律,mv0=(m+M)v,解得v= v0/10。
设子弹射入木块到刚相对于木块静止的过程中损失的机械能为△E,由能量守恒定律:△E=12mv02-12(m+M)v2代入数据得△E =2920 mv。
子弹打木块
1.一轻质弹簧,两端连接两滑块A和B,已知 mA=0.99kg , mB=3kg,放在光滑水平桌面上, 开始时弹簧处于原长。现滑块A被水平飞来的质 量为mc=10g,速度为400m/s的子弹击中,且没有 穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 (3)B可获得的最大动能 (1)4m/s; 0 (2)6J (3)6J
第36题图
7.如图所示,一质量为M的平板车B放在光滑水平 面上,在其右端放一质量为m的小木块A,M=3m, A、B间动摩擦因数为μ,现给A和B以大小相等、 方向相反的初速度v0,使A开始向左运动,B开始 向右运动,最后A不会滑离B,求:①A、B最后的 速度大小和方向;m②要使A最终不脱离B,平板 车B的最短长度为多少。
v0水平向右射入木块,穿出木块时速度为 v0,设木块对子弹的阻力始终保持不变.
2 5
(1)求子弹穿透木块后,木块速度的大小; (2)求子弹穿透木块的过程中,木块滑行 L 的距离s;
v0 m 3m
2 mv 0 m v0 3mv (1)由动量守恒定律, , 5 v0 v 解得木块的速度大小为 5
二、穿透类 特点:在某一方向动量守恒,子弹有 初动量,木块有或无初动量,击穿时间很 短,击穿后二者分别以某一速度度运动. 规律:选子弹和木块为一个系统,因 系统水平守恒定律
总结:子弹打木块的模型 1.运动性质:子弹对地在滑动摩擦力作 用下匀减速直线运动;木块在滑动摩擦力 作用下做匀加速运动。 2.符合的规律:子弹和木块组成的系统 动量守恒,机械能不守恒。 3.共性特征:一物体在另一物体上,在 恒定的阻力作用下相对运动,系统动量守 恒,机械能不守恒,ΔEK=Q = f 滑d相对
解:以子弹m和木块M组成的物体系统为研究对象,运用动量守恒定律,则有
第六章 专题2 “子弹打木块”模型及“追赶”模型
专题二 “子弹打木块”模型及“追赶”模型【学习目标】1、理解“子弹打木块”模型中物体的相互作用过程,掌握解决这类问题的方法。
2、会分析“追赶”模型中两物体的位移关系,知道两物体相距最近或最远的条件。
【自主学习】一、动量守恒定律的公式: ,公式中的各个v 必须是对参考系的。
末状态两物体速度相同时,动量守恒的表达式为: 。
初状态两物体均处于静止状态,动量守恒的表达式为: 。
二、“子弹打木块”模型: 木块放在光滑水平面上子弹以初速度v 0射击木块。
1、运动性质:子弹对地在滑动摩擦力作用下做 直线运动;木块在滑动摩擦力作用下做 直线运动。
2、图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如下图中甲或乙。
甲和乙的区别是 。
图中,两图线间阴影部分面积则对应了子弹相对于木块的 。
3、解决方法:把子弹和木块看成一个系统,利用水平方向动量守恒,有:mv 0=mv+MV …………①对木块和子弹分别利用动能定理,对子弹 -f(s+L )=2022121mv mv - …………②对木块 f s =0212-MV …………③由②、③得系统的动能定理: f L 2220212121MV mv mv --=)+(=2220212121MV mv mv - 4、打木块模型及推广:⑴一物块在木板上滑动(E mgs Q ∆==相对μ,Q 为摩擦在系统中产生的热量)。
⑵小球在置于光滑水平面上的竖直平面内弧形光滑轨道上向上滑动,系统损失的动能转化为m 的重力势能。
⑶一静一动的同种电荷追碰运动,系统损失的动能转化为电势能三.典型例题:例1.一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v?问题2 子弹、木块发生的位移以及子弹打进木块的深度?问题3 系统损失的机械能、系统增加的内能?问题4 要使子弹不穿出木块,木块至少多长?(v 0、m 、M 、f 一定)小结:⑴系统损失的机械能等于阻力乘以相对位移,即ΔE =Q =fs 相对⑵系统内相互作用的两物体间的一对摩擦力做功的总和恒为 值。
高中物理模型:子弹打木块模型
模型/题型:子弹打木块模型一.模型概述子弹射击木块的两种典型情况1.木块放置在光滑的水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);系统损失的动能等于系统增加的内能.(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q =F f ·x 相,其中f 是滑动摩擦力的大小,x 是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
