纳什均衡及应用举例-博弈论

合集下载

好的纳什均衡例子(一)

好的纳什均衡例子(一)

好的纳什均衡例子(一)好的纳什均衡什么是纳什均衡?纳什均衡是博弈论中的一个重要概念,指的是在博弈参与者之间形成的一种稳定和平衡的策略选择状态。

在纳什均衡下,任何一个参与者都无法通过改变自己的策略来获得更大的利益。

好的纳什均衡指的是存在多个纳什均衡时,其中某些纳什均衡比其他纳什均衡更为理想。

例子一:囚徒困境囚徒困境是博弈论中最经典的例子之一。

假设有两个犯人,他们因为涉嫌合谋犯罪被捕,警察只有有限的证据。

警察与每个犯人分别进行单独审讯,并给他们提供了合作和背叛两个选项,这两个选项对应于认罪和抵赖。

如果两个人都选择合作,即认罪,则每个人都会被判刑2年;如果两个人都选择背叛,即抵赖,则每个人都会被判刑5年;如果一个人选择合作而另一个选择背叛,则合作的人会被判刑6年,而背叛的人会被判刑1年。

在这个案例中,存在两个纳什均衡:互相背叛和互相合作。

然而,互相合作是更为理想的纳什均衡,因为如果两个人都选择合作,他们的总刑期将会最短,只有2年。

例子二:拍卖拍卖是另一个常见的博弈场景。

假设有两个竞拍者A和B,他们在一个拍卖会上竞价购买一件物品。

物品的最低价格为100元。

竞拍者A知道他的估值是200元,而竞拍者B知道他的估值是150元。

他们每次可以按照一定幅度加价,但不能超过自己的估值。

在这个案例中,存在两个纳什均衡:A出价200元,B不出价;B 出价150元,A不出价。

然而,对于卖家来说,A出价200元,B不出价是更好的纳什均衡,因为这样卖家可以以更高的价格售出物品。

例子三:价格战价格战是市场竞争中常见的博弈情景。

假设有两家公司A和B,它们在同一个市场上销售类似的产品。

它们可以根据自己的利润目标制定价格。

如果两家公司的价格相等,则它们将平分市场份额;如果一家公司的价格比另一家低,则它将获得更大的市场份额。

在这个案例中,存在两个纳什均衡:价格相等和一家公司的价格低于另一家。

然而,价格相等是更好的纳什均衡,因为这样两家公司可以共享更多的市场份额,并且避免因为价格战而导致的利润下降。

博弈论66个经典例子(9)不会令人后悔的纳什均衡

博弈论66个经典例子(9)不会令人后悔的纳什均衡

不会令人后悔的均衡在纳什均衡中,你不一定满意其他的策略,但你的策略是回馈对手招数的最佳策略。

从囚徒困境中我们会发现,作为博弈各方的行动就是针对对方行动而确定的最佳对策,而一旦知道对方在做什么,就没人愿意改变自己的做法。

博弈论学把这么一个结果称为均衡。

这个概念是有普林斯顿大学数学家约翰·纳什提出的,因此被称为纳什均衡。

诺贝尔经济学奖获得者萨缪尔森有句名言,你可以将一只鹦鹉训练成经济学家,因为它所需要学习的只有两个词,供给与需求。

博弈论专家坎多瑞引申说:“要成为现代经济学家,这只鹦鹉必须再多学一个词,这个词就是纳什均衡”。

1950年,还是一名研究生的纳什写了一篇论文,题为《n人博弈的均衡问题》,该文只有短短一页纸,可就这短短一页纸成了博弈论的经典文献。

纳什的贡献是,他证明了在这一类的竞争中,在很广泛的条件下是有稳定解存在的,只要是别人的行为确定下来,竞争者就可以有最佳的策略。

那么,什么纳什均衡呢?简单说,就是一策略组合中,所有的参与者面临这样的一种情况:给定你的策略,我的策略是我最好的策略。

给定我的策略,你的策略也是你最好的策略,即双方在对方给定的策略下不愿意调整自己的策略。

纳什均衡从此成为经济学家用来分析商业竞争到贸易谈判现象的有力工具,所以纳什均衡是对冯诺依曼和摩根斯坦的合作博弈论的重大发展,甚至说是一场革命。

纳什均衡首先对亚当斯密“看不见的手”的原理提出挑战,按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果,从纳什均衡引出一个悖论:从利己的目的触发,结果损人不利己。

“囚徒困境”就是如此,从这个意义说,纳什均衡提出的悖论实际上动摇了西方经济学的基石。

纳什的想法成为我们指导“同时行动博弈”的最后一个法则的基础。

这个法则如下:走完寻找优势策略和剔除劣势策略的捷径之后,下一步就是寻找这个博弈的均衡。

所谓博弈均衡,它是一稳定的博弈结果。

均衡是博弈的一结果,但不是说博弈的结果都能成为均衡。

三方博弈纳什均衡例题

三方博弈纳什均衡例题

三方博弈纳什均衡例题全文共四篇示例,供读者参考第一篇示例:三方博弈是博弈论中一种常见的情形,指的是有三方参与并且彼此之间存在竞争和合作关系的博弈情况。

纳什均衡是博弈论中的一个重要概念,指的是在博弈中每个玩家都做出最佳决策的情况下所达到的一个稳定状态。

在三方博弈中,如果存在某种情况下所有玩家都无法通过改变自身策略而获益,这种状态就是三方博弈的纳什均衡。

下面我们通过一个例子来说明三方博弈纳什均衡的概念。

假设有三位学生A、B、C参加了一个考试竞赛,在这个竞赛中,他们可以选择合作作弊,也可以选择正当的考试。

如果三位学生都选择正当考试,那么每个人都能得到10分的成绩;如果某一位学生作弊而其他两人选择正当考试,那么作弊的学生可以得到15分,而其他两人得0分;如果所有人都选择作弊,那么每个人只能得到5分。

