三角恒等变换知识讲解(基础)

合集下载

高考数学总复习 三角恒等变换基础知识讲解

高考数学总复习 三角恒等变换基础知识讲解

高考数学总复习三角恒等变换基础知识讲解【考纲要求】1、会用向量的数量积推导出两角差的余弦公式、2、能利用两角差的余弦公式导出两角差的正弦、正切公式、3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系、4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)、【知识网络】简单的三角恒等变换三角恒等变换两角和与差的三角函数公式倍角公式【考点梳理】考点一、两角和、差的正、余弦公式要点诠释:1、公式的适用条件(定义域)XXXXX:前两个公式,对任意实数α,β都成立,这表明该公式是R上的恒等式;公式③中2、正向用公式,,能把和差角的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角的弦函数。

公式正向用是用单角的正切值表示和差角的正切值化简。

考点二、二倍角公式1、在两角和的三角函数公式时,就可得到二倍角的三角函数公式:;;。

要点诠释:1、在公式中,角α没有限制,但公式中,只有当时才成立;2、余弦的二倍角公式有三种:==;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。

3、二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,,的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。

考点三、二倍角公式的推论降幂公式:;;、万能公式:;、半角公式:;;、其中根号的符号由所在的象限决定、要点诠释:(1)半角公式中正负号的选取由所在的象限确定;(2)半角都是相对于某个角来说的,如可以看作是3α的半角,2α可以看作是4α的半角等等。

(3)正切半角公式成立的条件是α≠2kπ+π(k∈Z)正切还有另外两个半角公式:,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。

常常用于把正切化为正余弦的表达式。

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是解决三角函数之间关系的重要工具,它们能够将一个三角函数表达式转化为与之等价的形式。

在解三角函数方程、简化和证明三角恒等式时,熟练掌握三角恒等变换是至关重要的。

1. 基本的三角恒等变换基本的三角恒等变换包括:- 正弦函数的平方加上余弦函数的平方等于1:sin^2(x) + cos^2(x) = 1- 1加上正切函数的平方等于secant函数的平方:1 + tan^2(x) = sec^2(x)- 1加上余切函数的平方等于cosecant函数的平方:1 + cot^2(x) = csc^2(x)这些基本的恒等变换在求解三角函数方程的时候经常会用到。

2. 倍角恒等变换倍角恒等变换是将角度翻倍的三角函数关系,其中包括:- 正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)- 余弦函数的倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)- 正切函数的倍角公式:tan(2x) = (2tan(x))/(1 - tan^2(x))倍角恒等变换可以帮助我们简化三角函数表达式,从而更容易进行计算和证明。

3. 和差恒等变换和差恒等变换是将两个三角函数的和或差转化为一个三角函数的形式,常见的和差恒等变换包括:- 正弦函数的和差公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- 余弦函数的和差公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)- 正切函数的和差公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))和差恒等变换可以帮助我们将复杂的三角函数表达式转化为简单的形式,方便计算和处理。

