新九年级数学上期中模拟试题附答案
2023_2024学年山东省济南市高新区九年级上册期中数学模拟测试卷(附答案)
2023_2024学年山东省济南市高新区九年级上册期中数学模拟测试卷本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷为1-3页,满分为40分;第Ⅱ卷为3-10页,满分为110分.本试题共10页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共40分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案写在试卷上无效.一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中,同一个几何体从正面看和从上面看形状图不同的是( )A .B .C .D .2.下列给出长度的四条线段中,是成比例线段的是( )A .1,2,3,4B .1,2,3,6C .2,3,4,5D .1,3,4,73.若反比例函数的图象经过点A (﹣3,4),则下列各点中也在这个函数图象的xky =()0≠k 是( )A .(﹣2,3)B .(4,﹣3)C .(﹣6,﹣2)D .(8,)234.如图,过原点的一条直线与反比例函数的图象分别交于A 、B 两点,若A 点xky =()0≠k的坐标为(3,﹣5),则B 点的坐标为( )A .(3,﹣5)B .(﹣5,3)C .(﹣3,5)D .(3,﹣5)5.已知,,则它们的周长比为( )DEF ABC ∽△△41∶∶△△=DEF ABC S S A .1:2B .1:4C .2:1D .4:16.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用寒假从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是( )A .B .C .D .213161927.已知点A (x 1,﹣3),B (x 2,﹣2),C (x 3,1)在反比例函数的图象上,则xa y 122+-=x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 18.如图,在△ABC 中,点D 在AC 边上,连接BD ,若∠ABC =∠ADB ,AD =2,AC =6,则AB 的长为( )A .3B .4C .D .332第8题图 第9题图 第10题图9.如图所示的是反比例函数()和一次函数的图象,x ky =10,0>≠x k )0(2≠+=m n mx y 则下列结论正确的是( )A .反比例函数的解析式是 B .一次函数的解析式为xy 61=62+-=x y C .当时,最大值为1D .若,则6>x 1y 21y y <61<<x 10.勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接EG ,DG .若正方形ABCD 与EFGH 的边长之比为,则sin ∠DGE 等于( )15∶A .B .C .D .10105510103552第Ⅱ卷(非选择题 共110分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)11.若,则= .72=-bb a ba 12.如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖1次(假设每次飞镖均落在游戏板上),击中有颜色的小正方形(阴影部分)的概率为 .第12题图 第13题图13.如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则的值为 ECBE .14.如图,为了测量一栋楼的高度,小王在他的脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到楼的顶部.如果小王身高1.55m ,他的眼睛距地面1.50m ,同时量得BC =0.3m ,CE =2m ,则楼高DE 为 m .第14题图 第15题图15.如图,在平面直角坐标系内,O 为坐标原点,点A 为直线上一动点,过A 作12+=x y AC ⊥x 轴,交x 轴于点C (点C 在原点右侧),交双曲线于点B ,且AC +BC =4,则当xy 1=△OAB 存在时,其面积为 .16.已知曲线 C 1、C 2 分别是函数,的图象,边长为6的正)(02<-=x xy )(0,0>>=k x x k y △ABC 的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将△ABC 绕原点O 顺时针旋转,当点B 在曲线C 1上时,点A 恰好在曲线C 2上,则k 的值为 .三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分6分)计算:1223160sin 41--+⎪⎭⎫ ⎝⎛+-︒18.(本题满分6分)已知:如图△ABC 三个顶点的坐标分别为A (﹣2,﹣2)、B (﹣3,﹣4)、C (﹣1,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)以点C 为位似中心,在轴的左侧画出△A 1B 1C ,y 使△A 1B 1C 与△ABC 的位似比为2:1,并直接写出点A 1的坐标 ;(2)△A 1B 1C 的面积为 .19.(本题满分6分)如图,∠CAB =∠CBD ,AB =4,AC =6,BD =7.5,BC =5.求CD 的长.20.(本题满分8分)如图,在△ABC 中,∠B =45°,CD 是AB 边上的中线,过点D 作DE ⊥BC ,垂足为点E ,若CD =5,sin ∠BCD =.53(1)求BC 的长;(2)求∠ACB 的正切值.21.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,直线交y 轴于点A ,交x 轴于点2+=x y B ,与双曲线在一,三象限分别交于C ,D 两点,()0≠=k xky AB =BC ,连接CO ,DO .21(1)求的值;k(2)求△CDO的面积.22.(本题满分8分)某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有 人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,甲、乙、丙、丁四人平时的表现优秀,其中甲、乙是男同学,丙、丁是女同学.现决定从这四人中任选两名参加全市书法大赛,求恰好选中一男一女的概率(用画树状图或列表法求解).23.(本题满分10分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)求真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度.(结果精确到0.1米)参考数据:,,,,,5337sin ≈5437cos ≈ 4337tan ≈ 8322sin ≈ 161522cos ≈ .4.022tan ≈24.(本题满分10分)综合与实践视力表中蕴含着很多数学知识,如:每个“”形图都是正方形结构,同一行的“”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.素材1 国际通用的视力表以5米为检测距离,任选视力表中7个视力值n ,测得对应行的“”形图边长b (mm ),在平面直角坐标系中描点如图1.探究1 检测距离为5米时,归纳n 与b 的关系式,并求视力值1.2所对应行的“”形图边长.素材2 图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“”形图所成的角叫做分辨视角.视力值与分辨视角(分)的对应关系近似满足.θn θ()105.01≤≤=θθn 探究2 当时,属于正常视力,根据函数增减性写出对应的分辨视角的范围.0.1≥n θ素材3 如图3,当确定时,在A处用边长为b1的Ⅰ号“”测得的视力与在B处用边长为b2的Ⅱ号“”测得的视力相同.探究3 若视力值为1.2,求检测距离为3米时,所对应行的“”形图边长.25.(本题满分12分)【问题背景】数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.【探究发现】如图1,在△ABC 中,∠A =36°,AB =AC .(1)操作发现:将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE = °,设AC =1,BC =x ,那么AE = (用含x 的式子表示);(2)进一步探究发现:,这个比值被称为黄金比.在(1)的条件下试证215-=AC BC 腰底明:;215-=AC BC 腰底【拓展应用】当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.(3)如图2,在菱形ABCD 中,∠BAD =72°,AB =1.求这个菱形较长对角线的长.26.(本题满分12分)如图①,在Rt△ABC中,∠B=90°,AB=2,BC=6,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C顺时针方向旋转,记旋转角为α.(1)问题发现AE当α=0°时,= .BD(2)拓展探究AE试判断:当0°≤α<360°时,的大小有无变化?请仅就图②的情况给出证明.BD(3)问题解决当△EDC旋转至A,D,E三点共线时,如图③,图④,直接写出线段AE的长.参考答案及评分标准一、选择题题号12345678910答案CBBCABBDDA二、填空题:(本大题共6个小题,每小题4分,共24分.)11.. 12.. 13.. 14.10. 15.1. 16.6.799523三、解答题:(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本题6分)解:原式 (432232)34-++⨯=分322332-++= (6)5=分18.(本题6分)解:(1)如图,△A 1B 1C 即为所求.·········································································2分(1)(﹣3,0)····································································································4分(2)8················································································································6分19.(本题6分)解:(1)·········································································545,5.7,6,4==∴====BC AB BD AC BC BD AC AB 2分································································································CBD CAB ∠=∠∴3分·························································································BCD ABC ∆∆∴∽.....4分. (55)4=∴CD BC 分····················································································642554545=⨯==∴BC CD 分20.(本题8分)解:(1),53sin ,=∠⊥BCD BC DE ,53=∴CD DE ,·······························································································3553=⨯=∴DE 1分,·········································································································4=∴CE 2分,,··············································································· 45=∠B 3==∴BE DE ··················3分,·························································································7=+=∴CE BE BC 4分(2),F BC AF A 于点作过点⊥的中位线是的中点是∥ABF DE DE ∆∴∴AB D AF,········································································662,62====∴BE BF DE AF 分,························································································71=-=∴BF BC CF 分,·····················································································86tan ==∠∴CFAF ACB 分21.(本题8分)(1)解:(1)在y =x +2中,令x =0得y =2,令y =0得x =﹣2,∴A (0,2),B (﹣2,0),····································································· ·········2分∵AB =BC ,21∴A 为BC 中点,∴C (2,4),··································································································3分把C (2,4)代入得:,x k y =24k =解得k =8,······································································································4分(2)由得:或,⎪⎩⎪⎨⎧=+=x y x y 82⎩⎨⎧==42y x ⎩⎨⎧-=-=24y x ··························································5分∴D (﹣4,﹣2),·······················································································6分∴S △DOC =S △DOB +S △COB=×2×2+×2×4=2+4=6,·····································8分22.(本题8分)解:(1)360,·······································································································2分(2)补充条形统计图如下图:··················································································3分(3)(人),300360601800=⨯答:这1800名学生中有300人参加了篮球社团,·····················································5分(4)设甲乙为男同学,丙丁为女同学,画树状图如下:····································································7分∵一共有12种可能的情况,恰好选择一男一女有8种,∴. (83)2128)(==一男一女P 分23.(本题10分)解:如图,(1)过B 作BF ⊥AD 于F ,················································································1分在Rt △ABF 中,,·······································································2分AB BF BAF =∠sin 则 =≈=1.8(米),BAF AB BF ∠=sin 37sin 3⨯533⨯············································3分答:真空管上端B 到AD 的距离约为1.8米;,·························································4分(2)在Rt △ABF 中,cos ∠BAF =,则=≈2.4(米),BAF AB AF ∠=cos 37cos 3⨯·······················································5分∵BF ⊥AD ,CD ⊥AD ,BC ∥FD ,∴四边形BFDC 是矩形,∴BF =CD ,BC =FD ,··························································································6分∵EC =0.5米,∴DE =CD ﹣CE =1.3米,······················································································7分在Rt △EAD 中,,AD DE EAD =∠tan则≈=3.25(米),EAD DE AD ∠=tan ···································································9分∴BC =DF =AD ﹣AF =3.25﹣2.4≈0.9(米),·····························································10分答:安装热水器的铁架水平横管BC 的长度约为0.9米.24.(本题10分)解:探究1:由图象中的点的坐标规律得到n 与b 成反比例关系,设,·································································································1)0(≠=k bk n分将其中一点(9,0.8)代入得:,98.0k =解得:k =7.2,∴,········································································································b n 2.7=··3分将 n =1.2 代入得:b n 2.7=b =6;···········································································4分答:检测距离为5米时,视力值1.2所对应行的“E ”形图边长为6mm ,视力值1.2所对应行的“E ”形图边长为6mm ;探究2:∵,θ1=n ∴在自变量θ的取值范围内,n 随着θ的增大而减小,···················································5分∴当n ≥1.0时,0<θ≤1.0,∵0.5≤θ≤10,∴0.5≤θ≤1.0;···································································································6分探究3:由素材可知,当某人的视力确定时,其分辨视角也是确定的,由相似三角形性质可得,2211检测距离检测距离b b =··········································································8分由探究1知b 1=6, ∴,3b 562=解得,5182=b ···································································································9分答:检测距离为3m 时,视力值1.2所对应行的“E ”形图边长为························10mm 518分25.(本题12分)解:(1)72,1﹣x ,·································································································4分(2)证明:由(1)知:∠CBD =∠EBD =36°,∴∠A =∠CBD ,·································································································5分∵∠C =∠C ,∴△ABC ∽△BDC ································································································6分∴······································································································CDBC BC AC =7分即,解得x x x -=11215-=x ∴; (2)15-=AC BC 腰底·8分(3)如图,在AC 上截取AE =AD ,连接DE ,∵四边形ABCD 是菱形,∴∠ACD =,∠DAC =∠BAC =, 3621=∠BCD 3621=∠DAB AD =AB =1,CD ∥AB ,·····················································································。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版2023-2024学年九年级上册期中数学模拟检测试题(含解析)
