初中数学专题辅导:阴影面积求法9种方法(不规则图形)
方法阴影面积的8种求法(附10种常考割补方法)
⽅法阴影⾯积的8种求法(附10种常考割补⽅法)计算平⾯图形的⾯积问题是常见题型,求平⾯阴影部分的⾯积是这类问题的难点。
不规则阴影⾯积常常由三⾓形、四边形、⼸形、扇形和圆、圆弧等基本图形组合⽽成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
介绍⼏种常⽤的⽅法。
⼀、转化法此法就是通过等积变换、平移、旋转、割补等⽅法将不规则的图形转化成⾯积相等的规则图形,再利⽤规则图形的⾯积公式,计算出所求的不规则图形的⾯积。
例1. 如图,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和弧CD围成的阴影部分图形的⾯积为_________。
⼆、和差法有⼀些图形结构复杂,通过观察,分析出不规则图形的⾯积是由哪些规则图形组合⽽成的,再利⽤这些规则图形的⾯积的和或差来求,从⽽达到化繁为简的⽬的。
例2. 如图,是⼀个商标的设计图案,AB=2BC=8,弧ADE为1/4圆,求阴影部分⾯积。
三、重叠求余法(容斥原理)就是把所求阴影部分的⾯积问题转化为可求⾯积的规则图形的重叠部分的⽅法然后运⽤“容斥原理”(SA∪B=SA+SB-SA∩B)解决。
这类题阴影⼀般是由⼏个图形叠加⽽成。
要准确认清其结构,理顺图形间的⼤⼩关系。
例3. 如图,正⽅形的边长为a,以各边为直径在正⽅形内作半圆,求所围成阴影部分图形的⾯积。
四、补形法将不规则图形补成特殊图形,利⽤特殊图形的⾯积求出原不规则图形的⾯积。
例4. 如图,在四边形ABCD中,AB=2,CD=1,∠A=60° ,∠B=∠D=90°,求四边形ABCD所在阴影部分的⾯积。
五、拼接法(割补法)这种⽅法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成⼀个新的图形,设法求出这个新图形⾯积即可.例5. 如图,在⼀块长为a、宽为b的矩形草地上,有⼀条弯曲的柏油⼩路(⼩路任何地⽅的⽔平宽都是c个单位),求阴影部分草地的⾯积。
六、特殊位置法这种⽅法是将图形中某⼀部分切割下来平⾏移动到⼀恰当位置,使之组合成⼀个新的基本规则图形,便于求出⾯积.例6、如图,已知两个半圆中长为4的弦AB与直径CD平⾏,且与⼩半圆相切,那么图中阴影部分的⾯积等于__________。
(完整版)求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
初三数学圆阴影部分面积10种解题方法
初三数学圆阴影部分面积10种解题方法01和差法对于不规则图形实施分割、叠合后,把所求的图形面积用规则图形面积的和、差表示,再求面积.贵港中考如图1,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA= 4,∠AOB=120°,则图中阴影部分的面积为( 结果保留π) .图1解析: 图形中的阴影部分是不规则图形,较难直接计算.注意到阴影部分是环形BECA的一部分,因此阴影部分面积等于环形BECA的面积减去图形DCA的面积,又图形DCA的面积等于扇形DOA 的面积减去△ODC的面积.图2如图2,连接OD交弧CE于M.因为OA=4,C是OA的中点,CD⊥OA,所以OD=4,OC=2,DC=2√3,所以∠ODC=30°,∠DOC=60°02割补法对图形合理分割,把不规则图形补、拼成规则图形会,再求面积.吉林中考如图3,将半径为3的圆形纸片,按下列顺序折叠,若弧AB和弧BC都经过圆心O,则阴影部分的面积是( 结果保留π) .图3解析: 观察图形可以发现: 下方树叶形阴影部分的面积分成左右两块后,可以补到上方两个空白的新月形的位置.是否能够完全重合,通过计算验证即可.图4如图4,过点O作OD⊥AB于D,连接OA、OC、OB.由折叠性质知OD=1/2r=1/2AO,03等积变形法运用平行线性质或其他几何图形性质把不规则图形面积转化为与它等面积的规则图形来进行计算.天水中考如图5,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E 是半圆弧的三等分点,弧BE的长为2π/3,则阴影部分的面积为图5解析: 阴影部分是Rt△ABC的一部分,运用平行线的性质可将图形ABE面积转化成扇形BOE面积.连接BD、BE、BO、OE,如图6.