(3)系统产生的内能,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(4)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).二、标准模型标准模型:一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?(4)系统损失的机械能、系统增加的内能分别是多少?(5)要使子弹不射出木块,木块至少多长?答案 (1)m M +m v 0 (2)Mm v 0F f (M +m ) (3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m ) (4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析(1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 mv 0=(M +m )v 解得v =mM +mv 0 (2)设子弹在木块内运动的时间为t ,由动量定理得对木块:F f t =Mv -0 解得t =Mmv 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-F f x 1=12mv 2-12mv 02 解得:x 1=Mm (M +2m )v 022F f (M +m )2 对木块:F f x 2=12Mv 2 解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022F f (M +m ) (4)系统损失的机械能为E 损=12mv 02-12(M +m )v 2=Mmv 022(M +m )系统增加的内能为Q =F f ·x 相=Mmv 022(M +m ),系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有F f L =12mv 02-12(M +m )v 2 解得L =Mmv 022F f (M +m ) 因此木块的长度至少为Mmv 022F f (M +m ).三、典型例题1.(子弹打木块的能量) (多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J答案 AB.解析法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得到的动能.2.一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M 。
2025年高考物理总复习专题21 子弹打木块模型和板块模型(附答案解析)
第1页(共14页)2025年高考物理总复习专题21子弹打木块模型和板块模型模型归纳
1.子弹打木块模型
分类模型特点
示例
子弹嵌
入木块
中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:m v 0=(m +M )v
能量守恒:Q =F f ·s =12m v 02-12
(M +m )v 2子弹穿
透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v 0=m v 1+M v 2
能量守恒:Q =F f ·d =12m v 02-(12M v 22+12m v 12)2.子板块模型
分类模型特点
示例
滑块
未滑
离木
板木板M 放在光滑的水平地面上,滑块m 以速度v 0滑上木板,两者间的摩擦力大小为f 。
①系统的动量守恒;
②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv 0=(M +m )v ;②系统能量守恒:Q =f ·x =12m 02-12(M +m )v 2。
子弹击木块类问题
作业: 作业:
质量为m 的小球从光滑的半径为R 的半圆槽顶 由静止滑下,如图所示. 设槽与桌面无摩擦, 部A由静止滑下,如图所示. 设槽与桌面无摩擦, 则:
A. B. C. D. 小球不可能滑到右边最高点B ; 小球到达槽底时的动能小于mgR ; 小球升到最大高度时, 小球升到最大高度时, 槽速度为零 ; 若球与槽有摩擦,则系统水平方向动量不守恒。 若球与槽有摩擦,则系统水平方向动量不守恒。
M
解:本题所设置的物理情景看似与演变不同,但若把小木块看作 本题所设置的物理情景看似与演变不同, 子弹,长木板看作木块,其受力和运动情况与演变完全相同, 子弹,长木板看作木块,其受力和运动情况与演变完全相同, 不难得出: 不难得出:
l=Leabharlann 2 µ( M + m) g
2 Mv0
MV0 t= µ ( M + m) g
专题六: 专题六: 动量守恒定律 ——子弹击木块问题 子弹击木块问题
“子弹击木块类”问题 子弹击木块类” 子弹击木块类
一、模型建立
(1)动力学规律: )动力学规律: 结论:子弹与木块受到大小相等、方向相反的一对恒力作用, 结论:子弹与木块受到大小相等、方向相反的一对恒力作用, 故两者的加速度大小与其质量成反比,方向相反。 故两者的加速度大小与其质量成反比,方向相反。
− ft = mv − mv0
Mmv0 t= ( M + m) f
演变2 若子弹在木块中刚好“ 演变2:若子弹在木块中刚好“停”时,木块运动距离为s,子弹射入 木块运动距离为s 木块的深度为d 木块的深度为d,则: >、=或 d s(填>、=或<)
1 2 对木块: 解:对木块: fs = Mv 2 1 1 2 对系统: 对系统: fd = mv 0 − ( M + m)v 2 2 2
第7单元动量专题九“子弹打木块”模型和“滑块—木板”模型-2025年物理新高考备考课件
的运动过程中,系统动量守恒,有 − = + +1 = 1,2,3, ⋯
解得+1 =
1
5
= 1,2,3, ⋯
设第一次碰撞后小车向左运动的最大距离为1 ,对小车,根据动能定理有
−1 = 0 −
解得1 = 0.6 m
1
2
1
2
热点题型探究
设第次碰撞后小车向左运动的最大距离为 ,对小车根据动能定理有
、碰撞时损失的机械能为
Δ =
1
2
0
2
−
1
2
2
+
1
2
2
= 12 J
热点题型探究
(3)要保证滑块不脱离长木板,长木板的最小长度.