同理,对于学生B和C来说,选择作弊也是更有利的策略。

第二篇示例:三方博弈是博弈论中的一个重要概念,指的是有三个各自独立的决策者同时做出决策的情况。

在三方博弈中,每个决策者都会考虑其他两方的利益和行为,以最大化自己的利益。

纳什均衡是博弈论中一个非常重要的概念,是指在一个博弈当中,每个参与者都选择了最优的行动策略,没有任何一方可以通过改变自己的策略来获得更好的结果。

下面我们来看一个关于三方博弈纳什均衡的例题。

假设有三个玩家A、B、C,他们在一个零和博弈中,并且每个玩家都只有两种可行的策略,分别是合作和背叛。

博弈的收益矩阵如下表所示:| | 合作| 背叛|| ---- | ------ | ------ || 合作| 3,3,3 | 1,4,4 || 背叛| 4,4,1 | 0,2,2 |在这个收益矩阵中,每个元素表示每个玩家在不同组合下的收益,例如当A、B、C都选择合作时,他们的收益分别是3,当A、B、C都选择背叛时,他们的收益分别是2。

现在我们来分析一下这个博弈的纳什均衡。

我们来看一下玩家A的最佳策略。

玩家A会根据其他两个玩家的策略来选择自己的策略,如果B、C都选择合作,那么玩家A选择背叛可以得到更高的收益4;如果B、C都选择背叛,那么玩家A也选择背叛可以得到更高的收益4。

智猪博弈论与纳什均衡

智猪博弈论与纳什均衡

智猪博弈论与纳什均衡智猪博弈论与纳什均衡智猪博弈理论介绍在博弈论(GameTheory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。

假设猪圈里有一头大猪、一头小猪。

猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。

那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。

实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。

用博弈论中的报酬矩阵可以更清晰的刻画出小猪的选择:从矩阵中可以看出,当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。

综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。

在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。

在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。

这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。

“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。

这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。

F-博弈论专题-4-1混合纳什均衡

F-博弈论专题-4-1混合纳什均衡

二、混合战略Nash均衡
问题: 在“猜硬币”游戏中,我们往往会以50%
的概率选择正面(O),以50%的概率选择反面(R), 即选择混合战略σ=(0.5,0.5)。那么有没有参与 人会偏离混合战略σi=(0.5,0.5)呢?
O 1
R
2
O
R
-1,1
1,-1
1,-1
-1,1
在“猜硬币”博弈中,当双方都选择混合战略
为准)

左边 右边
左边 -1,1 1,-1 攻
右边 1,-1 -1,1
例:石头、剪子、布
(3)石头、剪子、布
再看猎鹿博弈
风险与均衡
某种行动的概率
与期望收益:
猎鹿?猎兔? 如果猎兔的概率 Nhomakorabea猎 人鹿
是0.5时,均衡 1 兔子
是什么?0.6呢?
猎人2
鹿
兔子
5, 5 3, 0
0, 3 3, 3
猎鹿博弈 风险上策均衡(兔子,兔子)
社会福利博弈
流浪汉
政 府 救济
不救济
找工作 (3,2) (-1,1)
游荡 (-1,3) (0,0)
课堂测试:
求解猎人的混
合纳什均衡策
略。
即,选择两种策 略的期望收益
猎 人鹿
无差异的概率。 1 兔子
猎人2
鹿
兔子
5, 5 3, 0
0, 3 3, 3
猎鹿博弈 风险上策均衡(兔子,兔子)
察不能同时兼顾两个地方。商店价值2万元,
酒馆价值1万元。警察在这头时小偷会去另一
头行窃,但双方到底在哪边是不确定的。双方
的策略应是什么?
小偷
酒馆 商店
警察

博弈论论文(囚徒困境案例纳什均衡案例完全信息静态博弈完全信息动态博弈)

博弈论论文(囚徒困境案例纳什均衡案例完全信息静态博弈完全信息动态博弈)

二、博弈论的发展史 2.1中国传统文化中的博弈论
在我国,博弈论的思想源远流长,古代人民很早就认识了博弈问题,虽然没有形 成一套完整的理论体系和方法,但博弈论的思想和实践活动,则可以追溯到 2000 多年 前。著名的"齐王与田忌骞马"就是一经典事例。这里,田忌进行的是"在给定齐王策略 不变情况下如何取胜"这一策略选择,实际上就是现代博弈论中的完全信息条件下的两 人博弈问题。著名的《孙子兵法》一书对战争胜负的认识,以及胜负之间诸因素的相 互作用的深刻论述,和所提出的一系列军事对策等,都反映出其系统的博弈论思想。 而《三十六计》则可以称做是一部活生生的军事博弈论教科书。《孙子兵法》和《三
博弈论论文
摘要:在现实生活中,人们的利益冲突与一致具有普遍性。因此,几乎所有的决 策问题都可以认为是博弈。虽然博弈论是数学的一个分支,但其应用范围十分广泛, 在经济学、管理学、社会学、政治学、法律学、军事学等领域都有许多成功运用博弈 论的案例。本文对博弈论发展简史、博弈论基本概念进行阐述,对囚徒困境、纳什均 衡、完全信息静态博弈、完全信息动态博弈、进行解析与案例分析。 关键词:博弈论、博弈论发展简史、博弈论基本概念、囚徒困境案例、纳什均衡 案例、完全信息静态博弈、完全信息动态博弈。
一、在生活中广泛应用的博弈论
在高飞老师的带领下,经过一段时间的学习,我对博弈论有了一些肤浅的理解。 诚然,一门学问想在短时间内有所深入理解是不现实的。生活之中到处充满着博弈, 有人说没有,那是因为缺少发现博弈现象的眼睛。 人生就是在弈棋,学会博弈。虽说 博弈不是万能的,但没有博弈现象存在的生活是万万不能的。 博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学 语言,外行人看来只是一大堆数学公式。好在博弈论关心的是日常经济生活问题,所 以不能不食人间烟火。其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策 性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。目前在生 物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛 的应用。人们每天都面临着无数个选择,而博弈能运用具体的案例模型和相对应的决 策方法,让人们在最短的时间内作出最有利于自己的选择。 早在 1994 年,提出博弈均衡理论的纳什博士与他的伙伴哈尔萨尼教授、泽尔滕教 授就共同分享了当年的诺贝尔经济学奖和 93 万美元的奖金。2005 年,瑞典皇家科学 院再次把诺贝尔经济学奖颁给了有着以色列、美国双重国籍的罗伯特·奥曼和美国人托 马斯·谢林,以表彰他们在博弈论领域作出的贡献。纳什的贡献是在 1944 年与奥斯 卡·摩根斯特恩合著了《博弈论与经济行为》一书,标志着现代系统博弈理论的的初步 形成。而谢林和奥曼两位博弈论先驱在政治理论、社会学甚至生物学等方面成功运用 到了博弈学理论。奥曼用数学分析为博弈论列出了精确的公式,谢林则是想通过实践 来展示博弈论在社会各个领域的实际意义。他们两位利用博弈论对商业谈判、种族隔 离、武器控制等领域进行了实际分析,谢林教授认为博弈论运用的重要领域应该包括 核威慑和武器控制,同时还可以研究种族关系、有组织犯罪、雇员关系乃至自我管理 等方面。

