工程热力学第三版课后习题答案
化工热力学第三版课后习题答案全
化工热力学第三版课后习题答案第一章比较简单略第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程22.522.560.5268.314190.60.427480.42748 3.2224.610c cR T a Pa m K mol P -⨯===⋅⋅⋅⨯53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT aP V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学第三版(完全版)课后习题答案
化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,H =1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
工程热力学第三版课后习题答案
工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。
工程热力学高教第三版课后习题第十一章答案
(2) p1 = 3MPa , t1 = 500 C , p2 = 6kPa ,由 h-s 图查得:
h1 = 3453kJ/kg 、 h2 = 2226kJ/kg 、 x2 = 0.859 t2 = 36 o C
取 h2′ ≈ cwt2' = 4.187kJ/(kg ⋅ K) × 36 C = 150.7kJ/kg
o
若不计水泵功,则
ηt =
h1 − h2 3453kJ/kg − 2226kJ/kg = = 37.16% h1 − h2′ 3453kJ/kg − 150.7kJ/kg
142
第十一章 蒸汽动力装置循环
d=
1 1 = = 8.15 × 10−7 kg/J 3 h1 − h2 (3453 − 2226) × 10 J/kg
热效率
ηt =
h1 − h2 − wp h1 − h2 − wp
=
(2996 − 2005 − 3)kJ/kg = 34.76% (2996 − 150.7 − 3)kJ/kg
若略去水泵功,则
ηt =
d=
h1 − h2 2996kJ/kg − 2005kJ/kg = = 34.83% h1 − h2′ 2996kJ/kg − 150.7kJ/kg 1 1 = = 1.009 × 10−6 kg/J 3 h1 − h2 (2996 − 2005) ×10 J/kg
143
第十一章 蒸汽动力装置循环
解: (1)由 p1 = 12.0MPa 、 t1 = 450 o C 及再热压力 pb = 2.4MPa ,由 h-s 图查得
h1 = 3212kJ/kg、s1 = 6.302kJ/(kg ⋅ K)、hb = 2819kJ/kg 、 ha = 3243kJ/kg 、 h2 = 2116kJ/kg 、 x 2 = 0.820 p2 = 0.004MPa 、 s1 = sc = sb = 6.302kJ/(kg ⋅ K) , sc ' = 0.4221kJ/(kg ⋅ K) 、 sc " = 8.4725kJ/(kg ⋅ K)
工程热力学(第三版)习题答案全解可打印第九章
π
pV 400 ∴ q m = 400 × 1 es = × R g T1 60
可逆定温功压缩功率为:
Wc ,T = − p1V1 ln =−
p2 p1
400 8 π × 0.1 × 10 6 × 0.786 × × 0.3 2 × 0.2 × ln = 15.4 × 10 3 J = 15.4kW s 60 4 1
n = 3× p1 v1 (π n −1 t1 = 20°C
n −1 n
p4 12.5 =3 =5 p1 0 .1
(1) wc = 3wc , L
Q p1 = 0.1MPa
− 1) ∴v =
1 1.3−1 1.3
R g T1 p1
=
287 × 293.15 0.1× 10
6
= 0.8413 m
3
kg kg
− 1] =
1.4 × 0.1× 10 6 × 140 × [6 1.4 − 1
1.4 −1 1.4
− 1] = 327.9 × 10 5 J
h
327.9 ×10 5 = 9108.3W = 9.11KW 3600 p n p1V1 [( 2 ) n −1 p1
n −1 n
(3)多变压缩
Wt , n = Nn = − 1] = 1 .2 × 0.1×10 6 × 140 × [6 1 .2 − 1
V h = 0.009m 3
π =7
1 n
σ = 0.06
1 n
n = 1.3
1
(1) η v = 1 −
Vc (π Vh
− 1) = 1 − σ (π
− 1) = 1 − 0.06 × (7 1.3 − 1) = 0.792
工程热力学第三版课后习题答案沈维道(第十一章)
由 p2 = 0.006MPa ,求得 h′ = 151.47kJ/kg 、 h′′ = 2566.5kJ/kg