[答案] 1.5 m
[解析] 在、碰撞后到、再次共速的过程中,、相互作用的时间为
=
0 −共
=1s
长木板的长度至少为 = − =
[答案] 12 J
[解析] 、碰撞瞬间,由动量守恒定律可得
0 = +
在、碰撞后到、再次共速的过程中,、组成的系统由动量守恒可得
+ 0 = + 共
根据题意有共 =
联立解得共 = = 3 m/s, = 2 m/s
A.3 J B.4 J C.6 J D.20 J
教师备用习题
[解析]设铁块与木板共速时速度大小为v,铁块相对木板向右运动的最大距离为L,
铁块与木板之间的摩擦力大小为Ff,铁块压缩弹簧使弹簧最短时,由能量守恒定
1
1
2
律得 m0 =FfL+ (M+m)v2+Ep,由动量守恒定律得mv0=(M+m)v,从铁块开始运动
湖北 程伟华 子弹打击木块模型专题
子弹打击木块模型题目分析子弹打击木块模型在物理题型中比较常见,它很容易将力、动量、能量结合起来综合考查学生的能力。
我们要抓住子弹打击木块时间短、子弹和木块之间的作用力大这两个特点来分析这类问题。
【例1】一颗子弹水平射入置于光滑水平面上的木块A 中并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图(1)所示,则在子弹打中木块A 即弹簧被压缩的过程中,对于子弹、两木块和弹簧组成的系统( ) A .动量守恒,机械能守恒 B .动量不守恒,机械能守恒 C .动量守恒,机械能不守恒 D .无法判断动量、机械能是否守恒 【答案】C【解析】由于子弹打入木块及压缩弹簧的整个过程中系统所受的合外力等于零,则系统的动量守恒。
由于子弹打入木块木块的过程中子弹和木块间的摩擦力做功,使机械能的一部分转化为内能,所以系统的机械能不守恒。
【例2】如图(2)所示装置,木块B 与水平面得接触是光滑的,子弹A 从水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起作为研究对象,则此系统在从子弹射入木块到弹簧压缩至最短的过程中( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒C .动量守恒,机械能不守恒D .动量不守恒,机械能守恒 【答案】B【解析】A 射入木块的短暂时间内,弹簧还来不及发生形变,系统所受的合外力为零,总动量守恒;但在这个过程中子弹和木块之间的摩擦力对系统做功,系统的机械嫩转化为内能,故系统的机械能不守恒。
子弹和木块达到共同速度后,系统受到墙壁力的作用,系统的总动量不守恒,但墙壁对系统的力不做功,系统的机械能守恒。
故整个过程中系统动量不守恒,机械能也不守恒,选B 。
【例3】如图(3)所示,用长为L 细线悬挂一质量为M 的木块,有一质量为m 的子弹从左向右水平射穿此木块,穿透前后子弹的速度分别为v 0和v ,子弹穿过木块的时间和空气的阻力不计,求(1)子弹穿过木块后木块的速度v M 大小;(2)子弹穿过木块瞬间细线的拉力T 的大小;(3) 子弹穿过木块的过程中子弹和木块系统损失的机械能为多少? 【解析】(1)子弹穿透木块的过程中,以子弹和木块为系统在水平方向上受合力为零,故系统在水平方向上动量守恒。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。
其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。
二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。
这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。
(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图乙所示。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。
四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。
(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
高中物理子弹打木块模型
符合的规律:子弹和木块组成的系统动量守恒,机械能不守恒。
重要结论:系统损失的机械能等于阻力乘以相对位移,即:。
共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定律和。
例1. 子弹质量为m,以速度水平打穿质量为M,厚为d的放在光滑水平面上的木块,子弹的速度变为v,求此过程系统损失的机械能。
解析:①对子弹用动能定理:②②式中s为木块的对地位移对木块用动能定理:③由②③两式得:④由①④两式解得:例2. 如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图1分析:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即。
解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或动量守恒求出转化为内能的量Q。