图6因为点E、B是半圆弧的三等分点,所以∠DOB=∠BOE=∠EOA=60°,所以∠BAD=∠EBA=∠BAE=30°,所以BE∥AD.04平移法一些图形看似不规则,将某一个图形进行平移变换后,利用平移的性质,把不规则的图形的面积转化为规则图形的面积来计算.2019年黄石中考模拟如图7,从大半圆中剪去一个小半圆( 小半圆的直径在大半圆的直径MN上),点O为大半圆的圆心,AB是大半圆的弦,且与小半圆相切,AB∥MN,已知AB=12cm,则阴影部分的面积是.图7解析: 因为AB∥MN,由平行线间的距离处处相等,可以平移小半圆,使小半圆的圆心与大半圆的圆心重合,这样不规则的阴影图形就变成一个环形.图8如图8.过点O作OC⊥AB,垂足为C,连接OB,设大半圆的半径为R,小半圆的半径为r.05旋转法一些图形看似不规则,把某个图形进行旋转变换后,利用旋转的性质,把不规则图形的面积转化为规则图形的面积,再进行计算.安顺中考如图9,矩形ABCD中,BC=2,DC=4,以AB 为直径的⊙O与DC相切于点E,则阴影部分的面积为图9解析: 若直接利用弓形面积公式求解相当繁琐,根据已知条件及圆的旋转不变性,利用图形的旋转可实现解题.图10如图10,连接OE 交BD于M.因为CD 是⊙O 的切线,所以OE⊥CD,又AB∥CD,则OE⊥AB,而OE=OB,易知△OBM ≌△EDM,把△OBM绕点M旋转180°就会转到△EDM,阴影部分就转化为扇形BOE,恰好是半径为2的圆的四分之一,06对称法一些图形看似不规则,利用轴对称和中心对称的性质,把不规则图形进行轴对称和中心对称变换,转化为规则图形的面积,再进行计算.赤峰中考如图11,反比例函数y=k/x( k>0) 的图象与以原点(0,0)为圆心的圆交A、B两点,且A( 1,√3) ,图中阴影部分的面积等于 (结果保留π) .图11解析: 根据反比例函数图象及圆的对称性———既是轴对称图形,又是中心对称图形,可知图中两个阴影面积的和等于扇形AOB的面积.过点A作AD⊥x轴于D,如图12.图12因为A( 1,√3) ,所以∠AOD=60°,OA=2,又因为点A、B关于直线y=x对称,所以∠AOB=2×( 60°-45°)=30°.07整体法当已知条件不能或不足以直接求解时,可整体思考,化单一、分散为整体,把所求的未知量整体转换为已知量,再将问题整体化求解.安徽中考如图13,半径均为1的⊙A、⊙B、⊙C、⊙D、⊙E两两外离,A、B、C、D、E分别为五边形的五个顶点,则图中阴影部分的面积是图13解析: 由已知条件,分别求阴影部分的圆心角不易求得,但将五个扇形的圆心角合为一整体,它们的圆心角的和也是五边形的外角之和360°,所以阴影部分面积是一个整圆的面积,所以S阴影=π.08方程法有些图形的局部可以看成某个规则图形,或某些图形具有等面积的性质,这时可以把它们的关系用方程( 组) 来表示,再解方程( 组) ,求出图形的面积.2019年武汉模拟如图14,在边长为2的正方形ABCD 中,分别以2为半径,A、B、C、D 为圆心作弧,则阴影部分的面积是 ( 结果保留π) .图14解析: 仔细观察图形,有两种相同特征的图形在正方形内部,一起围成所求的阴影部分.设弧AC与弧BD交于点G,连接BE、EC,如图15.图15设形如AED 图形的面积为x,形如DEG 图形的面积为y,那么S阴影= S正-4 ( x+y) ,只需求出(x+y)的结果即可.09推算法某些题目运用已知条件,和图形的性质或定理进行推理,可把阴影部分面积用某个式子表示,从而求得不规则图形的面积.南宁中考如图16,Rt△ABC 中,AC=8,BC=6,∠C=90°,分别以AB、BC、AC 为直径作三个半圆,那么阴影部分的面积为平方单位.图16解析: 设左边阴影部分面积为S1,右边阴影部分面积为S2,整个图形的面积可以表示成: 以AC 为直径的半圆+ 以BC为直径的半圆+△ABC.也可以表示成: S1+S2+以AB为直径的半圆。
求阴影部分面积的几种常用方法
求阴影部分面积的几种常用方法总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:44221=⨯⨯。
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
求阴影部分面积的几种常用方法
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:44221=⨯⨯。