h2 = h′ + x(h′′ − h′) = 151.47kJ/kg + 0.766 × (2564.5 − 151.47)kJ/kg = 1953.0kJ/kg
忽略水泵功
ηt =
d=
11-3
3.0 0.3716 8.15×10 0.859
o
15.0 0.4287 6.05×10–7 0.742
–7
解:
(1) p1 = 3MPa、t1 = 500 C、p2 = 0.006MPa ,即上题的(2)。 (2) p1 = 15MPa、t1 = 500 C、p2 = 0.006MPa ,由 h − s图查得
y2 = 1 − xc = 1 − 0.730 = 0.27
列表比较
ηt / %
无再热 再热压力 42.55 43.25 40.02
144
y2
0.27 0.18 0.084
2.4MPa
再热压力 0.5MPa
第十一章 蒸汽动力装置循环
由此可见,再热压力高,可提高循环效率,但提高干度的作用不显著,再热压较低,提 高干度作用较大,但可能引起循环热效率下降。 11-4 具有两次抽汽加热给水的蒸汽动力装置回热循环。其装置示意图如图 11-13 所示。已知: 第一次抽气压力 p01 = 0.3MPa ,第二次抽汽压力 p02 = 0.12MPa ,蒸汽初温 t1 = 450 C ,压
′) q2 = (1 − α1 − α 2 )(h2 − h2 = (1 − 0.0525 − 0.1159)(2159 − 137.72)kJ/kg = 1680.9kJ/kg
工程热力学 课后习题答案 可打印 第三版 第七章
第七章 水蒸气
时放出热量。这些热量为冷却水所吸,因此冷却水离开冷凝器时的温度高于进入时的温度。 设冷却水进入冷凝器时的温度为 10℃,离开时温度 为 18℃,求冷却水每小时的流量(T/h) 。冷却水在 管内流动,乏汽在管壁外凝结。如图所示。管子通 常用黄铜管,大型冷凝器中装有数千根黄铜管。 解: 已知 P=20000kW,d=1.32×10-6kg/J,故每 小时耗汽量 D=P×3600×d =2×107kJ/s×3600s×1.32×10-6kg/J =9.52×104kg 乏汽状态 p2 = 0.004MPa、x2 = 0.9 ,查表得 0.004MPa 时 汽化潜热 r = 2432.2kJ/kg , 故每 kg 乏汽凝结为饱和水时放出热量
7-2 湿饱和蒸汽,x=0.95、 p = 1MPa ,应用水蒸表求 ts、h、u、v、s,再用 h-s 图求上述参数。 解: 利用饱和水和饱和水蒸气表:
p = 1.0MPa
t s = 179.916 ℃
v′ = 0.0011272m3 / kg
h′′ = 2777.67kJ/kg ;
v′′ = 0.19438m 3 / kg ; h = 762.84kJ/kg
p = 2.0MPa 、 t1 = 350°C , t2 = 40°C 查未饱和水和过热蒸汽表,得
h1 = 3136.2kJ/kg 、 h2 = 169.27kJ/kg
每生产 1kg 蒸汽需要吸入热量
94
第七章 水蒸气
q = h1 − h2 = 3136.2kJ/kg − 169.27kJ/kg = 2966.93kJ/kg
解: 由 h-s 图查得
h1 = 2706kJ/kg、t1 = 212.5 o C、v1 = 0.095m3 / kg、s1 = 6.144kJ/(kg ⋅ K); h2 = 2861kJ/kg、t2 = t1 = 212.5 o C、v2 = 0.215m3 /kg m
工程热力学高教第三版习题答案第2章
6
第二章 热力学第二定律
2-5 夏日,为避免阳光直射,密闭门窗,用电扇取凉,若假定房间内初温为 28℃,压力为
0.1MPa ,电扇的功率为 0.06kW,太阳直射传入的热量为 0.1kW,若室内有三人,每人每小 时向环境散发的热量为 418.7kJ,通过墙壁向外散热1800kJ/h ,试求面积为15m2 ,高度为 3.0m
解 要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量
即 Q = Qm + QE + Q补 + Qless = 0
Qm = 375kJ/s × 3600s = 1.35×106 kJ ; QE = 50× 0.1kJ/s × 3600s = 18000kJ
Qless = −3×106 kJ Q补 = −Qless − Qm − QE = 3×106 kJ −1.35×106 kJ −18000kJ = 1632000kJ
解 取气体为系统,据闭口系能量方程式 Q = ∆U + W
W = Q − ∆U = 50J − 84J = −34J
所以过程是压缩过程,外界对气体作功 34J。
2-4 在冬季,工厂车间每一小时经过墙壁和玻璃等处损失热量 3×106 kJ ,车间中各种机床的总
功率是 375kW,且最终全部变成热能,另外,室内经常点着 50 盏 100W 的电灯,若使该车间 温度保持不变,问每小时需另外加入多少热量?