4. 半角恒等变换半角恒等变换是将一个角度的一半与三角函数的关系转化为另一个角度的三角函数关系。

三角恒等变换内容

三角恒等变换内容

三角恒等变换内容一、什么是三角恒等变换呀三角恒等变换就是对三角函数进行各种变形,让它们在形式上发生变化,但本质上还是相等的。

就像是给三角函数换了一身衣服,但还是同一个“人”哦。

这在数学里可太有用啦,就像搭积木一样,可以把复杂的三角函数表达式通过恒等变换变成我们容易处理的形式。

比如说,sin(A + B) = sinAcosB + cosAsinB,这就是一个很经典的三角恒等变换公式呢。

它可以帮助我们计算很多和三角函数有关的问题,像在物理里计算波的叠加之类的。

二、常见的三角恒等变换公式1. 两角和与差的正弦、余弦、正切公式对于正弦,sin(A ± B)=sinAcosB±cosAsinB。

咱可以想象成把两个角的正弦和余弦按照一定的规则组合起来。

就好比是两个人合作完成一件事,每个人都出一部分力,最后组合成一个结果。

余弦呢,cos(A ± B)=cosAcosB∓sinAsinB。

这个公式和正弦的有点像,但是符号有些不同,就像是双胞胎,长得很像但是有一些小区别。

正切的公式是tan(A ± B)=(tanA±tanB)/(1∓tanAtanB)。

这个公式相对来说就有点复杂啦,不过只要记住分子分母分别是什么就好啦。

2. 二倍角公式sin2A = 2sinAcosA。

这个可以理解为角加倍了,正弦的表达式就变成了这样。

就好像是一个任务原来是一个人用一种方式做,现在变成两个人合作的方式来做了。

cos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²A。

这个公式有三种不同的形式呢,可以根据具体的题目情况来选择使用哪种形式更方便。

tan2A=(2tanA)/(1 - tan²A)。

这个和两角和的正切公式有点联系,也是要小心分子分母的内容哦。

三、怎么运用这些公式进行三角恒等变换呢1. 化简三角函数表达式当我们看到一个复杂的三角函数表达式时,首先要观察它里面有哪些角,是和差的形式还是倍角的形式。

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。

这些恒等变换在解决三角函数相关问题时非常有用。

下面是对一些常见的三角恒等变换进行总结和详解。

1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。

- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。

- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。

2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。

- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。

- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。

3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。

- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。

- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。

4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。

- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。

- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

(完整word版)三角恒等变换知识总结

(完整word版)三角恒等变换知识总结

三角恒等变换知识点总结2014/10/24一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1— tan αtan β),有时应用该公式比较方便。

2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-。

要熟悉余弦“倍角”与“二次”的关系(升角-降次,降角-升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。

3.辅助角公式:sin cos4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+。

4。

简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质.(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。

(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。

(4)变换思路:明确变换目标,选择变换公式,设计变换途径. 5。

常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+; (3)向量的数量积:cos ,a b a b a b =,1212a b x x y y =+,12120a b x x y y ⊥⇔+=1221//0a b x y x y ⇔-=;二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=_______________。

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换

初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。

在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。

本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。

一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。

三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。

在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。

二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。

这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。

1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。

三角恒等式知识点

三角恒等式知识点

三角恒等式知识点三角恒等式是指在三角函数中,存在一些恒等关系,即两个不同的三角函数之间相互转化的等式。

掌握了三角恒等式的知识,可以帮助我们简化复杂的三角函数运算,求解三角方程以及证明其他的数学定理。

以下是一些常见的三角恒等式知识点:1. 基本的三角恒等式:(1) 正弦函数的平方加上余弦函数的平方等于1:sin^2θ + cos^2θ = 1(2) 余弦函数与正弦函数之间的倒数关系:cosθ = 1/sinθsinθ = 1/cosθ(3) 正切函数与余切函数之间的倒数关系:tanθ = 1/cotθcotθ = 1/tanθ(4) 余弦函数与正切函数之间的关系:cosθ = cos^2θ/1-sin^2θcosθ = 1 - 2sin^2θcosθ = 1 - tan^2θ(5) 正弦函数与余切函数之间的关系:sinθ = sin^2θ/1-cos^2θsinθ = 2sinθcosθsinθ = tanθ/√(1+tan^2θ)(6) 正切函数与余弦函数之间的关系:tanθ = sinθ/cosθtanθ = √(1-cos^2θ)/cosθ(7) 余切函数与正弦函数之间的关系:cotθ = cosθ/sinθcotθ = √(1-sin^2θ)/sinθ2. 和差角公式:(1) 正弦函数的和差角公式:sin(α+β) = sinαcosβ + cosαsinβsin(α-β) = sinαcosβ - cosαsinβ(2) 余弦函数的和差角公式:cos(α+β) = cosαcosβ - sinαsinβcos(α-β) = cosαcosβ + sinαsinβ(3) 正切函数的和差角公式:tan(α+β) = (tanα + tanβ) / (1 - tanαtanβ) tan(α-β) = (tanα - tanβ) / (1 + tanαtanβ)3. 二倍角公式:(1) 正弦函数的二倍角公式:sin2θ = 2sinθcosθ(2) 余弦函数的二倍角公式:cos2θ = cos^2θ - sin^2θcos2θ = 2cos^2θ - 1cos2θ = 1 - 2sin^2θ(3) 正切函数的二倍角公式:tan2θ = (2tanθ) / (1 - tan^2θ)4. 三倍角公式:(1) 正弦函数的三倍角公式:sin3θ = 3sinθ - 4sin^3θ(2) 余弦函数的三倍角公式:cos3θ = 4cos^3θ - 3cosθ(3) 正切函数的三倍角公式:tan3θ = (3tanθ - tan^3θ) / (1 - 3tan^2θ)5. 半角公式:(1) 正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2](2) 余弦函数的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2](3) 正切函数的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]这些是三角恒等式的一些基本知识点,掌握了这些恒等式,可以帮助我们在解题和证明中更加灵活地运用三角函数的性质。