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
初中数学之求阴影面积方法总结
初中数学之求阴影面积方法总结Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998初中数学之求阴影面积方法总结一、公式法这属于最简单的方法,阴影面积是一个常规的几何图形,例如三角形、正方形等等。
简单举出2个例子:二、和差法攻略一直接和差法这类题目也比较简单,属于一目了然的题目。
只需学生用两个或多个常见的几何图形面积进行加减。
攻略二构造和差法从这里开始,学生就要构建自己的数学图形转化思维了,学会通过添加辅助线进行求解。
三、割补法割补法,是学生拥有比较强的转化能力后才能轻松运用的,否则学生看到这样的题目还是会无从下手。
尤其适用于直接求面积较复杂或无法计算时,通过对图形的平移、旋转、割补等,为利用公式法或和差法求解创造条件。
攻略一全等法攻略二对称法攻略三平移法攻略四旋转法小结:(一)解决面积问题常用的理论依据1、三角形的中线把三角形分成两个面积相等的部分。
2、同底同高或等底等高的两个三角形面积相等。
3、平行四边形的对角线把其分成两个面积相等的部分。
4、同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5、基本几何图形面积公式:三角形、平行四边形、、菱形、矩形、梯形、圆、扇形。
6、相似三角形面积之比等于相似比的平方7、反比例函数中k的几何含义8、在直角坐标系中函数图像构成的图形面积常常利用图形顶点的坐标构造高去求面积(二)证明面积问题常用的证题思路和方法1、分解法:通常把一个复杂的图形,分解成几个三角形。
2、补全法:通过平移、旋转、翻折变换把分散的图形拼成一个规则的几何基本图形3、作平行线法:通过平行线找出同高(或等高)的三角形。
初中数学阴影面积求解小技巧
初中数学阴影面积求解小技巧
阴影部分面积计算是全国中考的高频考点,常在选择题和填空题中考查。
求阴影部分面积的常用方法有以下三种:
一、公式法(所求面积的图形是规则图形)
二、和差法(所求图形面积是不规则图形,可通过添加辅助线转化为规则图形的和或差)
(1)直接和差法
(2)构造和差法
三、等积变换法(直接求面积无法计算或者较复杂,通过对图形的平移、选择、割补等,为利用公式法或和差法求解创造条件)(1)全等法
(2)对称法
(3)平移法
(4)旋转法
练习题。
初中数学专题辅导:阴影面积求法9种方法(不规则图形)
阴影面积求法阴影部分的图形一般是不规则图形或没有可直接利用的公式,因此,同学们常感到困难。
本文指出:求解这类问题的关键是将阴影部分图形转化为可求解的规则图形的组合。
如何转化呢?这里给出常用的9种转化方法。
1. 直接组合例1. 如下图,圆A 、圆B 、圆C 、圆D 、圆E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是()A. B. 1.5 C. 2 D. 2.5ππππ(02年河南省中考)分析:由于每个扇形圆心角的具体角度未知,故无法直接进行计算。
因为五边形ABCDE 的内角和=540°=360°+180°,从而可知所求阴影部分的面积可以重新组合成一个圆和一个半圆的面积,即1.5个圆的面积:,选(B )。
ππ5.1)1(5.12=⋅⨯ 2. 圆形分割例2. 如下图,ΔABC 中,∠C 是直角,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_________(=3.14159……,最后结果保留三个有效数字)。
2cm π(03年济南市中考)解:在中,ABC Rt ∆所以cm AB BC BAC ABC 6213060==︒=∠︒=∠又易证 ,EBD Rt ABC Rt ∆≅∆。
,,所以︒=∠=∠︒=∠=∠=∆∆12060CBD ABE EBD ABC S S EBD ABC 故所求阴影面积为整个图形的总面积减去空白图形的面积,即)。
(===)()=(扇形扇形扇形扇形阴影22211336636012012360120cm S S S S S S S BCDBAE ABC BCD EBD BAE ≈⋅-⋅-+-+∆∆πππ3. 平移例3. 如下图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为________________。
千万别错过!9种几何图形“阴影”部分求面积的经典方法!