q = ∆h + wt
得 wt = q − ∆h = q − ∆u − ∆( pv) = q − ∆u − ( p2v2 − p1v1)
= ቤተ መጻሕፍቲ ባይዱ50kJ/kg −146.5kJ/kg − (0.8×103 kPa × 0.175m3 / kg − 0.1×103 kPa × 0.845m3 / kg) = 252kJ/kg
工程热力学课后答案解析华自强张忠进(第三版)
QU2−U1He−HiW
按题意有:
Q0(绝热)
Ui0(充气前为真空)He0(无质量流出)W0(无功量交换)
因此有:
显然:
HiU2,
micpTim2cT2
mim2
因此有:
T2
cp
Ti
cν
kTi
=1.4×300
=420K=147℃
3-13图3-3所示气缸中气体为氢气。设气
0.1632
xCO2
7
125
0.056
x37.557.6
2125
x2.50.02
0.7608
(2)
H2O
M
125
1
x1x2Lxn
M1M2Mn
1
0.16320.76080.0560.02
3228
=28.8g/mol
4418
(3)
RRm8314.32.887kJ/(kg·K)
gM28.8
3-17汽油发动机吸入气缸的是空气和汽油蒸汽的混合物,
解以1kg压缩空气为研究对象,则在管内时流动空气的总
2
能量为hcf1gZ
,而终态时流动空气的总能量为
2
c2
h2
f2gZ。
2
假设q0,
w=0及cf1<<cf2,Z1=Z2,
且由附表1查得空气的比定压热容为1.004kJ/(kg·K),则喷出
气流的流速为
cf22101.004303−273245.4m/s
解由附表1查得空气的比定压热容为1.004kJ/(kg·K),则增压器消耗的功为
wsh1−h2cp(T1−T2)
=1.004(300-365.7=-65.96kJ/kg
工程热力学第三版课后习题答案沈维道(第四章)
第四章 理想气体的热力过程
4—1 有 2.3 千克的 CO, 初态 T1 = 477K,p1 = 0.32MPa , 经可逆定容加热, 终温 T2 = 600K , 设 CO 为理想气体,求 ∆U 、 ∆H 、 ∆S ,过程功及过程热量。 (1)设比热容为定值; (2)变 值比热容,按气体性质表。 解: (1)定值比热容
4—3 试由 w = 算式。 解: 可逆过程的过程功 w =
2 2
∫
1
pdv,wt = − ∫ vdp 导出理想气体进行可逆绝热过程时过程功和技术功的计
1
∫
2
1
pdv ,由绝热过程方式可知 p1v1κ = pvκ , p =
p1v1κ vκ
所以
w = p1v1κ ∫
v2
v1
dv 1 1 = ( p1v1 − p2 v2 ) = Rg (T − T ) κ v κ −1 κ −1 1 2
60.08K = 13546.39J/mol 100K
1 ( H m,1 − H m,2 ) M 1 (9123.608 − 13546.39)J/(mol ⋅ K) = −138.21× 103 J/kg = −3 32.0 × 10 kg/mol
4—6 3kg 空气, p1 = 1MPa,T1 = 900K ,绝热膨胀到 p2 = 0.1MPa 。设比热容为定
Rg =
R 8.3145J/(mol ⋅ K) = = 0.260J/(kg ⋅ K) T1 = t1 + 273 = 40 + 273 = 313K M 32.0 × 10−3 kg/mol
p1 0.1MPa = 0.260J/(kg ⋅ K) × 313K ln = −112.82J/kg p2 4MPa
工程热力学 课后习题答案 可打印 第三版 第六章
a p + 2 (Vm − b) = RT Vm
得
(16.21×106 +
0.1361 )(Vm − 3.85 ×10−5 ) = 8.3145 ×189 2 Vm
展开可解得
Vm = 0.081× 10−3 m 3 /mol
m=
V 0.425m3 M= × 28.01×10−3 kg/mol = 147.0kg 3 Vm 0.081m / mol
b=
0.08664 RTc 0.08664 × 8.3145J/(mol ⋅ K) × 126.2K = = 0.0268 × 10−3 m3 /mol 6 pc 3.39 ×10 Pa
将 a,b 值代入 R-K 方程:
p=
RT a 8.3145 × 189 0.13864 − 0.5 = − −3 0.5 Vm − b T Vm (Vm + b) Vm − 0.0268 × 10 189 Vm (Vm + 0.0268 × 10−3 )
(2)利用通用压缩因子图 查附表,水的临界参数为 pc = 22.09MPa、Tc = 647.3K
pr =
p 5MPa = = 0.226 pc 22.09MPa
Tr =
T 723.15K = = 1.11 Tc 647.3K
查通用压缩因子图 Z=0.95
v′ =
ZRgT p
=
0.95 × 8.3145kJ /(mol ⋅ K) × 723.15K = 0.063340m3 /kg 18.02 × 10−3 kg/mol × 5 ×106 Pa
将 a,b 值代入 R-K 方程:
p1 =
RT1 a − 0.5 Vm − b T1 Vm (Vm + b) = 8.3145J/(kg ⋅ K) × 298K 3.1985Pam 6 K1/2 /mol2 − −3 3 3 0.5 (0.963m − 0.0296m /mol) × 10 (298K) 0.963m3 (0.963m3 + 0.0296m3 /mol) × 10 −6
工程热力学第三版_热力学第二定律课后题答案
B T1 1 lim lim 1 T T T T T T2 A 1 2 1
lim
1 1 1
T1
[3-7]用可逆热机驱动可逆制冷机,热机从热源 TH,向热源 T0 放热,而制冷 机从冷藏库 TL 取热向热源 T0 放热, 如图 3-20 所示, 试证明当 TH 大大高于 T0 时,制冷机从冷藏库吸取 的热量 QL 与热源 TH 供给的热量 QH 之比趋近于 TL TO TL 。 解:可逆热机热效率 T C 1 O TH 吸热 QH,作功量为 TO W C QH 1 T QH H 可逆制冷机制冷系数 TL c TO TL 输入功量
5 333 5 4.1868 t 0 25 4.1868 50 t 解得 t 28.41C 301.41K
混合后系统的熵增 S 系=S 冰+S 水
S系=
m1rl dT dT m1rl T T m1c m2 c m1c ln m2 c ln T1 T1 T T2 T T1 T1 T2
工程热力学第三版_热力学第二定律课后题答案
T T1 T △S S
⑵当二热机的热效率相等( A B )时,求中 T2 间热源温度 T′ T A 1 T1 T B 1 B T T T1T2 627 27327 273 519.6 K 246.6C
[3-5]利用 T₁T₂表示图 3-19a,b 所示两循环的效率比,并求 T₁趋于无限 大时的极限值,若 T₁=1000K,T₂=500K,求二循环的效率。 解:卡诺循环 A 的热效率
[3-9]将 5 kg, 0℃的冰,投入盛有 25 kg 温度为,50℃的水的绝热容器中, 求 至冰完全融化且与水的温度均匀一致时系统熵的变化, 已知冰的融解热为 333 kJ/ kg,水的比热容为 4.1868 kJ/(kg.k)。 解:冰融化后与温水相混合后的水的温度为 t,根据热平衡有 m1 rl m1 ct t1 m 2 ct 2 t
5 333 5 4.1868 t 0 25 4.1868 50 t 解得 t 28.41C 301.41K
混合后系统的熵增 S 系=S 冰+S 水
S系=
m1rl dT dT m1rl T T m1c m2 c m1c ln m2 c ln T1 T1 T T2 T T1 T1 T2
第三章
熵与热力学第二定律
[3-1]某动力循环中,工作流体在平均温度 440℃下得到热量 3150kJ/kg,向 温度为 20℃的冷却水放出热量 1950 kJ/kg,如果流体没有其它的热交换,此循环 满足克劳修斯不等式吗? q q q 3150 1950 解: 1 2 T T1 T2 440 273 20 273 2.237 kJ /(kg K ) 0 所以,此循环满足克劳修斯不等式。 [3-3]两卡诺机 A,B 串联工作,A 热机在 627℃下得到热量,并对温度为 T 的热源放热,B 热机从温度为 T 的热源吸收 A 热机排出的热量,并向 27℃的冷 源放热,在下述情况下计算温度 T。 ⑴二热机输出功相等; ⑵二热机的热资效率相等 解: T1 ⑴当二热机输出功相等( W A WB )时,求中间热 源温度 T W A Q1 Q2
工程热力学(第三版)习题答案全解可打印第十二章
循环制冷量中的冷量佣
T (25 + 273.15)K − 1 × 1060.7kJ/kg = 164.35kJ/kg ex ,Q = 0 − 1 qc = (−15 + 273.15)K Tc
循环佣效率
ηe =
x
ex ,Q 164.35kJ/kg = = 0.715 ′ 230kJ/kg wnet
T4,a = 300K − 0.8 × (300 − 219.18)K = 235.34K T4,b = 300K − 0.8 × (300 − 179.81)K = 203.85K
ηCS =
h2 − h1 T2 − T1 = h2′ − h1 T2′ − T1
T2′ = T1 + (T2 − T1 ) / ηcs
Pnet =
ψ c 10kW = = 2.63kW 3.80 ε act
10kW = 2.59" 冷吨 " 3.86
(3) 折合冷吨
ψc
3.86
=
12-2 一逆向卡诺制冷循环,其性能系数为 4,问高温热源与低温热源温度之比多少?若输入 功率为 1.5kW。试问制冷量为多少“冷吨”?如果将此系统改作热泵循环,高、低温热源温度 及输入功率维持不变。试求循环的性能系数及能提供的热量。 解: (1) ε c =
4 设该装置的制冷量ψ c = 4.2 ×10 kJ ,求氨的流量 qm ; (4)求该装置的佣效率。
h
解: (1)查 NH3 表, p1 = 0.236MPa;p2 = 1.003MPa (2)查 NH3 表
h1′ = 111.66kJ/kg h1′′ = 1424.6kJ/kg
