高中数学所有公式+考点难度的超级大合集
(完整版)高中数学解析几何公式大全
![(完整版)高中数学解析几何公式大全](https://img.taocdn.com/s3/m/72e3960b3d1ec5da50e2524de518964bce84d216.png)
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
高中数学经典高考难题集锦
![高中数学经典高考难题集锦](https://img.taocdn.com/s3/m/11af9f79cdbff121dd36a32d7375a417866fc137.png)
《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
高中数学所有公式大总结
![高中数学所有公式大总结](https://img.taocdn.com/s3/m/ac593e2411a6f524ccbff121dd36a32d7375c7a1.png)
高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。
下面将对高中数学中常用的各个章节的公式进行总结。
1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。
- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。
- 直线的斜率公式:对于直线y=kx+b,其斜率为k。
- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。
- 正方形面积公式:面积为边长的平方,即A=s^2。
- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。
- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。
- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。
3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。
- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。
- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。
4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。
高考数学难点公式总结
![高考数学难点公式总结](https://img.taocdn.com/s3/m/f630d782d0d233d4b14e69ab.png)
高考难点公式总结50条1.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 3.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .3.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.4.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.B A ⊆⇔(2)必要条件:若q p ⇒,则p 是q 必要条件. A B ⊆⇔(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. B A =⇔ 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.6.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 7.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.8.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.10.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 11.几个常见的抽象函数原型(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 12.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2))0)(()(1)(≠=+x f x f a x f ,或f(x+a)=-f(x),则)(x f 的周期T=2a ; (3) )()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 12.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆. 若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 13.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤14.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,n n n co απαα-⎧-⎪+=⎨⎪-⎩15.三角函数的概念函数y=Asin(ϕω+x ),ϕ称为初相,ϕω+x =0的x 称为相位移,ϕω+x 称为相。
高三数学公式归纳大全
![高三数学公式归纳大全](https://img.taocdn.com/s3/m/1b14c769443610661ed9ad51f01dc281e53a562c.png)
数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。
今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学所有公式+考点难度地超级大合集