千万别错过!9种几何图形“阴影”部分求面积的经典方法!
数学是所有学科中最让学生们头疼的一门课。
而其中的几何数学是学生们从小学就要开始学习的内容,也是初中、高中学习和考试的重点。
对于一些思维逻辑性较弱的孩子来说,几何图形求阴影面积这类型的题做起来有一定的困难。
高中的立体几何不管是面积还是体积的求解需要想象的部分就更难。
微信上一些家长向我询问做这类数学几何体有没有什么诀窍,可以帮助孩子提升成绩。
其实,数学这门课程的学习,在某种方面来说,比英语和语文提升成绩更快,牢记公式,能够举一反三,做题是很简单的。
下面是我为大家整理的关于几何图形“阴影”部分求面积的9种方法,希望可以帮助到大家!
同一个老师,同样的内容,为什么有的人,能拿满分,有的人却连及格都达不到!是天赋问题?
同样的时间可以学习到不等的知识,究其根本在于学习效率的不同。
这个时代不需要头悬梁锥刺股的人!快节奏的社会更看重如何用最少的时间做更有效的事情!所以,高效率成为这个时代人人不懈追求的目标。
如何一分钟背会一首唐诗,一小时记住一篇古文,一天记住300个单词…。
阴影部分面积解题技巧
阴影部分面积解题技巧
阴影部分面积解题是数学中一个重要的应用题型,它常出现在几何和代数学科的考试中。
解题时需要运用数学知识和思维技巧,以下是一些解题技巧:
1. 利用几何图形相似性质:当两个几何图形相似时,它们的对应边长之比相等。
因此,在解决阴影部分面积时,可以通过相似三角形或四边形的对应边长之比来求解。
2. 利用平移和旋转性质:通过平移或旋转几何图形,可以使得阴影部分变得更易处理。
例如,将一个圆形旋转一定角度后,可以得到一个椭圆形,并且椭圆形的面积可以用简单的公式求解。
3. 利用代数式和方程:有些情况下,可以通过代数式和方程来求解阴影部分面积。
例如,对于一个被矩形和直线所包围的区域,可以通过代数式来求解区域面积,然后减去矩形和直线的面积得到阴影部分面积。
4. 利用平行线和垂直线性质:当两条直线平行或垂直时,它们之间的距离、角度等性质可以被利用来求解阴影部分面积。
5. 利用三角函数:对于一些特殊的几何图形,可以通过三角函数(例
如正弦、余弦、正切等)来求解阴影部分面积。
通过以上技巧,可以更加轻松地解决阴影部分面积相关的题目。
在练习时,应该多加思考,多尝试不同的方法,提高自己解题的能力和技巧。
中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法
例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。
初中数学之求阴影面积方法总结
初中数学之求阴影面积方法总结一、简单图形的阴影面积求解方法:1.长方形或正方形的阴影面积求解:对于长方形或正方形的阴影面积,只需计算图形的面积,然后与整个长方形或正方形的面积相减即可。
具体的计算公式为:阴影面积=整个长方形或正方形的面积-图形的面积。
2.圆形的阴影面积求解:对于圆形的阴影面积,需要先计算整个圆形的面积,然后找出圆形内的阴影部分,最后两者相减即可。
计算整个圆形面积的公式为:整个圆形的面积=π*半径²。
3.三角形的阴影面积求解:对于三角形的阴影面积,需要先计算整个三角形的面积,然后找出三角形内的阴影部分,最后两者相减即可。
计算三角形面积的公式为:三角形的面积=底边长度*高/2二、复杂图形的阴影面积求解方法:1.矩形与半圆阴影面积求解:当图形由矩形和半圆组成时,需要分别计算矩形和半圆的面积,然后相加即可。
具体步骤为:计算矩形面积,矩形面积=长*宽;计算半圆面积,半圆面积=π*半径²/2;最后将两部分面积相加得到阴影面积。
2.矩形与等腰梯形阴影面积求解:当图形由矩形和等腰梯形组成时,同样需要分别计算矩形和等腰梯形的面积,然后相加即可。
具体步骤为:计算矩形面积,矩形面积=长*宽;计算等腰梯形面积,等腰梯形面积=(上底+下底)*高/2;最后将两部分面积相加得到阴影面积。
三、图形的分割和组合:1.图形的分割:对于复杂的图形,可以通过将图形分割成简单的图形来计算阴影面积。
具体方法包括将图形分割成矩形、三角形、半圆等简单的图形,然后依次计算每个简单图形的面积,最后将各个部分的面积相加得到阴影面积。