h1 = xh1 + (1 − x)h1′ = 0.95 × 1424.6kJ/kg + (1 − 0.95) × 111.66kJ/kg = 1358.95kJ/kg ′ = 0.4538kJ/(kg ⋅ K) s1 ′ + x( s1 ′′ − s1 ′) s1 = s1 = 0.4538kJ/(kg ⋅ K) + 0.95 × (5.5397 − 0.4538)kJ/(kg ⋅ K) = 5.2854kJ/(kg ⋅ K)
工程热力学 课后习题答案 可打印 第三版 第九章
缩功; (4)压缩过程中传出的热量。 解: (1)多变指数
0.32 0.1 = 1.186 ∴n = = V 0 . ln( 1 ) ln 032 V2 0.012 ln(
2
p
Q p1v1 = p 2 v 2
n
n
p
)
ln
1
(2)空气终温
p T2 = T1 ( 2 ) p1
n −1 n
0.32 = (273.15 + 50) × ( ) 0.1
3
温升为 14℃。求(1)空气可能达到的最高压力; (2)压气机必需的功率。 解:
Q w = q m,W c∆t = q m, a 465 × 4.187 × 14 = 7.5715kW 3600 pV 0.1× 10 6 × 250 = 1 1 = = 0.08254 kg s R g T1 3600 × 287 × 293.15
9-4 三台空气压缩机的余隙容积比均为 6%, 进气状态均为 0.1MPa,27°C , 出口压力为 0.5MPa ,
但压缩过程的指数分别为:n1=1.4、n2=1.25、n3=1,试求各压气机的容积效率(假设膨胀过程的 指数和压缩过程相同) 。 解: 据题意
Vc = 0.06 Vh 0.5 π= =5 0 .1
或
wc = p n RgT1 [( 2 ) p1 n −1
n −1 n
− 1] =
1.2 0.9 × 287 × 293.15 × [( ) 1.2 − 1 0.1
1.2 −1 1.2
− 1] = 2.23 × 10 5 J
kg
N = q m ,a ⋅ wc = 0.0825 × 2.23 × 10 5 = 18.4kW
第三版工程热力学课后思考题答案
第一章1、答:不一定。
稳定流动开口系统内质量也可以保持恒定。
2、答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3、答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4、答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5、答:温度计随物体的冷热程度不同有显著的变化。
6、答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7、答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8、答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。
9、答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10、答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11、答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章1、答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。
工程热力学(第三版)习题答案全解可打印第三章
的热力性质表;(3)若上述过程为定压过程,即T1 = 480K,T2 = 1100K,p1 = p2 = 0.2MPa ,
问这时的 u1、u2、∆u、h1、h2、∆h 有何改变?(4)对计算结果进行简单的讨论:为什么由气体 性质表得出的 u,h 与平均质量热容表得出的 u, h 不同?两种方法得出的 ∆u,∆h 是否相同?
×
105
Rg (17 + 273)
×1
=
517.21 Rg
充气后储气罐里空气质量
m2
=
p2v RgT2
=
7 ×105 ×1 Rg (50 + 273)
=
2167.18 Rg
已知压气机吸入空气体积流率 qVin = 0.2m3/min ,故质量流率
qmin
=
p q in Vin RgTin
=
p qb Vin RgTin
实际送风的体积流率
qin
=
qn RT p
=
223.21kmol/h ×8.3145J/(mol ⋅ K) × (250 + 273)K
150 + 765 750.062
×105
Pa
= 7962.7m3/h
或 p0qV0 = pqV
T0
T
qVin
=
p0 qV0 T pT0
=
760 ×105 Pa × 5000m3 / h × 523K 750.062
| u1
=
cV
207°C
t 0°C 1
=
0.7255kJ/(kg ⋅ K) × 207 o C = 150.2kJ/kg
| u2
=
cV
827°C
工程热力学 第三版 课后习题答案 第14章