人教版2023-2024学年九年级上册期中数学模拟检测试题一、选择题:(本大题共12小题,每小题4分,共48分,给出的四个选项中,只有一项是符合题目要求的)1.九年级567班化学科代表在老师的培训后学会了某个化学实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有25人会做这个实验;若设1人每次都能教会x 名同学,则可列方程为().A.2125x x ++= B.2(1)25x x ++=C.(1)25x x x ++= D.1(1)25x x x +++=2.如图,将ABC △绕点A 逆时针旋转100︒,得到ADE △.若点D 在线段BC 的延长线上,则B ∠的大小为()A.30︒B.40︒C.50︒D.60︒3.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.4.如果在二次函数的表达式2y ax bx c =++中,0a >,0b <,0c <,那么这个二次函数的图象可能是()A. B. C. D.5.已知点(),2022A m 与点()2023,B n -关于原点对称,的值为()A.-1B.0C.1D.40456.方程2430x x ++=的两个根为()A.11x =-,23x =- B.11x =-,23x =C.11x =,23x =- D.11x =,23x =7.若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是()A.0k ≠B.1k ≥-且0k ≠C.1k ≥- D.1k >-且0k ≠8.如图,抛物线2()(0)y x a h a =-+>与y 轴交于点B ,直线13y x =经过抛物线顶点D ,过点B 作//BA x 轴,与抛物线交于点C ,与直线13y x =交于点A ,若点C 恰为线段AB 中点,则线段OA 长度为()C.3D.39.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30m h =时, 1.5s t =.其中正确的是()A.①④B.①②C.②③④D.②③10.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”.那么代数式22022ax bx ++能取的最小值是()A.2015B.2017C.2022D.202711.已知点()11,A x y ,()22,B x y ()12x x <是二次函数(3)()3y x m x m =+--+(m 为常数)图象上的两点,下列说法正确的是()A.若123x x +>,则12y y > B.若123x x +<,则12y y >C.若123x x +>-,则12y y > D.若123x x +<-,则12y y <12.己知二次函数2y ax bx c =++的部分图象如图所示,对称轴为直线1x =-,有以下结论:①0a b c >;②0a c -+<;③若t 为任意实数,则有2a bt at b -≤+;④当图象经过点()1,3时,方程230ax bx c ++-=的两根为1x ,()212x x x <,则12327x x +=,其中,正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共15分)13.如图,在Rt ACB △中,90C ∠=︒,30cm AC =,25cm BC =,动点P 从点C 出发,沿CA 方向运动,速度是2cm/s ;同时,动点Q 从点B 出发,沿BC 方向运动,速度是1cm/s ,则经过__________s 后,P ,Q 两点之间相距25cm .14.图1是一个坡度为1:2的斜坡的横截面,斜坡顶端B 与地面的距离BC 为2.5米,为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分,设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),图2记录了y 与x 的相关数据,则y 与x 的函数关系式为_____.15.已知点A 是抛物线2443(0)y ax ax a a =-++>上的一点.过点A 作AC x ⊥轴于点C ,以AC 为斜边作Rt ABC △和Rt DAC △,使得//BC AD ,连接BD ,则BD 的最小值为_________.16.如图,已知矩形ABCD ,6AB =,8AD =,将矩形ABCD 绕点A 顺时针旋转3(060)θθ︒<<︒得到矩形AEFG ,连接CG ,BG .当θ=__________时,GC GB =.17.如图,已知抛物线2y ax bx c =++与x 轴交于A 、B 两点,顶点C 的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线2111y a x b x c =++,则下列结论:①0b >;②0a b c -+<;③阴影部分的面积为4;④若1c =,则24b a =.其中正确的是________.(写出所有正确结论的序号)三、解答题(本大题共6小题,共计57分,解答题应写出演算步骤或证明过程)18.(6分)如图,ABC △三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请画出将ABC △绕点A 顺时针旋转90︒后得到的图形11AB C △;(2)请画出将ABC △关于原点O 成中心对称的图形222A B C △;(3)当ABC △绕点A 顺时针旋转90︒后得到11AB C △时,点B 对应旋转到点1B ,请直接写出1B 点的坐标.19.(8分)用适当的方法解方程:(1)2562x x -=-;(2)22(31)(1)x x -=-.20.(8分)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.21.(10分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A .若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当03x ≤≤时,2y 的最大值.22.(12分)网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1kg 需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y (kg )与销售价格x (元/kg )之间满足如图所示的一次函数关系.(1)求y 与的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?23.(13分)如图,抛物线2:4L y axbx =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C .将抛物线L 向右平移一个单位得到抛物线L '.(1)求抛物线L 与L '的函数解析式;(2)连接AC ,探究抛物线L '的对称轴上是否存在点P ,使得以点A ,C ,P 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:设1人每次都能教会x 名同学,根据题意得:()1125x x x +++=.故选:D.2.答案:B解析:根据旋转的性质,可得:AB AD =,100BAD ∠=︒,()1180100402B ADB ∴∠=-︒∠=⨯︒=︒.故选:B.3.答案:C解析:A 、不是中心对称图形,是轴对称图形,故此选项错误;B 、不是中心对称图形,是轴对称图形,故此选项错误;C 、是中心对称图形,是轴对称图形,故此选项正确;D 、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.4.答案:B解析:由0a >,0b <,0c <,推出02ba->,可知抛物线的图象开口向上,对称轴在y 轴的右边,交y 轴于负半轴,由此即可判断。
山东省滕州市滕东中学2024-2025学年九年级上学期期中数学试题
滕东中学九年级数学期中模拟试题一、选择题:本大题共15小题,每小题3分共45分1.下列一元二次方程没有实数根的是()A.2230x x --= B.2210x x ++= C.2 20x -= D.230x x ++=2.下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形3.已知23x y =,则下列比例式成立的是()A.23x y = B.43x y y += C.32x y= D.35x y x +=4.根据下列表格的对应值:x1.11.2 1.31.42ax bx c ++0.59-0.842.293.76可以判断方程()210ax bx c a ++=≠,a b c ,,为常数的一个解x 的范围是()A.1.1 1.2x << B.1.2 1.3x << C.1.3 1.4x << D.无法判定5.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A.12B.1C.D.26.已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是()A.abB.a bC.a b +D.a b-7.如图,D 、E 是AB 的三等分点,DF EG BC ∥∥,图中三部分的面积分别为1S ,2S ,3S ,则123S S S =::()A.123::B.124::C.135::D.234::8.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染x 台电脑,则下列所列方程中正确的是()A.21100x x ++= B.()1100x x += C.()21100x += D.()211100x ++=9.如图,在矩形ABCD 中,6AB =,8BC =,过对角线交点O 作EF AC ⊥交AD 于点E ,交BC 于点F ,则DE 的长是()A.1B.74C.2D.12510.如图,下列选项中不能判定ACD ABC △∽△的是()A.2AC AD AB =⋅B.2BC BD AC=⋅ C.ACD B ∠=∠ D.ADC ACB∠=∠11.如图,在矩形ABCD 中,点E 、F 分别在BC ,AD 上,四边形ABEF 是正方形,矩形ABCD 矩形ECDF ,2AD =,则DF 的值为()A.3B.1C.3- D.112.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的()A.12B.14C.16D.1813.设a ,b 是方程2320180x x +-=的两个实数根,则24a a b ++的值为()A.2014B.2015C.2016D.201714.如图,边长为1的正方形ABCD 的对角线交于点O ,点E 是边AB 上一动点,点F 在边BC 上,且满足OE ⊥OF ,在点E 由A 运动到B 的过程中,以下结论正确的个数为()①线段OE 的大小先变小后变大;②线段EF 的大小先变大后变小;③四边形OEBF 的面积先变大后变小.A.0B.1C.2D.315.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB 于E ,点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为()(1)3DC OG =;(2)12OG BC =;(3) OGE 是等边三角形;(4)16AOE ABCD S S =矩形△A.1个 B.2个C.3个D.4个二、填空题(本大题共6小题,共18分)16.已知关于x 的方程2240x x m -+=的一个根是1-,则m =______.17.对任意的两实数,a b ,用m in(,)a b 表示其中较小的数,如min(2,4)4-=-,则方程min(2,21)1x x x ⋅-=+的解是__________.18.从美学角度来说,人的上身长与下身长之比为黄金比时,可给人以协调的美感.某女老师身长约1.68m ,下身长约1.02m ,她要穿鞋后跟_____cm 高的高跟鞋才能达到黄金比的美感效果(结果精确到1cm ).19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB =____m .20.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.三、解答题(本大题共6小题,共58.0分)21.解方程(1)()22239x x -=-(2)23250x x --=(配方法)22.如图,在△ABC 中,∠BAC =90°,点D 是BC 中点,AE ∥BC ,CE ∥AD .(1)求证:四边形ADCE 是菱形;(2)过点D 作DF ⊥CE 于点F ,∠B =60°,AB =6,求EF 的长.23.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?24.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+= ,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)已知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3)若已知24,6130a b ab c c -=+-+=,求a b c -+的值.25.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.26.如图,在矩形ABCD 中,8AB =cm ,16BC =cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ AQ CP 、、.设点P 、Q 运动的时间为t s .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.滕东中学九年级数学期中模拟试题一、选择题:本大题共15小题,每小题3分共45分1.下列一元二次方程没有实数根的是()A.2230x x --=B.2210x x ++= C.2 20x -= D.230x x ++=【答案】D【解析】【分析】本题主要考查根的判别式,分别计算出每个方程中的判别式的值,从而得出答案.【详解】解:A .方程2230x x --=中()22413160∆=-⨯⨯-=>,此方程有两个不相等的实数根;B .方程2210x x ++=中224110∆=-⨯⨯=,此方程有两个相等的实数根;C .方程2 20x -=中()2041280∆=-⨯⨯-=>,此方程有两个不相等的实数根;D .方程230x x ++=中21413110∆=-⨯⨯=-<,此方程没有实数根;故选D .2.下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形【答案】C 【解析】【分析】利用菱形的判定定理进行判断即可.【详解】解:A 、对角线相等的平行四边形是矩形,故选项A 错误;B 、对角线互相垂直且相等的四边形不一定是菱形,故选项B 错误;C 、对角线互相平分且垂直的四边形是菱形,故选项C 正确;D 、对角线互相垂直的四边形不一定是菱形,故选项D 错误.故选:C .【点睛】本题考查了菱形的判定,平行四边形的性质,熟练运用这些性质是本题的关键.3.已知23x y =,则下列比例式成立的是()A.23x y = B.43x y y += C.32x y= D.35x y x +=【答案】C 【解析】【分析】本题考查了比例是性质,根据内项之积等于外项之积对各个选项进行化简,即可求解;掌握性质“若a cb d=,则ad bc =.”是解题的关键.【详解】解:A.由23x y=可得32x y =,故不符合题意;B.由43x y y +=可得3x y =,故不符合题意;C.由32x y=可得23x y =,故符合题意;D.由35x y x +=可得25x y =-,故不符合题意;故选:C .4.根据下列表格的对应值:x1.11.2 1.3 1.42ax bx c ++0.59-0.842.293.76可以判断方程()210ax bx c a ++=≠,a b c ,,为常数的一个解x 的范围是()A.1.1 1.2x << B.1.2 1.3x << C.1.3 1.4x << D.无法判定【答案】B 【解析】【分析】本题考查估算一元二次方程的解,根据表格数据求出对应的()210ax bx c a ++-≠的值,进而找到相邻的两个x 的值,使()210ax bx c a ++-≠的值一正一负,即可得出结果.【详解】解:由题意,列出表格如下:x1.11.2 1.3 1.42ax bx c ++0.59-0.842.293.7621ax bx c ++- 1.59-0.16- 1.292.76由表格可知,当1.2 1.3x <<时,存在一个x 的值使210ax bx c ++-=,即满足方程()210ax bx c a ++=≠,故选B .5.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A.12B.1C.D.2【答案】B 【解析】【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】解:如图作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值,最小值为M ′N 的长.∵菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴M ′是AD 的中点,又∵N 是BC 边上的中点,∴AM ′∥BN ,AM ′=BN ,∴四边形ABNM ′是平行四边形,∴M ′N =AB =1,∴MP +NP =M ′N =1,即MP +NP 的最小值为1,故选B .6.已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是()A.abB.a bC.a b +D.a b-【答案】D 【解析】【分析】本题根据一元二次方程的根的定义,把x =-a 代入方程,即可求解.【详解】解:∵方程x 2+bx +a =0有一个根是-a (a ≠0),∴(-a )2+b (-a )+a =0,又∵a ≠0,∴等式的两边同除以a ,得a -b +1=0,故a -b =-1.故选:D .【点睛】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.7.如图,D 、E 是AB 的三等分点,DF EG BC ∥∥,图中三部分的面积分别为1S ,2S ,3S ,则123S S S =::()A.123::B.124::C.135::D.234::【答案】C 【解析】【分析】本题主要考查了相似三角形的性质与判定,先求出1233AD AB AE AB ==,,再证明 ∽ADF ABC 得到2119ABCAD S AB S ⎛⎫== ⎪⎝⎭△,同理可得249AEG ABC S AE S AB ⎛⎫== ⎪⎝⎭△△,则214399ABC ABC S S S S =-=△△,3259ABC ABC S S S S =-=△△,据此可得答案.【详解】解:∵D 、E 是AB 的三等分点,∴1233AD AB AE AB ==,,∵DF BC ∥,∴ADF B AFD C ==∠∠,∠∠,∴ ∽ADF ABC ,∴2119ABCAD S AB S ⎛⎫== ⎪⎝⎭△,同理可得249AEG ABC S AE S AB ⎛⎫== ⎪⎝⎭△△,∴214399ABC ABC S S S S =-=△△,3259ABC ABC S S S S =-=△△,∴123135S S S =::::,故选:C8.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染x 台电脑,则下列所列方程中正确的是()A.21100x x ++= B.()1100x x += C.()21100x += D.()211100x ++=【答案】C【解析】【详解】根据题意得,第一轮被感染的电脑有(x +1)台,第二轮被感染的电脑有(x +1)(x +1)台,则方程可列为()21100x +=.故选C.9.如图,在矩形ABCD 中,6AB =,8BC =,过对角线交点O 作EF AC ⊥交AD 于点E ,交BC 于点F ,则DE 的长是()A.1B.74C.2D.125【答案】B【解析】【分析】连接CE ,由矩形的性质得出90ADC ∠= ,6CD AB ==,8AD BC ==,OA OC =,由线段垂直平分线的性质得出AE CE =,设DE x =,则8CE AE x ==-,在Rt CDE ∆中,由勾股定理得出方程,解方程即可.【详解】如图:连接CE ,∵四边形ABCD 是矩形,∴90ADC ∠= ,6CD AB ==,8AD BC ==,OA OC =,∵EF AC ⊥,∴AE CE =,设DE x =,则8CE AE x ==-,在Rt CDE ∆中,由勾股定理得:()22268x x +=-,解得:74x =,即74DE =;故选B .【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.10.如图,下列选项中不能判定ACD ABC △∽△的是()A.2AC AD AB=⋅ B.2BC BD AC =⋅ C.ACD B ∠=∠ D.ADC ACB∠=∠【答案】B【解析】【分析】本题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键;利用相似三角形的判定方法依次判断即可.【详解】解:在ACD 和ABC V 中,CAD BAC∠=∠A.若2AC AD AB =⋅,则有AC AB AD AC=,由两组对应边成比例,且夹角对应相等的两三角形相似,故不符合题意;B.2BC BD AC =⋅,不能证明两三角形相似,故符合题意;C.ACD B ∠=∠,由两组角分别对应相等的两个三角形相似,故不符合题意;D.ADC ACB ∠=∠,由两组角分别对应相等的两个三角形相似,故不符合题意;故选:B .11.如图,在矩形ABCD 中,点E 、F 分别在BC ,AD 上,四边形ABEF 是正方形,矩形ABCD 矩形ECDF ,2AD =,则DF 的值为()A.3B.1C.3-D.1【答案】A【解析】【分析】根据相似多边形的性质可得AB AD EC EF=,设正方形ABEF 的边长为x ,EC y =,那么x x y y x +=,求出152x y +=,代入:y DF AD x y =+计算即可.【详解】解: 矩形ABCD ∽矩形ECDF ,∴AB AD EC EF =,设正方形ABEF 的边长为x ,EC y =,则x x y y x+=,220x yx y ∴--=,x ∴=0x >,0y >,12x y ∴=,:yDF ADx y∴==+,2AD=,3DF∴=,故选:A.【点睛】此题主要考查了相似多边形的性质,关键是掌握相似多边形对应边的比相等.12.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的12,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A.12 B.14C.16 D.18【答案】D【解析】【分析】设正方形B的面积为S,正方形B对角线的交点为O,标注字母并过点O作边的垂线,根据正方形的性质可得OE=OM,∠EOM=90°,再根据同角的余角相等求出∠EOF=∠MON,然后利用“角边角”证明△OEF和△OMN全等,根据全等三角形的面积相等可得阴影部分的面积等于正方形B的面积的14,再求出正方形B的面积=2正方形A的面积,即可得出答案.