对物块,滑动摩擦力做负功,由动能定理得:即对物块做负功,使物块动能减少。
对木块,滑动摩擦力对木块做正功,由动能定理得:即对木块做正功,使木块动能增加,系统减少的机械能为:①本题中,物块与木块相对静止时,,则上式可简化为:②又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:③联立式②、③得:故系统机械能转化为内能的量为:例3. 如图2所示,两个小球A和B质量分别为,。
球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动。
假设两球相距时存在着恒定的斥力F,时无相互作用力。
当两球相距最近时,它们间的距离为,此时球B的速度是4m/s。
求:(1)球B的初速度;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间。
图2解析:(1)设两球之间的斥力大小是F,两球从开始相互作用到两球相距最近时所经历的时间是t,当两球相距最近时球B的速度是,此时球A的速度与球B的速度大小相等,。
子弹打木块模型
C
F
F对C做的功 W=F(S+L)=30J
Q=μmgL=5J
S A
B
例4.如图所示,在光滑水平面上有A、B两辆小车,水平面 的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车 的总质量是A车质量的10倍。两车开始都处于静止状态,小 孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原 速率返回,小孩接到A车后,又把它以相对于地面的速度v 推出。每次推出,A车相对于地面的速度都是v,方向向左。 则小孩把A车推出几次后,A车返回时小孩不能再接到A车? 解:取水平向右为正方向,小孩第一次推出A车时; mBv1-mAv=0 即:
根据动量守恒定律有 根据能量守恒定律有
(mA mB )v2 (mA mB mC )v3 ①
1 1 2 2 (m A mB ) gL (m A mB )v2 (m A mB mC )v3 2 2
联立①②式代入数据解得
②
L 0.375
h
B
C
例3:长L=1m,质量M=1kg的木板AB静止于光滑水 平面上。在AB的左端有一质量m=1kg的小木块C,现 以水平恒力F=20N作用于C,使其由静止开始向右运 动至AB的右端,C与AB间动摩擦因数μ=0.5,求F对C 做的功及系统产生的热量 解:由于C受到外力作用所以系统动量不守恒,设木板 向前运动的位移是S,则木块的位移为S+L, 时间为t 对C: F(S+L)-μmg(S+L)=1/2×mvm2 m=1kg (F-μmg)t = mvm F=20N C 2 对AB:μmgS = 1/2×MvM A B μmg t = M vM M=1kg 解以上四式得: vm=3vM 摩擦生的热 S=0.5 m
子弹打木块模型
子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等.模型:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d对子弹用动能定理:22012121mv mv s f -=⋅ …………………………………① 对木块用动能定理:2221Mv s f =⋅…………………………………………② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ………………③ ③式意义:f ∙d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。
由上(③)式不难求得平均阻力的大小:()dm M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
试试推理。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d mM m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下m M >>,所以s 2<<d 。
专题子弹打木块模型
专题:子弹打木块模型例题:【例1】光滑水平面上 静置着一质量为M 的小车一颗质量为m 的木块以速度V 0水平滑向小车.木块滑出后,木块速度减为V 1, 小车的速度增为V 2.将此过程中下列说法补全完整:A. 木块克服阻力做功为 。
B. 木块对小车做的功为 。
C. 木块减少的动能 小车增加的动能. D 系统产生的热量为 。
【例2】在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d 。
设冲击过程中木块的运动位移为s ,子弹所受阻力恒定。