yH 2 3 1 3 − × 0.1483 1 − × 0.1483 2 2 = = 0.7211 ; yN2 = = 0.2404 3.8517 3.8517
pNH3 = yNH3 p = 0.385 p;pH 2 = yH 2 p = 0.7211 p;pN2 = yN 2 p = 0.2404 p
yCO2 = nCO2 N = n 0.495 0.505 = 8.98%、yCO = CO = = 9.16% 、 yO2 = 13.65%、y N 2 = 68.21% 。 5.5125 N 5.5125
14-7 以碳为“燃料”的电池中,碳完全反应 C+O 2 → CO2 ,求此反应在标准状态下的最大有
Hb 为生成物在 298.15K 时的焓,由附表查出
H m ,CO2 = 964.0J/mol
H m ,H2 O = 9904.0J/mol
H m ,O2 = 8683.0J/mol
H m ,N 2 = 8670.0J/mol
H b = ( ∑ nk H m ,k ) pr = nCO2 × H m,CO2 + nH 2O × H m,H 2O + nO2 × H m,O2 + nN 2 × H m,N 2 = 1mol × 9364.0J/mol + 2mol × 9904.0J/mol + 3mol × 8683.0J/mol +18.8mol × 8670.0J/mol = 218217 J
p = 50atm K p = 1.664 ×10−4
1/ atm 2
代入解得: nNH3 = 0.5228
yNH3 =
工程热力学(第三版) (沈维道 著) 课后答案
3 3 斜角 α = 30° ,压力计中使用密度 ρ = 0.8 × 10 kg/m 的煤油,斜管中
液柱长度 l=200mm。当地大气压力 pv = 745mmHg 。求烟气的真空 。 度(以 mmH2O 表示)及绝对压力(以 Pa 表示) 解 :倾斜式压力计上读数即烟气的真空度
1-12 有一绝对真空的钢瓶, 当阀门的打开时, 在大气压 p0 = 1.013 × 10 Pa 的作用下有体积为
5
0.1m3 的空气被输入钢瓶,求大气对输入钢瓶的空气所作功为多少?
3
第一章 基本概念
解
W = p0V = 1.013 × 105 Pa × 0.1m3 = 1.013 × 104 J = 10.13kJ
1-8 容器被分隔成 AB 两室,如图 1-19 所示,已知当场大气压 pb = 0.1013MPa ,气压表 2 读为 peB 2 = 0.04MPa ,气压表 1 的读数 peA1 = 0.294MPa , 求气压表 3 的读数(用 MPa 表示) 。 解:
p A = pb + peA1 = 0.1013MPa + 0.294MPa = 0.3953MPa
pb = 755mm ,求容器中的绝对压力(以 MPa 表示) 。如果容器 ′ 中的绝对压力不变,而气压计上水银柱高度为 pb = 770mm ,求此时真空表上的读数(以
mmHg 表示)是多少? 解 :容器中气体压力低于当地大气压力,故绝对压力
p = pb − pv = (755 − 600)mmHg = 155mmHg = 0.0207MPa ′ 若容器中绝对压力不变,而大气压力变为 pb = 770mmHg 。则此时真空表上的读数为 ′ ′ pv = pb − p = (770 − 155)mmHg = 615mmHg
工程热力学第三版课后习题答案
工程热力学第三版课后习题答案工程热力学是工程学科中的重要分支,它研究能量转化和传递的原理及其应用。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
然而,由于工程热力学的内容较为复杂,课后习题往往令人感到困惑。
为了帮助学习者更好地掌握工程热力学,下面将给出《工程热力学第三版》课后习题的答案。
第一章:基本概念和能量转化原理1. 答案略。
2. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第二章:气体的状态方程和热力学性质1. 对于理想气体,状态方程为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 对于理想气体,内能只与温度有关,与体积和压力无关。
3. 对于理想气体,焓的变化等于吸收的热量。
4. 对于理想气体,熵的变化等于吸收的热量除以温度。
5. 答案略。
第三章:能量转化和热力学第一定律1. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
2. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第四章:热力学第二定律和熵1. 答案略。
2. 答案略。
3. 答案略。
4. 答案略。
5. 答案略。
通过以上对《工程热力学第三版》课后习题的答案解析,相信读者对工程热力学的相关知识有了更深入的了解。
掌握热力学的基本概念和原理,对于工程学科的学习和实践具有重要意义。