精选最新生活中纳什均衡例子

精选最新生活中纳什均衡例子

首先我们先简单看一下纳什均衡的经济学含义:所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。

换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。

大家可以现有一个简单的印象,结合下面的案例再回来看这个定义。

案例一、智猪博弈猪圈里有两头猪,一头大猪,一头小猪。

猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。

如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。

当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。

原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。

对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。

反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。

案例二、囚徒困境(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。

)假设有两个小偷A和B联合犯事、私入民宅被警察抓住。

警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。

如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。

如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。

囚徒困境博弈A╲B坦白抵赖坦白-8,-80,-10抵赖-10,0-1,-1关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。

三方博弈纳什均衡例题

三方博弈纳什均衡例题

三方博弈纳什均衡例题博弈论是研究决策主体的行为发生直接相互作用时候的决策以及这种决策的均衡问题的理论。

在博弈论中,当参与博弈的决策主体超过两个时,我们称之为多方博弈。

纳什均衡是博弈论中的一个核心概念,它描述的是在给定其他参与者策略的情况下,每个参与者都选择自己的最优策略,从而使得所有参与者的策略构成一个稳定的状态。

下面,我们将通过一个具体的三方博弈的例子来详细解析纳什均衡的概念和应用。

例题:假设有三个公司A、B、C分别生产同类产品,并且它们的市场份额相当。

为了扩大自己的市场份额,每个公司都有两种策略可以选择:增加产量(进攻策略)或减少产量(保守策略)。

这三个公司的决策是相互影响的,每个公司的策略都会对其他两个公司的市场份额产生影响。

1.如果所有公司都选择增加产量,由于市场竞争的加剧,每个公司的市场份额都会下降,假设每个公司的收益都为-1(表示市场份额下降,收益减少)。

2.如果所有公司都选择减少产量,由于市场供应减少,每个公司的市场份额都会上升,假设每个公司的收益都为1(表示市场份额上升,收益增加)。

3.如果其中两家公司选择增加产量,而另一家公司选择减少产量,那么增加产量的两家公司的市场份额会略有上升,而减少产量的公司的市场份额会大幅下降。

假设增加产量的公司的收益为0,减少产量的公司的收益为-2。

4.如果其中两家公司选择减少产量,而另一家公司选择增加产量,那么增加产量的公司的市场份额会大幅增加,而减少产量的两家公司的市场份额会略有下降。

假设增加产量的公司的收益为2,减少产量的公司的收益为0。

基于以上情况,我们可以构建如下的收益矩阵:现在,我们来分析这个三方博弈的纳什均衡。

首先,我们考虑公司A的选择。

如果B和C都选择增加产量(策略为进攻),那么A的最优策略是减少产量(保守策略),因为这样可以避免市场份额的大幅下降。

如果B和C都选择减少产量(策略为保守),那么A的最优策略是增加产量(进攻策略),因为这样可以抓住市场机会增加自己的市场份额。

通过几个例子理解博弈论与纳什均衡

通过几个例子理解博弈论与纳什均衡

通过⼏个例⼦理解博弈论与纳什均衡2019/12/18更新,重新叙述⼀下智猪博弈2019/10/28更新,这⾥再举⼀个博弈论的经典例⼦,海盗分⾦问题。

喜欢玩德州扑克的⼈应该都听说过“GTO”这个词。

GTO,即 GameTheory Optimal,翻译成中⽂应该叫做“游戏理论最优化”。

直接翻译过来有点拗⼝,通俗⼀点的解释可以是:在游戏中,你可以采取⼀种最优策略,使得⾃⼰的损失最⼩,同时游戏中的对⼿也必须采取相对应的策略,否则只会扩⼤你的受益。

讲到GTO,就不得不提到博弈论中⾮常著名的⼀个理论:纳什均衡(Nash Equilibrium)。