【详解】解:设正方形B对角线的交点为O,如图1,设正方过点O作边的垂线,则OE=OM,∠EOM=90°,∵∠EOF+∠EON=90°,∠MON+∠EON=90°,∴∠EOF=∠MON,在△OEF和△OMN中EOF MON OE 0M OEF OMN 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩,∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =14S 正方形CTKW ,即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B 面积的18,故选D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.13.设a ,b 是方程2320180x x +-=的两个实数根,则24a a b ++的值为()A.2014B.2015C.2016D.2017【答案】B【解析】【分析】先根据一元二次方程的解的定义得到a 2=-3a+2018,则a 2+4a+b=-3a+2018+4a+b=2018+a+b ,然后根据根与系数的关系得到a+b=-3,再利用整体代入的方法计算.【详解】解:∵a 是方程2320180x x +-=的根,∴a 2+3a-2018=0,∴a 2=-3a+2018,∴a 2+4a+b=-3a+2018+4a+b=2018+a+b ,∵a ,b 是方程2320180x x +-=的两个实数根,∴a+b=-3,∴a 2+4a+b =2018-3=2015.故选B .【点睛】本题考查了一元二次方程的根的定义和根与系数的关系.若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根,则1212,b c x x x x a a+=-=.求值过程体现了降次思想.14.如图,边长为1的正方形ABCD 的对角线交于点O ,点E 是边AB 上一动点,点F 在边BC 上,且满足OE ⊥OF ,在点E 由A 运动到B 的过程中,以下结论正确的个数为()①线段OE 的大小先变小后变大;②线段EF 的大小先变大后变小;③四边形OEBF 的面积先变大后变小.A.0B.1C.2D.3【答案】B【解析】【分析】①根据E 点运动路线可知E 点在起始A 点和终点B 点时都最大,在此过程中当OE ⊥AB 时,OE 最小,所以线段OE 的大小先变小后变大;②易知△AOE ≌△BOF ,可得OE =OF ,根据勾股定理可知EF 2=OE 2+OF 2=2OE 2,所以EF 的变化和OE 变化一致:先变小后变大;③证明四边形OEBF 面积=△AOB 面积,可得其面积始终不变.【详解】①在点E 由A 运动到B 的过程中,根据垂线段最短可知当OE ⊥AB 时,OE 最小,所以线段OE 的大小先变小后变大,①正确;②∵四边形ABCD 是正方形,∴∠AOB=90°,即∠AOE+∠BOE=90°,∵∠BOF+∠BOE=90°,∴∠AOE=∠BOF ,又∵∠OAE=∠OBF=45°,OA=OB ,∴△OAE ≌△OBF(ASA),∴OE=OF ,∵在Rt △OEF 中,利用勾股定理可知EF 2=OE 2+OF 2=2OE 2,∴EF 的变化是先变小后变大,②错误;③∵△OAE ≌△OBF ,∴△OAE 的面积=△OBF 的面积,∴四边形OEBF 的面积=△OEB 的面积+△OBF 的面积=△OEB 的面积+△OAE 的面积=△AOB 的面积,∴四边形OEBF 的面积不会改变,始终等于△AOB 面积,③错误.故选:B .【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理,本题同时也属于动点问题,解决此题的关键是分析出E 点运动轨迹,同时推导出△OAE ≌△OBF ,不仅可得OF =OE ,判断出EF 变化趋势,而且还推导出四边形OEBF 面积不会改变,始终等于△AOB 的面积.15.如图,在矩形ABCD 中,O 为AC 中点,EF 过O 点且EF AC ⊥分别交DC 于F ,交AB 于E ,点G 是AE 中点且30AOG ∠=︒,则下列结论正确的个数为()(1)3DC OG =;(2)12OG BC =;(3) OGE 是等边三角形;(4)16AOE ABCD S S =矩形△A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得12OG AG GE AE ===,再根据等边对等角可得30OAG AOG ∠=∠=︒,根据直角三角形两锐角互余求出60GOE ∠=︒,从而判断出 OGE 是等边三角形,判断出(3)正确;设2AE a =,,根据等边三角形的性质表示出OE OG a ==,利用勾股定理求出AO =,得到AC =,再求出BC =,然后利用勾股定理列式求出3AB a =,从而判断出(1)正确,(2)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF AC ⊥,点G 是AE 中点,∴12OG AG GE AE ===,∵30AOG ∠=︒,∴30OAG AOG ∠=∠=︒,∴90903060GOE AOG ∠=︒-∠=︒-︒=︒,∴ OGE 是等边三角形,故(3)正确;设2AE a =,则OE OG a ==,由勾股定理得,AO ===,∵O 为AC 中点,∴2AC AO ==,∴1122BC AC ==⨯=,在Rt ABC △中,由勾股定理得,3AB a ==,∵四边形ABCD 是矩形,∴3CD AB a ==,∴3DC OG =,故(1)正确;∵,OG a BC ==,∴33OG BC =,故(2)错误;∵2122AOE S a a == ,23ABCD S a ==,∴16AOE ABCDS S =矩形△,故(4)正确;综上所述,结论正确的是(1)(3)(4).故选:C .【点睛】本题考查了矩形的性质、直角三角形斜边上的中线的性质、等边三角形的判定与性质、勾股定理等知识,设出2AE a =,然后用a 表示出相关的边是解题的关键.二、填空题(本大题共6小题,共18分)16.已知关于x 的方程2240x x m -+=的一个根是1-,则m =______.【答案】2-【分析】本题主要考查了一元二次方程的解的定义,一元二次方程的解是使方程左右两边相等的未知数的值,据此把1x =-代入原方程求出m 的值即可.【详解】解:∵关于x 的方程2240x x m -+=的一个根是1-,∴((221410m ⨯--⨯-+=,解得2m =-,故答案为:2-.17.对任意的两实数,a b ,用m in(,)a b 表示其中较小的数,如min(2,4)4-=-,则方程min(2,21)1x x x ⋅-=+的解是__________.【答案】1132x -=,2312x +=【解析】【分析】此题根据题意可以确定max(2,2x-1),然后即可得到一个一元二次方程,解此方程即可求出方程的解.【详解】①当2x-1>2时,∵max (2,2x-1)=2,∴xmax(2,2x-1)=2x ,∴2x=x+1解得,x=1,此时2x-1>2不成立;②当2x-1<2时,∵max (2,2x-1)=2x-1,∴xmax(2,2x-1)=2x 2-x ,∴2x 2-x =x+1解得,1132x -=,2312x +=.故答案为1132x -=,2312x +=.【点睛】本题立意新颖,借助新运算,实际考查解一元二次方程的解法.18.从美学角度来说,人的上身长与下身长之比为黄金比时,可给人以协调的美感.某女老师身长约1.68m ,下身长约1.02m ,她要穿鞋后跟_____cm 高的高跟鞋才能达到黄金比的美感效果(结果精确到1cm ).【解析】【分析】本题考查的是黄金分割的知识,根据题意列出方程是解题的关键.设她要穿cm x 的高跟鞋,根据黄金比值约为0.618列出方程,解方程得到答案.【详解】解:这位女老师的上身长为:168102066m ...=﹣,设她要穿cm x 的高跟鞋,由题意得,660.618102x =+,解得5≈x .故答案为5.19.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE =40cm ,EF =20cm ,测得边DF 离地面的高度AC =1.5m ,CD =8m ,则树高AB =____m .【答案】5.5【解析】【详解】在△DEF 和△DBC 中,D D DEF DCB ∠=∠⎧⎨∠=∠⎩,∴△DEF ∽△DBC ,∴DE CD EF BC=,40cm=0.4m ,20cm=0.2m ,即0.480.2BC =,解得BC =4,∵AC =1.5m ,∴AB =AC +BC =1.5+4=5.5m故答案为:5.5m【点睛】考点:相似三角形20.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.【答案】12【解析】【分析】根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG =2可求出AF 、AG 的长度,由CG ∥AB 、AB =2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.【详解】∵四边形ABCD 为正方形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠GDF ,∠BAF =∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD==2,∴AF =2GF =4,∴AG =6.∵CG ∥AB ,AB =2CG ,∴CG 为△EAB 的中位线,∴AE =2AG =12.故答案为12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.三、解答题(本大题共6小题,共58.0分)21.解方程(1)()22239x x -=-(2)23250x x --=(配方法)【答案】(1)1239x x ==,(2)12513x x =-=,【解析】【分析】本题主要考查了解一元二次方程:(1)先把原方程化为一般式,再利用十字相乘法分解因式,进而解方程即可;(2)先把二次项系数化为1,再把常数项移到方程右边,接着把方程两边同时加上一次项系数一半的平方进行配方,最后解方程即可.【小问1详解】解:∵()22239x x -=-,∴()2226990x x x -+-+=,∴222121890x x x -+-+=,∴212270x x -+=,∴()()390x x --=,∴30x -=或90x -=,解得1239x x ==,;【小问2详解】解:∵23250x x --=,∴225033x x --=,∴22533x x -=,∴22116399x x -+=,∴211639x ⎛⎫-= ⎪⎝⎭,∴1433x -=±,解得12513x x =-=,.22.如图,在△ABC 中,∠BAC =90°,点D 是BC 中点,AE ∥BC ,CE ∥AD .(1)求证:四边形ADCE是菱形;(2)过点D作DF⊥CE于点F,∠B=60°,AB=6,求EF的长.【答案】(1)见解析(2)3【解析】【分析】(1)根据菱形的判定定理及直角三角形斜边上的中线的性质证明即可;(2)根据等边三角形的判定和性质得出△ABD是等边三角形,∠ADB=60°,AD=AB=6,利用平行线的哦性质可得∠DCE=60°,结合图形得出132CF CD==,再由(1)中结论求解即可得出结果.【小问1详解】证明:∵AE∥DC,EC∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∴平行四边形ADCE是菱形;【小问2详解】解:∵∠B=60°,AD=BD,∴△ABD是等边三角形,∴∠ADB=60°,AD=AB=6,∵AD∥CE,∴∠DCE=60°,∴∠FDC=30°,∵CD=AD=6,∴132CF CD==,∵四边形ADCE是菱形,∴CE=CD=6,∴EF=3.【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,含有30度角的直角三角形的性质等,理解题意,熟练掌握运用菱形的判定和性质是解题关键.23.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【答案】(1)(300﹣10x).(2)每本书应涨价5元.【解析】【详解】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.24.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+= ,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)已知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3)若已知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.25.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【答案】(1)见解析;(2)MN =.【解析】【分析】(1)通过证明ABD BCD ∆∆∽,可得AD BD BD CD=,可得结论;(2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长.【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD ∴∆∆∽,AD BD BD CD∴=,2BD AD CD ∴⋅=;(2)//BM CD ,MBD BDC ∴∠∠=,ADB MBD ∴∠∠=,且90ABD ∠︒=,BM MD MAB MBA ∴∠∠=,=,4BM MD AM ∴===,2BD AD CD ⋅ =,且68CD AD =,=,248BD ∴=,22212BC BD CD ∴-==,22228MC MB BC ∴+==,MC ∴=,//BM CD ,MNB CND ∴∆∆∽,23BM MN CD CN ∴==且MC =,MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.26.如图,在矩形ABCD 中,8AB =cm ,16BC =cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ AQ CP 、、.设点P 、Q 运动的时间为t s .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.【答案】(1)8t =(2)6t =(3)周长为40cm ;面积为802cm 【解析】【分析】(1)根据矩形的判定可得:当BQ AP =时,四边形ABQP 为矩形,进而可得关于t 的方程,即可求解;(2)当AQ CQ =时,四边形AQCP 为菱形,进而可得关于t 的方程,即可求解;(3)求出菱形的边长,再计算周长和面积即可.【小问1详解】∵在矩形ABCD 中,816AB BC ==,,∴168BC AD AB CD ====,,由已知可得,16BQ DP t AP CQ t ====-,,在矩形ABCD 中,90B AD BC =︒∠,∥,当BQ AP =时,四边形ABQP 为矩形,∴16t t =-,得8t =,故当8t =时,四边形ABQP 为矩形;【小问2详解】∵AP CQ AP CQ =,∥,∴四边形AQCP 为平行四边形,∴当AQ CQ =,即22AQ CQ =时,四边形AQCP 为菱形即2228(16)t t +=-时,四边形AQCP 为菱形,解得6t =,故当6t =时,四边形AQCP 为菱形;【小问3详解】当6t =时,16610AQ CQ CP AP ====-=,则周长为41040⨯=cm ;面积为210880cm ⨯=.【点睛】本题考查了矩形的判定和性质、菱形的判定和性质,熟练掌握特殊四边形的判定和性质是解题的关键.。
初中九年级(上)期中数学模拟试卷及答案
.
,
11解析:点
关于原点的对称点的坐标为
,
故答案为:
.
12解析:根据题意得
,
解得
.
故答案为:
.
13解析:设每轮传染中平均每人传染了 人.
依题意,得
,
即
,
解方程,得
,
舍去 。
答:每轮传染中平均每人传染了 人.
14解析:设圆的半径是 米,则 ,
,
,
,
的半径长为 米.
故答案为: .
米,
米),
14. 如图,一条公路的转弯处是一段圆弧( ),点 是这段弧
所在圆的圆心, 为 米,
一点,
于 .若
米,则的 的半径长为
______米.
15. 已知抛物线
, 为常数)与 轴
相交于点 , ,顶点为 .下列四个结论:
①该抛物线的对称轴为
;
②
;
③若
为等腰直角三角形,则
;
④若
时,图象任意两点之间的线段均不与 轴平行,则 的范围是
≌
,
,
四边形 设
是等边三角形,
是矩形,
,
,
, , ,
,
,
,
,
<<
,
故 的取值范围是
<<
.
故答案为:
<<
.
17解析:当
时,原方程为
,
解得:
,
设方程的另一个实数根为 ,
,
.
方程的另一个根为 , 的值为 .
18解析: 证明: 将
绕 点逆时针旋转 得到
,
,
,
是等边三角形.
,
理由:
江苏省徐州市邳州市2024—2025学年上学期期中考试九年级数学试卷(含答案)
2024~2025学年度第一学期期中检测九年级数学试题注意事项1.本卷共6页,满分140分,考试时间100分钟。
2.答题前,请将姓名、文化考试证号用0.5毫米黑色字迹签字笔填写本卷和答题卡的指定位置。
3.答案全部涂、写在答题卡上,写在本卷上无效。
考试结束后,将答题卡交回。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.方程的解是( )A .,B .C .,D .,2.的半径长为4,若点P 到圆心的距离为3,则点P 与的位置关系是( )A .点P 在内B .点P 在上C .点P 在外D .无法确定3.方程的两根为、,则( )A .6B .-6C .3D .-34.下列函数的图象与的图象形状相同的是( )A .B .C .D .5.如图,A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心.若,则这个正多边形的边数为( )A .7B .8C .9D .10(第5题)6.如图,在半径为5的中,弦,点C 是弦AB 上的一动点,若OC 长为整数,则满足条件的点C 有()240x x -=12x =-22x =4x =10x =24x =14x =-24x =O e O e O e O e O e 2261x x -=1x 2x 25y x =22y x=252y x =-+251y x x =++51y x =-20ADB ∠=︒O e 8AB =(第6题)A .3个B .4个C .5个D .6个7.为响应“坚持绿色低碳,建设一个清洁美丽的世界”的号召,已知某市一共有285个社区,第一季度已有60个社区实现垃圾分类,第二、三季度实现垃圾分类的小区个数较前一季度平均增长率为x ,要在第三季度将所有社医都进行垃圾分类,下列方程正确的是( )A .B .C .D .8.当时,函数的最小值为1,则a 的值为( )A .0B .2C .0或2D .0或3二、填空题(本大题共8小题,每小题4分,共32分.不需写出解题过程,请将答案直接填写在答题卡相应位置)9.一元二次方程的根是______.10.请在横线上写一个常数,使得关于x 的方程有两个相等的实数根.11.若是一元二次方程的一个根,则______.12.如图,是的内切圆,若,,则______°.(第12题)13.已知二次函数的图像经过点、,则______(填“>”“<”或“=”).14.如图,将一个圆锥展开后,其侧面是一个圆心角为108°,半径为12cm 的扇形,则该圆锥的底面圆的半径为______cm.()2601285x +=()2601285x -=()()2601601285x x +++=()()260601601285x x ++++=1a x a -≤≤221y x x =-+213x -=26______0x x -+=1x =20x mx n --=2024m n ++=O e ABC △60ABC ∠=︒50ACB ∠=︒BOC ∠=()()210y a x c a =-+<()11,y -()24,y 1y 2y(第14题)15.平面直角坐标系中,若平移二次函数的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为______.16.已知如图,二次函数的图像交x 轴于A 、B 两点,交y 轴于C 点,连接BC ,点M 是BC 上一点,射线MN 与以A 为圆心,1为半径的相切于点N ,则线段MN 的最小值是______.(第16题)三、解答题(本大题共9小题,共84分,请在答题卡指定区域内作答,解答时写出相应文字说明、证明过程或演算步骤)17.(本题10分)解下列方程:(1);(2).18.(本题8分)已知关于x 的一元二次方程.求证:不论m 为何值,该方程总有两个实数根.19.(本题8分)如图,AB 是的直径,弦AD 平分,,垂足为E .试判断DE 与的位置关系,并说明理由.(第19题)()()202420254y x x =--+2y =+A e 2420x x --=()()323x x x +=+210x mx m ++-=O e BAC ∠DE AC ⊥O e20.(本题8分)某小区有一块矩形绿地,长为20m ,宽为8m .为美化小区环境,现进行如下改造,将绿地的长减少a m ,宽增加a m ,改造后的面积比原来增加,求a 的值.21.(本题10分)已知y 是x 的函数,下表中给出了几组x 、y 的对应值:x …-2-1.5-101 4.55…y…3m-2-31.3753…(1)建立直角坐标系,以表中各对对应值为坐标描出各点,用平滑曲线顺次连接,由图像可知,它是我们学过的哪类函数?求出函数表达式,并直接写出m 的值;(2)结合图像回答问题:当x 的取值范围是____________时,.(第21题)22.(本题10分)如图,在中,,以AB 为直径作,分别交AC 、BC 于点D 、E .(1)求证:;(2)当时,求的度数;(3)过点E 作的切线,交AB 的延长线于点F ,当时,求图中阴影部分面积.(第22题)23.(本题10分)商场将进货价为40元每件的某商品以50元售出,平均每月能售出700件,调查表明:售价在50元至100元范围内,这种商品的售价每上涨1元,其销售量就将减少10件,设商场决定每件商品的售价为元.(1)该商场平均每月可售出______件商品(用含x 的代数式表示);(2)商品售价定为多少元时,每月销售利润最大?227m 0y ≥ABC △AB AC =O e BE CE =40BAC ∠=︒ADE ∠O e 2AO BE ==()50100x x <<(3)该商场决定每销售一件商品就捐赠a 元利润给希望工程,通过销售记录发现,每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小,求a 的取值范围.24.(本题10分)(1)如图①,点A 、B 、C 、D 在上,,则______°:(2)如图②,A 、B 两点分别在x 轴和y 轴上,是的外接圆,利用直尺和圆规在第一象限内作出一点P ,使,且;(保留作图痕迹)(3)如图③,已知线段AB 和直线l ,利用直尺和圆规在l 上作出点P ,使;(保留作图痕迹)(4)如图④,在平面直角坐标系的第一象限内有一点B ,坐标为,过点B 作轴,轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),使得的位置有两个,则m 的取值范围为______.