三角恒等变换讲解

三角恒等变换讲解

三角恒等变换讲解三角恒等变换是指在三角函数之间相互变换的一系列等式关系,常用于简化和证明三角函数的性质以及求解三角方程。

下面介绍一些常见的三角恒等变换:1. 基本恒等变换:-正弦与余弦的关系:sin²θ+ cos²θ= 1-正切与余切的关系:tanθ= sinθ/ cosθ,cotθ= cosθ/ sinθ-余割与正割的关系:cscθ= 1 / sinθ,secθ= 1 / cosθ2. 倍角恒等变换:-正弦的倍角公式:sin(2θ) = 2sinθcosθ-余弦的倍角公式:cos(2θ) = cos²θ- sin²θ= 2cos²θ- 1 = 1 - 2sin²θ-正切的倍角公式:tan(2θ) = (2tanθ) / (1 - tan²θ)3. 和差恒等变换:-正弦的和差公式:sin(A ±B) = sinAcosB ±cosAsinB-余弦的和差公式:cos(A ±B) = cosAcosB ∓sinAsinB-正切的和差公式:tan(A ±B) = (tanA ±tanB) / (1 ∓tanAtanB)4. 反函数恒等变换:-正弦的反函数:sin⁻¹(x) = θ,其中sinθ= x,-π/2 ≤θ≤π/2-余弦的反函数:cos⁻¹(x) = θ,其中cosθ= x,0 ≤θ≤π-正切的反函数:tan⁻¹(x) = θ,其中tanθ= x,-π/2 < θ< π/2注意,上述恒等变换只是一部分常见的例子,实际上还有许多其他的三角恒等变换。

在解题或证明过程中,根据需要,可以根据题目的要求和三角函数的关系,使用适当的三角恒等变换来简化计算或推导出所需的结果。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换知识点总结三角恒等变换是解决三角函数中相关问题的重要工具,它们可以帮助我们简化表达式、证明恒等式以及解决三角方程等。

在本文中,将总结三角恒等变换的一些基本知识点,包括正弦、余弦和正切的恒等变换。

1. 正弦和余弦的恒等变换:(1) 余弦的恒等变换:a. 基本恒等式:cos^2θ + sin^2θ = 1,该恒等式也被称为三角恒等式之母。

b. 余弦的平方差公式:cos(α - β) = cosα·cosβ + sinα·sinβ,该公式可以用于简化两个余弦的差的表达式。

c. 余弦的和的公式:cos(α + β) = cosα·cosβ - sinα·sinβ,该公式可以用于简化两个余弦的和的表达式。

d. 余弦的倍角公式:cos2θ = 2cos^2θ - 1或cos2θ = 1 - 2sin^2θ,该公式可以用于简化余弦的倍角表达式。

(2) 正弦的恒等变换:a. 正弦的平方差公式:sin(α - β) = sinα·cosβ - cosα·sinβ,该公式可以用于简化两个正弦的差的表达式。

b. 正弦的和的公式:sin(α + β) = sinα·cosβ + cosα·sinβ,该公式可以用于简化两个正弦的和的表达式。

c. 正弦的倍角公式:sin2θ = 2sinθ·cosθ,该公式可以用于简化正弦的倍角表达式。

2. 正切的恒等变换:正切的恒等变换是基于正弦和余弦的恒等变换推导而来的:a. 正切的平方差公式:tan(α - β) = (tanα - tanβ)/(1 + tanα·tanβ),该公式可以简化两个正切的差的表达式。

b. 正切的和的公式:tan(α + β) = (tanα + tanβ)/(1 - tanα·tanβ),该公式可以简化两个正切的和的表达式。

c. 正切的倍角公式:tan2θ = (2tanθ)/(1 - tan^2θ),该公式可以简化正切的倍角表达式。

三角恒等变换

三角恒等变换

三角恒等变换三角恒等变换是指一系列等效的三角函数表达式之间的变换关系。

这些变换关系对于解决三角函数的各种问题非常有用。

本文将介绍三角恒等变换的基本概念、常见的恒等变换公式以及应用案例。

一、三角恒等变换的基本概念三角恒等变换是指将一个三角函数的表达式通过等效变换转化为另一个等价的表达式的过程。

三角函数包括正弦函数、余弦函数、正切函数、余切函数等。

恒等变换意味着两个表达式在任何实数取值范围内都成立,即两个表达式所代表的函数图像完全一致。

二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 余弦函数的平方与正弦函数平方的关系:cos^2θ + sin^2θ = 1。