![高中数学所有公式+考点难度地超级大合集](https://img.taocdn.com/s3/m/0a9071eadd88d0d233d46afc.png)
高中数学所有公式+考点难度的超级大合集
中国教育在线2018-01-09 13:35:55
1.集合与常用逻辑用语
2.复数
3.平面向量
4.算法、与二项式定理
7.函数、基本初等函数的图像与性质
8.函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.等差数列、等比数列
12.数列求和及数列的简单应用
13.空间几何体
14.空间点、直线、平面位置关系
15.空间向量与立体几何
16.直线与圆的方程
高中数学48条秒杀公式
![高中数学48条秒杀公式](https://img.taocdn.com/s3/m/bf3d41a9162ded630b1c59eef8c75fbfc67d946c.png)
高中数学48条秒杀公式高中数学是学生学习中的重点科目之一,其中包含了许多重要的概念和公式。
下面将介绍一些高中数学中的重要公式,共计48条。
1.二项式定理(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n2.线性方程组求解法若线性方程组(A*X=B)的未知数个数等于方程组的个数,且A为满秩矩阵,则方程组有唯一解。
3.二次函数顶点公式二次函数 y = ax^2 + bx + c 的顶点坐标为 (-b/2a, c - b^2/4a)4.一元二次方程求根公式一元二次方程 ax^2 + bx + c = 0 的根为 x = (-b ± sqrt(b^2 - 4ac)) / 2a5.直角三角形勾股定理直角三角形的两条直角边的平方和等于斜边的平方:a^2+b^2=c^26.平方差公式(a+b)(a-b)=a^2-b^27.解二次不等式若二次函数的导数大于零,即二次函数开口向上,则解二次不等式可以用开区间表示。
8.正弦定理在三角形ABC中,a/sinA = b/sinB = c/sinC9.余弦定理在三角形ABC中,c^2 = a^2 + b^2 - 2ab*cosC10.对数换底公式loga(b) = logc(b) / logc(a)11.利用二进制进行计算x<<n等于x*2^n;x>>n等于x/2^n12.集合中元素个数公式集合A中元素的个数为,A13.随机事件的概率公式P(A)=N(A)/N(S),其中N(A)为事件A的可能结果数,N(S)为样本空间S的可能结果数。
14.圆的面积公式圆的面积S=πr^2,其中r为半径。
15.等差数列前n项和公式等差数列a(n)=a(1)+(n-1)d,前n项和Sn=n(a(1)+a(n))/216.等差数列通项公式等差数列a(n)=a(1)+(n-1)d17.等比数列前n项和公式等比数列a(n)=a(1)*r^(n-1),前n项和Sn=(a(1)*(r^n-1))/(r-1),其中r不等于118.等比数列通项公式等比数列a(n)=a(1)*r^(n-1)19.二次函数图像性质当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
数学中难记的公式
![数学中难记的公式](https://img.taocdn.com/s3/m/0ce35b5dad02de80d4d840b3.png)
点到平面B α的距离||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 点Q 到直线l 距离h =P (点在直线上,直线的方向向量a =,向量b =). l l PA PQ 异面直线间的距离||||CD n d n ⋅= (是两异面直线,其公垂向量为n 12,l l ,C 分别是上任一点,d 为间的距离).D 、12,l l 12,l l 异面直线上两点距离公式d =.d =d =('E AA F ϕ=−−).(两条异面直线a 、b 所成的角为θ,其公垂线段的长度为h.在直线a 、b 上分别取两点E 、F ,'AA 'A E m =,,). AF n =EF d =圆的切线方程一、已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=. ②过圆外一点的切线方程可设为0(0)y y k x x −=−,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的点的切线方程为000(,)P x y 200x x y y r +=;②斜率为k的圆的切线方程为y kx =±.二、22()(y b)2x a r −+−=上一点 00(,)x y 处的切线为200()(-a)+(y )()x a x b y b r −−−=.利用频率分布直方图估计样本的数字特征: (1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.1.夹角公式 (1)2121tan ||1k k k k α−=+. (l y ,,111:k x b =+22:l y k x b =+121k k 2≠−2)直线时,直线l 1l l ⊥1与l 2的夹角是2π. 2. 到的角公式1l 2l (1)2121tan 1k k k k α−=+. (l y ,,111:k x b =+22:l y k x b =+121k k 2≠−2)直线时,直线l 1l l ⊥1到l 2的角是2π. 面积与体积公式:⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:S 侧=rh π2;③体积:V=S 底h⑵锥体:①表面积:S=S 侧+S 底;②侧面积:S 侧=rl π;③体积:V=31S 底h : ⑶台体:①表面积:S=S 侧+S 上底S 下底;②侧面积:S 侧=;③体积:V=l r r )('+π31(S+''S SS +)h ;⑷球体:①表面积:S=;②体积:V=24R π334R π 。
289个高中数学秒杀公式
![289个高中数学秒杀公式](https://img.taocdn.com/s3/m/e7fe65a4767f5acfa0c7cdd6.png)