希望读者能够通过课后习题的解答,提高自己的热力学能力,并将其应用于工程实践中,为社会发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。
当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。
⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。
这种观点对不对,为什么?答:不对。
“绝热系”指的是过程中与外界无热量交换的系统。
热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。
物质并不“拥有”热量。
一个系统能否绝热与其边界是否对物质流开放无关。
⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。
⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。
因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。
环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。
“当地大气压”并非就是环境大气压。
准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。
⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。
它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。
⒍经验温标的缺点是什么?为什么?答:由选定的任意一种测温物质的某种物理性质,采用任意一种温度标定规则所得到的温标称为经验温标。
由于经验温标依赖于测温物质的性质,当选用不同测温物质制作温度计、采用不同的物理性质作为温度的标志来测量温度时,除选定的基准点外,在其它温度上,不同的温度计对同一温度可能会给出不同测定值(尽管差值可能是微小的),因而任何一种经验温标都不能作为度量温度的标准。
这便是经验温标的根本缺点。
⒎促使系统状态变化的原因是什么?举例说明。
答:分两种不同情况:⑴若系统原本不处于平衡状态,系统内各部分间存在着不平衡势差,则在不平衡势差的作用下,各个部分发生相互作用,系统的状态将发生变化。
例如,将一块烧热了的铁扔进一盆水中,对于水和该铁块构成的系统说来,由于水和铁块之间存在着温度差别,起初系统处于热不平衡的状态。
这种情况下,无需外界给予系统任何作用,系统也会因铁块对水放出热量而发生状态变化:铁块的温度逐渐降低,水的温度逐渐升高,最终系统从热不平衡的状态过渡到一种新的热平衡状态;⑵若系统原处于平衡状态,则只有在外界的作用下(作功或传热)系统的状态才会发生变。
⒏图1-16a、b所示容器为刚性容器:⑴将容器分成两部分。
一部分装气体,一部分抽成真空,中间是隔板。
若突然抽去隔板,气体(系统)是否作功?⑵设真空部分装有许多隔板,每抽去一块隔板让气体先恢复平衡再抽去一块,问气体(系统)是否作功?⑶上述两种情况从初态变化到终态,其过程是否都可在p-v图上表示?答:⑴;受刚性容器的约束,气体与外界间无任何力的作用,气体(系统)不对外界作功;⑵ b情况下系统也与外界无力的作用,因此系统不对外界作功;⑶ a中所示的情况为气体向真空膨胀(自由膨胀)的过程,是典型的不可逆过程。
过程中气体不可能处于平衡状态,因此该过程不能在p-v图上示出;b中的情况与a有所不同,若隔板数量足够多,每当抽去一块隔板时,气体只作极微小的膨胀,因而可认为过程中气体始终处在一种无限接近平衡的状态中,即气体经历的是一种准静过程,这种过程可以在p-v图上用实线表示出来。
⒐经历一个不可逆过程后,系统能否恢复原来状态?包括系统和外界的整个系统能否恢复原来状态?答:所谓过程不可逆,是指一并完成该过程的逆过程后,系统和它的外界不可能同时恢复到他们的原来状态,并非简单地指系统不可能回复到原态。
同理,系统经历正、逆过程后恢复到了原态也并不就意味着过程是可逆的;过程是否可逆,还得看与之发生过相互作用的所有外界是否也全都回复到了原来的状态,没有遗留下任何变化。
原则上说来经历一个不可逆过程后系统是可能恢复到原来状态的,只是包括系统和外界在内的整个系统则一定不能恢复原来状态。
⒑系统经历一可逆正向循环及其逆向可逆循环后,系统和外界有什么变化?若上述正向及逆向循环中有不可逆因素,则系统及外界有什么变化?答:系统完成一个循环后接着又完成其逆向循环时,无论循环可逆与否,系统的状态都不会有什么变化。
根据可逆的概念,当系统完成可逆过程(包括循环)后接着又完成其逆向过程时,与之发生相互作用的外界也应一一回复到原来的状态,不遗留下任何变化;若循环中存在着不可逆因素,系统完成的是不可逆循环时,虽然系统回复到原来状态,但在外界一定会遗留下某种永远无法复原的变化。
(注意:系统完成任何一个循环后都恢复到原来的状态,但并没有完成其“逆过程”,因此不存在其外界是否“也恢复到原来状态”的问题。
一般说来,系统进行任何一种循环后都必然会在外界产生某种效应,如热变功,制冷等,从而使外界有了变化。