该理论是由著名的经济学家,博弈论创始⼈,诺贝尔奖获得者约翰·纳什提出的,也就是电影《美丽⼼灵》的男主⾓原型。

该理论是说:在⾮合作类博弈中,存在⼀种策略组合,使得每个参与⼈的策略是对其他参与⼈策略的最优反应。

如果参与者当前选择的策略形成了“纳什均衡”,那么对于任何⼀位参与者来说,单⽅更改⾃⼰的策略不会带来任何好处。

约翰·纳什证明了在每个参与者都只有有限种策略选择,并允许混合策略的前提下,纳什均衡⼀定存在。

上边的解释还是有点拗⼝,这⾥通过⼏个例⼦,更直观的理解⼀下这个理论。

囚犯的困境假设有两个⼩偷A和B联⼿闯⼊民宅盗窃被抓,警⽅将两⼈置于不同的房间进⾏审讯,并给出如下政策:如果⼀个犯罪嫌疑⼈坦⽩并交出了赃物,两⼈都会被判有罪。

如果另⼀个犯罪嫌疑⼈也坦⽩,则两⼈各被判刑8年;如果另⼀个犯罪嫌⼈抵赖,再加刑2年,⽽坦⽩者有功,会被⽴即释放。

如果两⼈都抵赖,偷窃罪证据不⾜,但会因私⼊民宅⽽各判⼊狱1年。

即:表中的数字表⽰A,B各⾃的判刑结果。

博弈论分析中⼀般都⽤这样的表来表⽰。

此时有⼈会觉得双⽅都抵赖就好了,但问题是双⽅被隔离,都会怀疑对⽅会出卖⾃⼰以求⾃保。

两个⼈都会这么想:假如对⽅坦⽩,此时如果我抵赖得坐10年监狱,如果我坦⽩才坐8年监狱;假如对⽅抵赖,此时如果我也抵赖会被判1年,如果我坦⽩可以被释放。

如何求纳什均衡例题

如何求纳什均衡例题

纳什均衡是博弈论中的一个重要概念,表示在博弈中,参与者的策略组合使得没有任何一方有动力改变自己的策略。

求解纳什均衡通常可以通过以下方法:1. 划线法:这是一种求解纯策略纳什均衡的方法。

首先,我们需要一个支付矩阵,其中每个元素表示参与者某一策略组合下的收益。

然后,对于每个参与者,我们需要在支付矩阵中找到与其他参与者的策略组合相对应的最大收益,并在该收益下划线。

最后,找出所有划线后的策略组合,这些组合就是纳什均衡。

2. 变分法:这是一种求解混合策略纳什均衡的方法。

我们需要将纳什均衡问题转化为一个求解变分不等式问题。

在满足 nested monotone 的条件下,给出求纳什均衡的思想,并对纳什均衡解的特征作画线算法。

3. 混合策略纳什均衡:在混合策略纳什均衡中,参与者选择策略的概率必须使得对方选择两种纯策略的期望收益相等。

通过这种方法,可以求出双方的混合策略与期望收益。

下面举一个例子来说明如何求解纳什均衡:假设有两个参与者甲和乙,他们可以选择合作或背叛,合作时双方都得到5的收益,背叛时对方得到-10的收益。

根据划线法,我们可以先看甲如何选择策略。

当乙选择合作时,甲应该选择背叛,因为这样甲的收益最大。

当乙选择背叛时,甲也应该选择背叛,因为无论甲选择什么策略,乙都已经选择了背叛,甲的收益都是-10。

所以,甲的策略是背叛。

接下来看乙如何选择策略。

当甲选择合作时,乙应该选择背叛,因为这样乙的收益最大。

当甲选择背叛时,乙也应该选择背叛,因为无论乙选择什么策略,甲都已经选择了背叛,乙的收益都是-10。

所以,乙的策略是背叛。

因此,这个博弈的纳什均衡是甲和乙都选择背叛。

纯策略贝叶斯纳什均衡例题

纯策略贝叶斯纳什均衡例题

纯策略贝叶斯纳什均衡例题引言:纯策略贝叶斯纳什均衡是博弈论中常用的概念之一,它可以用于分析多方参与的决策问题。

本文将通过一个例题来解释纯策略贝叶斯纳什均衡的概念及应用。

例题背景:假设有两家咖啡店,分别是A店和B店。

每天早晨,两家咖啡店都需要决定自己的咖啡价格。

同时,消费者也需要决定去哪家咖啡店购买。

假设消费者根据市场情况作出购买决策。

A店和B店的利润与消费者选择有关。

情景一:A店设置较高的价格,B店设置较低的价格。

这种情况下,消费者更愿意选择购买B店的咖啡。

B店的利润将最大化,而A店的利润将最小化。

情景二:A店和B店都设置较低的价格。

这种情况下,消费者会更加倾向于选择购买A店的咖啡。

A店的利润将最大化,而B店的利润将最小化。

情景三:A店和B店都设置较高的价格。

这种情况下,消费者没有购买的动力,两家咖啡店的利润都会很低。

分析与求解:我们可以将上述情景转化为一个博弈论的模型,其中A店和B店是两个决策者,他们需要根据对方的策略来决定自己的策略。

消费者的选择将影响两家咖啡店的利润。

根据纯策略贝叶斯纳什均衡的概念,我们需要确定每个决策者的策略组合,以获得最优的结果。

在这个例题中,我们需要确定A店和B店的咖啡价格。

假设A店有80%的机会成为消费者的首选,B店有20%的机会。

根据这个信息,我们可以得到以下策略组合:情景一:A店设置高价格,B店设置低价格。

情景二:A店设置低价格,B店设置低价格。

情景三:A店设置高价格,B店设置高价格。

然后我们可以计算每种策略组合下两家咖啡店的利润,并找出使两家咖啡店利润最大化的策略组合。

结论:通过计算,我们可以得到以下结果:情景一:A店设置高价格,B店设置低价格。

这种情况下,A店的利润最大化,B店的利润最小化。