试证明:s<d【例3】如图所示,质量为3m ,长度为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度为52v 0,设木块对子弹的阻力始终保持不变. (1)求子弹穿透木块后,木块速度的大小; (2)求子弹穿透木块的过程中,木块滑行的距离s ;(3)子弹穿过木块的整个过程中,子弹和木块在所组成的系统所产生的热量是多少?【例4】如图7-34,一轻质弹簧的两端连接两滑块A 和B ,已知m A =0.99kg, m B =3kg,放在光滑水平桌面上,开始时弹簧处于原长,现滑块被水平飞来的质量为m C =10g ,速度为400m/s 的子弹击中,且没有穿出,试求:(1)子弹击中滑块A 后的瞬间滑块A 和B 的速度; (2)以后运动过程中弹簧的最大弹性势能; (3)滑块B 可能获得的最大动能。
m Mv 0 L 3m m AB 0 图7-34【练习】1.如图6-13所示,木块与水平弹簧相连放在光滑水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,尔后木块将弹簧压缩到最短,关于子弹和木块组成的系统,下列说法正确的是:( )A .从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒B .子弹射入木块的过程中,系统动量守恒C .子弹射入木块的过程中,系统动量不守恒D .木块压缩弹簧过程中,系统动量守恒2、物块A 、B 用一根轻质弹簧连接起来,放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力使弹簧压缩,如图7-25所示,当撤去此力后,下列说法正确的是:( )A.A 尚未离开墙壁前,弹簧和B 的机械能守恒B.A 尚未离开墙壁前,A 和B 的总动量守恒C.A 离开墙壁后,A 和B 的系统的总动量守恒D.A 离开墙壁后,弹簧和A 、B 系统的机械能守恒3.如图6-14,光滑水平面上有A.B 两物体,其中带有轻质弹簧的B 静止,质量为m 的A 以速度v o 向着B 运动,A 通过弹簧与B 发生相互作用的过程中:( )(1)弹簧恢复原长时A 的速度一定最小 (2)两物体速度相等时弹簧压缩量最大(3)任意时刻系统总动量均为mv o (4)任一时刻B 的动量大小总小于mv oA .(1)(3)B .(2)(3)C .(1) (3) (4)D .(2) (4)4.如图7-17所示,质量为M 的木板B 放在光滑水平面上,有一质量为m 的滑块A 以水平向右的初速度v 0滑上木板B ,A 与木板之间的动摩擦因数为μ,且滑块A 可看做质点,那么要使A 不从B 的上表面滑出,木板B 至少应多长?5.如图6-28所所示,abc 是光滑的轨道,其中ab 是水平的,bc 为ab 与相切的位于竖直平面内的半圆,半径R=0.30m ,质量m=0.20Kg 的小球A 静止在轨道上,另一质量M=0.60Kg ,速度v 0=5.5m/s 的小球B 与小球A 正碰。
专题-物理-L42-子弹穿木块问题
方法二: 解析:子弹与木块组成的系统动量守恒,设共同运动的速度为v,由动量守恒定律得 mv0=(M+m)v ①
对子弹与木块组成的系统由能量守恒定律得:
mv02/2=(M+m)v2/2+fd
②
由以上各式解得:d=Mmv02/2f(M+m)
方法三:
了解子弹打木块模型v-t图的物理意义。 1、木块的厚度理数 3、作用阻力 2、子弹木块质量比 4、小车动能
MBvB+mv1=MBvB+mv2
因为v1<v2
所以vA<vB
而都是光滑面 所以vc=0 所以 vC<vA<vB
后面的不用管
5.如图,M木块,水平面光滑,子弹m以v0沿水平方向射中木块,并最终留在木块中,与木块一起以v 运动距离L,子弹进入的深度s,若木块对子弹的阻力f恒定,则( ) B.fs= 1 2 D.fs= mv0 (M+m)v2 2 2 A.fL= 1 C.fs= -
求:(1)子弹射入木块的深度
(2)从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大?
15. (1) X= Md/(M+m) (2) S2=
高中物理模型——“子弹打木块”模型 符合的规律:子弹和木块组成的系统动量守恒,机械能不守 恒。 重要结论:系统损失的机械能等于阻力乘以相对位移,即:Efd相对。 共性特征:一 物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定 律和Efd滑相对。
【体验5】如图18所示,A、B、C三木块质量相等,一切接触面均光滑,一子弹由A射入, 从B射出。设三木块末速度分别为vA,vB,vC,则有:
A.vB最大
B.vA最大
C.vA=vB
第六章 微专题 “子弹打木块”模型
[模型突破练 ] 1. (2017· 河南省八市联考 )如图所示,质量为 mB = 2 kg 的平板车 B 上表面水平, 在平板车左端相 对于车静止着一块质量为 mA= 2 kg 的物块 A, A、 B 一起以大小为 v1= 0.5 m/s 的速度向左运动,一颗质量为 m0= 0.01 kg 的子弹 以大小为 v0= 600 m/s 的水平初速度向右瞬间射穿 A 后,速度变为 v= 200 m/s. 已知 A 与 B 之间的动摩擦因数不为零,且 A 与 B 最终达到相对静止时 A 刚好 停在 B 的右端,车长 L= 1 m, g 取 10 m/s2,求: (1)子弹穿过物块 A 的一瞬间,物块 A 的速度的大小; (2)A 与 B 间的动摩擦因数.