(第24题)25.(本题10分)如图,二次函数的图像与x 轴交于点、,与y 轴交于点C .连接AC 、BC .(1)填空:______,______;(2)如图①,若点D 是此二次函数图像的第一象限上一点,设D 点横坐标为m ,当四边形OCDB 的面积最大时,求m 的值;(3)如图②,若点P 在第四象限,点Q 在PA 的延长线上,当时,求点P 的坐标.(第25题)()1a ≥O e 35BAC ∠=︒BOC ∠=C e AOB △OPA OBA ∠=∠OP AP =30APB ∠=︒()2,m AB y ⊥BC x ⊥45OPC ∠=︒212y x bx c =-++()1,0A -()4,0B b =c =45CAQ CBA ∠=∠+︒2024~2025学年度第一学期期中检测九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)题号12345678答案CACBCCDD二、填空题(本大题共8小题,每小题4分,共32分)9.,10.911.202512.12513.>14.3.615.向下平移4个单位长度16三、解答题(本大题共9小题,共84分)17.(本题10分)解:(1)移项,得配方,得即直接开平方,得∴(2)移项,得因式分解,得∴或∴,18.(本题8分)解:∵,,∴∵不论m 为何值∴不论m 为何值,该方程总有两个实数根.19.(本题8分)解:DE 与相切理由是:连接OD∵∴∵AD 平分∴∴∴∵∴∴DE 与相切.12x =22x =-242x x -=24424x x -+=+()226x -=2x -=12x =+22x =()()3230x x x +-+=()()230x x -+=20x -=30x +=12x =23x =-1a =b m =1c m =-()2²4411b ac m m -=-⨯⨯-²44m m =-+()22m =-()220m -≥O e OD OA =ODA OAD∠=∠BAC ∠OAD CAD ∠=∠ODA CAD ∠=∠AC OD ∥DE AC ⊥OD DE ⊥O e(第19题)20.(本题8分)解:根据题意得:即:解得:,答:a 的值为3或9.21.(本题10分)(1)描点、连线如图是二次函数,设函数的表达式为:把点,,代入得解得:∴函数得表达式为(2)或.22.(本题10分)(1)证明:连接AE∵AB 是直径∴∴∵∴()()20820827a a -+-⨯=212270a a -+=13a =29a =()20y ax bx c a =++≠()1,0-()0,2-()1,3-023a b c c a b c -+=⎧⎪=-⎨⎪++=-⎩12322a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩213222y x x =--1.375m =1x ≤-4x ≥O e 90AEB ∠=︒AE BC ⊥AB AC =BE CE=(第22题)(2)解:∵,∴∵四边形ABED 是的内接四边形∴∴.(3)解:连接OE 则∵∴∴是等边三角形∴∵EF 是切线∴∴∴∴∴阴影部分的面积.23.(本题10分)(1)(2)设每月销售利润为y 元则∵,∴当时,y 有最大值16000答:商品售价定为80元时,每月销售利润最大;(3)设每月销售利润为y 元则∴对称轴为直线∵∴当时,y 随x 得增大而减小∵每件商品销售价格大于85元时,扣除捐款后每天的利润随x 增大而减小∴解得:∵∴a 的取值范围是.24.(本题10分)(1)35,702分AB AC =40BAC ∠=︒180180407022BAC ABC ︒-∠︒-︒∠===︒O e 180ADE ABC ∠+∠=︒180********ADE ABC ∠=︒-∠=︒-︒=︒OE OA OB==2OA BE ==OA OB BE ==OBE △60BOE ∠=︒O e OE EF ⊥30F ∠=︒24OF OE ==EF ===2160π222π23603OEF BOE S S ⨯=-=⨯⨯=-扇形△101200x -+()()()224010120010160048000108016000y x x x x x =--+=-+-=--+100-<50100x <<80x =()()()24010120010160010480001200y x a x x a x a=---+=-++--()160010802102a a x +=-=+⨯-100-<802ax >+80852a+≤10a ≤1a ≥110a ≤≤(2)如图(3)如图(4)25.(本题10分)(1),2(2)∵点D 横坐标为m ,且点D 在二次函数的图像上∴点D 坐标为对于二次函数,当时,∴设BC :则解得:∴BC :21m ≤<32213222y x x =-++213,222m m m ⎛⎫-++ ⎪⎝⎭213222y x x =-++0x =2y =()0,2C y kx b =+402k b b +=⎧⎨=⎩122k b ⎧=-⎪⎨⎪=⎩122y x =-+过点D 作轴,交BC 于点E 则∴∴到DE 的距离到DE 的距离(C 到DE 的距离到DE 的距离)∵,∴当时,有最大值8∴.(3)∵,,∴,,∴∴设,则∵∴∴DE y ∥1,22E m m ⎛⎫-+ ⎪⎝⎭2213112222222DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭OBC BCD OCDB S S S =+四边形△△OBC CDE BDES S S =++△△△1122OC OB DE C =⨯⨯+⨯⨯12DE B +⨯⨯112422DE =⨯⨯+⨯⨯B +1442DE =+⨯⨯214222m m ⎛⎫=+-+ ⎪⎝⎭244m m =-++()()22804m m =--+<<10a =-<04m <<2m =OCDB S 四边形2m =()1,0A -()4,0B ()0,2C 25AC =220BC =225AB =222AC BC AB +=90ACB ∠=︒ABC x ∠=90CAB x∠=︒-45CAQ CBA ∠=∠+︒45CAQ x ∠=+︒()()180459045PAB x x ∠=︒-+︒-︒-=︒设直线AP 交y 轴于F则∴设AP :则解得:∴AP :设∵点P 在二次函数的图象上∴解得:,(舍去)当时,∴点P 的坐标为.1OF OA ==()0,1F -y kx b =+01k b b -+=⎧⎨=-⎩11k b =-⎧⎨=-⎩1y x =--()(),10P n n n -->213222y x x =-++2132122n n n -++=--16n =21n =-6n =17n --=-()6,7-。
2024-2025学年九年级数学上学期期中模拟卷(青岛版,九上第1~3章)(全解全析)
2024-2025学年九年级数学上学期期中模拟卷(青岛版)(时间:120分钟满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版九年级上册第1章~第3章。
5.难度系数:0.7。
第Ⅰ卷一、选择题:本题共10 小题,每小题 3 分,共30 分.每小题只有一个选项符合题目要求.1.观察如图每组图形,是相似图形的是( )A.B.C.D.【答案】B【解析】A.两图形形状不同,不符合题意;B.两图形形状相同,符合题意;C.两图形形状不同,不符合题意;D.两图形形状不同,不符合题意.故选:B.2.如图,在⊙O中,∠BOC=130°,点A在BAC上,则∠BAC的度数为( )A .55°B .65°C .75°D .130°3.已如O e 的直径为6cm ,点O 到直线l 的距离为4cm ,则l 与O e 的位置关系是( )A .相离B .相切C .相交D .相切或相交【答案】A【解析】∵O e 的直径为6cm ,点O 到直线l 的距离为4cm ,∴O e 的半径为3cm ,∵43>,∴l 与O e 的位置关系是相离.故选A .4.如图,90B Ð=°,用科学计算器求∠A 的度数,下列按键顺序正确的是( )A .B .C .D .5.如图,直线123////l l l ,直线AC 和DF 被1l ,2l ,3l 所截,如果3AB =,5BC =,4EF =,那么DE 的长是( )A .125B .325C .203D .3236.小明不慎把家里的圆形镜子打碎了(如图),其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的碎片应该是( )A .①B .②C .③D .④【答案】A 【解析】解:第①块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A .7.如图,O e 的直径AB 与弦CD 交于点E ,若B 为弧CD 的中点,则下列说法错误的是( )A .弧CB =弧BDB .OE BE =C .CE DE=D .AB CD^【答案】B【解析】∵点B 为 CD 的中点,∴ BCBD =,故A 选项说法正确,不符合题意;∵AB 是O e 的直径, BCBD =,∴CE DE =,AB CD ^,故C 、D 选项说法正确,不符合题意;不能证明OE BE =,故B 选项说法错误,符合题意;故选:B .8.一种燕尾夹如图1所示,图2是在闭合状态时的示意图,图3是在打开状态时的示意图(数据如图,单位:mm ),则从闭合到打开B ,D 之间的距离减少了( )A .25 mmB .20mmC .15 mmD .8mm ,∴284639AE AF AB AD ===,AEF ∽△ABD ,,∴9204BD =,解得BD =45,9.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .125.251051022==.10.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点(30)A ,,与y 轴交于点B ,2OB OA =,点M 在以点(10),C -为圆心,3为半径的圆上,点N 在直线AB 上,若MN 是C e 的切线,则2MN 的最小值为( )A .194B .254C .195D .52°,^时CN最小,最小,即CN AB4,第Ⅱ卷二、填空题:本题共 6 小题,每小题 3 分,共18 分.11.计算:2cos60°=.12.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了36°,假设绳索(粗细不计)与滑轮之间没有相对滑动,则重物上升了 .13.如图,P 是O e 外一点,PA PB 、分别和O e 相切于点A B 、,C 是弧AB 上任意一点,过C 作O e 的切线分别交PA PB 、于点D E 、,若12PA =,则PDE △的周长为 .14.如图,身高1.8m 的小超站在某路灯下,发现自己的影长恰好是3m ,经测量,此时小超离路灯底部的距离是5m ,则路灯离地面的高度是 m .【答案】4.8【解析】如图,5m AD =,3m DE =, 1.8m CD =,15.如图,海中有一个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 在它的北偏东60°方向上,航行12海里到达点C 处,测得小岛A 在它的北偏东30°方向上,那么小岛A 到航线BC 的距离等于 海里.16.在平面直角坐标系中,正方形1111D C B A 的位置如图所示,点1B 的坐标为()0,2,点1C 的坐标为(1,0),延长11A D 交x 轴于点2C ,作正方形1222D C D A ,延长22A D 交x 轴于点3C ,作正方形2333D C D A ××××××按这样的规律进行下去,则点4A 到x 轴的距离是 .22390=Ð+Ð=°,,12A H =,三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(本题10分)计算:(1)11|1tan 60|sin 452-æö-°--+°+ç÷èø(2)()020221π3cos30°-+--.18.(本题9分)如图,在ABC V 中,CD AB ^于点D ,正方形EFGH 的四个顶点都在ABC V 的边上.求证:111.+=AB CD EF19.(本题9分)如图,数学兴趣小组用无人机测量一幢楼AB 的高度.小亮站立在距离楼底部94米的D 点处,操控无人机从地面F 点,竖直起飞到正上方60米E 点处时,测得楼AB 的顶端A 的俯角为30°,小亮的眼睛点C 看无人机的仰角为45°(点B F D 、、三点在同一直线上).求楼AB 的高度.(参考数据:小亮的眼睛距离地面1.7 1.7»)()60AG x =-米,45ICE =°, ∵m DB ∥,∴45HEC Ð=°,(3°,60AG x =-,, (4分)是矩形,20.(本题10分)如图,AB 是O e 的直径,点C 在O e 上,点D 在AB 的延长线上,BCD A Ð=Ð.(1)求证:直线CD 是O e 的切线;(2)若2BC BD ==,求图中阴影部分的面积.90OCB =°,(2分),A BCD Ð=Ð(3分),OC CD ^(4分)21.(本题10分)如图,在平面直角坐标系中,OAB △的顶点坐标分别为O (0,0),()2,1A ,()1,2B -.(1)以原点O 为位似中心,在y 轴的右侧画出OAB △的一个位似11OA B V ,使它与OAB △的位似比为2:1;(2)画出将OAB △向左平移2个单位,再向上平移1个单位后得到的222O A B V ;(3)判断11OA B V 和222O A B V 是位似图形吗?若是,请在图中标出位似中心点M ,并写出点M 的坐标.22.(本题12分)【问题思考】如图1,等腰直角Rt ABC △,90ACB Ð=°,点O 为斜边AB 中点,点D 是BC边上一点(不与B 重合),将射线OD 绕点O 逆时针旋转90°交AC 于点E .学习小组发现,不论点D 在BC 边上如何运动,BD CE =始终成立.请你证明这个结论;【问题迁移】如图2,Rt ABC △,90ACB Ð=°,15A Ð=°,点O 为斜边AB 中点,点E 是AC 延长线上一点,将线段OE 绕点O 逆时针旋转30°得到OD ,点D 恰好落BC 的延长线上,求C E C D的值;【问题拓展】如图3,等腰ABC V 中,AB AC =,120BAC Ð=°,点D 是BC 边上一点,将CD 绕点C 顺时针旋转60°得到CE ,点D 落在点E 处,连接AE ,BE ,取BE 的中点M ,连接AM ,若AM =AE 的长. ,45A B \=Ð=∠的中点,°,(4分)23.(本题12分)综合与实践小明在刘老师的指导下开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.小明继续利用上述结论进行探究.【提出问题】如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D Ð=Ð,那么A ,B ,C ,D 四点在同一个圆上.探究展示:【反思归纳】(1)上述探究过程中的横线上填的内容是__________;【拓展延伸】(2)如图3,在Rt ABC △中,90ACB Ð=°,AC BC =,将ABC V 绕点A 逆时针旋转得ANM V ,连接CM 交BN 于点D ,连接BM 、AD .小明发现,在旋转过程中,CDB Ð永远等于45°,不会发生改变.①根据45CDB Ð=°,利用四点共圆的思想,试证明ND DB =;②在(1)的条件下,当BDM V 为直角三角形,且4BN =时,直接写出BC 的长.【解析】(1)在题图2中,作经过点A ,C ,D 的O e ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE ,则180AEC D Ð+Ð=°,(1分)又∵B D Ð=Ð,∴180AEC B Ð+Ð=°,∴点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆),(2分)∴点B ,D 在点A ,C ,E 所确定的O e 上,∴点A ,B ,C ,D 四点在同一个圆上,故答案为:180AEC B Ð+Ð=°;(3分)(2)①∵在Rt ACB △中,AC BC =,∴45BAC Ð=°,∵45CDB Ð=°,∴45CDB BAC Ð=Ð=°,∴A ,C ,B ,D 四点共圆,(4分)∴180ADB ACB Ð+Ð=°,∵90ACB Ð=°,∴90ADB Ð=°,∴AD BN ^,(5分)∵ACB △旋转得AMN V ,∴ACB AMN △≌△,∴AB AN =,∵AD BN ^,∴ND DB =.(6分)②如图,当90BMD Ð=°时,2AC,。
2023_2024学年上海市闵行区九年级上册期中考试数学模拟测试卷(附答案)
2023_2024学年上海市闵行区九年级上册期中考试数学模拟测试卷★考生注意∶1.本试卷含五个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、试卷上答题一律无效。
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
3.本次考试不能使用计算器。
一、选择题(本大题共6题,每题4分,满分24分)1.在比例尺为1:6000的地图上测得A 、B 两地间的图上距离为3cm,则A 、B 两地间的实际距离为…………………………………………………………………(▲ )(A )18000 m(B )1800 m(C )180 m(D )18 m2.如果两个相似三角形对应周长之比是2∶3,那么它们的对应边之比是( ▲ )(A )2∶3(B )4∶9 (C )3∶2(D )9∶43.已知在Rt △ABC 中,,,,那么∠B 的度数为( ▲ )90=∠C 1BC =AC =(A )(B ) (C ) (D)15 30 45 604.在△ABC 中,点D 、E 分别在边AB 、AC 上,AD :BD=2:3,那么下列条件中能够判断DE//BC 的是……………………………………………………( ▲ )(A )(B )(C )(D ) 32=BC DE 52=BC DE 32=AC AE 52=AC AE 5.给出下列四个命题,其中真命题有…………………………………………( ▲ ) (1)等腰三角形都是相似三角形(2)直角三角形都是相似三角形(3)等腰直角三角形都是相似三角形 (4)等边三角形都是相似三角形 (A)1个(B)2个(C)3个(D)4个6.如图,已知在梯形ABCD 中,AD ∥BC ,BC =2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是………………………………………………( ▲)(A )S 1=S 3(B )S 2=2S 1(C )S 2=2S 4(D )4231S S S S ⋅=⋅二、填空题(本大题共12题,每题4分,满分48分)7.如果,那么▲ .b a 53==-bba 8. 已知:点P 是线段AB 的黄金分割点, 其中AP 较短,若AB =10,则AP = ▲.9.已知两个三角形相似,其中一个三角形的两个角分别为72、63,则另一个三角形中最小的内角为 ▲ .10.已知,向量与单位向量的方向相反且长度为5,那么用表示向量= ▲ .a e ea 11.如图,已知,cm ,cm ,cm ,那么_ ▲ _cm .321////l l l 6CH =8DH =12AB =BG =12.已知在中,,那么▲.ABC △4tan 3A =sin A =13.如图,已知在△中,是边上的一点,连结.当满足▲条件时,△∽△ABC P AB CP ABC (写一个即可).ACP 14.如图,已知小丽的身高是1.6米,他在路灯下的影长为2米,小丽距路灯灯杆的底部3米,那么路灯灯泡距地面的高度是▲米.15.如图,△中,点D 、E 分别在边AB 、AC 上,CD 平分∠ACB ,DE ∥BC ,若ABC AC=12,AE =4,则BC16.边长为217.如图,在△ABC ∠C=90°,AC=6,BC=3,边AB 的垂直平分线交AB 边于点E ,联结DB ,那么∠的值是▲.tan DBC 18.如图,△ABC 是面积为3的等边三角形,△ADE ∽△ABC ,AB =2AD ,∠BAD =45°,G C A HDB O l 1l 2l 3(第11题图)PCB(第13题图)A(第15题图)(第17题图)C(第14题图)AC 与DE 相交于点F ,则△AEF 的面积是▲.三、简答题(本大题共7题,第19、20、21、22每题10分,23、24每题12分,25题14分,满分78分)19.计算:cos 45tan 60cot 451sin 30︒︒︒︒---20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于点O ,.2:1:=OC AO (1)设,,试用向量、表示向量;AB = a AD =b a b OD (2)先化简,再求作:(直接作在右图中)()7322a b a b⎛⎫+-+ ⎪⎝⎭r r r r 21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知:如图,在△ABC 中,∠ABC =45°,,AB =14,BD 是AC 边上的中线.3sin 5A =(1)求△ABC 的面积;(2)求∠ABD 的余切值.22.(本题满分10分,第(1)小题5分,第(2)小题5分)已知:如图,斜坡AP 的坡度为1∶2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.(1)求坡顶A 到地面PQ 的距离;(2)计算古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23. (本题满分12分,第(1)小题5分,第(2)小题7分)(第22题图)ABCEF(第23题图)B(第20题图)(第21题图)如图,已知在△ABC 中,点E 、F 在边BC 上.(1)如果△AEF 是等边三角形,且∠BAC = 120º,求证:△ABE ∽△ACF ;(2)如果AB = AC ,,求证:.2AE EF EC =⋅22BF AF CE AE =24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在等腰直角△中,,已知、,M 为中点.ABC 90BAC ∠=︒(1,0)A (0,3)B BC (1)求点的坐标:C (2)求的大小;MOA ∠(3)在x 轴上是否存在点,使得以为P O P M 、、顶点的三角形与△相似,若存在,请求出点的坐标,若不存在,请说明理由.OBM P 25.(本题满分14分,第(1)小题①4分,第(1)小题②5分,第(2)小题5分)如图,在菱形ABCD 中,BC =10,E 是边BC 上一点,过点E 作EH ⊥BD ,垂足为点H ,点G 在边AD 上,且GD =CE ,联结GE ,分别交BD 、CH 于点M 、N .(1)已知,53sin =∠DBC ①当EC =4时,求△BCH 的面积:②当时,求CE 的值;1CH HM =+(2)延长AH 交边BC 于点P ,当设CE =x ,请用含x 的代数式表示的值.CNHP (第24题图)备用图(第25题图)答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C ;2.A ;3.D ;4.D ;5.B ;6.C 二、填空题(本大题共12题,每题4分,满分48分)7.;8.; 9.;10.;11.;2315−5545°5a e →→=-48712.;13.