- 余弦函数的两倍角公式:cos(2θ) = cos^2θ - sin^2θ。

- 余弦函数的和差公式:cos(α ± β) = cosαcosβ - sinαsinβ。

2. 正弦函数的恒等变换:- 正弦函数的平方与余弦函数平方的关系:sin^2θ + cos^2θ = 1。

- 正弦函数的两倍角公式:sin(2θ) = 2sinθcosθ。

- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ。

3. 正切函数的恒等变换:- 正切函数的平方与余切函数平方的关系:tan^2θ + 1 = sec^2θ。

- 正切函数的两倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)。

- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)。

4. 余切函数的恒等变换:- 余切函数的平方与正切函数平方的关系:cot^2θ + 1 = cosec^2θ。

- 余切函数的两倍角公式:c ot(2θ) = (cot^2θ - 1) / 2cotθ。

- 余切函数的和差公式:cot(α ± β) = (cotαcotβ ± 1) / (cotβ ± cotα)。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换是一种重要的数学技巧,用于简化三角函数的表达式,求解三角方程和证明恒等式。

这种技巧通过将一个三角函数转化为另一个三角函数的形式,或者通过将多个三角函数组合成一个三角函数的和或积的形式,来实现简化和转化。

一、三角函数的基本恒等变换1.正弦函数和余弦函数的平方和公式sin²x + cos²x = 1这是最基本的三角恒等变换,它表示任何角的正弦函数平方加上余弦函数平方等于12.正弦函数和余弦函数的差积公式sin2x = 2sinx*cosx这个恒等变换表示正弦函数的二倍角等于两倍的正弦函数和余弦函数的乘积。

3.余弦函数的二倍角公式cos2x = cos²x - sin²x = 2cos²x - 1 = 1 - 2sin²x这个恒等变换表示余弦函数的二倍角可以表达为余弦函数和正弦函数的平方差。

4.正弦函数和余弦函数的和差公式sin(x ± y) = sinxcosy ± cosxsinycos(x ± y) = cosxcosy ∓ sinxsiny这个恒等变换描述了正弦函数和余弦函数的和差与它们的乘积之间的关系。

5.正切函数的和差公式tan(x ± y) = (tanx ± tany) / (1 ∓ tanxtany)这个恒等变换给出了正切函数和它们的和差之间的关系。

1.利用半角公式当要求解一些三角函数值的时候,可以使用半角公式将一个角度的三角函数值表示为另一个角度的三角函数值的形式,从而简化计算。

2.利用和差公式和平方和公式可以利用和差公式和平方和公式,将一个三角函数的和或差化简为一个三角函数的平方和或平方差,或者将一个三角函数的平方和或平方差化简为一个三角函数的和或差。

3.利用倍角公式可以使用倍角公式将一个三角函数的值表示为同一函数的两倍角的形式,或者将一个三角函数的两倍角的值表示为这个函数的值的形式,从而实现简化。

三角恒等变换知识点总结

三角恒等变换知识点总结

三角恒等变换专题一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

()sin cos αααϕA +B =+,其中tan ϕB =A. 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)] (2)和差化积公式sin α+sin β= 2cos 2sin 2βαβα-+ sin α-sin β=2sin 2cos 2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=cos α+cos β=2cos 2cos 2βαβα-+ cos α-cos β= -2sin 2sin 2βαβα-+ tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos22α 1-cos α=2sin 22α 1±sin α=(2cos 2sin αα±)2 6。