因此,纯策略贝叶斯纳什均衡的结果是,A店设置高价格,B店设置低价格时,两家咖啡店的利润最优化。

扩展思考:本例题中我们假设了A店有80%的机会成为消费者的首选,B店有20%的机会。

生活中纳什均衡例子

生活中纳什均衡例子

生活中纳什均衡例子
纳什均衡是博弈论中的一个概念,指在双方或多方进行博弈时,
当每个参与者都选择了最优策略后,游戏的结果已经达到了一个稳定
状态。

生活中,我们可以看到很多纳什均衡的例子。

1.超市降价促销:当超市降价促销时,消费者可以选择是抢购或
等待。

如果大多数人都抢购,那么超市就会获得更多的销售额;如果
消费者等待,那么超市可以考虑再次降价吸引消费者购买。

2.交通拥堵:在道路狭窄且车流量大的情况下,司机们可以选择
是慢行还是超车。

如果每个司机都选择了超车,那么道路的拥堵就会
更加严重;如果司机们都选择慢行,那么车流量就会更加平缓。

3.竞拍:在竞拍中,每个竞拍者都会选择自己认为是最高的出价。

如果竞拍者们都认为这个物品的价值很高,那么竞拍的价格就会越来
越高。

如果有人放弃竞拍,价格就会下降,直到达到平衡。

4.恋爱:在恋爱中,每个人都希望自己的感情得到回报。

如果两
个人都对对方很有感情,那么他们就会在一起;如果只有一个人喜欢
对方,那么他们就不会在一起。

这是一个常见的纳什均衡例子。

总之,纳什均衡是在人与人之间相互影响,相互制约下的一种结果。

只有当每个人都选择自己认为最优的策略,才能形成稳定的状态。

纳什均衡的原理与应用

纳什均衡的原理与应用

纳什均衡的原理与应用1. 纳什均衡的定义纳什均衡,又称为纳什平衡,是博弈论中的一个概念,由美国数学家约翰·纳什于1950年提出。

它是博弈论研究中的一个重要成果,揭示了多方参与的博弈中可能存在的平衡点。

2. 纳什均衡的原理纳什均衡的原理基于参与者在博弈中追求个人利益的假设,即每个参与者都会尽力追求自己的利益最大化。

在纳什均衡中,没有任何一个参与者可以通过改变自己的策略来提高自己的利益,而其他参与者保持不变。

3. 纳什均衡的应用纳什均衡具有广泛的应用领域,尤其在经济学、社会科学和工程领域中有重要的地位。

以下是一些纳什均衡的应用实例:• 3.1 经济学–拍卖机制:在拍卖中,卖家和买家之间的竞争决定了最终的价格。

纳什均衡理论可以帮助分析卖家和买家的策略选择,以及最终的价格形成。

–垄断定价:在垄断市场中,垄断者面临价格选择的问题。

纳什均衡可以帮助垄断者确定最优的价格策略。

• 3.2 社会科学–博弈论研究:纳什均衡是博弈论中的核心概念,用于描述多方博弈中的平衡点。

社会科学研究中,纳什均衡被广泛应用于对人类行为和决策的建模和原理研究。

–合作与竞争:纳什均衡理论可以帮助分析合作与竞争的关系。

在合作环境中,纳什均衡可以帮助确定最优的合作策略。

• 3.3 工程领域–交通流控制:纳什均衡理论可以用于交通流控制系统的设计,帮助优化交通流的分配和调度。

通过分析交通参与者的决策行为,可以建立交通流动的纳什均衡模型,从而提高交通系统的效率。

–电力市场:电力市场中的供求关系影响着电力价格的形成。

纳什均衡理论可以用于分析电力市场中各个参与者的策略选择,从而优化电力价格的形成。

4. 总结纳什均衡作为博弈论的重要成果,以其理论和应用的价值在经济学、社会科学和工程领域得到广泛的应用。

将纳什均衡理论应用于实际问题的分析中,可以帮助我们更好地理解和解决多方参与的博弈问题,从而提高决策的质量和效率。

以上是对纳什均衡的原理与应用的简要介绍,纳什均衡作为一个重要的博弈论概念,深入研究它的理论和应用,有助于我们更好地理解和改善现实生活中的各种博弈情境。

纳什均衡的例子

纳什均衡的例子

纳什均衡的例子
纳什均衡是博弈论中一种重要的概念,最早由约翰·福纳什提出。

它描述了在多方参与的竞争中,每个参与者根据其他人的策略选择了一种最优策略,使得再改变个体策略时,其他人已经无法获得更好的结果。

一个经典的例子是“囚徒困境”。

在这个例子中,有两个嫌疑犯被警方逮捕,并被关在不同的监狱。

检察官只有足够的证据起诉他们合谋犯罪,而不能成功起诉单独一个人。

如果两人都保持沉默,不揭发彼此,那么他们只会因为小罪名被判入狱一年。

如果其中一个人选择供出另一个人,而另一个人保持沉默,那么供出者将被免于刑罚,而另一个人将被判处十年监禁。

如果两人都选择供出对方,那么他们将被判处三年入狱。

在这个案例中,每个嫌疑犯面临着两个策略选择:合作(保持沉默)或者背叛(供出对方)。

无论对方选择什么策略,每个嫌疑犯都可以通过背叛来获得更轻的刑罚。

然而,当两人都背叛时,他们的总刑期最长。

这导致了一个纳什均衡:在这个案例中,两人都会背叛,因为无论对方选择什么策略,自己背叛都会获得更轻的刑罚。

这个例子揭示了纳什均衡的重要思想,即每个参与者都在预期其他人的行为的基础上做出最优的决策,以达到自己的最大利益。