∠B=∠ACP(或,答案不唯一);14.;15.24;16.452AC AP AB =⋅4;17.;34三、解答题(本大题共7题,共78分)19. 解:原式--------(每个值得2分,共8分)1----------------------(结果2分)120.解:(1)12AO OC =----------------------------------(1分)13AO AC ∴=//AD BC----------------------------------(1分)13OD AO BD AC ∴==∴----------------------------------(1分)OD =BD =(BA +AD )=----------------------------------(1分)13(−a +b )(第20题图)=----------------------------------(1分)b−a(2)73()()22a b a b →→→→+-+=----------------------------------(1分)733222a b a b →→→→+--=----------------------------------(1分)122a b →→-画图(图略)及标注各向量----------------------------------2分写结论----------------------------------(1分)21.解(1)过点C 作,点H 为垂足------------------(1分)CH AB ⊥在Rt △BCH 中,∠BHC =90°,∠CBH =45°△BCH 是等腰直角三角形∴------------------(1分)CH BH ∴=在Rt △ACH 中,∠AHC =90°sin CH A AC ∴=3sin 5A =设,则∴3CH BH x ==5AC x=222AH CH AC += ------------------(1分)4AH x ∴=,解得------------------(1分)∴4314AB AH BH x x =+=+=2x =6CH ∴=.------------------(1分)111464222ABC S AB CH ∆∴=⋅=⨯⨯=(2)过点D 作,点M 为垂足-------------------(1分)DM AB ⊥//DM CH∴------------------(1分)AD AM DMAC AH CH ∴==D 为AC 中点12AD AC ∴=由(1)知:CH=6,AH=8------------------(1分)3,4DM AM ∴==------------------(1分)10BM AB AM ∴=-=在Rt △BDM 中,∠DMB =90°.------------------(1分)10cot 3ABD BM DM ∴==∠22.解(1)过点A 作,点H 为垂足-------------------(1分)AH PQ ⊥由题意知:-------------------(1分)152.412AH PH ==设,则5AH x =12PH x =在Rt △APH 中,∠AHP =90°222AH PH AP ∴+=即22(5x)(12x)26+=解得-------------------(1分)2x =-------------------(1分)510AH x ∴==答:坡顶A 到地面PQ 的距离为10米.-------------------(1分)(2)过点C 作,点M 为垂足CM PQ ⊥在Rt △BMP 中,∠BMP =90°,∠BPM =45°-------------------(1分)PM BM ∴=由(1)知1224PH x ==设,则AC HM a ==24PM BM a==+-------------------(1分)14BC a ∴=+在Rt △ABC 中,∠ACB =90°,∠BAC =76°∠BAC =-------------------(1分)tan ∴BCAC即,解得14 4.01aa+≈ 4.6a ≈-------------------(1分)1414 4.619BC a ∴=+≈+≈答:古塔BC 的高度为19米-------------------(1分)23.证明(1)△AEF 是等边三角形∴60AEF AFE EAF ∠=∠=∠=180120AEB AEF ∠=-∠=∴ 180120AFC AFE ∠=-∠=-------------------(2分)AEB AFC ∠=∠∴∠BAC = 120º60BAE CAF ∴∠+∠=在△ABE 中,120AEB ∠=(第22题图)60B BAE ∴∠+∠=-------------------(2分)B CAF ∴∠=∠△ABE ∽△ACF -------------------(1分)∴(2)2AE EF EC=⋅ AE EFEC AE∴=AEF CEA∠=∠ △AEF ∽△CEA∴-------------------(1分)EAF C ∴∠=∠AB = ACB C∴∠=∠B EAF ∴∠=∠BFA AFE∠=∠ △BAF ∽△CEA -------------------(1分)∴-------------------(2分)22BAFCEAS AF AE S ∆∆∴=过点A 作,点H 为垂足AH BC ⊥则-------------------(2分)1212BAF CEABF AHS BFS CE CE AH ∆∆⋅==⋅-------------------(1分)∴22BF AF CE AE =24.解(1)过点C 作轴,点D 为垂足CD x ⊥90CDA =∴∠在等腰直角△ABC 中,90BAC ∠=,90BAO C AB AC AD ∠+∠=∴= 90BAO OBA ∠+∠= OBA CAD∠=∠∴(1,0),B(0,3)A 1,3OA OB ∴==在△OAB 和△DCA 中:90OBA CAD BOA CD AB AC A ∠=∠∠=∠⎪==⎧⎪⎨⎩∴△OAB ≌△DCA (A.A.S )-------------------(2分)-------------------(1分)3,1AD OB CD OA ∴====-------------------(1分)(4,1)C ∴(2)过点M 作轴,点H 为垂足MH x ⊥则//MH CD-------------------(1分)CM DHBM OH∴=M 为BC 中点∴H 为OD 中点,-------------------(1分)122OH OD ==∴MH 为梯形CDOB 的中位线-------------------(1分)11(CD OB)(13)222MH ∴=+=+=,△OMH 为等腰直角三角形MH OH ∴=-------------------(1分)45MOA =∴∠ (3)由(2)知45BOM MOD ∠=∠=∴点P 只能在轴正半轴x 设,则(m,0)P OM m =①OM OM OB OP=3OP OB ∴==-------------------(2分)(3,0)P ∴②OM OPOB OM=,解得=83m =-------------------(2分)8(,0)3P ∴25.解(1)①联结AC 交BD 于点O 在菱形ABCD 中,AC BD ⊥在Rt △OBC 中,∠BOC =90°5sin 3OC MBC BC ∠==∴∵BC =10-------------------(1分)6OC ∴=∵EC=4∴BE=BC-EC=6在Rt △OBC 中,∠BOC =90°5sin 3HE HBE BE ∠==∴∴HE=185∴-------------------(1分)245=-------------------(2分)11247262255BCH S BH OC ∆∴=⋅=⨯⨯=(1) 在菱形ABCD 中,BC=CD=AD ∵GD=CE∴GD CE AD BC =∴EG//CD ∴BE EMBC CD=∴BE=EM ∵EH ⊥BD∴BH=MH-------------------(1分)∵1CH HM =+∴1CH BH =+过点H 作轴,点R 为垂足-------------------(1分)HR BC ⊥设HR=,则BR=, BH=,CH=, CR=3a 4a 5a 51a +104a -在Rt △HRC 中,∠HRC =90°222HR CR CH ∴+=即,解得-------------------(1分)222(3)(104)(51)a a a +-=+1110a =-------------------(1分)1152BH a ∴==558BE ∴=-------------------(1分)25108CE BE ∴=-=(2)延长CH 交AB 于点Q-------------------(1分)设,则BE=10-CE x =x根据以上可知:BH=MH ,EG//CD BH HQMH HN∴=∴HQ=HN-------------------(1分)易得HQ=HP∴HP=HN-------------------(1分)//ME CD HN HMCN DM∴=//BCAD -------------------(1分)10BM BE x DM DG x -∴==102HM x DM x-∴=102HN xCN x-∴=即-------------------(1分)102HP x CN x -=。
2024--2025学年人教版九年级数学上册期中数学模考训练卷
安全管理质量标准化管理制度第一章总则第一条为加强企业安全管理,规范安全管理程序和标准,确保员工生命安全,财产安全和环境安全,制定本管理制度。
第二条本制度适用于本企业员工及相关服务供应商。
第三条本制度所称安全管理,指的是对企业内外环境、使用设施以及人员行为进行规范和控制,以实现安全目标和减少安全风险。
第四条本制度的主要任务是建立和完善企业安全管理体系,确保安全管理程序的合理性、有效性和可操作性。
第二章安全目标第五条企业的安全目标是:保障员工的生命安全和健康、保护企业财产安全、保护周围环境的安全。
第六条为实现上述目标,企业将从以下几个方面着手:(一)建立健全安全管理体系,明确各级管理责任。
(二)开展安全教育培训,提高员工的安全意识和技能。
(三)进行安全风险评估和预防措施的规划和实施,减少安全风险。
(四)加强安全设施和装备的管理和维护,确保其正常和安全运行。
(五)建立应急管理体系,做好安全事故应急处理工作。
(六)加强对供应商的安全管理,确保其符合相关安全要求。
第三章安全管理责任第七条企业的安全管理责任由企业管理层负责,具体责任人为安全管理部门和相关部门的负责人。
第八条具体的安全管理责任如下:(一)企业管理层负责对整个企业的安全管理工作进行监督和检查,确保安全管理措施的有效实施。
(二)安全管理部门负责制定和完善企业的安全管理制度和规程,组织开展安全培训和宣传工作,开展安全风险评估,进行事故调查和处理。
(三)相关部门负责制定和实施本部门的安全管理措施,确保本部门的安全工作符合企业的要求。
(四)员工应参与并遵守企业的安全管理制度和规程,积极参与安全培训活动,提高安全意识和技能。
第四章安全管理措施第九条企业应制定并实施一系列的安全管理措施,包括以下方面:(一)安全设施和装备的管理和维护:对企业内的安全设施和装备进行定期维护和检查,确保其正常和安全运行。
(二)安全培训和宣传:对新员工进行入职培训,定期组织安全培训和宣传活动,提高员工的安全意识和技能。
福建省福州市第一中学2023-2024学年九年级上学期期中模拟数学试题(含答案解析)
福建省福州市第一中学2023-2024学年九年级上学期期中模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .13x -<<B .3x >C .1x <-D .3x >或1x <-6.如图,在ABC 中,65ABC ∠=︒,BC AC >,将ABC 绕点A 逆时针旋转得到ADE V ,点B 的对应点D 恰好落在BC 边上,C 的对应点为E .则下列结论一定正确的是()A .AB AD =B .AC DE =C .65CAE ∠=︒D .ABC AED∠=∠7.抛物线y =ax 2﹣2ax+4(a >0),下列判断正确的是()A .当x >2时,y 随x 的增大而增大B .当x <2时,y 随x 的增大而增大C .当x >1时,y 随x 的增大而增大D .当x <1时,y 随x 的增大而增大8.如图,ABC 中,50A ∠=︒,以BC 为直径作O ,分别交AB 、AC 于D 、E 两点,分别过D 、E 两点作O 的切线,两条切线交于P 点,则P ∠=()A .70︒B .80︒C .90︒D .100︒9.某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是()A .20010y x=-B .()()200108060y x x =---C .()()200108060y x x =+--D .()()200108060y x x =--+10.已知抛物线223y x ax a -=-与x 轴有两个交点,其中一个交点的横坐标大于1,另二、填空题15.若m ,n 为一元二次方程16.如图,等边ABC 线段BM 点B 逆时针旋转的最小值是三、解答题17.解方程:23720x x -+=.18.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.19.受各方面因素的影响,最近两年来某地平均房价由10000元/平方米,下降到8100元/平方米,如果在这两年里,年平均下降率相同.(1)求年平均下降率;(2)按照这个年平均下降率,预计下一年房价每平方米多少元?四、证明题20.如图,AB 是O 的直径,C 是O 上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且AC 平分BAD ∠.(1)求证:直线MN 是O 的切线;(2)若4=AD ,5AC =,求O 的半径.五、作图题21.如图,在88⨯的正方形网格中(每个小正方形的边长均为1)有一个ABC ,其顶点均在小正方形顶点上,请按要求画出图形.(1)将ABC 绕点C 顺时针旋转90︒得到CDE (点A 、B 的对应点分别为D 、E ),画出CDE ;(2)在正方形网格的格点上找一点F ,连接BF FE BE 、、,使得FBE 的面积等于BCE 的面积.(画出一种情况即可)六、解答题22.某抛物线形拱桥的截面图如图所示.某数学小组对这座拱桥很感兴趣,他们利用测量工具测出水面的宽AB 为8米.AB 上的点E 到点A 的距离1AE =米,点E 到拱桥顶(1)求该抛物线所对应的函数表达式.(2)求拱桥顶面离水面AB 的最大高度.(1)判断ABC 的形状,并证明你的结论.(2)若57PB PC ==,,求PA 的长24.在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理,如图,已知 AB ,作图过程.(1)尺规作图(保留作图痕迹,不写作法)①作线段AC 的垂直平分线DE ②以点D 为圆心,DA 长为半径作弧,交参考答案:()2y a x h k =-+中,对称轴为x h =,顶点坐标为(),h k .4.D【分析】此题考查切线的性质,直角三角形30︒角的性质,解题中遇切线,有交点要连半径得垂直,无交点要作垂直证半径,直角三角形30︒所对的直角边等于斜边的一半,正确理解性质定理并应用是解题的关键.【详解】解:连接OC ,∵PC 是O 的切线,∴90OCP ∠=︒,∵OA OC =,∴30OAC OCA ∠=∠=︒,∴60COP OAC OCA ∠=∠+∠=︒,∴30P ∠=︒,∴210OP OC ==∴1055BP OP OB =-=-=,故选:D .5.A【详解】由图象可以看出:二次函数与x 轴的两个交点()()1,0,3,0.-0y <时,图象在x 轴的下方,此时13x -<<.故选:A.6.A【分析】由旋转可知ABC ADE △≌△,由全等的性质可知AB AD =,故选项A 正确;由全等可知BC DE =,结合BC AC >,可得DE AC >,故选项B 不正确;根据等边对等角可知65ABC ADB ∠=∠=︒,所以18050BAD ABC ADB ∠=︒-∠-∠=︒,由全等可知BAC DAE ∠=∠,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小;故选:C.【点睛】此题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.8.D【分析】本题考查了切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以及四边形的内角为360︒,解题的关键是连接圆心和切点得到90︒的角和挖掘出隐藏条件圆的半径处处相等.连接OD,OE,根据切线的性质:圆的切线垂直于过切点的半径和三角形的内角和定理以∠的度数.及四边形的内角和即可求出P【详解】解:连接OD,OE,,PD是圆的切线,PE⊥,∴⊥,OE PEOD PD∠=∠=︒,PDO PEO90P∴∠=︒-︒-︒-∠=︒-∠,360909051805,=OD OB∴∠=∠,12∠∠,同理:3=4∠=︒,A50∴∠+∠=︒-∠=︒,A24180130()∴∠=︒-∠-∠=︒-︒-∠+∠=︒,5180180[360224]80DOB EOC∴∠=︒-︒=︒.P18080100故选:D.9.DOA OC = ,OAC OCA ∴∠=∠,∵AC 平分BAD ∠,CAB DAC ∴∠=∠,DAC OCA ∴∠=∠,∥OC AD ∴,∵OCN ADC ∠∠=,(1)(2)【分析】本题考查了作图:旋转变换,三角形的面积问题.()1根据旋转的性质可知,对应角都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形;()2三角形面积相等时,本题要充分利用等底等高的三角形面积相等这一性质即可构造.【详解】(1)利用网格特点和旋转的性质,画出点A、B的对应点D、E即可,如下图:(2)平移BE使它过点C,则可得到格点F,顺次连接B、E、F可得FBE.如下图:∴AMP ANB ∠=∠,∵APB APC PA PA ∠=∠=,,∴()AAS PAN PAM ≌,∴AM AN PN PM ==,,∵AB AC =,∴()Rt Rt HL ABN ACM ≌△△,∴CM BN =,∴5PM PB BN PB CM =+=+=∵7PM PC CM CM =-=-,。
新九年级(上)数学期中考试题(含答案)
新九年级(上)数学期中考试题(含答案)一、选择题(每小题 4 分,共 40 分)1、圆内接四边形 A BCD 中,已知∠A =70°,则∠C =( ) A .20°B .30°C .70°D .110°2、⊙O 的半径为 5c m ,点 A 到圆心 O 的距离 O A =3cm ,则点 A 与圆 O 的位置关系为()A .点 A 在圆上B .点 A 在圆内C .点 A 在圆外D .无法确定3、将抛物线 y =x 2+1 向右平移 2 个单位,再向上平移 3 个单位后,抛物线的解析式为()A .y =(x +2)2+4B .y =(x ﹣2)2﹣4C .y =(x ﹣2)2+4D .y =(x +2)2﹣44、若圆锥的母线长是 12,侧面展开图的圆心角是 120°,则它的底面圆的半径为( )A .2B .4C .6D .85.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与 △CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为()A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 6、如图,在△ABC 中,点 D 是 A B 边上的一点,若∠ACD =∠B ,AD =1,AC =3,△ADC 的面积为 1,则△ABC 的面积为( ) A .9B .8C .3D .27、如图,若二次函数 y =ax 2+bx +c (a ≠0)图象的对称轴为 x =1,与 y 轴交于 点 C ,与 x 轴交于点 A 、点 B (﹣1,0),则①二次函数的最大值为 a +b +c②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是()A .1B .2C .3D .48、如图,在平行四边形A BCD 中,点E在C D 上,若D E:CE=1:2,则△CEF 与△ABF 的周长比为()A.1:2 B.1:3 C.2:3 D.4:99、圆心角为60°的扇形面积为S,半径为r,则下列图象能大致描述S与r的函数关系的是()A.B.C.D.10、对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤13B.m13<C.1312m<≤D.m12≤二、填空题(每题4分,共24 分)11 如图,△ABC 中,点D、E 分别在边A B、BC 上,DE∥AC.若B D=4,DA=2,BE=3,则E C=.12、在二次函数y=-x2 +2x+1的图像中,若y随x增大而增大,则x的取值范围是.13、如图,⊙O 与△ABC 的边A B、AC、BC 分别相切于点D、E、F,如果A B=4,AC=5,AD=1,那么B C的长为.第8题第11 题第13 题14、高4m 的旗杆在水平地面上的影子长6m,此时,旗杆旁教学楼的影长24m,则教学楼高m.15、若关于x的一元二次方程x2 -2x-k = 0 (k 为常数)在- 2 <x <3范围内有解,则k的取值范围是。
九年级上学期数学期中考试试卷及答案解析
九年级上学期数学期中考试试卷及答案解析一、选择题(每题4分,共40分)1. 有下列四个数:-1, 0, 1, √2,其中无理数是()A. -1B. 0C. 1D. √2答案:D解析:无理数是指不能表示为两个整数比的数,√2无法表示为两个整数的比,故选D。
2. 下列各数中,与-3的平方相等的是()A. 3B. -3C. 9D. -9答案:C解析:-3的平方为9,故选C。
3. 已知a = 2,b = -3,则a² - 2ab + b²的值为()A. 25B. -25C. 1D. -1答案:A解析:将a和b的值代入a² - 2ab + b²,得(2)² -22(-3) + (-3)² = 4 + 12 + 9 = 25,故选A。
4. 下列等式中,正确的是()A. (a²)³ = a⁶B. (a³)² = a⁶C. (a²)³ = a⁹D. (a³)² = a⁹答案:B解析:幂的乘方规则,(a³)² = a³² = a⁶,故选B。
5. 已知|a| = 5,且a < 0,则a的值为()A. 5B. -5C. 10D. -10答案:B解析:绝对值表示一个数的非负值,|a| = 5表示a的绝对值为5,由于a < 0,所以a = -5,故选B。
6. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 1答案:B解析:奇函数的定义是f(-x) = -f(x),y = x³满足这个条件,故选B。
7. 下列关于x的不等式中,有解的是()A. x² < 0B. x² ≤ 0C. x² > 0D. x² ≥ 0答案:D解析:任何数的平方都是非负数,所以x² ≥ 0对所有的x都有解,故选D。
九年级数学上册期中考试试卷及答案
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