初中数学掌握三角恒等变换的基本方法

初中数学掌握三角恒等变换的基本方法

初中数学掌握三角恒等变换的基本方法三角恒等变换是数学中一个重要的概念,它在解决三角函数方程、简化三角函数表达式以及推导三角函数的性质等方面起到了关键作用。

对于初中学生来说,掌握三角恒等变换的基本方法非常重要。

本文将介绍初中数学中常用的三角恒等变换及其基本的求解方法。

一、基本的三角恒等变换1. 余弦恒等变换余弦恒等变换是三角恒等变换中最基本的一个,它是由余弦函数的定义推导而来的。

对于任意角度θ,有以下恒等式成立:cos^2θ + sin^2θ = 12. 正弦恒等变换正弦恒等变换是由余弦恒等变换推导而来的,它是三角恒等变换中的另一个基本公式。

对于任意角度θ,有以下恒等式成立:1 - cos^2θ = sin^2θ3. 切线与余切的关系切线与余切是两个常用的三角函数,它们之间存在一个基本的恒等变换关系。

对于任意角度θ,有以下恒等式成立:tanθ = sinθ / cosθcotθ = cosθ / sinθ二、三角恒等变换的应用1. 解三角函数方程三角恒等变换可以帮助我们解方程,特别是对于复杂的三角函数方程来说。

通过应用三角恒等变换,我们可以将方程转化为简化形式,进而求解出方程的解。

例如,对于方程sinθ + cosθ = 1,我们可以利用余弦恒等变换将其转化为sinθ + √(1 - sin^2θ) = 1,进而简化计算。

2. 简化三角函数表达式三角恒等变换可以用于简化复杂的三角函数表达式。

通过应用三角恒等变换,我们可以将复杂的表达式转化为简化形式,更容易进行计算和推导。

例如,对于表达式sin^4θ + cos^4θ,我们可以利用余弦恒等变换将其转化为1 - 2sin^2θcos^2θ,进而简化计算。

3. 推导三角函数的性质三角恒等变换可以帮助我们推导三角函数的性质,从而更好地理解三角函数的特点和规律。

通过应用三角恒等变换,我们可以从一个角度出发,推导出其他角度的函数值,进而得到更一般性的结论。

例如,通过应用余弦恒等变换,我们可以推导出正弦函数的对称性sin(π/2 - θ) = cosθ,进而得到正弦函数的特点。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

三角恒等变换公式总结

三角恒等变换公式总结

三角恒等变换公式总结1. 引言三角恒等变换公式,这个听起来有些复杂的名字,实际上就像是数学里的“调味料”,能让我们在解决各种问题时,轻松又有趣。

想象一下,生活中的各种角度和三角形,不论是你在量房子的时候,还是在看风景时,三角函数都在悄悄发挥着作用。

今天就带大家轻松了解这些公式,保证让你有种“豁然开朗”的感觉!2. 基本三角恒等式2.1 正弦与余弦的关系首先,咱们得从最基础的说起,正弦(sin)和余弦(cos)。

你知道吗?它们就像是一对好朋友,总是形影不离。

基本恒等式之一就是sin²x + cos²x = 1。

简单来说,就是不论你选择哪个角度,它们俩加起来永远都是1。

这就像生活中的一种平衡,太多或太少都不行!2.2 正切的神奇接下来,咱们聊聊正切(tan)。

正切其实是余弦和正弦的比值,公式就是 tanx = sinx/cosx。

想象一下,这就好比你在餐厅里点了一份大餐,正弦是主菜,余弦是配菜,而正切就是你整个用餐体验的完美比例,缺一不可!3. 重要的三角恒等式3.1 角度和的公式说到三角恒等变换公式,角度和的公式可得好好聊聊。

比如说,sin(a + b) = sin a * cos b + cos a * sin b。

这就像是两个不同口味的冰淇淋,混合在一起后,产生了新鲜的口感,意外的美味总是让人惊喜。

而 cos(a + b) = cos a * cos b sin a * sin b,则是让人感觉有点酸酸甜甜的感觉,确实让人难忘!3.2 角度差的公式当然,除了和,角度差的公式也很有意思。