纳什均衡在经济学、生物学、国际关系等领域都有广泛的应用,对于分析人类行为和决策提供了有力的理论基础。

博弈论中的博弈策略与纳什均衡

博弈论中的博弈策略与纳什均衡

博弈论中的博弈策略与纳什均衡博弈论是一门研究决策制定和行为选择的学科,主要应用于经济学、政治学、社会学等领域。

在博弈论中,博弈策略和纳什均衡是两个重要的概念。

本文将探讨博弈策略和纳什均衡的含义、应用以及相关案例。

一、博弈策略的概念博弈策略是指在博弈过程中参与者采取的行动方案。

博弈策略的选择会影响参与者的利益和最终的结果。

博弈策略可以分为纯策略和混合策略两种形式。

1. 纯策略纯策略是指在博弈中,参与者只选择一种特定的行动方案。

例如,在一个两人零和博弈中,参与者可以选择合作或背叛。

如果参与者选择合作,那么他们的策略就是纯策略“合作”;如果参与者选择背叛,那么他们的策略就是纯策略“背叛”。

2. 混合策略混合策略是指在博弈中,参与者以一定的概率选择不同的纯策略。

例如,在一个两人博弈中,参与者可以选择以50%的概率选择合作,以50%的概率选择背叛。

这样的策略就是混合策略。

二、纳什均衡的概念纳什均衡是博弈论中的一个重要概念,指的是在一个博弈中,每个参与者都选择了最优的策略,而且没有动机再次改变策略。

纳什均衡是一种稳定的策略状态,参与者无法通过改变自己的策略来获得更好的结果。

纳什均衡可以分为纯策略均衡和混合策略均衡两种形式。

1. 纯策略均衡纯策略均衡指的是在一个博弈中,每个参与者都选择了一个特定的纯策略,而且没有其他纯策略可以给他们带来更好的结果。

在纯策略均衡下,每个参与者的策略选择是最优的。

2. 混合策略均衡混合策略均衡指的是在一个博弈中,每个参与者以一定的概率选择不同的纯策略,而且没有其他混合策略可以给他们带来更好的结果。

在混合策略均衡下,每个参与者的策略选择是最优的。

三、博弈策略与纳什均衡的应用博弈策略和纳什均衡在许多领域都有广泛的应用,尤其是在经济学和政治学中。

下面将介绍一些实际案例。

1. 俘虏困境俘虏困境是一个经典的博弈论案例。

在这个案例中,两名嫌疑人被关押在不同的牢房,警察给他们提供了一个选择:如果两人都保持沉默,那么他们都只会被判处轻罪;如果其中一个人供认,而另一个人保持沉默,供认者将被免罪,而保持沉默者将被判处重罪;如果两人都供认,那么他们都将被判处重罪。

恋爱中的博弈论纳什均衡的实际运用

恋爱中的博弈论纳什均衡的实际运用

恋爱中的博弈论——“纳什均衡”的实际运用? 恋爱中的博弈论——“纳什均衡”的实际运用最近研究博弈论,顺便反思下爱情。

现在,我来说一个故事:电影《天下无贼》中的小偷情侣主角——刘德华和刘若英因为一次合伙盗窃被囚禁,法院已经确定他俩是合伙作案,但却没有足够的证据,于是法官隔离起两个人,分别对两个人说以下同样的话:如果你们都坦白你俩偷了东西,则你俩共同判刑5年;如果你坦白而她不坦白你俩偷了东西,则你立功释放而她判刑10年;如果你不坦白而她坦白你俩偷了东西,则相反,她立功释放而你判10年;如果你俩都不坦白,则我们没有证据,但因你俩有前科,所以共同扣留1年。

好了,我们已知她俩是情侣关系,心里都是想着让对方尽量少判一些,自己判多少年是其次。

现在我们来分析两个人心里的小九九:这时刘德华会这么想:若她坦白了,而自己也坦白了,则两人都判5年!而若自己不坦白,则自己判10年,但她无罪释放,这样对她就比较好。

所以若她坦白,我应该是不坦白对她好一些。

若她不坦白,而自己却坦白了,则我直接释放但她要判10年,这显然不行!而若我也不坦白,则两人都只扣留1年。

所以就算是她不坦白,我仍旧是不坦白对她会好一些。

最终,刘德华对法官说:我不承认我俩偷了东西。

而刘若英也想为了老公好,所以心中的想法跟刘德华是一样的,所以她也想着自己只要不坦白老公就可以早点出来,所以她也跟法官说:我不承认我俩偷了东西。

而我们知道,两个人都不坦白的结果是所有选择中最好的——只扣留1年。

好了,上面的故事告一段落,接下来有一个相同的故事,只是主人公不再是一对恋人,而是两个很自私的小偷。

他俩也合伙偷了东西,法官同样也对他们说了如上的话,那么这两个小偷心里会怎么想呢?小偷一:如果我俩都坦白,则两人都判5年,而若他坦白我不坦白,则我自己判10年!如果我俩都不坦白,则两人都扣留1年,但若是他不坦白我坦白,我无罪释放,哈哈!所以怎么看都是我坦白的好。

因为小偷二想的跟小偷一是一样的,所以最终两个小偷都坦白了。

贝叶斯纳什均衡例题假设有两家企业

贝叶斯纳什均衡例题假设有两家企业

贝叶斯纳什均衡例题假设有两家企业摘要:1.贝叶斯纳什均衡的概述2.贝叶斯纳什均衡的例题:两家企业的博弈3.贝叶斯纳什均衡的应用范围正文:一、贝叶斯纳什均衡的概述贝叶斯纳什均衡(Bayesian Nash Equilibrium)是一种博弈论中的概念,指的是在给定自己的特征和其他局中人特征的概率分布的情况下,每个局中人选择策略使自己的期望支付达到最大化,也就是说,没有人有积极性选择其他策略。