2023_2024学年江苏省无锡市九年级上册期中数学模拟测试卷(附答案)
2023_2024学年江苏省无锡市九年级上册期中数学模拟测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程是一元二次方程的是( )A .2x 3-x =0B .xy-2=0C .x 2=0D .212x x +=2.一元二次方程x 2+x-1=0 的根的情况为( )A .无实数根B .不能判定C .有两个相等的实数根D .有两个不相等的实数根3.如果一个一元二次方程的根是x 1=x 2=-3,那么这个方程可以是( )A .x 2+9=0B .x 2+6x+9=0C .x 2=9D .x 2-6x+9=04.电影《雄兵出击》以朝鲜战争爆发为背景,讲述了中国志愿军官兵在炮火硝烟中入朝作战的历程,展现了中国人民志愿军的爱国主义精神和革命英雄主义精神,一上映就获得全国人民的追捧,第一天票房约2亿元,以后每天票房按相同的增长率增长,第三天票房为5亿元,方程可以列为( )A .2(1+x )=5B .2(1+x )2=5C .2+2(1+x )2=5D .2+2(1+x )+2(1+x )2=55.已知点P 与⊙O 在同一平面内,⊙O 的半径为4,点P 到圆心O 的距离是5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定6.下列说法中正确的命题是( )A .一个三角形只有一个外接圆B .平分弦的直径,平分这条弦所对的弧 C .过三点可以画一个圆D .三角形的外心到三角形的三边距离相等 7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =AM=8 cm ,则直径AB 的长为( )A .12cm B .9cmC .11 cmD .10cm8.如图,四边形ABCD 是⊙O 的内接四边形,∠ABC=125°,则∠AOC 的度数是( )A .110°B .100°C .120°D .125°9.如图,半圆O 的直径AB =8,弦CD =4,弦CD 在半圆上滑动,点C 从点A 开始滑动,2到点D 与点B 重合时停止滑动,若M 是CD 的中点,则在整个滑动过程中线段BM 扫过的面积为( ).A .πB .π2C .4πD.2π(第7题) (第8题) (第9题)10.如图,在平面直角坐标系中,点A ,C ,N 的坐标分别为(-3,0),(3,0),(6,8),以点C 为圆心,3为半径画⊙C ,点P 在⊙C 上运动,连接AP ,交⊙C 于点Q ,点M 为线段QP 的中点,连接MN ,则线段MN 的最小值为( )A .7B .10C .3D .273-1二、填空题(本大题共8小题,每空3分,共24分)11.关于x 的方程x 2=2x 的解为.12.若一元二次方程x 2+3x-k=0没有实数根,则k 的取值范围是 .13.已知圆锥底面半径为3cm ,母线长为5cm ,则该圆锥的侧面积是cm 2.(结果保留π)14.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2- 4x+k=0的两个根,则k 的值为.15.如图所示,点A 、B 、C 是⊙O 上不同的三点,点O 在△ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若∠A=65°,∠OCD=42°,则∠ODC =°.(第15题) (第16题) (第17题)(第18题)16.如图,在Rt △ABC 中,∠ACB=90°,AC =1,∠A=60°,将Rt △ABC 绕点顺时针旋转C 后得到Rt △DCE ,点B 经过的路径为,将线段AB 绕点A 顺时针旋转后,点90︒⌒ BE 60︒B 恰好落在CE 上的点F 处,点B 经过的路径为,则图中阴影部分的面积是 ⌒BF.(结果保留π)17.如图,正方形ABCD 的边长是8cm ,E 是CD 边的中点.将该正方形沿BE 折叠,点C落在点C’ 处.⊙O 分别与AB 、AD 、BC’ 相切,切点分别为F 、G 、H ,则⊙O 的半径为cm .18.如图,正方形ABCD 中,AB =6,E 是BC 的中点.以点C 为圆心,CE 长为半径画圆,点P 是⊙C 上一动点,点F 是边AD 上一动点,连接AP ,若点Q 是AP 的中点,连接BF ,FQ ,则BF +FQ 的最小值为 .三、解答题:(本大题共9小题,共96分)19.(本题16分)解方程(1)(x +1)2 = 16(2)x 2+6x -2 = 0(3)x (x -3) = 5(3-x )(4)x 2+7x = 24+2x20.(本题8分)已知关于x 的一元二次方程(1)当m 为何值时,方程有两个实数根;(2)设两个不相等的实数根分别为x 1、x 2,且x 1<2<x 2,求m 的取值范围.21.(本题8分)如图,AB 是⊙O 的直径,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .(1)若∠CAB=50°,求∠ADE 的度数;(2)若AB =10,AC =6,求DE 的长.22.(本题10分)关于x 的一元二次方程有两个实数根,且一个根比另一个根小1,那么称这样的方程为“邻根方程”.例如:一元二次方程x 2+x=0的两个根是x 1=0,x 2=-1,则方程x 2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x 2 –x -12=0②x 2 –x +4=017041)2(2=+++m x m mx )0(02≠=++a c bx ax(2)已知关于x的一元二次方程x2 -(k-3)x-3k=0(k是常数)是“邻根方程”,求k的值.23.(本题10分)仅用无刻度直尺按要求作图(保留作图痕迹,不写作法).(1)如图①,画出⊙O的一个内接矩形;(2)如图②,AB是⊙O的直径,CD是弦,且AB∥CD,画出⊙O的内接正方形.图①图②24.(本题10分)如图,在Rt△ABC中,∠C=90°,点O、D分别为AB、BC的中点,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO.(1)判断直线DF与⊙O的位置关系,并说明理由;6(2)当∠A=30°,CF= 时,求⊙O的面积.25.(本题10分)2023年杭州亚运会吉祥物寓意不畏艰险、积极进取、热情好客,一开售,就深受大家的喜欢.为满足市场需求,某超市购进一批吉祥物,进价为每个78元,第一天以每个108元的价格售出40个,为了让更多的消费者拥有它们,从第二天起降价销售,根据市场调查,单价每降低1元,可多售出2个.设销售单价为x 元.(1)超市从第二天起日销售量增加 个,每个可以盈利元(用含x 的代数式表示);(2)针对这种销售情况,该商店要保证每天盈利1232元,同时又要使顾客得到实惠,那么吉祥物的销售单价应定为多少元?26.(本题12分)(1)【学习心得】小宸同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在△ABC 中,∠BAC =90°,AB =AC =AD ,求∠BDC 的度数,若以点A 为圆心,AB 为半径作辅助圆⊙A ,则点C 、D 必在⊙A 上,∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,从而可容易得到∠BDC = °.(2)【问题解决】如图2,在四边形ABCD 中,∠BAD =∠BCD =90°,∠BAC =26°,求∠BDC 的度数.小宸同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD 的外接圆就是以BD 的中点为圆心,BD 长为半径的圆;△BCD 的外接圆也是以BD 的12中点为圆心,BD 长为半径的圆.这样A 、B 、C 、D 四点在同一个圆上,进而可以利12用圆周角的性质求出∠BDC 的度数,请运用小宸的思路解决这个问题.(3)【问题拓展】①如图3,△ABC 的三条高AD 、BE 、CF 相交于点H ,求证:∠EFC=∠DFC.②如图4,在△ABC 中,∠BAC =45°,AD 是BC 边上的高,且BD =3,CD =1,直接写出AD 的长.图4图3图2图1B BD27.(本题12分)在△ABC中,∠A=90°,AB=AC,给出如下定义:作直线l分别交AB、AC边于点M、N,点A关于直线l的对称点为A’,则称A’ 为等腰直角△ABC关于直线l的“直角对称点”.(点M可与点B重合,点N可与点C重合)xOy(1)在平面直角坐标系中,点A(0,4)、B(-4,0),直线l:y=kx+2,O’ 为等腰直角△AOB关于直线l的“直角对称点”.①当k=1时,写出点O’ 的坐标__________;②连接BO’,求BO’长度的取值范围;图2(3)⊙O的半径为8,点M是⊙O上一点,以点M为直角顶点作等腰直角△MPQ,其中MP=1,直线l与MP、MQ分别交于E、F两点,同时M’ 为等腰直角△MPQ关于直线l的“直角对称点”,连接OM’.当点M在⊙O上运动时,直接写出OM’ 长度的最大值与最小值.九年级数学答案一、选择题1. C2. D3. B4. B5. C6. A7. D8. A9. D 10. A 二、填空题11. x 1=0,x 2=212. k <-13. 15π14. 4或39415. 8816.+17. 218. -π1231032三、解答题19. (1)解:x +1=±4………2分(2)解:x 2+6x =2 ………1分x 1=3,x 2=-5 ………4分(x +3)2=11………2分x 1=-3,x 2=--3 ………4分1111(3)解:x (x -3)-5(3-x )=0………1分 (4)解: x 2+5x -24=0………1分(x -3) (5+x )=0………2分(x +8) (x -3)=0………2分x 1=3,x 2=-5………4分x 1=-8,x 2=3………4分20.解:(1)∵a =m ,b=m +2,c =m ……1分 (2)由题可得x 1+x 2=-,x 1˙x 2=……5分14m +2m 14∴△= b 2-4ac∵x 1<2<x 2= (m +2)2-4m ·m ∴x 1-2<0,x 2-2>014=4m +4………2分∴(x 1-2)(x 2-2)<0………6分∵方程有两个实数根∴x 1x 2-2( x 1+x 2)+4<0∴4m +4≥0且m ≠0………3分解得:- <m <0………8分1625∴m ≥-1且m ≠0………4分21. (1) 连接OD∵DE 是⊙O 的切线,D 为切点∴∠ODE =90°………1分∵∠CAB =50°,∠BAC 的平分线交⊙O 于点D∴∠BAD =∠EAD =∠CAB =25°………2分12∵OA =OD∴∠BAD =∠ODA =25°………3分∴∠ADE =∠ODE -∠ODA =65°………4分(2)过O 作OF ⊥AC 于F ,∴AF =AC =3………5分12∵AB =10∴OA =5∴OF ==4………6分OA2-AF2∵∠BAC 的平分线交⊙O 于点D ∴∠BAD =∠EAD ∵OA =OD ∴∠BAD =∠ODA ∴∠ODA =∠EAD ∴OD //AC ∴∠DOF =90°则四边形ODEF 为矩形………7分∴DE =OF =4………8分22. (1)解得:x 1=4,x 2=-3 ………1分解得:x 1=,x 2=………4分∵x 1-x 2=7,x 2- x 1=-7…2分 ∵x 2- x 1=-1…5分∴方程x 2–x -12=0不是“邻根方程”…3分 ∴方程x 2–x +4=0是“邻根方程”…6分17 (2)由x 2 -(k -3)x -3k =0 可得(x -k ) (x+3)=0解得x 1=k ,x 2=-3………7分∴k -(-3)=-1或 -3- k =-1………8分∴k =-4或-2∴k =-4或-2时,一元二次方程x 2 -(k -3)x -3k =0是“邻根方程”…10分23. 略24. (1)直线OF 与⊙O 相切………1分连接OE,过O作OG⊥DF于G∵AC与⊙O相切,E为切点∴OE⊥AC∴∠OEC=90°∵点O、D分别为AB、BC的中点∴OD是△ABC的中位线∴OD// AC………2分∴∠ODG=∠DFC,∠ODC=180°-∠C=90°∴四边形ODCE为矩形∴DC=OE………3分在△ODG和△DFC中,∵∠OGD=∠C=90°,DO=FD,∠ODG=∠DFC∴△ODG≌△DFC………4分∴OG=DC=OE∴OG为⊙O半径∵OG⊥DF∴直线DF与⊙O相切………5分(2)设OE=r由(1)可知:OD// AC,BD=CD=OE=r………6分∴∠BOD=∠A=30°∴BO=2r,DO=r33∴DF=DO=r………7分在Rt△DCF中,由DC2+CF2=DF2………8分3求出r=………9分∴S⊙O=3π………10分25. (1) 2(108-x) ………2分x-78 ………4分(2)根据题意得:(x-78)[40+ 2(108-x)]=1232………7分整理得:x2-206 x+10600=0解得:x1=100,x2=106………9分∵要使顾客得到实惠∴x =100答:吉祥物的销售单价应定为100元.26. (1)45°………2分(2) 证明:取BD 中点O∵∠BAD =∠BCD =90°∴点A 、B 、C 、D 共圆………4分∴∠BDC =∠BAC =26°………6分(3)① 由BE 、CF 是高可得∠BFC =∠BEC =90°∴点B 、F 、E 、C 共圆∴∠EFC =∠EBC ………7分由AD 、CF 是高可得∠BFC =∠ADB =90°∴点B 、D 、H 、F 共圆∴∠HFD =∠HBD ………8分∴∠EFC =∠DFC ………10分②+2………12分727. (1) ①(-2, -2) ………4分②设直线l 交y 轴于点P ,则P (0,2) ∴PO’=PO =2BP =25∴-2≤BO’≤ +2………6分2525 ∵直线l 必须交于线段OB 上 ∴BO’ 最大值为4 ∴-2≤BO’≤4………8分25(2) 最大值为8+22最小值为8-………12分。
2024-2025学年吉林省长春市南关区九年级(上)期中数学试卷(含答案)
2024-2025学年吉林省长春市南关区九年级(上)期中数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若a−5有意义,则a的值可以是( )A. −3B. 0C. 4D. 62.下列各式计算正确的是( )A. (−2)2=−2B. −22=−2C. −(±2)2=±2D. 22=±23.用配方法解一元二次方程x2−6x+7=0配方后得到的方程是( )A. (x+6)2=29B. (x−6)2=29C. (x+3)2=2D. (x−3)2=24.关于x的一元二次方程3x2+bx−1=0根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.一架梯子的示意图如图所示,其中AA1//BB1//CC1//DD1//EE1,且AB=BC=CD=DE.为了使梯子更加稳固,在A、E1之间加绑一条安全绳(线段AE1)分别交BB1、CC1、DD1于点F、G、H.量得AF=0.4米,则安全绳(线段AE1)的长为( )A. 0.8米B. 1.2米C. 1.6米D. 1.8米6.如图,△ABC是△DEF经过位似变换得到的,点O是位似中心,AD=2OD.若△DEF的面积为3,则△ABC的面积为( )A. 6B. 9C. 18D. 277.在平面直角坐标系中,将抛物线y=−x2先向左平移3个单位,再向下平移4个单位,得到的抛物线的函数表达式为( )A. y=−(x−3)2−4B. y=−(x+3)2−4C. y=−(x−3)2+4D. y=−(x+3)2+48.已知二次函数y=x2−2x(−1≤x<n+1),当x=−1时,函数取得最大值;当x=1时,函数取得最小值,则n的取值范围是( )A. n≥2B. 0<n≤2C. 1<n≤3D. 2<n≤4二、填空题:本题共6小题,每小题3分,共18分。
2023_2024学年山东省青岛市黄岛区九年级上册期中数学模拟测试卷(附答案)
2023_2024学年山东省青岛市黄岛区九年级上册期中数学模拟测试卷说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第I 卷为选择题,共10小题,30分;第Ⅱ卷为填空题、作图题、解答题,共15小题,90分.2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ卷(共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每个题给出的四个选项中,只有一项是符合题目要求的.1.方程的一次项系数是( )251x -=A .-5B .1C .0D .-12.某小区有5000人,随机调查了1200人,其中400人观看了杭州亚运会的比赛。
在该小区随便问一个人,他观看了杭州亚运会比赛的概率是( )A .B .C .D .13225625233.如图,在中,,,,将沿图示中的虚线剪开,ABC △78A ∠=︒4AB =6AC =ABC △剪下的阴影三角形与原三角形不相似的是()(第3题)A .B .C .D .4.如图,在矩形中,两条对角线与相交于点,已知,,ABCD AC BD O 3AB =2OD =则的长为()BC(第4题)A .2B C D .35.如图,在中,,,,为的中点,Rt ABC △90ACB ∠=︒5AB =4AC =D AB ,,则四边形的对角线的长为( )AE CD ∥CE AB ∥ADCE ED(第5题)A .B .3C .4D .51256.关于的方程有两个不相等的实数根,则实数的值可以是( x ()23420m x x ---=m )A .-1B .0C .2D .37.按照如下步骤进行作图:如图,已知线段,过点作,使,AB B BD AB ⊥12BD AB =连接,在上截取,在上截取。
则的值为( )DA DA DE DB =AB AC AE =ACAB(第7题)A .B C D .23128.某新能源汽车销售公司,在国家减税政策的支持下,原价25万元每辆的纯电动新能源汽车两次下调相同费率后售价为16万元,求每次下调的百分率。
温州2024年九年级上学期期中数学模拟试卷(答案版)
温州2024年九年级上学期期中考试数学模拟试卷答案一.选择题(每小题3分,共30分)1.【答案】D【详解】解:∵O 的半径为3,点P 在O 外,∴3OP >,∴OP 的长可能是4,故选:D .2. 【答案】D【详解】解: 二次函数的顶点式为2225y x =−−(),∴其顶点坐标为:(2,5)−.故选:D3. 【答案】A【详解】解:A 、守株待兔是随机事件,故A 符合题意;B 、种豆得豆是必然事件,故B 不符合题意;C 、水中捞月是不可能事件,故C 不符合题意;D 、水涨船高是必然事件,故D 不符合题意;故选:A .4. 【答案】C【详解】解:抛物线2y x 向右平移3个单位长度得到的抛物线是()23yx =−. 故选:C5. 【答案】D【详解】解:∵圆被等分成4份,其中白色区域占3份, ∴指针落在白色区域的概率为34, 故选:D .6. 【答案】D【详解】解:∵∠BOC 与∠D 是同弧所对的圆心角与圆周角,∠D =32°,∴264BOC D ∠=∠=°, =180=18064=116AOC BOC ∴∠°−∠°−°°,故选:D .7. 【答案】C【详解】解:由25(2)y x m =−−+得图象开口向下,对称轴为直线2x =,∵二次函数25(2)y x m =−−+的图象经过1(0,)A y ,2(1,)B y ,3(4,)C y ,∴点A 、C 关于直线xx =2对称,则31y y =,∵当xx <2时,y 随x 的增大而增大,01<,∴12y y <,∴312y y y =<.故选:C .8. 【答案】A【详解】解:根据题意得,()30wx y =−,即()()=30280w x x −−+,故选:A .9. 【答案】C【解析】 【详解】解:连接OD ,如图,设O 的半径为r ,∵CD AB ⊥,∴ BCBD =,CG DG =, ∵点C 是弧BE 的中点,∴ CECB =, ∴ BECD =, ∴8CD BE ==, ∴142DG CD ==,在Rt ODG △中,∵3,OG r OD r =−=, ∴()22243r r +−=,解得256r =, 即O 的半径为256. 故选:C .10. 【答案】D【详解】解:∵()224321y x x x =−+=−−,10a =>,∴抛物线的开口向上,顶点坐标为()2,1−,对称轴是直线2x =,∴当2x =时,y 取得最小值1−,∵当4m x ≤≤时,总有14y m −≤≤, ∴124m −≤≤, 若02m <≤,则当4x =时,4y m =,即有244443m −×+, 解得:34m =; 若104m −≤≤,则当x m =时,4y m =, 即有2443m m m =−+解得:4m =±,不合题意,∴这种情况不存在,综上所述,当4m x ≤≤时,总有14y m −≤≤,则34m =. 故选:D 二.填空题(每小题4分,共24分)11. 【答案】59【解析】【详解】点()3,5代入2y ax =得:95a =∴59a = 故答案为:59 12. 【答案】0.2【详解】解:根据表格数据,纸杯的杯口朝上的频率稳定在0.2左右,故任意抛掷一只纸杯的杯口朝上的概率为0.2,故答案为:0.213. 【答案】6【详解】解:如图所示,连接OC ,OB ,∵ BC BC =,30BAC ∠=°,∴260COB BAC ∠=∠=°,又∵6OC OB ==,∴OCB 是等边三角形,∴6BC =,故答案为:6.14. 【答案】40°##40度【详解】解:∵C C AB ′∥,∴70ACC CAB ′∠=∠=°, ∵将ABC 绕点A 旋转到AB C ′′△的位置,∴AC AC ′=,CAC BAB ′′∠=∠,∴70ACC AC C ′′∠=∠=°,∴180707040CAC ′∠=°−°−°=°,∴40BAB ′∠=°,故答案为:40°.15. 【答案】24m <<【详解】解:如图,以AO 所在直线为y 轴,以地面所在的直线为x 轴建立平面直角坐标系,由题意可知()()3,1.80,0.9C A ,,设抛物线的解析式为()23 1.8y a x =−+,把()0,0.9A 代入()23 1.8y a x =−+,得: ()20.903 1.8a =−+解得0.1a =−,∴所求的抛物线的解析式是()20.13 1.8y x =−−+, 当 1.7y =时,()20.13 1.8 1.7x −−+=, 解得1224x x ==,, ∴则m 的取值范围是24m <<.故答案为:24m <<.16. 【答案】23或54【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =, 当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−,在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23或54 三.解答题17. 【答案】(1)2,3b c =−= (2)对称轴为直线1x =【解析】【小问1详解】解:由题意,将点()0,3A ,点()1,2B 代入2y x bx c =++得:312c b c = ++=, 解得23b c =− = . 【小问2详解】解:由(1)可知,二次函数的解析式为()222312y x x x =−+=−+, 所以该二次函数的对称轴为直线1x =.18. 【答案】(1)23 (2)49【解析】【小问1详解】解:23P =; 【小问2详解】解:两次摸到红球的概率为49P =. 