sin(a b) = sin a * cos b cos a * sin b。

这个公式就像是两位舞者,偶尔要展示一下各自的魅力,虽有些抵触,却又能擦出火花。

cos(a b) = cos a * cos b + sin a * sin b,则让人觉得温暖,像是朋友间的默契配合。

4. 应用实例4.1 解决实际问题学习这些公式,关键还是要知道如何运用。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换一、 三角基础知识1. 定义α终边过点),(y x P ,22y x OP r +==,则,sin r y =α,cos r x =α,tan x y =α ,csc y r =α,sec x r =α.cot yx =α其中αsec 称为角α的正割,αcsc 称为角α的余割.2. 同角三角函数的基本关系式(1) 平方关系:1cos sin 22=+αααα22sec 1tan =+ αα22csc 1cot =+(2) 商数关系:ααααααsin cos cot ,cos sin tan == (3) 倒数关系:1cot tan =∙αα1csc sin =⋅αα 1sec cos =⋅αα3. 诱导公式4. 三角函数恒等变形公式 (1) 两角和与差公式()βαβαβαsin cos cos sin sin ±=± ()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±(2) 二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=(3) 三倍角公式ααα3sin 4sin 33sin -= αααcos 3cos 43cos 3-=(4) 半角公式2cos 12sinαα-±= 2cos 12cos αα+±= αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±= (5) 万能公式2tan 12tan2sin 2ααα+=,2tan 12tan 1cos 22ααα+-=,2tan 12tan2tan 2ααα-=(6) 积化和差()()[]βαβαβα-++=sin sin 21cos sin , ()()[]βαβαβα--+=sin sin 21sin cos ,()()[]βαβαβα-++=cos cos 21cos cos ,()()[]βαβαβα--+-=cos cos 21sin sin(7) 和差化积2cos2sin2sin sin ϕθϕθϕθ-+=+,2sin 2cos 2sin sin ϕθϕθϕθ-+=-,2cos 2cos 2cos cos ϕθϕθϕθ-+=+,2sin 2sin 2cos cos ϕθϕθϕθ-+-=-,二、 例题讲解例1.(2004北京高考)在ABC ∆中,,3,2,22cos sin ===+AB AC A A 求A tan 的值和ABC ∆的面积.[解法一] 解方程组⎪⎩⎪⎨⎧=+=+1cos sin 22cos sin 22A A A A 得⎪⎪⎩⎪⎪⎨⎧-=+=462cos 462sin A A ,故 32tan --=A 。

三角恒等变换知识点

三角恒等变换知识点

三角恒等变换知识点三角恒等变换是指一些与三角函数相关的等式,通过它们可以将一个三角函数表达式转化为另一个等价的三角函数表达式。

它们在解三角方程、简化三角函数表达式以及证明数学恒等式等方面具有重要的作用。

下面将介绍一些常用的三角恒等变换及其相关知识点。

1.余弦和差公式余弦和差公式是将两个角的余弦之间的关系进行表示的公式:cos(A ± B) = cos A cos B ∓ sin A sin B利用这个公式,可以将两个角的和(或差)的余弦值表达为这两个角的余弦值以及正弦值之间的关系。

2.正弦和差公式正弦和差公式是将两个角的正弦之间的关系进行表示的公式:sin(A ± B) = sin A cos B ± cos A sin B利用这个公式,可以将两个角的和(或差)的正弦值表达为这两个角的正弦值以及余弦值之间的关系。

3.二倍角公式二倍角公式是将一个角的两倍表达为这个角的余弦值或正弦值之间的关系:cos(2A) = cos^2 A – sin^2 Asin(2A) = 2 sin A cos A利用这个公式,可以将一些角的两倍的余弦值或正弦值表示为这个角的余弦值或正弦值的函数。

4.半角公式半角公式是将一个角的一半表达为这个角的余弦值或正弦值之间的关系:cos(A/2) = ±√[(1 + cos A)/2]sin(A/2) = ±√[(1 – cos A)/2]利用这个公式,可以将一些角的一半的余弦值或正弦值表示为这个角的余弦值或正弦值的函数。

5.和差化积公式和差化积公式是将两个三角函数的和(或差)表示为一个三角函数乘以另一个三角函数的表达式:sin A + sin B = 2 sin[(A + B)/2] cos[(A – B)/2]sin A – sin B = 2 cos[(A + B)/2] sin[(A – B)/2]cos A + cos B = 2 cos[(A + B)/2] cos[(A – B)/2]cos A – cos B = -2 sin[(A + B)/2] sin[(A – B)/2]利用这个公式,可以将两个三角函数的和(或差)表示为一个三角函数的乘积。