)⒒工质及气缸、活塞组成的系统经循环后,系统输出的功中是否要减去活塞排斥大气功才是有用功?答:不需要。
由于活塞也包含在系统内,既然系统完成的是循环过程,从总的结果看来活塞并未改变其位置,实际上不存在排斥大气的作用。
第2章热力学第一定律⒈刚性绝热容器中间用隔板分为两部分,a中存有高压空气,b中保持真空,如图2--11所示。
若将隔板抽去,分析容器中空气的热力学能如何变化?若隔板上有一小孔,气体泄漏人b中,分析a、b两部分压力相同时a、b两部分气体的比热力学能如何变化?答: ⑴定义容器内的气体为系统,这是一个控制质量。
由于气体向真空作无阻自由膨胀,不对外界作功,过程功w=0;容器又是绝热的,过程的热量q=0,因此,根据热力学第一定律q=△u+w,应有△u=0,即容器中气体的总热力学能不变,膨胀后当气体重新回复到热力学平衡状态时,其比热力学能亦与原来一样,没有变化;若为理想气体,则其温度不变。
⑵当隔板上有一小孔,气体从a泄漏人b中,若隔板为良好导热体,a、b两部分气体时刻应有相同的温度,当a、b两部分气体压力相同时,a、b 两部分气体处于热力学平衡状态,情况像上述作自由膨胀时一样,两部分气体将有相同的比热力学能,按其容积比分配气体的总热力学能;若隔板为绝热体,则过程为a对b的充气过程,由于a部分气体需对进入b的那一部分气体作推进功,充气的结果其比热力学能将比原来减少,b部分气体的比热力学能则会比原来升高,最终两部分气体的压力会达到平衡,但a部分气体的温度将比b部分的低(见习题4-22)。
⒉热力学第一定律的能量方程式是否可写成q??u?pvq2?q1?(u2?u1)?(w2?w1)的形式,为什么?答:⑴热力学第一定律的基本表达式是:过程热量 = 工质的热力学能变化 + 过程功第一个公式中的pv并非过程功的正确表达,因此该式是不成立的;⑵热量和功过程功都是过程的函数,并非状态的函数,对应于状态1和2并不存在什么q1、q2和w1、w2;对于过程1-2并不存在过程热量q?q2?q1 和过程功w?w2?w1,因此第二个公式也是不成立的。
⒊热力学第一定律解析式有时写成下列两种形式: q .??u?wq??u??pdv 12分别讨论上述两式的适用范围。
答:第一个公式为热力学第一定律的最普遍表达,原则上适用于不作宏观运动的一切系统的所有过程;第二个表达式中由于将过程功表达成 ?21pdv这只是对简单可压缩物质的可逆过程才正确,因此该公式仅适用于简单可压缩物质的可逆过程。
⒋ .为什么推动功出现在开口系能量方程式中,而不出现在闭口系能量方程式中?答:当流体流动时,上游流体为了在下游占有一个位置,必须将相应的下游流体推挤开去,当有流体流进或流出系统时,上、下游流体间的这种推挤关系,就会在系统与外界之间形成一种特有的推动功(推进功或推出功)相互作用。
反之,闭口系统由于不存在流体的宏观流动现象,不存在上游流体推挤下游流体的作用,也就没有系统与外间的推动功作用,所以在闭口系统的能量方程式中不会出现推动功项。
⒌ .稳定流动能量方程式(2-16)是否可应用于活塞式压气机这种机械的稳定工况运行的能量分析?为什么?答:可以。
就活塞式压气机这种机械的一个工作周期而言,其工作过程虽是不连续的,但就一段足够长的时间而言(机器的每一工作周期所占的时间相对很短),机器是在不断地进气和排气,因此,对于这种机器的稳定工作情况,稳态稳流的能量方程是适用的。
qduwqdhwtm?q?dh?dc2f?mgdz??wi2上述三式中w、wt和wi的相互关系是什么?答:是的,同时满足该三个公式。
⒍ .开口系实施稳定流动过程,是否同时满足下列三式⒎几股流体汇合成一股流体称为合流,如图2-12所示。
工程上几台压气机同时向主气道送气,以及混合式换热器等都有合流的问题。
通常合流过程都是绝热的。
取1-1、2-2和3-3截面之间的空间为控制体积,列出能量方程式,并导出出口截面上焓值h3的计算式。
答:认为合流过程是绝热的稳态稳流过程,系统不作轴功,并忽略流体的宏观动能和重力位能。
对所定义的系统,由式(2-28)q?.nm.decv11??[(h?c2?gz)m]??[(h?c2?gz)m]?wshaft,id?22i?1i 1out,iin,i应有能量平衡第3章理想气体的性质⒈怎样正确看待“理想气体”这个概念?在进行实际计算时如何决定是否可采用理想气体的一些公式?答:理想气体并非实际存在的气体。
它只是通常气体的一种抽象物,当实际气体压力趋于零,比体积趋于无限大时才表现出理想气体性质。
相对通常的压力和温度而言,当实际气体的温度较高,压力较低,而计算精度要求又不是太高时,可以采用理想气体的一些公式对之进行计算。
⒉气体的摩尔体积vm是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是0.022414m3/mol?答:同温同压下,任何1摩尔气体都具有相同的容积。
但是,若气体的状态不同,其摩尔体积并不相同,只在标准状况下气体的千摩尔体积才等于22.4 m3/kmol 。
⒊摩尔气体常数r的值是否随气体的种类不同或状态不同而异?⒋如果某种工质的状态方程式为pv = rgt,那么这种工质比热容、热力学能、焓都仅仅是温度的函数吗?答:理想气体的状态方程式为pv = rgt,服从这一方程的气体均属理想气体。