19. 【答案】(1)见解析 (2)见解析【解析】【小问1详解】解:如图,AB C ′′△即为所求;【小问2详解】 解:如图,点O 即所求.20. 【答案】(1)见解析 (2)20【解析】小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=°,∵∥OD BC ,∴90OFA ACB ∠=∠=°,∴OF AC ⊥,∴ AD CD=, ∴点D 为 AC 的中点;【小问2详解】为【解:∵OF AC ⊥,16AC =, ∴182AF AC ==, 在Rt AFO 中,222AO AF OF =+, ∴()22=64OA OD DF +−,∴()22=644OA OA +−,∴10OA =,∴O 的直径为20.21. 【答案】(1)y 关于x 的函数表达式为24852793y x x =−++; (2)该女生在此项考试中是得满分,理由见解析.【解析】【小问1详解】解:∵当水平距离为3m 时,实心球行进至最高点3m 处, ∴设()233y a x =−+,∵()233y a x =−+经过点53 0,, ∴()250333a =−+, 解得:427a =− ∴224485(3)3272793y x x x =−−+=−++, ∴y 关于x 的函数表达式为24852793y x x =−++; 【小问2详解】解:该女生在此项考试中是得满分,理由如下∶ ∵对于二次函数24852793y x x =−++,当0y =时,有248502793x x −++=, ∴2424450x x −−=, 解得∶1152x =,232x =−(舍去), ∵15 6.92>, ∴该女生在此项考试中是得满分.22. 【答案】(1)见解析 (2)O 的半径为5【解析】【小问1详解】证明:延长CO 交O 于F ,C 为 ABD 的中点, AC CD ∴=,,AC DC OC AD ∴=⊥, AB 是O 的直径, 90ADB ∴∠=°,BE AD ∴⊥,OC BE ∴∥;【小问2详解】解:连接BC ,则90ACB ∠=°,OC OA = ,OAC OCA ∴∠=∠, OC BE ∥ ,OCA E ∴∠=∠,OAC E ∴∠=∠,EB AB ∴=,90ACB ∠=° ,BC AE ∴⊥,CA CE ∴==2AE CE ∴ 设O 的半径r ,则2EB AB r ==,62DE BD EB r ∴=+=+, 22222AB BD AE DE AD −=−= ,2222(2)6(62)r r ∴−=−+, 整理得23400r r +−=,解得125,8r r ==−(舍去), ∴ O 的半径为5. 23. 【答案】(1)2244y x x =−+ (2)4a =(3)见解析【解析】【小问1详解】解:∵此函数图象过点(2,4), ∴44324a a a −+−=, 解得2a =,∴这个二次函数的表达式为2244y x x =−+;【小问2详解】解:由()22232122y ax ax a a x a =−+−=−+−得,该函数的图象的对称轴为直线1x =, ∵若123x x =时,127y y ==, ∴点A 、B 关于直线1x =对称, ∴12223122x xx x ++==,解得212x =, 将1,72 代入函数表达式中,得2112272a a −+−=,解得4a =;【小问3详解】证明:由题意,21y y −()()222211232232ax ax a ax ax a =−+−−−+− ()()2221212a x x a x x =−−−()()21212a x x x x =−+−,∵12x x <,∴210x x −>,∵121x x a +=−,∴1223x x a +−=−,∵0<<3a ,∴30a −<,则1220x x +−<,∴210y y −<,∴12y y >.24. 【答案】(1)见解析 (2(3)125或9625【解析】【小问1详解】证明:连接AEAB 是直径,90AEB ∴∠=°,∴90EAD ADE ∠+∠=°,AF BC ⊥ ,90FAB ∴∠=°,∴90B F ∠+∠=°,点E 为弧AC 得中点,B EAD ∴∠=∠,F ADE ∴∠=∠,AD AF ∴=.【小问2详解】解:3,4AF AB ==,AF AB ⊥,∴在Rt ABF 中,5FB =, ∵1122ABF S AB AF BF AE =⋅=⋅ , ∴345AE ×=, 解得:125AE =,在Rt ABE △中,根据勾股定理可得:165BE , ∵3AD AF ==,∴在Rt AED △中,95ED =, 75BD BE ED ∴=−=, ABD ∴ 的周长7424355AB AD BD =++=++=. 【小问3详解】解:①当AE AP =时,125AP AE ==,②当AE PE =时, P 与C 重合,过点F 作FH AD ⊥于点H ,连接BC ,∵,AF AD AE DF =⊥, ∴1825DF DE ==, ∵1122ADF S DF AE AD FH =⋅=⋅ , ∴1812355FH ×=, 解得:7225FH =, ∵,BCD FHD BDC FDH ∠=∠∠=∠, ∴BCD FHD ∽, ∴DF FH BD BC=,则187252575BC =, 解得:2825BC =,根据勾股定理可得:2125CD =, ∴9625AP AC AD CD ==+=;③当AP PE =时,连接,OE OA ,连接OP 交AE 于点G , ∵AP PE =,OE OA =,∴OP 垂直平分AE , ∴1625AG AE ==,根据勾股定理可得:85OG ==, ∴11185PG OG OP =+=,2225P G OG OP =−=,根据勾股定理可得:1AP 2AP =,综上所述:125AP =或9625.。
2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】
2024—2025学年人教版九年级上册数学 期中考试模拟试卷一、单选题1.在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是( )A .(6,5)B .(﹣6,5)C .(6,﹣5)D .(﹣6,﹣5)2.在Rt ABC △中,90C Ð=°,D 为AC 上一点,CD =动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A ®®匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为()s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段AB 的长是( )A .6B .8C .D .3.对于一元二次方程230x x c -+=,当94c =时,方程有两个相等的实数根.若将c 的值在94的基础上减小,则此时方程根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定4.如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△ADE 的周长为( )A .19B .20C .27D .306.下列函数是二次函数的是( )A .21y x x =+B .1(1)2y x x =-C .21y x =--D .()21y x x =+7.已知二次函数y=2x 2﹣12x +19,下列结果中正确的是( )A .其图象的开口向下B .其图象的对称轴为直线x=﹣3C .其最小值为1D .当x <3时,y 随x 的增大而增大8.如图,二次函数2y ax bx c =++的图象与x 轴相交于A ,()1,0B 两点,对称轴是直线1x =-,下列说法正确的是( )A .0a <B .当1x >-时,y 的值随着x 的值增大而减小C .点A 的坐标为()2,0-D .420a b c -+<9.二次函数()20y ax bx c a =++¹的部分图像如图所示,图像过点()1,0-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)8720a b c ++>;(4)若点()13,A y -,点21,2B y æö-ç÷èø、点37,2C y æöç÷èø在该函数图像上,则132y y y <<;(5)若方程()()153a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确的结论有( )A .2个B .3个C .4个D .5个10.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是c≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题11.二次函数21(3)22y x =+-的图象是由函数212y x =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.12.如图,已知二次函数()20y ax bx c a =++¹的图象与x 轴交于点()1,0A -,与y 轴的交点B 在()0,2-和()0,1-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a -<-;④113a <<;⑤bc >.其中正确结论有 (填写所有正确结论的序号).13.关于x 的一元二次方程2410kx x +-=有两个不相等的实数根,则k 的取值范围是 .14.某种商品原价每件售价为400元,经过连续两次降价后,每件售价为288元,设平均每次降价的百分率为x ,则可列方程为 .15.已知抛物线248y x x =+-与直线l 交于点(5,)A m -,(),3B n -(0n >).若点()P x y , 在抛物线上且在直线l 下方(不与点A ,B 重合),则点P 的纵坐标的取值范围为 .三、计算题16.解方程:(1)()()2121x x -=-(2)22520x x --=四、作图题17.如图,正方形网格中,每个小方格都是边长为1的正方形△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕坐标原点O 顺时针方向旋转90°,出旋转后的△A 2B 2C 2.五、解答题18.台风“杜苏芮”牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?19.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm ,根据题意列出方程,并化成一般形式.20.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为小于2的整数,且方程的根都是整数,求k 的值.21.如图,长方形ABCG 与长方形CDEF 全等点B ,C ,D 和点C ,G ,F 分别在同一条直线上,其中4AB CD ==,8BC DE ==.连接对角线AC ,CE .(1)在图①中,连接AE ,直接判断ACE △形状是______;直接写出AE 的值______;(2)如图②,将图①中的长方形CDEF 绕点C 逆时针旋转,当CF 平分ACE Ð时,求此时点E 到直线AC 的距离.(3)如图③,将图①中的长方形CDEF 绕点C 逆时针旋转到某一个位置,连接AE ,连接DG 并延长交AE 于点M ,取AG 的中点N ,连接MN ,直接写出MN 长的最小值______;22.如图,已知点()()1,04,0A B -,,点C 在y 轴的正半轴上,且90ACB Ð=°,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得4BCN S =V ?如果存在,那么这样的点有几个?如果不存在,请说明理由.23.已知抛物线()220y ax x c a =++¹经过点()0,1,对称轴是直线1x =.(1)求抛物线的解析式;(2)若点(),s t 在该抛物线上,且12s -<<;求t 的取值范围;(3)若设m 是抛物线与x 轴的一个交点的横坐标,记629140m M -=,比较M 的大小.1.C【分析】根据关于原点对称的点,横、纵坐标都互为相反数即可得出答案.【详解】点P (﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:C .【点睛】本题考查了在平面直角坐标系中,关于原点对称的点的特征,关于原点对称的点,横、纵坐标都互为相反数;关于x 轴对称的点,y 互为相反数,x 不变;关于y 轴对称的点,x 互为相反数,y 不变,关于谁对称谁不变,另一个互为相反数.2.A【分析】本题考查了二次函数图象,求二次函数解析式,在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,求得BC 的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,当6S =时,262t =+,解得:2t =(负值已舍去),∴2BC =,∴抛物线经过点()2,6,∵抛物线顶点为:()4,2,设抛物线解析式为:()242S a t =-+,将()2,6代入,得:()26242a =-+,解得:1a =,∴()242S t =-+,当18y =时,()218420t t =-+=,(舍)或8t =,∴826AB =-=,故选:A .3.C【分析】根据一元二次方程根的判别式求解即可得.【详解】解:由题意可知:1a =,3b =-,当94c =时,24940b ac c D =-=-=,当94c<时,∴24940b ac cD=-=->,∴该方程有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查一元二次方程利用根的判别式判断根的情况,解题的关键是熟练运用根的判别式进行求解.4.B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=1 2BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选B.5.A【分析】先由△ABC 是等边三角形得出AC=AB=BC 根据图形旋转的性质得出AE=CD ,BD=BE ,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD ,即可求出结果【详解】解:∵△ABC 是等边三角形,∴AC=AB=BC=10,∵△BAE 是△BCD 逆时针旋转60°得出,∴AE=CD ,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=9,∴△AED 的周长=AE+AD+DE=AC+BD=19.故答案为19【点睛】此题重点考查学生对于图形旋转的理解,抓住旋转前后图形边角的关系是解题的关键6.B【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行分析.【详解】解:A 、含有分式,不是二次函数,故此选项不符合题意;B 、2111(1)=222y x x x x =--,是二次函数,故此选项正确;C 、是一次函数,故此选项不符合题意;D 、3y x x =+是三次函数,故此选项不符合题意;故选:B .【点睛】本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,解题关键是注意二次项系数不为0.7.C【分析】根据二次函数的性质对各选项分析判断即可解答.【详解】∵二次函数y=2x 2﹣12x+19=2(x ﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x >3时,y 随x 的增大而增大,当x <3时,y 随x 的增大而减小;所以C 选项正确.故选C .【点睛】本题考查了二次函数的性质,熟记性质是解题的关键.8.D【分析】本题主要考查了二次函数的图象与系数的关系,抛物线与x 轴的交点.抛物线开口向上则0a >,即可判断A ;又0a >,对称轴是直线1x =-,从而当1x >-时,y 的值随着x 的值增大而增大,故可判断B ;又(1,0)A ,对称轴是直线1x =-,则(3,0)B -,故可判断C ;结合(3,0)A -,(1,0)B ,抛物线开口向上,从而当2x =-时,420y a b c =-+<,进而可以判断D .【详解】解:Q 抛物线开口向上,0a \>,故A 错误;Q 开口向上,对称轴是直线1x =-,\当1x >-时,y 的值随着x 的值增大而增大,故B 错误.(1,0)B Q ,对称轴是直线1x =-,(3,0)A \-,故C 错误.结合(3,0)A -,(1,0)B ,抛物线开口向上,\当2x =-时,420y a b c =-+<.故D 正确.故选:D .9.B【分析】①正确,根据对称轴公式计算即可.②错误,利用x =-3时,y <0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a 、b 即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.【详解】①正确:∵-22b a= ,所以4a +b =0.故①正确.②错误:∵x =-3时, y <0,∴9a - 3b +c <0,∴9a +c <3b ,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴ a -b +c = 025a + 5b +c = 0解得b = -4a ,c = -5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a + 7b +2c >0 ,故③正确.④错误,∵点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C 离对称轴的距离近,∴y 3>y 2,∵a <0 , -3< -0.5<2,∴y 1<y 2∴y 1<y 2<y 3,故④错误.⑤正确.∵a <0 ,∴(x +1)(x -5)=-3a >0 ,即(x +1)(x -5)>0 ,故x <-1或x >5 ,故⑤正确.∴正确的有三个,故选B .【点睛】本题考查抛物线和x 轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.10.D【分析】①根据二次函数的性质即可得出抛物线y=6x 2的对称轴为y 轴,结合a=6>0即可得出当x >0时,y 随x 的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m 的值,再令x+m+2=该数值可求出x 值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【详解】∵在二次函数y=6x 2中,a=6>0,b=0,∴抛物线的对称轴为y 轴,当x>0时,y 随x 的增大而增大,∴①结论正确;∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,∴x+m=-2+m 或1+m ,∴方程a (x+m+2)2+b=0中,x+m+2=-2+m 或x+m+2=1+m ,解得:x 1=-4,x 2=-1,∴②结论正确;∵二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴1022b c b ++=ìïí-ïî?解得:b≤-4,c≥3,∴结论③正确.故选D【点睛】此题重点考查学生随函数图象和性质理解,熟练掌握图象性质是解题的关键.11. 左 3 下2【分析】本题主要考查二次函数与几何变换,图象平移时函数表达式变化的特征是:图象向左平移()0n n >个单位,函数表达式中x 加上n ;图象向右平移()0n n >个单位,函数表达式中x 减去n ;图象向下平移()0m m >个单位,函数表达式中y 加上m ;图象向上平移()0m m >个单位,函数表达式中y 减去m ;根据以上平移规律,对题中的二次函数表达式进行分析,即可得出答案.【详解】解:由“左加右减”的原则将函数212y x =的图象向左平移3个单位,所得二次函数的解析式为:()2132y x =+;由“上加下减”的原则将函数()2132y x =+的图象向下平移2个单位,所得二次函数的解析式为:()21322y x =+-.故答案为:左,3,下,2.12.①③⑤【分析】此题主要考查图象与二次函数系数之间的关系,涉及了数形结合思想的应用.根据对称轴为直线1x =及图象开口向下,与y 轴的交点,可判断出a 、b 、c 的符号,从而判断①;求出图象与轴的另一个交点为()3,0,则可判断②;利用函数的最小值:2414ac b a-<-,可判断③;根据方程20ax bx c ++=的两根为121,3x x =-=,可得,32c b a a =-=-,可判断④⑤的正误.【详解】解:①∵函数开口方向向上,∴0a >;∵对称轴为直线1x =,∴12b a-=,∴20b a =-<,∵抛物线与y 轴交点在轴负半轴,∴0c <,∴0abc >,故①正确;②∵图象与x 轴交于点()1,0A -,对称轴为直线1x =,∴图象与轴的另一个交点为()3,0,当2x =时,420y a b c =++<,故②错误;③∵二次函数的图象与y 轴的交点在()0,1-的下方,对称轴在x 轴右侧,且0a >,∴函数的最小值:2414ac b a-<-,∴244ac b a -<-,故③正确;④∵图象与x 轴交于点()1,0A -,()3,0,∴方程20ax bx c ++=的两根为121,3x x =-=,∴132,133b c a a-=-+==-´=-,∴3c a =-,2b a =-,∴,32c b a a =-=-,∵图象与y 轴的交点B 在()0,2-和()0,1-之间,∴21c -<<-,∴1233a <<;故④错误;∵,32c b a a =-=-,∴32c b -=-,∵0c <,∴23b c c =>,故⑤正确.故答案为:①③⑤.13.1k >-且0k ¹【分析】此题考查了一元二次方程的定义,一元二次方程的判别式,解题的关键是熟练掌握一元二次方程的定义,一元二次方程的判别式.由一元二次方程的定义可得0k ¹,由一元二次方程2410kx x +-=有两个不相等的实数根,可得判别式240b ac D =->,解不等式求解即可.【详解】解:∵2410kx x +-=是一元二次方程,∴0k ¹,又∵一元二次方程2410kx x +-=有两个不相等的实数根,∴240b ac D =->,即()24410k -´->,解得:1k >-,综上所述,k 的取值范围是1k >-且0k ¹.故答案为:1k >-且0k ¹.14.()24001288x -=【分析】设平均每次降价的百分率为x ,利用经过连续两次降价后的价格=原价×(1-降价率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每次降价的百分率为x ,依题意得:400(1-x )2=288.故答案为:400(1-x )2=288.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.123y -£<-【分析】先求出点A 和点B 的坐标,确定直线l 的函数表达式,配合二次函数的图像求解即可;【详解】解:分别将(5,)A m - 、(),3B n - 代入248y x x =+-得:()()m =-+´--=-254583n n +-=-2483 ,解得:11n = ,25n =-(舍)∴(5,3)A --,(1,3)B -∴直线l 的表达式为:=3y -()y x x x =+-=+-2248212Q ∴y 的最小值为:12-y 的取值范围为:123y -£<-故答案为:123y -£<-【点睛】本题考查了二次函数的性质、二次函数图像与表达式的关系;熟练配合函数图像将复杂问题直观化是解决问题的关键.16.