根据功能关系得 1 1 1 2 2 μmAgL= mAvA + mBv1 - (mA+ mB)v22 2 2 2 解得 μ= 0.1.
答案:(1)1.5 m/s
(2)0.1
2.如图所示,一质量为 M 的木块静止在水平轨道 AB 的 B 端,水平轨 道与光滑圆弧轨道 BC 相切,现有一质量为 m 的子弹以 v0 的水平速度 从左边射入木块且未穿出.求:
(1)子弹射入木块过程中系统损失的机械能和子弹与木块一起在圆弧轨 道上上升的最大高度; (2)从木块开始运动到木块返回 B 点的过程中木块(含子弹)所受合外力的 冲量大小.
解析:(1)设子弹射入木块后与木块的共同速度为 v,子弹射入木块的过 程系统动量守恒,由动量守恒定律有 mv0= (m+ M)v m 解得 v= v m+ M 0 损失的机械能
[解析] (1)设子弹、 木块相对静止时的速度为 v, 由动量守恒定律得 mv0 = (M+ m)v m 解得 v= v M+ m 0 (2)设子弹在木块内运动的时间为 t,对木块由动量定理得 ft= Mv- 0 Mmv0 解得 t= f M+ m
子弹打木块模型
(1)带电环进入电容器后在电场力的作用下做初速 度为v0的匀减速直线运动,而电容器则在电场力的作 用下做匀加速直线运动,当它们的速度相等时,带电 环与电容器的左极板相距最近,由系统动量守恒定律 可得: 动量观点: 力与运动观点: 设电场力为F
(2)能量观点(在第(1)问基础上): 对m: 对M: 所以运动学观点: 对M: ,对m: ,
[跟踪练习]
1.在光滑水平面上并排放两个相同的木板,长度均 为L=1.00m,一质量与木板相同的金属块,v0=2.00m/s 的初速度向右滑上木板A,金属块与木板间动摩擦因数 为μ=0.1,g取10m/s2。求两木板的最后速度。 v0 A B 金属块在板上滑动过程中,系统动量守恒。要金属块最 终停在什么位置要进行判断。假设金属块最终停在A上。 三者有相同速度v,相对位移为x,则有
5、如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑 水平面上,平行板电容器板间的距离为d,右极板上有一小孔, 通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆, 电容器极板以及底座、绝缘杆总质量为M,给电容器充电后, 有一质量为m的带正电小环恰套在杆上以某一初速度v0对准小 孔向左运动,并从小孔进入电容器,设带电环不影响电容器板 间电场分布。带电环进入电容器后距左板的最小距离为0.5d, 试求: (1)带电环与左极板相距最近时的速度v; (2)此过程中电容器移动的距离s。 (3)此过程中能量如何变化?