第1章 集合、命题、不等式、复数1、有限集合子集个数:子集个数:2n 个,真子集个数:12n -个;2、集合里面重要结论:①A B A A B =⇒⊆;②A B A B A =⇒⊆;③A B A B ⇒⇔⊆;④A B A B ⇔⇔= 3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+-5、常见的数集:Z :整数集;R :实数集;Q :有理数集;N :自然数集;C :复数集;其中正整数集:{}1,2,3,Z N **==⋅⋅⋅⋅⋅⋅6、均值不等式:若,0a b >时,则a b +≥若,0a b <时,则a b +≤-7、均值不等式变形形式:222(,)a b ab a b R +≥∈;2(0)b a ab a b +≥>;2(0)b aab a b+≤-<8、积定和最小:若ab p =时,则a b +≥=9、和定积最大:若a b k +=时,则22()44a b k ab +≤=10、基本不等式:2112a b a b+≤≤+ 11、一元二次不等式的解法:大于取两边,小于取中间12、含参数一元二次不等式讨论步骤:(1)二次项系数a ;(2)判别式∆;(3)两根12,x x 大小比较;(4)12,x x 与定义域的端点值作比较(常用韦达定理)13、一元二次不等式恒成立:(1)若20ax bx c ++>恒成立00a >⎧⇔⎨∆<⎩(2)若20ax bx c ++≤恒成立0a <⎧⇔⎨∆≤⎩14、任意性问题:①max ,()()x I a f x a f x ∀∈>⇒>;②min ,()()x I a f x a f x ∀∈≤⇒≤。
15、存在性问题:①min ,()()x I a f x a f x ∃∈>⇒>;②max ,()()x I a f x a f x ∃∈≤⇒≤。
高中数学公式定理大全
![高中数学公式定理大全](https://img.taocdn.com/s3/m/d53fce3ebed5b9f3f90f1c66.png)
高中数学公式定理大全有了这些,普通题、难题、偏题、怪题、竞赛题都不是问题,熟练掌握、灵活运用,大大提高解题效率、节省宝贵时间!公式:抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*t anA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA ^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tan A^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
256个高中数学秒杀公式
![256个高中数学秒杀公式](https://img.taocdn.com/s3/m/420f9a3002d8ce2f0066f5335a8102d276a261e8.png)
256个高中数学秒杀公式第1章集合、命题、不等式、复数1.有限集合的子集个数公式为:子集个数为2^n个,真子集个数为2^(n-1)个。
2.集合中的重要结论:①若A∩B=A,则A⊆B;②若A∪B=A,则B⊆A;③若A⊆B,则A→B且B→A;④若A=B,则XXX且B⊆A。
3.求交集和并集的同时,需要分类讨论。
4.集合元素个数公式为:n(AB)=n(A)+n(B)-n(AB)。
5.常见的数集有:Z为整数集,R为实数集,Q为有理数集,N为自然数集,C为复数集。
其中正整数集为Z* = N* = {1.2.3.}。
6.均值不等式为:若a,b>0,则a+b≥2ab;若a,b<0,则a+b≤-2ab。
7.均值不等式的变形形式为:a^2+b^2≥2ab (a,b∈R);(a+b)^2≥4ab (ab>0);(a-b)^2≥0 (ab<0)。
8.积定和最小的情况为ab=p时,此时a+b≥2ab=2p。
9.和定积最大的情况为a+b=k时,此时ab≤(a^2+b^2)/2≤(k/2)^2.10.基本不等式为:(a/b+b/a)/2≥2,即a/b+b/a≥2.11.一元二次不等式的解法为:当不等式为大于号时,取两边;当不等式为小于号时,取中间。
12.含参数一元二次不等式的讨论步骤为:(1) 二次项系数a;(2) 判别式Δ;(3) 两根x1,x2大小比较。
13.一元二次不等式恒成立的情况为:(1) 若ax^2+bx+c>XXX成立,则a>0且Δ<0;(2) 若ax^2+bx+c≤XXX成立,则a<0且Δ≤0.14.任意性问题的解法:① XXX∈I,a>f(x),则a>max;②若∀x∈I,a≤f(x),则a≤XXX。
15.存在性问题的解法:①若∃x∈I,a>f(x),则a>min;②若∃x∈I,a≤f(x),则a≤max。
16.距离型目标函数为d=(x-a)^2+(y-b)^2,表示可行域内的点(x,y)到定点(a,b)的距离。
高三最难数学公式汇总
![高三最难数学公式汇总](https://img.taocdn.com/s3/m/371dd6e2b90d6c85ec3ac6e5.png)
高三最难数学公式汇总高三数学公式1乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab|a-b||a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb某些数列前n项和1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n22+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2 =n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1) =n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_=2pyx2=-2py直棱柱侧面积s=c_斜棱柱侧面积s=c_正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_圆柱体v=pi_2h高三数学公式2平面解析几何包含一下几部分:一直角坐标1.1有向线段1.2直线上的点的直角坐标1.3几个基本公式1.4平面上的点的直角坐标1.5射影的基本原理1.6几个基本公式二曲线与议程2.1曲线的直解坐标方程的定义2.2已各曲线,求它的方程2.3已知曲线的方程,描绘曲线2.4曲线的交点三直线3.1直线的倾斜角和斜率3.2直线的方程Y=kx+b3.3直线到点的有向距离3.4二元一次不等式表示的平面区域3.5两条直线的相关位置3.6二元二方程表示两条直线的条件3.7三条直线的相关位置3.8直线系高三数学公式3等比数列求和公式算法想了解无穷递减等比数列求和的算法,需要先介绍一下等比数列求和公式设一个等比数列的首项是a1,公比是q,数列前n项和是Sn,当公比不为1时Sn=a1+a1q+a1q^2+...