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用

三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。

它们是解决三角函数计算和证明题非常有用的工具。

本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。

一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。

2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。

3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。

二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。

例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。

2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。

例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。

另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。

3. 三角方程的求解三角方程是指含有未知角度的方程。

解决三角方程的关键是将其转化为已知角度的三角函数公式。

通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。

30总复习:三角恒等变换(基础)知识讲解

30总复习:三角恒等变换(基础)知识讲解
【考纲要求】
三角恒等变换 编稿:李霞 审稿:孙永钊
1、会用向量的数量积推导出两角差的余弦公式.
2、能利用两角差的余弦公式导出两角差的正弦、正切公式.
3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切
公式,了解它们的内在联系.
4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公
正切还有另外两个半角公式:tan 2
sin 1 cos
(
2k
), tan 2
1 cos sin
(
k ), k Z
,这两
个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。常常用于把正切化为正余弦的表达式。
考点四、三角形内角定理的变形
由 A B C ,知 A (B C) 可得出:
(1) sin2 13 cos2 17 sin13cos17
3
(2) sin2 15 cos2 15 sin15cos15 (3) sin2 18 cos2 12 sin18cos12 (4) sin2 (18) cos2 48 sin(18) cos 48 (5) sin2 (25) cos2 55 sin(25) cos 55
sin A sin(B C) , cos A cos(B C) .
而 A (B C) ,有: sin A cos (B C) , cos A sin (B C) .
22 2
2
2
2
2
【典型例题】
类型一:正用公式
例 1.(2016 全国新课标Ⅱ)若 cos( ) 3 ,则 sin 2 ( )
cos 2 cos2 sin 2 (C2 ) ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换【考纲要求】1、会用向量的数量积推导出两角差的余弦公式.2、能利用两角差的余弦公式导出两角差的正弦、正切公式.3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】【考点梳理】考点一、两角和、差的正、余弦公式()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=()tan tan tan()()1tan tan T αβαβαβαβ±±±=-要点诠释:1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2±≠+∈、、παβαβπ2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。

公式()T αβ±正向用是用单角的正切值表示和差角()±αβ的正切值化简。

考点二、二倍角公式1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式222,,S C T ααα:sin 22sin cos ααα= 2()S α;ααα22sin cos 2cos -=2()C α; 22tan tan 21tan ααα=-2()T α。

要点诠释:1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(224Z k k k ∈+≠+≠ππαππα和时才成立;2. 余弦的二倍角公式有三种:ααα22sin cos 2cos -==1cos 22-α=α2sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。

3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。

考点三、二倍角公式的推论降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=;22cos 1cos 2αα+=.万能公式:ααα2tan 1tan 22sin +=; ααα22tan 1tan 12cos +-=. 半角公式:2cos 12sinαα-±=; 2cos 12cosαα+±=; αααcos 1cos 12tan+-±=.其中根号的符号由2α所在的象限决定. 要点诠释:(1)半角公式中正负号的选取由2α所在的象限确定; (2)半角都是相对于某个角来说的,如23α可以看作是3α的半角,2α可以看作是4α的半角等等。

(3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)正切还有另外两个半角公式:Z k k k ∈≠-=+≠+=),(sin cos 12tan ),2(cos 1sin 2tanπααααππαααα,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。