解得:
带电环与电容器的速度图像如图所示。由三角形面积 可得:
(3)在此过程,系统中,带电小环动能减少,电势能增 加,同时电容器等的动能增加,系统中减少的动能全部转 化为电势能。
解得:
如图所示,带弧形轨道的小车放在光滑的水平地面上, 车左端被固定在地面上的竖直档板挡住,已知小车的弧 形轨道和水平部分在B点相切,AB段光滑,BC段粗 糙, BC段长度为L=0.75m。现有一小木块(可视为质点) 从距BC面高为h=0.2m的A点无初速释放,恰好未从车 上滑落。已知木块质量m1=1kg,小车质量m2=3kg, g取10m/s2。求: (1)木块滑到B点时的速度; (2)木块与BC面之间的动摩擦因数; (3)在整个过程中,小车给档板的冲量。
专题 子弹打木块模型(解析版)-2024 高考物理疑难题分析与针对性训练
2024高考物理疑难题分析与针对性训练专题子弹打木块模型高考原题1(2024高考湖北卷第10题)10. 如图所示,在光滑水平面上静止放置一质量为M 、长为L 的木块,质量为m 的子弹水平射入木块。
设子弹在木块内运动过程中受到的阻力不变,其大小f 与射入初速度大小v 0成正比,即f =kv 0(k 为已知常数)。
改变子弹的初速度大小v 0,若木块获得的速度最大,则()A.子弹的初速度大小为2kL m +MmMB.子弹在木块中运动的时间为2mMk m +M C.木块和子弹损失的总动能为k 2L 2m +MmM D.木块在加速过程中运动的距离为mLm +M 思路分析题述若木块获得的速度最大,需要根据动量守恒定律和相关知识得出木块获得的速度函数表达式,利用数学知识得出。
【答案】AD 【解析】子弹和木块相互作用过程系统动量守恒,令子弹穿出木块后子弹和木块的速度的速度分别为v 1,v 2,则有mv 0=mv 1+Mv 2子弹和木块相互作用过程中所受合力都为f =kv 0,因此子弹和物块的加速度分别为a 1=f m ,a 2=f M由运动学公式可得子弹和木块的位移分别为2a 1x 1=v 20-v 21,2a 2x 2=v 22联立上式可得v 2=m v 0-v 20-2kv 0m +kv0M L M +m要使木块的速度最大即v 0-v 20-2kv 0m +kv 0M L 取极值即可,因此当v 0=2k m +kM L =2kL M +m Mm 时,木块的速度最大,A 正确;若木块获得的速度最大,则子弹穿过木块时子弹与木块速度相同,由动量守恒定律,mv 0=m +M v 2解得木块的速度为v 2=mv 0M +m由运动学公式v 2=a 2t ,而a 2=f /M ,f =kv 0,联立解得t=mMk m+M,故B错误;由能量守恒可得子弹和木块损失的能量转化为系统摩擦生热,即ΔE=Q=fL=2k2L2m+MmM故C错误;木块加速过程运动的距离为x2=0+v22t=mLM+m,故D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:子弹打木块模型
例题:
【例1】光滑水平面上 静置着一质量为M 的小车一颗质量为m 的木块以速度V 0水平滑向小车.木块滑出后,木块速度减为V 1, 小车的速度增为V 2.将此过程中下列说法补全完整:
A. 木块克服阻力做功为 。
B. 木块对小车做的功为 。
C. 木块减少的动能 小车增加的动能. D 系统产生的热量为 。
【例2】在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速v0水平射入木块,且陷入木块的最大深度为d 。
设冲击过程中木块的运动位移为s ,子弹所受阻力恒定。
试证明:s<d
【例3】如图所示,质量为3m ,长度为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度v 0水平向右
射入木块,穿出木块时速度为
5
2v 0,设木块对子弹的阻力始终保持不变. (1)求子弹穿透木块后,木块速度的大小; (2)求子弹穿透木块的过程中,木块滑行的距离s ;
(3)子弹穿过木块的整个过程中,子弹和木块在所组成的系统所产生的热量
是多少?
【例4】如图7-34,一轻质弹簧的两端连接两滑块A 和B ,已知m A =0.99kg, m B =3kg,放在光滑水平桌面上,开始时弹簧处于原长,现滑块被水平飞来的质量为m C =10g ,速度为400m/s 的子弹击中,且没有穿出,试求:
(1)子弹击中滑块A 后的瞬间滑块A 和B 的速度;
(2)以后运动过程中弹簧的最大弹性势能;
(3)滑块B 可能获得的最大动能。
m
M
v 0 L 3m m A B v 0 图7-34
【练习】
1.如图6-13所示,木块与水平弹簧相连放在光滑水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,尔后木块将弹簧压缩到最短,关于子弹和木块组成的系统,下列说法正确的是:( )
A .从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒
B .子弹射入木块的过程中,系统动量守恒
C .子弹射入木块的过程中,系统动量不守恒
D .木块压缩弹簧过程中,系统动量守恒
2、物块A 、B 用一根轻质弹簧连接起来,放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力使弹簧压缩,如图7-25所示,当撤去此力后,下列说法正确的是:( )
A.A 尚未离开墙壁前,弹簧和B 的机械能守恒
B.A 尚未离开墙壁前,A 和B 的总动量守恒
C.A 离开墙壁后,A 和B 的系统的总动量守恒
D.A 离开墙壁后,弹簧和A 、B 系统的机械能守恒
3.如图6-14,光滑水平面上有A.B 两物体,其中带有轻质弹簧的B 静止,质量为m 的A 以速度v o 向着B 运动,A 通过弹簧与B 发生相互作用的过程中:( )
(1)弹簧恢复原长时A 的速度一定最小
(2)两物体速度相等时弹簧压缩量最大
(3)任意时刻系统总动量均为mv o (4)任一时刻B 的动量大小总小于mv o
A .(1)(3)
B .(2)(3)
C .(1) (3) (4)
D .(2) (4)
4.如图7-17所示,质量为M 的木板B 放在光滑水平面上,有一质量为m 的滑块A 以水平向右的初速度v 0滑上木板B ,A 与木板之间的动摩擦因数为μ,且滑块A 可看做质点,那么要使A 不从B 的上表面滑出,木板B 至少应多长?