+a1q^(n-1)将这个式子两边同时乘以公比q,得qSn=a1q+a1q^2+...+a1q^(n-1)+a1q^n两式相减,得(1-q)Sn=a1-a1q^n所以,当公比不为1时,等比数列的求和公式为Sn=[a1(1-q^n)]/(1-q)对于一个无穷递减数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式S=a/(1-q)高三数学公式4π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高等数学复杂公式汇总(考试必备)
![高等数学复杂公式汇总(考试必备)](https://img.taocdn.com/s3/m/6142263217fc700abb68a98271fe910ef12daef8.png)
高等数学1. 常用极限公式:lim sin x = 1 lim (1 + 1 )x = ex)0x x)w x当 x ) 0 时, sin x = x, tgx = x, ln(1 + x) = x,1 - cosx = x 2, arcsin x = x (用在乘除运算中)22. 求导公式:(a x )' = a x ln a (log a x )' = x l n 1 a (t g ' = c o 1 x (c t g )x ' = - s i n 21x(arcsin x)' = 1 (a r c c )s ' = - 1 (a r c t x= 1 (a r c c t)g ' - 11 - x2 1 - x 2 1 + x 2 1 + x 2(|( v u))|'= u ' v v 2-uv '3. 积分公式:j x ndx =x n+1 + c(n 丰 -1)jdx = arctgx + cj a xdx =1lnaa x+ c j1sinx dx = ln (|(tg 2x))| + c j1dx = arcsin x + cj ln xdx = x ln x - x分部积分: j uv ' dx = uv - j u ' vdx 4. 极值公式:f ' (x) > 0 > 增函数 f ' (x) < 0 > 减函数 f '(x 0 ) = 0时〈有有极极小大值值5. 向量公式:单位向量: x 2 + y 2 + z 2 = 1向量数量积: a . b = a . bcos(a,b) = x 1x 2 + y 1 y 2 + z 1 z 21 - x 2^a 、b 垂直 一 a . b = x 1x 2 + y 1 y 2 + z 1 z 2 = 0a 、b 平行 一 a 人 b = 0或b = 入a 或 x 1 = y 1 = z1x 2 y 2 z 2三点共线: AB 人 AC = 0 三角形面积: S = a 人 b 2一 一1w 点到平面的距离: d = Ax 0+ By 0 + Cz 0 + DA 2 +B 2 +C 2直线的两点式方程:x _ x 1 y _ y 1 z _ z 1x 2 _ x 1 y 2 _ y 1 z 2 _ z 1Fz x x = _?F z6. 级数展开式:1 1 _ x11 + x = x x nn=0wn=0 ( -1<x<1)( -1<x<1)e x= xw xn(_ w < x < +w)ln(1 _ x) = _xw xn(_ 1 三 x < 1)nn=0(2n + 1)!cos x = x w(_ 1)nx 2n(_ w < x < +w) 7. 微分方程:n=1nln(1+ x) = xw(_1)n_1x n(_ 1 < x 三 1) n=1sin x = xw(_ 1)n x 2n+1 (_ w < x < +w)n=0 (2n )!隐函数偏导:n=0n!= == x (_ 1)n x n⑴一阶线性微分方程: y'+p(x)y = q(x) 通解: y = e _j p(x)dxjq(x)ej p(x)dxdx + c ⑵二阶线性微分方程:①齐次方程: y''+p 1 y'+p 2 y = 0特征根: r 1 丰 r 2时, y = c 1e r 1x + c 2 e r 2xr 1 = r 2时, y = (c 1 + c 2 x)e r 1xr 1 = a + ib, r 2 = a _ ib 时, y = e ax (c 1 c o x + c 2 s i nbx)②非齐次方程: y''+p 1 y'+p 2 y = f (x) y = c 1 y 1 + c 2 y 2 + y * , (y * = x k Q m (x)e ax )8. 二元函数极值: A = f xx '' (x 0 , y 0 ), B = f xy '' (x 0 , y 0 ), C = f yy '' (x 0 , y 0 )⑴当 B 2 - AC < 0且A < 0(或C < 0)时, f (x 0 , y 0 )为极大值; 当 B 2 - AC < 0且A > 0(或C > 0)时, f (x 0 , y 0 )为极小值; ⑵当 B 2 - AC > 0 时,不是极值;⑶当 B 2 - AC =0 时,可能是、可能不是极值。
高中数学:(重点+难点)公式表-WPS Office
![高中数学:(重点+难点)公式表-WPS Office](https://img.taocdn.com/s3/m/732db7b0fc4ffe473368abf0.png)