(1)121,3x x ==;(2)12x x ==【分析】(1)解一元二次方程,用因式分解法求解;(2)解一元二次方程,用公式法求解.【详解】解:(1)()()2121x x -=-()()21210x x ---=()()1120x x ---=1=0x -或120x --=121,3x x \==(2)22520x x --=2,5,2a b c ==-=-Q 224(5)42(2)410b ac \D =-=--´´-=>∴x \=1x \【点睛】本题考查解一元二次方程,掌握解方程的步骤因式分解的方法及求根公式,正确计算是解题关键.17.(1)见解析;(2)见解析.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2即可.【详解】(1)解:如图,△A 1B 1C 1为所作;(2)解:如图,△A 2B 2C 2为所作;【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(1)捐款增长率为20%(2)第四天该单位能收到5184元捐款【分析】(1)设捐款增长率为x ,根据“第一天收到捐款3000元,第三天收到捐款4320元,第二天、第三天收到捐款的增长率相同”列方程,解方程即可得到答案;(2)用第三天收到的捐款乘以()120%+即可得到答案.【详解】(1)设捐款增长率为x ,根据题意列方程得,23000(1)4320x ´+=,解得10.2x =,2 2.2x =-(不合题意,舍去);答:捐款增长率为20%.(2)第四天收到捐款为:()4320120%5184´+=(元),答:第四天该单位能收到5184元捐款.【点睛】此题考查了一元二次方程的应用,根据题意找到等量关系列出方程是解题的关键.19.241460x x -+=.【分析】首先表示出无盖长方体盒子的底面长为(4-2x )dm ,宽为(3-2x )dm 再根据长方形的面积可得方程()()14232432x x --=´´.【详解】由题意得:无盖长方体盒子的底面长为()42x dm -,宽为()32x dm -,由题意得,()()14232432x x --=´´整理得:241460x x -+=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.20.(1)98k >-且0k ¹(2)1k =-【详解】解:(1)2(3)4(2)9+8k k D =--´-=,∵一元二次方程2320kx x --=有两个不相等的实数根,∴9+800k k >ìí¹î∴98k >-且0k ¹.(2)∵k 为不大于2的整数,∴1k =-,1k =∴当1k =-时,方程2320x x ---=2-都是整数;当1k =时,方程2320x x --=综上所述,1k =-.21(3)2【分析】(1)由矩形ABCG 与矩形CDEF 全等得AC CE =,然后证明出90ACE Ð=°,再由勾股定理得AC =AE =;(2)由CF 平分ACE Ð结合等腰三角形“三线合一”得:CF AE ^,4AF EF ==,再由等面积法得点E 到直线AC (3)过点E 作AG 的平行线交DG 的延长线于H ,连接EG ,先证明HME GMA V V ≌得AM ME =,再由中位线定理得12MN GE =,再由在矩形CDEF 绕点C 逆时针旋转过程中GE的范围为:CE CG GE CE CG -££+得GE 的最小值为4,故MN 的最小值为2-.【详解】(1)Q 矩形ABCG 与矩形CDEF 全等,AC CE \=,ACB ECF Ð=Ð,90ACB ACG Ð+Ð=°Q ,90ECF ACG \Ð+Ð=°,90ACE \Ð=°,∴ACE △是等腰直角三角形,222AE AC CE \=+,QAC =,AE\=;(2)当CF平分ACEÐ时,AC CE=Q,由等腰三角形“三线合一”得:CF AE^,4AF EF==,\设点E到直线AC的距离为d,则由等面积法:1122ACES EF CF AC d =×=×V,d\=\此时点E到直线AC(3)如图,过点E作AG的平行线交DG的延长线于H,连接EG,HE AGQ∥,H MGA\Ð=Ð,CG CD=Q,CGD CDG\Ð=Ð,90AGC CDEÐ=Ð=°Q,90MGA CGD\Ð+Ð=°,90CDG HDEÐ+Ð=°,MGA HDE\Ð=Ð,HDE H\Ð=Ð,HE ED AG\==,在HMEV与GMAV中,HME GMAH MGAHE AGÐ=ÐìïÐ=Ðíï=î,(AAS)HME GMA\V V≌,AM ME\=,AGQ的中点为N,12MN GE \=,MN GE ∥,Q 在矩形CDEF 绕点C 逆时针旋转过程中GE 的范围为:CE CG GE CE CG -££+,44GE \-££+,GE \的最小值为4,MN \的最小值为2.【点睛】本题是矩形旋转变换综合题,主要考查了矩形的性质、旋转的性质、矩形全等的性质、全等三角形的判定与性质、等面积法求高、中位线定理,过点E 作AG 的平行线交DG 的延长线于H 、构造HME GMA V V ≌是本题的关键.22.(1)213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切.(3)((()12321212,3N N N +---,,.【分析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的性质,直线与的位置关系,平行线的性质.(1)Rt ACB V 中,OC AB ^,利用相似三角形能求出OC 的长,即可确定C 点坐标,再利用待定系数法能求出该抛物线的解析式.(2)证明CM 垂直于过点C 的半径即可.(3)先求出线段BC 的长,根据BCN △的面积,可求出BC 边上的高,那么做直线l ,且直线l 与直线BC 的长度正好等于BC 边上的高,那么直线l 与抛物线的交点即为符合条件的N 点.【详解】(1)解:Rt ACB V 中,14OC AB AO BO ^==,,,∴ACO ABO V V ∽.∴CO AO OB CO =,∴24OC OA OB =×=.∴2OC =.∴点()0,2C .∵抛物线2y ax bx c =++经过A 、B 两点,∴设抛物线的解析式为:()()+14y a x x =-,将C 点代入上式,得:()()20+104a =-,解得1=2a -.∴抛物线的解析式:()()1x+142y x =--,即213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切,理由如下:如图,设抛物线的对称轴与x 轴的交点为D ,连接CD .由于A 、B 关于抛物线的对称轴对称,则点D 为Rt ABC V 斜边AB 的中点,32CD AB =.由(1)知:22131325++2=22228y x x x æö=---+ç÷èø,则点325,28M æöç÷èø,259288ME =-= .而32CE OD ==,2OC =,∴ME CE OD OC =::.又∵90MEC COD Ð=Ð=°,∴COD CEM V V ∽.∴CME CDO Ð=Ð.∴9090CME CDM CDO CDM DCM Ð+Ð=Ð+Ð=°Ð=°,.∵CD 是D e 的半径,∴直线CM 与以AB 为直径的圆相切.(3)由()()4,00,2B C 、得:BC =则:11422BCN S BC h h h =×=´==V ,过点B 作BF BC ^,且使BF h =F 作直线l BC P 交x 轴于G .Rt BFGV中,sin sinBGF CBOÐ=Ð=1 2 -,sin4BG BF BGF=¸Ð==.∴()0,0G或()8,0.易知直线BC:122y x=-+,则可设直线l:12y x b=-+,将G点坐标代入,得:0b=或4b=,则:直线l:12y x=-142y x=-+;联立抛物线的解析式,得:21213++222y xy x xì=-ïïíï=-ïî或214213++222y xy x xì=-+ïïíï=-ïî.解得:2y1xì=+ïí=-ïî2y1xì=-ïí=-ïî或2y3x=ìí=î∴抛物线上存在点N,使得S4BCN=V,这样的点有3个:((()12321212,3N N N+---,,23.(1)221y x x=-++(2)22t-<£(3)当1m=M>;当1m=M<【分析】本题主要考查了求二次函数解析式,二次函数图象的性质,二次函数与x轴的交点问题:(1)把()0,1代入解析式可得1c=,再根据对称轴计算公式可得1a=-,据此可得答案;(2)根据(1)所求可得当1x£时,y随x的增大而增大;当1x>时,y随x的增大而减小,分别求出当1s=-时,当1s=时,t得值即可得到答案;(3)先根据题意得到2210m m -++=,即221m m =+,再把221m m =+整体代入分子中把分子进行降次求解即可.【详解】(1)解:把()0,1代入()220y ax x c a =++¹中得1c =.∵对称轴是直线1x =,∴212a-=,解得1a =-.∴抛物线的解析式为221y x x =-++.(2)解:∵由(1)知:221y x x =-++.∵对称轴是直线1x =,∴当1x £时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小,当1x =时,y 有最大值为212112-+´+=,∵点(),s t 在该抛物线上,且12s -<<,∴当1s =-时,2t =-;当2s =时,1t =;∴22t -<£;(3)解:∵m 是抛物线与x 轴的一个交点的横坐标,∴2210m m -++=,即221m m =+.∴629140m M -=()32911402m -+=()()2021212914m m -++=()()20214412914m m m -+++=()()129140214214m m m =++++éù-ëû()()1252911402m m +-+=22422529140m m ++-=()242122529140m m +++-=702929140m +-=2m =,∵221m m =+,∴m =∴2m =∴当1m =时,M > 当1m =M <.。
2024-2025学年广东省深圳市九年级上学期期中数学试题及答案
2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新九年级数学上期中模拟试题附答案一、选择题1.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)2.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上3.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570 D .(32﹣2x )(20﹣x )=5704.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间5.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 6.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h7.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .88.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .9.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 10.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 11.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( )A .-41B .-35C .39D .45 12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.15.抛物线y=ax 2+bx+c 的顶点为D(﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c <0;③c ﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根.其中正确结论是________.16.一个正多边形的一个外角为30°,则它的内角和为_____.17.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)18.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.19.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .20.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.三、解答题21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?22.已知△ABC 是⊙O 的内接三角形,∠BAC 的平分线交⊙O 于点D .(I )如图①,若BC 是⊙O 的直径,BC =4,求BD 的长;(Ⅱ)如图②,若∠ABC 的平分线交AD 于点E ,求证:DE =DB .23.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.24.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.25.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB 22352()22+=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.2.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【详解】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.4.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W元,根据题意,得:W=(x-28)(80-y)-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.5.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯,解得:116k ,此时116k 且0k ≠; 综上,116k.故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.6.D解析:D【解析】【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案.【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D.【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.7.B解析:B【解析】【分析】根据旋转的性质和图形的特点解答.【详解】∵图案绕点O 旋转120°后可以和自身重合,∠AOB 为120°∴图形中阴影部分的面积是图形的面积的13, ∵图形的面积是12cm 2,∴图中阴影部分的面积之和为4cm 2;故答案为B .【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键. 8.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.10.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键11.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】--=的两个实数根,∵a,b为方程2x5x10∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 12.A解析:A【解析】【分析】连OA ,OB,可得△OAB 为等边三角形,可得:60∠=,AOB 即可得∠C 的度数. 【详解】连OA ,OB ,如图,∵OA=OB=AB ,∴△OAB 为等边三角形,60AOB ∴∠=,又12C AOB ∠=∠, 16030.2C ∴∠=⨯= 故选:A .【点睛】本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x 因为经过两年时间让市区绿地面积增加44则有(1+x )2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x 根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x ,因为经过两年时间,让市区绿地面积增加44%,则有(1+x )2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x ,根据题意得,(1+x )2=1+44%,解得x 1=-2.2(舍去),x 2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC≌△EAB 即可解决问题详解:如图连接EC∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.②③④【解析】【分析】由抛物线与x 轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a =−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义. 16.1800°【解析】试题分析:这个正多边形的边数为=12所以这个正多边形的内角和为(12﹣2)×180°=1800°故答案为1800°考点:多边形内角与外角 解析:1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.考点:多边形内角与外角.17.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π.【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.18.15°或60°【解析】【分析】分情况讨论:①DE⊥BC②AD⊥BC然后分别计算的度数即可解答【详解】解:①如下图当DE⊥BC时如下图∠CFD=60°旋转角为:=∠CAD=60°-45°=15°;(2解析:15°或60°.【解析】【分析】分情况讨论:①DE⊥BC,②AD⊥BC,然后分别计算α的度数即可解答.【详解】解:①如下图,当DE⊥BC时,如下图,∠CFD=60°,旋转角为:α=∠CAD=60°-45°=15°;(2)当AD⊥BC时,如下图,旋转角为:α=∠CAD=90°-30°=60°;【点睛】本题考查了垂直的定义和旋转的性质,熟练掌握并准确分析是解题的关键.19.【解析】【分析】先确定出原抛物线的顶点坐标为(00)然后根据向左平移横坐标加向下平移纵坐标减求出新抛物线的顶点坐标然后写出即可【详解】抛物线的顶点坐标为(00)∵向左平移1个单位长度后向下平移2个单 解析:25(1)1y x =-+-【解析】【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为:()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键. 20.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H , 19032ACB CH DH CD ∴∠︒=,=== 30A ∠︒=,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.三、解答题21.(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】【分析】(1)根据题意设平均增长率为未知数x ,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y ,再根据题意建立方程式求解.【详解】(1)设平均增长率为x ,则2201)28.8x (+=解得:10.220%x == 2 2.2x =-(舍)·答:年平均增长率为20%(2)设每碗售价定为y 元时,每天利润为6300元()6y -[300+30(25-y )]=6300·解得:120y = 221y =·∵每碗售价不超过20元,所以20y =.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.22.(I )BD =22;(II )见解析.【解析】【分析】(I )连接OD ,易证△DOB 是等腰直角三角形,由勾股定理即可求出BD 的长;(II )由角平分线的定义结合(1)的结论即可得出∠CBD +∠CBE =∠BAE +∠ABE ,再根据三角形外角的性质即可得出∠EBD =∠DEB ,由此即可证出BD =DE .【详解】解:(I )连接OD ,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠BAC 的平分线交⊙O 于点D ,∴∠BAD =∠CAD =45°,∴∠BOD =90°,∵BC =4,∴BO =OD =2,∴222222BD =+=;(II )证明:∵BE 平分∠ABC ,∴∠ABE =∠CBE .∵∠BAD =∠CBD ,∴∠CBD +∠CBE =∠BAE +∠ABE .又∵∠DEB =BAE +∠ABE ,∴∠EBD =∠DEB ,∴BD =DE .【点睛】本题考查了三角形外接圆与外心、垂径定理、圆周角定理以及角平分线的定义,熟练掌握和圆有关的性质是解题的关键.23.(1)6m <且2m ≠;(2)12x =-,243x =-【解析】【分析】(1)根据题意可得20m -≠且()()()22423m m m ∆=--+()460m >=--,由此即可求得m 的取值范围;(2)在(1)的条件下求得m 的值,代入解方程即可.【详解】(1)关于x 的一元二次方程()22230m x mx m -+++=有两个不相等的实数根, 20m ∴-≠且()()()22423m m m ∆=--+()460m >=--. 解得6m <且2m ≠.m ∴的取值范围是6m <且2m ≠.(2)在6m <且2m ≠的范围内,最大整数为5.此时,方程化为231080x x ++=.解得12x =-,243x =-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.25.(1)20;(2)作图见试题解析;(3)12.【解析】【分析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D一位女生的概率为:31 62 .。