5.如图6-28所所示,abc 是光滑的轨道,其中ab 是水平的,bc 为ab 与相切的位于竖直平面内的半圆,半径R=0.30m ,质量m=0.20Kg 的小球A 静止在轨道上,另一质量M=0.60Kg ,速度v 0=5.5m/s 的小球B 与小
球A 正碰。
已知相碰后小球A 经过半圆的最高点c 落到轨道上距b 点为L=处,重力加速度g=10 m/ s 2,
求:
(1)碰撞结束时,小球A和B的速度大小;
(2)试论证小球B是否能沿着半圆轨道到达c 点。
图A B 图6-14
图6-28
【动量和能量】
1.如图7-33所示,有一半径为R 的半球形凹槽P ,放在水平地面上,一面紧靠在光滑墙壁上。
在槽口上有一质量为m 的小球,由A 点静止释放,沿光滑的球面下滑,经最低点B 又沿球面上升到最高点C ,经历时间为t ,B 、C 两点高度差为0.6R ,求: (1)小球到达C 点时的速度;
(2)在这段时间t 里,竖直墙对凹槽的冲量。
2.如图7-41所示,质量为M 的木块A 和B 平排放在光滑水平面上,A 上固定一根轻杆,轻杆上端的小钉(质量不计)o 上系了一长度为L 的细线,细线的另一端系一质量为m 的小球C ,现将小球C 拉起使细线成水平伸直,并由静止释放C 球,求:
(1)两木块刚分离时,A 、B 、C 的速度各为多大? (2)两木块分离后,悬挂小球的细线与竖直方向的最大夹角。
【三个物体】
1.如图所示,在光滑水平面上有两个并排放置的木块A 和B ,已知m A =0.5 kg ,m B =0.3 kg,有一质量为m C =0.1 kg 的小物块C 以20 m/s 的水平速度滑上A 表面,由于C 和A 、B 间有摩擦,C 滑到B 表面上时最终与B 以
2.5 m/s 的共同速度运动,求:
(1)木块A 的最后速度; (2)C 离开A 时C 的速度。
2.如图,两块质量均为0.6千克的木块A 、B 并排放置在光滑的水平桌面上,一颗质量为0.1千克的子弹以V 0=40米/秒的水平速度射入A 后进入B ,最终和B 一起运动,测得AB 在平整地面上的落点至桌边缘的水平距离之比为1:2,求子弹穿过A 木块时的速度和子弹穿透A 木块的过程中所所损失的动能△E
m A B C P 图7-33 • A B C
图7-41 •
3.如图5-2-13所示,平板小车停在光滑水平面上,质量均为m的物块A和B从小车两端相向滑上小车上表面,它们的水平速度大小分别为2v0和v0.若小车质量为m,A和B与小车间的动摩擦因数均为μ,试问经过多少时间A和B相对静止?(小车足够长,A、B不相撞)
4.质量为M=4.0kg的平板小车静止在光滑的水平面上,如图所示,当t=0时,两个质量分别为m A=2kg、m B=1kg的小物体A、B都以大小为v0=7m/s。
方向相反的水平速度,同时从小车板面上的左右两端相向滑动。
到它们在小车上停止滑动时,没有相碰,A、B与车间的动摩擦因
素μ=0.2,取g=10m/s2,求:
(2)A、B在车上都停止滑动时车的速度及此时车运动了多长时间。
(3)画出小车运动的速度——时间图象。