高中数学:(重点+难点)公式表集合!打印贴墙背,3年考试0扣分
▼
数学是很多人头痛的一门学科,因为会的不难,难的不会。
而且,很多同学对数学似乎有一种天生的恐惧感,一看到数学,心里就自然而然产生一种抗拒情绪,影响自己正常的思维。
数学这门学科的学科越到高年级其实主要还是一个有关于理解的问题,理解不了,一切都是白搭,所以说同学们基础的掌握是必须,在基础掌握好的前提下来提升自己的逻辑思维能力,双管齐下之间,成绩才会有所提升。
很难的高三数学知识点
![很难的高三数学知识点](https://img.taocdn.com/s3/m/7f3c6a65a4e9856a561252d380eb6294dd882214.png)
很难的高三数学知识点高三是学生们备战高考的关键时期,而数学作为高考的一门重要科目,常常被学生们视为难点之一。
在这篇文章中,我将介绍一些高三数学中的难点知识点,帮助学生们更好地应对挑战。
一、圆的相关知识圆是高中数学中的一个重要概念,涉及到许多难点知识点。
其中,弧长、扇形面积和圆的切线方程是学生们经常会遇到困惑的内容。
1. 弧长:计算弧长需要使用圆的周长公式,即弧长 = 圆周率 ×直径。
学生们容易忘记这个公式或混淆半径和直径的概念,导致计算错误。
2. 扇形面积:计算扇形面积的公式为扇形面积 = 1/2 ×圆周率 ×半径²。
在计算过程中,学生们可能忘记将弧长转化为角度,或者误用公式导致答案错误。
3. 圆的切线方程:通过给定的点和圆心,求切线方程是高三数学中的难点之一。
学生们要掌握切线的定义和相关公式,如切线斜率与半径垂直的性质等。
二、排列组合与概率排列组合和概率是高三数学中的另一个难点,与实际问题的抽象化和计算方法的复杂化等因素有关。
以下是排列组合和概率中常见的困惑点。
1. 排列与组合的区别:学生们需要明确排列和组合的概念和计算方法。
排列指的是从若干元素中挑选出一部分元素,考虑元素之间的顺序,而组合则不考虑元素的顺序。
2. 条件概率:计算条件概率时,学生们容易弄混因果关系。
他们需要理解条件概率的定义,并根据题目给出的条件进行计算,注意在计算过程中的因果关系。
3. 贝叶斯定理:贝叶斯定理是概率论中的重要定理,常常需要将复杂问题转化为简单问题来计算。
学生们需要理解贝叶斯定理的原理,并能够将问题转化为条件概率的计算。
三、数列与数学归纳法数列是高中数学中的重要概念,数学归纳法是数列证明中常用的方法。
以下为数列与数学归纳法的常见难点。
1. 等差数列与等比数列:学生们需要理解等差数列和等比数列的概念和性质,掌握常用的计算公式,如通项公式和前n项和公式等。
2. 递推关系与通项公式:在数列的计算和证明中,递推关系和通项公式是重要的方法。
高中数学超难公式(一)
![高中数学超难公式(一)](https://img.taocdn.com/s3/m/8a79d1517f21af45b307e87101f69e314332fa29.png)
高中数学超难公式(一)高中数学超难公式本文将介绍一些高中数学中的超难公式,并提供简单的例子来解释说明。
1. 二项式展开公式二项式展开公式是高中数学中的重点和难点之一,它用于将一个二项式的幂展开成一系列项的和。
二项式展开公式的一般形式为:(a+b)n=C n0a n+C n1a n−1b+C n2a n−2b2+⋯+C n k b n−k+⋯+C n n b n 其中,C n k表示组合数,计算公式为:C n k=n!k!(n−k)!例子:(x+y)3=C30x3+C31x2y+C32xy2+C33y32. 三角函数和三角恒等式三角函数和三角恒等式是高中数学中重要的内容,它们在解决三角函数相关问题时起到关键作用。
常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
三角恒等式是指在特定条件下成立的等式,例如:sin2x+cos2x=1这是一个非常重要的三角恒等式,称为“勾股定理”。
例子:已知一直角三角形的一条直角边长为3,求另一条直角边的长度。
根据勾股定理可得:32+b2=52解得:b=√52−32=43. 导数和微分导数和微分是高中数学中的重要概念,它们在研究函数的变化趋势和斜率等问题时起到关键作用。
导数表示函数在某一点的变化率,由极限定义可得:f′(x)=limΔx→0f(x+Δx)−f(x)Δx微分表示函数在某一点的变化量,由导数的定义可得:df=f′(x)dx例子:已知函数f(x)=x2+2x,求x=2处的导数和微分。
计算导数:f′(2)=limΔx→0(2+Δx)2+2(2+Δx)−(22+2(2))Δx化简得:f′(2)=6计算微分:df=f′(2)dx=6dx以上是高中数学中的一些超难公式,它们在解决复杂问题时能够发挥重要作用。
熟练掌握这些公式并能灵活运用,将有助于提升数学能力和解题能力。
高中数学公式大全由易到难
![高中数学公式大全由易到难](https://img.taocdn.com/s3/m/e8a593e3172ded630b1cb66f.png)
乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 -2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等--------------------------------------------------------------------------------2 高中数学公式23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形--------------------------------------------------------------------------------3 高中数学公式77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕ ?84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。