2.图形的组合:当图形由多个简单图形组合而成时,可以分别计算每个简单图形的面积,然后将各个部分的面积相加得到阴影面积。
需要注意的是,图形的组合可能会产生重叠的部分,要注意将其去除或计算重叠部分的面积然后进行调整。
综上所述,求阴影面积主要涉及到计算图形的面积以及图形的分割和组合。
通过对不同图形的特点和求解方法的了解,我们可以灵活运用数学知识来计算阴影面积。
求阴影面积的十种方法
求阴影面积的十种方法
阴影面积是指在光源照射下,物体投射出的阴影所覆盖的面积。
在几何学中,阴影面积是计算投影面积的一个重要概念。
对于不同形状的物体,计算其阴影面积有不同的方法,下面介绍几种常见的方法。
1. 直接计算法:对于简单的几何体,例如矩形、三角形、圆形等,可以根据相应的公式计算出其阴影面积。
2. 消影法:利用几何形体之间的消影关系计算阴影面积,这种方法适用于多个物体在同一平面上的情况。
3. 画图法:通过绘制物体投影图和阴影图,求出阴影面积。
4. 面积加减法:对于复杂物体,可以将其分解成若干个简单形体,再分别计算其阴影面积,最后将得到的结果加减得到总面积。
5. 数学模型法:利用数学模型模拟物体在光源照射下的投影过程,计算出阴影面积。
6. 三角网格法:使用三角网格模型计算阴影面积,适用于复杂非规则形状的物体。
7. 光线追踪法:通过模拟光线在场景中的传播方向,计算出阴影面积。
8. 蒙特卡罗法:通过随机生成光线投射到物体上,进行多次模拟,最终统计得到阴影面积。
9. 深度图法:通过产生一个深度图,依据深度图中的遮挡关系得出阴影区域,计算阴影面积。
10. 像素级法:将物体的每一个像素与光线相交,统计被覆盖的像素点,通过像素点的数量计算出阴影面积。
总之,计算阴影面积的方法主要取决于物体的形状和光源的位置,通过选择适合的方法,能够得到比较准确的结果。
求阴影部分面积的方法
求阴影部分面积的方法
在几何学中,求阴影部分面积是一个常见的问题。
阴影部分面
积的求解方法有很多种,下面我们将介绍一些常见的方法,希望能
对大家有所帮助。
首先,我们来讨论一下求阴影部分面积的方法之一——几何图
形分割法。
这种方法适用于那些比较规则的几何图形,比如矩形、
三角形等。
首先,我们需要将整个图形分割成若干个简单的几何图形,然后分别计算每个部分的面积,最后将它们相加即可得到阴影
部分的面积。
其次,我们可以使用平行线投影法来求解阴影部分的面积。
这
种方法适用于那些立体几何图形的阴影面积求解。
我们可以通过画
出几何图形的平行线投影,然后计算投影部分的面积,最后得到阴
影部分的面积。
另外,我们还可以利用数学模型来求解阴影部分的面积。
比如,对于不规则图形的阴影面积求解,我们可以利用数学公式或者数值
积分的方法来进行计算,得到准确的阴影部分面积。
除此之外,对于一些特殊情况,比如椭圆、双曲线等特殊几何图形的阴影面积求解,我们可以采用参数方程、极坐标等方法来进行计算,得到精确的阴影部分面积。
需要注意的是,在进行阴影部分面积的求解时,我们要对几何图形的特性有所了解,选择合适的方法进行计算,确保得到准确的结果。
综上所述,求解阴影部分面积的方法有很多种,我们可以根据具体的几何图形特点来选择合适的方法进行计算。
希望以上方法能够帮助大家更好地解决阴影部分面积的求解问题。
(完整版)中考求阴影部分面积
中考求阴影部分面积【知识概述】计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。
不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。
现介绍几种常用的方法。
一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
例1. 如图1,点C 、D 是以AB 为直径的半圆O 上的三等分点,AB=12,则图中由弦AC 、AD 和C D ⌒围成的阴影部分图形的面积为_________。
二、和差法有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。
三、重叠法就是把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。
这类题阴影一般是由几个图形叠加而成。