常常用于把正切化为正余弦的表达式。

考点四、三角形内角定理的变形由A B C π++=,知()A B C π=-+可得出:sin sin()A B C =+,cos cos()A B C =-+.而()222A B C π+=-,有:()sin cos 22A B C +=,()cos sin 22A B C +=. 【典型例题】 类型一:正用公式 例1.已知:41cos ,32sin -=β=α,求cos()αβ-的值. 【思路点拨】直接利用两角差的余弦公式.【解析】由已知可求得cos sin αβ====. 当α在第一象限而β在第二象限时,cos()cos cos sin sin αβαβαβ-=+12)43=-+125152-=. 当α在第一象限而β在第三象限时,12cos())(43αβ-=-+⋅=当α在第二象限而β在第二象限时,12cos()()43αβ-=-+=当α在第二象限而β在第三象限时,12cos()()(43αβ-=-+⋅=. 【点评】例1是对公式的正用.当三角函数值的符号无法确定时,注意分类讨论.举一反三:【变式1】已知(,0)2x π∈-,4cos 5x =,则tan 2x = . 【答案】247-. 【变式2】已知tan()24x π+=,则tan tan 2xx= .【答案】19【变式3】已知tan α和tan β是方程2260x x +-=的两个根,求tan()αβ+的值. 【答案】18-【解析】由韦达定理,得1tan tan 2αβ+=-, tan tan 3αβ⋅=-,∴ tan tan 1tan()1tan tan 8αβαβαβ++==--⋅.【变式4】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)22sin 13cos 17sin13cos17︒+︒-︒︒ (2)22sin 15cos 15sin15cos15︒+︒-︒︒ (3)22sin 18cos 12sin18cos12︒+︒-︒︒ (4)22sin (18)cos 48sin(18)cos48-︒+︒--︒︒ (5)22sin (25)cos 55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论. 【解析】Ⅰ.选择(2)式计算如下2213sin 15cos 15sin15cos151sin 3024︒+︒-︒︒=-︒= Ⅱ.证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=+++-22333sin cos 444αα=+= 例2.已知324πβαπ<<<,12cos()13αβ-=,3sin()5αβ+=-,求sin 2α的值.【思路点拨】注意到2()()ααβαβ=++-,将()αβ+,()αβ-看做一个整体来运用公式. 【解析】324πβαπ<<<,30,42ππαβπαβ∴<-<<+<,5sin()13αβ∴-===,4cos()5αβ+==-,sin 2sin[()()]sin()cos()cos()sin()31245()5135135665ααβαβαβαβαβαβ∴=++-=+-++-=-⨯+-⨯=-【点评】1、给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,例2中应用了2()()ααβαβ=++-的变换 ,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有(),βαβα=+-,1[()()]2ααβαβ=++-,2()()βαβαβ=+--,()424πππαα+=--等. 2、已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用. 举一反三:【变式1】已知3sin 5α=,α是第二象限角,且tan()1αβ+=,求tan 2β的值. 【答案】724-【解析】由3sin 5α=且α是第二象限角,得3tan 4α=-, ∵()αβαβ+-=, ∴tan()tan tan tan[()]71tan()tan αβαβαβααβα+-=+-==++.22tan 7tan 21tan 24βββ∴==-- 【变式2】函数)2cos(10)y x x =+-+的最大值为( )A..4 C . 2 D .2+【答案】C ;【解析】∵7060(10)x x +=++,60cos(10)cos60sin(10)]2cos(10)cos(10)3sin(10)2sin(40)x x x x x x ∴=+++-+=+++=+原式.所以其最大值为2,故选C.【变式3】已知4cos()cos 2.125212πππθ-=-<θ<πθ,且,求(+)的值【解析】角的关系式:4)12(2122ππθπθ+-=+(和差与倍半的综合关系)∵4cos()1252ππθ-=-<θ<π,且,∴53)12sin(=-πθ∴2524)12cos()12sin(2)12(2sin -=--=-πθπθπθ2571)12(cos 2)12(2cos 2=--=-πθπθ∴]4)12(2cos[.122cos ππθπθ+-=)+(=)]12(2sin )12(2[cos 22πθπθ---724()2252550=+=【变式4】已知παπ434<<,40πβ<<,53)4cos(=-απ,135)43sin(=+βπ,求sin()αβ+的值。

【答案】5665【解析】∵ 042<-<-αππ, ∴54)4sin(-=-απ,∵ πβππ<+<4343, ∴1312)43cos(-=+βπ。

∴)](2cos[)sin(βαπβα++-=+6556)54(135531312)]4sin()43sin()4cos()43[cos()]4()43cos[(=-⨯-⨯=-++-+-=--+-=απβπαπβπαπβπ类型二:逆用公式 例3.求值:(1)sin 43cos13cos 43sin13︒︒-︒︒; (2x x ;(3)1tan151tan15+-;(4)44(sin 23cos8sin67cos98)(sin 730cos 730)''+-.【思路点拨】逆用两角和(差)正(余)弦公式,正切公式. 【解析】(1)原式=1sin(4313)sin 302︒-︒=︒=; (2)原式12(cos )30cos cos30sin )22sin(30)22x x x x x =-=-=-;(3)原式tan 45tan15tan(4515)tan 6031tan 45tan15+==+==-⋅;(4)原式2222(sin 23cos8cos23sin8)(sin 730cos 730)(sin 730cos 730)''''=-+-22sin(238)(cos 730sin 730)''=---11sin15cos15sin 3024=-=-=-.【点评】①把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”。

相关文档
最新文档