在这种均衡状态下,每个参与者都认为自己的选择是最佳的,因为其他参与者也作出了相同的选择。

二、贝叶斯纳什均衡的例题:两家企业的博弈假设有两家企业A 和B,它们分别面临市场进入与否的决策。

企业A 可以选择进入或不进入市场,企业B 也可以选择进入或不进入市场。

两个企业的收益取决于它们各自的决策以及对方企业的决策。

如果企业A 进入市场,企业B 选择阻挠的概率为x,此时企业A 的收益为-10;如果企业A 进入市场,企业B 不阻挠的概率为1-x,此时企业A 的收益为40。

同样,如果企业B 进入市场,企业A 选择阻挠的收益为-10,企业B 不阻挠的收益为40。

在这个博弈过程中,企业A 和企业B 都希望最大化自己的收益。

因此,它们需要根据对方的决策来选择自己的最优策略。

在贝叶斯纳什均衡状态下,企业A 和企业B 都选择了能使自己收益最大化的策略,此时没有人有积极性选择其他策略。

三、贝叶斯纳什均衡的应用范围贝叶斯纳什均衡是一种理论分析工具,它可以帮助我们在不确定性条件下,预测和分析各个参与者的决策行为。

在实际应用中,贝叶斯纳什均衡可以用于解决许多经济、社会和政治领域的问题,例如价格博弈、专利竞争、国际贸易等。

纳什均衡案例

纳什均衡案例

纳什均衡案例
纳什均衡是指博弈论中的一种平衡状态,它是指在博弈中每个参与者都选择了最佳的策略并且没有人愿意改变自己的策略。

下面是几个纳什均衡的案例:
1. 餐馆竞争:假设有两家在同一地区经营相同类型餐馆的商家,他们都可以选择提供更好的餐饮服务或者降低价格来吸引更多的顾客。

如果两家商家都选择提供更好的餐饮服务,那么他们就会处于纳什均衡状态,因为如果其中一家降低价格,顾客可能会前往该店,但是该店会失去利润。

2. 囚徒困境:在这个案例中,两个囚犯被逮捕并被分开审讯。

如果他们都选择拒绝认罪,那么他们将面临较轻的刑罚,但如果其中一个人认罪并作证控告另一个人,那么被控告的人将面临更严重的刑罚。

在这种情况下,如果每个囚犯都选择认罪,那么他们就处于纳什均衡状态,因为即使其中一个人拒绝认罪,他也可能面临更严重的刑罚。

3. 投标竞争:在这个案例中,几个公司竞标一个项目,他们必须决定如何投标以获得合同。

如果所有公司都选择报一个高价,那么他们将失去竞标的机会,但如果所有公司都选择报一个较低的价格,那么获得合同的公司将无法盈利。

在这种情况下,如果每个公司都选择中等价格的投标,那么他们就处于纳什均衡状态,因为这样可以最大限度地获得合同并保持盈利。

- 1 -。

纳什均衡及应用举例-博弈论

纳什均衡及应用举例-博弈论
n 是Player有关博弈的知识,特别是有关其他 参与人(对手)的特征和行动的知识.它是重 要的决策依据和决定博弈结果的重要因素。
n 信息集:参与人在特定时刻有关变量的值的 信息
n Common Knowledge 即共同知识(所有参与 人知道,所有参与人知道所有参与人知道,)
Complete and Perfect ——完全信息与完美信息
0 n 需求大, A不开发, B开发, B为8000万元,A
为0 n 需求大, A不开发, B不开发,都为0 n 需求小, A开发, B开发,AB各为-3000万元 n 需求小, A开发, B不开发。A为1000万元B为0 n 需求小, A不开发, B开发A为0,B为1000万元 n 需求小, A不开发, B不开发,都为0
用水平 n 自然人或团体,如企业、国家、OPEC、EU n 重要的是每个决策主体必须有可供选择的行动或策略
和一个很好定义的偏好 n 而不做决策的被动主体只当作环境参数 n 虚拟参与人:“自然”(nature)作为“虚拟参与人”
(pseudo-player)来处理。这里的自然指决定外生 随机变量的概率分布的机制
n 它是指在一个特定的策略组合下player得到 的确定的效用水平,或者指参与人得到的期 望效用水平。
n 这是player真正关心的东西,是player博弈 后所得利益。
n 他的目标就是在自己可以选择的战略集合里, 选择某个战略以最大化自己的期望效用函数 (v-N-M预期效用函数)。
支付
n 如果有n人博弈,令ui为Player i 的支付(效用 水平),u=(u1,…ui…un)为支付组合payoff profile,
n 两者主要区别是在对博弈结果与博弈进程知识的掌 握情况有差别:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Strategies & strategies set
n n n
n
n n
战略:是参与人选择行动的规则,它告诉参与人在 什么时候选择什么行动 战略组合 战略与行动是两个不同的概念,战略是行动的规 则而不是行动本身 “人不犯我,我不犯人;人若犯我,我必犯人”是 一种战略,这里的“犯”与“不犯”是两种行动, 战略规定了什么时候选择“犯”,什么时候选择 “不犯” 静态博弈中参与人同时行动。战略和行动是相同的 作为一种行动规则,战略必须是完备的,就是说, 它要给出参与人在每一种可想象到的情况下的行动 选择,即使参与人并不预期这种情况会实际发生
1, 0 0, 4
1, 3 0, 2
0, 1 2, 0
箭头法分析猜硬币
-1,1 1,-1
1,-1 -1,1
箭头法分析夫妻之争
2,1 0,0
0,0 1,3
博弈的战略式表述
n
博弈的战略式表述:
战略式表述给出: 1、博弈的参与人集合: i , (1,2,, n); 2、每个参与人的战略空 间:Si,i 1,2,, n; 3、每个参与人的支付函 数:ui (s1 ,, si ,, sn ), i 1,2,, n) 用G S1, ,Sn ; u1 ,, un 代表战略式表述博弈。
博弈的基本分析思路和方法
严格下策反复消去法
严格下策反复消去法例子
博弈方2
左 中 右
博弈方 1 博弈方
上 下
上 下
1, 0 0, 4