要准确认清其结构,理顺图形间的大小关系。
例4. 如图4,正方形的边长为a ,以各边为直径在正方形内作半圆,求所围成阴影部分图形的面积。
四、补形法将不规则图形补成特殊图形,利用特殊图形的面积求出原不规则图形的面积。
例5. 如图5,在四边形ABCD 中,AB=2,CD=1,∠=︒∠=∠=A B D 60,90︒,求四边形ABCD 所在阴影部分的面积。
例2.如图2,PA 切圆O 于A ,OP 交圆O 于B ,且PB=1,PA=3,则阴影部分的面积S=_______. 五、拼接法例6. 如图6,在一块长为a 、宽为b 的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽图2都是c个单位),求阴影部分草地的面积。
六、特殊位置法例7. 如图8,已知两个半圆中长为4的弦AB与直径CD平行,且与小半圆相切,那么图中阴影部分的面积等于_______。
七、代数法将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴影面积求法
阴影部分的图形一般是不规则图形或没有可直接利用的公式,因此,同学们常感到困难。
本文指出:求解这类问题的关键是将阴影部分图形转化为可求解的规则图形的组合。
如何转化呢?这里给出常用的9种转化方法。
1. 直接组合
例1. 如下图,圆A 、圆B 、圆C 、圆D 、圆E 相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )
A. π
B. 1.5π
C. 2π
D. 2.5π (02年河南省中考)
分析:由于每个扇形圆心角的具体角度未知,故无法直接进行计算。
因为五边形ABCDE 的内角和=540°=360°+180°,从而可知所求阴影部分的面积可以重新组合成一个圆和一个半圆的面积,即1.5个圆的面积:
ππ5.1)1(5.12=⋅⨯,选(B )。
2. 圆形分割
例2. 如下图,ΔABC 中,∠C 是直角,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_________2cm (π=3.14159……,最后结果保留三个有效数字)。
(03年济南市中考)
解:在ABC Rt ∆中,
所以
cm AB BC BAC ABC 62
1
3060==
︒=∠︒
=∠
又易证 EBD Rt ABC Rt ∆≅∆, 。
,,
所以︒=∠=∠︒=∠=∠=∆∆12060CBD ABE EBD ABC S S EBD ABC 故所求阴影面积为整个图形的总面积减去空白图形的面积,即
)。
(===)
()=(扇形扇形扇形扇形阴影22
2113366360120
12360120cm S S S S S S S BCD
BAE ABC BCD EBD BAE ≈⋅-⋅-+-+∆∆πππ
3. 平移
例3. 如下图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为________________。
(03年上海市中考)
解:将上图中的下部分阴影图形向上平移,得到下图,则所求阴影面积为矩形面积减去两个正方形的面积。
又易知 22==BC EB AE ,=,所以 22242222---⨯+=)=(阴影S 。
4. 旋转
例4. 如下图,ABCD 是边长为8的一个正方形,、
⋂EF ⋂HG 、⋂EH 、⋂FG 都是半径为4的圆弧,且⋂EH 、⋂
FG 分别与AB 、AD 、BC 、DC 相切,则阴影部分的面积=____________。
(05年呼和浩特市中考)
分析:将点E 、F 、G 、H 中每两点分别连结,如下图,则大正方形被分割成四个小正方形,易知原题中的四段弧都是以4为半径的等弧,以EF 、FG 、GH 、HE 为弦的四个弓形全等。
故阴影部分的面积等于正方形EFGH 的面积,即
322424=⨯。
5. 等积变换
例5. 如下图,AD 是圆O 的直径,A 、B 、C 、D 、E 、F 顺次六等分圆O ,已知圆O 的半径为1,P 为直径AD 上任意一点,则图中阴影部分的面积为____________。
解:连结OE 、OF 、EF ,则ΔOEF 为等边三角形,∠FEO=∠EOF=∠EOD=60°, EF ∥DA ,