1, 3 0, 2
博弈方
0, 1 2, 0
博弈方2
左 中
博弈方2

1 , 0 1 ,3 0 ,4 0 ,2

1 ,0 1 ,3
严格下策反复消去法
划线法
博弈方2
Information
n
是Player有关博弈的知识,特别是有关其他 参与人(对手)的特征和行动的知识.它是重 要的决策依据和决定博弈结果的重要因素。 信息集:参与人在特定时刻有关变量的值的 信息 Common Knowledge 即共同知识(所有参与 人知道,所有参与人知道所有参与人知道,)
n
n
Outcome & Equilibrium ——结果与均衡
n
n
n n
博弈的结果是所有博弈方所关心的,如均 衡策略组合,均衡行动组合,均衡支付组 合。 在房地产开发博弈中,可能的结果是 (高需求,开发,开发),(uA,uB)=(4000,4000) (低需求,开发,不开发),(uA,uB)=(1000,0)
引例:房地产开发博弈
n
n
如果市场上有两栋楼出售, 需求大时, 每栋售价1.4亿元,需求小时7000万元 如果市场上只有一栋楼出售,需求大时。 每栋售价1.8亿元,需求小时1.1亿元
房地产开发博弈
n n
n
n n n n n
需求大,A开发, B开发,利润各4000万元 需求大, A开发, B不开发,A8000万元,B为 0 需求大, A不开发, B开发, B为8000万元,A 为0 需求大, A不开发, B不开发,都为0 需求小, A开发, B开发,AB各为-3000万元 需求小, A开发, B不开发。A为1000万元B为0 需求小, A不开发, B开发A为0,B为1000万元 需求小, A不开发, B不开发,都为0
非合作博弈论
非合作博弈的分类及对应的均衡概念
行动顺序 静态 信 息 完全信息静态博弈; 纳什均衡; 纳什(1950,1951) 完全信息动态博弈; 子博弈精炼纳什均衡; 泽尔腾(1965) 动态
完全信息
不完全信息静态博弈; 不完全信息动态博弈; 不完全信息 贝叶斯纳什均衡; 精炼贝叶斯纳什均衡; 海萨尼(1967- 泽尔腾(1975),Kreps和 1968) Wilson(1982),Fudenberg 和Tirole(1991)
n
n
n
它是指在一个特定的策略组合下player得到 的确定的效用水平,或者指参与人得到的期 望效用水平。 这是player真正关心的东西,是player博弈 后所得利益。 他的目标就是在自己可以选择的战略集合里, 选择某个战略以最大化自己的期望效用函数 (v-N-M预期效用函数)。
支付
n
n
如果有n人博弈,令ui为Player i 的支付(效用 水平),u=(u1,…ui…un)为支付组合payoff profile, 博弈的一个基本特征是一个参与人的支付不 仅取决于自己的战略选择,而且取决于所有 其他参与人的战略选择,即ui是所有参与人 的战略选择的函数: 其中si是Player i 的战略选择。
均衡
n
均衡是所有参与人的最优战略的组合,一般记为 S*= (S1*,…,Si*,…,Sn*) 其中, Si* 是Player i 在均衡情况下的最优策略。 在一般均衡理论中,均衡指由个人最优化行为导致的 一组价格,而在博弈论里,这一组价格只是均衡的结 果而不是均衡本身:均衡是指所有个人的买卖规则 (战略)的组合,均衡价格是这种战略组合的结果 在这里,“均衡”和“均衡结果”是两个不同的概 念
房地产开发博弈
n n
n n
若双方不同时决策,且市场需求不确定 设B在A之前决策, 且只有B了解市场 需求 若需求是大的,B选择开发 若需求是小的,B的选择依赖于他多大程 度上相信A 会开发,而A是否开发依赖于 A在多大程度上认为需求是大的。
博弈的基本概念
n n n n n n
Players Action Strategies & strategies set Information Payoff & payoff function Outcome & Equilibrium
Complete and Perfect ——完全信息与完美信息
n
n
如房地产开发博弈中,如果至少有一个 参与人不知道市场需求的大小,信息是 不完全的也是不完美的 如果两个参与人都知道市场需求是大的 还是小的,信息是完全的,但如果A不知 道B选择了什么行动,那么A的信息是不 完美的。
支付Payoff
ui=ui(s1,,…si,…sn),
房地产开发博弈
n
n n n n n n
参与人的利润水平即是他们的支付,如果A,B 同时行动
UA(需求大,A开发, B开发)=UB(需求大,A开发, B开 发)=4000 UA(需求小,A开发, B开发)=UB(需求小,A开发, B开 发)=-3000 UA(需求大,A开发, B不开发)=8000 UB(需求小,A不开发, B开发)=1000。。。。。。 例如A认为高需求的概率是0.5 ,给定B选择开发,A选 择开发的期望效用为: EuA(开发,开发)=0.5*4000+0.5*(-3000)=500
Players
n n
决策主体:单人博弈、两人博弈和多人博弈。 目的是通过选择行动或策略以最大化自己的支付或效 用水平 自然人或团体,如企业、国家、OPEC、EU 重要的是每个决策主体必须有可供选择的行动或策略 和一个很好定义的偏好 而不做决策的被动主体只当作环境参数
n n
n n
虚拟参与人:“自然”(nature)作为“虚拟参与人” (pseudo-player)来处理。这里的自然指决定外生 随机变量的概率分布的机制
房地产开发博弈
需求大的情况 开发商A 开发 不开发 开发商B 开发 不开发
4000,4000 0,8000 8000,0 0,0
需求小的情况 开发 不开发
开发商B 开发 不开发
-3000,-3000 0,1000 1000,0 0,0
开发商A
房地产开发博弈
n n n
若双方同时决策 若市场需求已知 若市场需求未知,是否开发依赖于各 自在多大程度上认为需求是大的,以对 方是否开发
房地产开发博弈
需求大的情况 开发商A 开发 不开发 开发商B 开发 不开发
4000,4000 0,8000 8000,0 0,0
需求小的情况 开发 不开发
开发商B 开发 不开发
-3000,-3000 0,1000 1000,0 0,0
开发商A
n
n n
n
如果B在市场需求情况未知下先行动,A在得知 B的行动后再行动。 B的战略SB=(开发,不开发) A的战略SA=({开发,开发},{开发,不开 发},{不开发,开发},{不开发,不开发}) 一个战略组合s=({不开发,开发},开发),A的 战略是“如果B开发,我不开发;如果B不开发, 我开发”,B的战略是“开发”。类似的可以 列出其他7个战略组合
房地产开发博弈
需求大的情况 开发商A 开发 不开发 开发商B 开发 不开发
4000,4000 0,8000 8000,0 0,0
需求小的情况 开发 不开发
开发商B 开发 不开发
-3000,-3000 0,1000 1000,0 0,0
开发商A
市场进入博弈

N

[P]
不进入
进入者
进入 不进入
[1-P]
左 上 下 中 右
博弈方
1 ,0 0 ,4
1 ,3 0 ,2
0 ,1 2 ,0
划线法分析囚徒困境
-5,-5 -8,0
0,-8 -1,-1
划线法分析猜硬币困境
-1,1 1,-1
1,-1 -1,1
划线法分析夫妻之争
2,1 0,0
0,0 1,3
箭头法
箭头法分析例子
博弈方2
左 上 下 中 右
博弈方 1
Complete and Perfect ——完全信息与完美信息
n
n
n
n
两者主要区别是在对博弈结果与博弈进程知识的掌 握情况有差别: 若每一个参与人都知道所有其他参与人的支付或结 果,称为 完全信息博弈(CIG). 若有一个人不知道其他人的支付 ,称不完全信息博 弈IIG. 若每一个参与人都知道所有其他参与人的博弈进程, 即 动态博弈中轮到行为的博弈方完全了解此前行 为的各博弈方的行为,即了解全部博弈进程,称为 完美的,否则就是不完美的.
相关文档
最新文档