所以 PEF S ∆可被等积移位成OEF S ∆,
即
PEF S ∆=OEF S ∆。
(同底等高)
因此,直径AD 左侧的阴影面积=OEF S 扇形,再由对称性知
ππ3
1
136060222===扇形阴影⋅⋅⋅OEF S S 。
6. 利用轴对称图形的性质
(1)直接计算
例6. 如下图,将边长为2cm 的两个互相重合的正方形纸片按住其中一个不动,另一个绕点B 顺时针旋转一个角度,若使重叠部分的面积为23
3
4cm ,则这个旋转角度为_________度。
(05年济南市中考)
解:设CD 与A ’D ’相交于点E ,如上图,则BE 为整个图形的对称轴, 于是 CBE Rt BE A Rt ∆≅∆' ∠A ’BE=∠CBE 。
所以
3
3422
1
22=
=⋅⨯∆CE CE
BC S S CBE ==阴影
故
)(3
3
2cm CE =。
在Rt ΔCBE 中, 所以。
,︒=∠==
3033
tan CBE BC CE CBE
因此,旋转角=∠ABA ’
=90°-2∠CBE=30°。
(2)先翻转再组合
例7. 如下图,半圆A 和半圆B 均与y 轴切于点O ,其直径CD 、EF 均与x 轴垂直,以O 为顶点的两条抛物线
分别经过点C 、E 和点D 、F ,则图中阴影部分的面积是__________。
(05年河南省中考)
解:上图中的半圆和抛物线均以y 轴为对称轴,故可用对称性将y 轴右侧的两个阴影“叶片”翻折到y 轴的左侧,同原来y 轴左侧的曲边三角形阴影组合成一个半圆。
所以 πππ2
11212122===阴影⋅⋅OA S 。
7. 利用中心对称图形的性质
例8. 下图中正比例函数和反比例函数的图象相交于A 、B 两点,分别以A 、B 两点为圆心,画与y 轴相切的两个圆。
若点A 的坐标为(1,2),则下图中两个阴影面积的和是____________。
(05年长春市中考)
解:由于两圆与双曲线均为以点O 为对称中心的中心对称图形,故圆B 内的阴影部分与圆A 内的空白部分全等,
于是 A S S 圓阴影=; 又易知
圆A 的半径为1, 所以
ππ==阴影21⋅S 。
8. 整体和差法
例9. 如下图,正方形的边长为a ,以各边为直径在正方形内画半圆,所以围成的图形(阴影部分)的面积为______________。
解:下图中阴影部分面积可以看作是4个半圆的面积之和与正方形面积之差(重叠部分)。
所以。
)(=阴影222
2
2
1
2
214a a a a S -=-⋅⋅ππ
9. 应用方程
例10. 四个半径均为r 的圆如下图放置,相邻两圆交点之间的距离也等于r ,不相邻两圆圆周上两点间的最短距离等于2,则r 等于___________;下图中阴影部分的面积等于_________。
(精确到0.01) (05年杭州市中考)
分析:各点字母及辅助线如上图所示。
由O 1B=O 1C=BC=r ,知ΔO 1BC 为等边三角形,结合对称性有∠O 4O 1A=∠BO 1O 2=30°;BC 与O 1O 2互相垂直平分。
从而有
∠AO 1B=30°,r BD 2
1=,
22112122BD B O D O O O -==
r r r 3)2
1(22
2
=
-=。
又显然321O O O ∆为等腰直角三角形,且
223313221+===r O O r O O O O ,, (圆1O 与圆3O 上两点间的最短距离为2),
由勾股定理,得2
31232221O O O O O O =+,
即 222)22()3()3(+=+r r r ,
解得
26+=r 。
下面用方程思想求解上图的阴影面积。
利用图形的对称性,有
⎪⎪⎪⎪
⎪⎪
⎩
⎪⎪
⎪⎪⎪⎪⎨⎧
=++=⋅==⋅⋅⋅==∆③3r 3S 4b 4a ②12136030S b ①43213212122
22
O 2
214321121。
)=(=,=,=正方形阴影扇形r S r r r r r BD O O S a O O O O BA
O BO ππ 将①、②分别代入③,得
b a r S 4432--=阴影。
37.4)26()3
33()3
33(12
14434322
222≈+⋅-
-=-
-=⨯-⨯
-=π
π
πr r r r。