小学三年级奥数--第七讲--枚举法(一)(学生版)

合集下载

三年级奥数题枚举法问题

三年级奥数题枚举法问题

三年级奥数题枚举法问题三年级奥数题枚举法问题精选三年级奥数题枚举法问题精选1在一个圆周上放了1个红球和1994个黄球。

一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。

你知道这时圆周上还剩下多少个黄球吗?答案与解析:根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。

在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。

他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。

因为在上一圈操作时,排在这498个黄球中最后一个位置上的`黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。

三年级奥数题枚举法问题精选2【试题】现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?【答案解析】23=5×4+2×1+1×1,23=5×4+1×3,23=5×3+2×4,23=5×3+2×3+1×2,23=5×3+2×2+1×4。

所以共有5不同的取法。

【小结】对于简单的计数问题,可以用枚举法,列出满足条件的所有情况。

但是对于种数比较多的计数问题常用到排列组合来解决,排列组合的知识我们将在四年级学习。

三年级数学 奥数讲座 枚举法

三年级数学 奥数讲座 枚举法

三年级奥数讲座枚举法1. 如图9-1,有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?解答:三数之和是9,不考虑顺序。

1+2+6=9,1+3+5=9,2+3+4=9答:有3种不同的取法。

2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?解答:两数之和大于10,不考虑顺序。

8+7,8+6,8+5,8+4,8+3 7+6,7+5,7+4 6+5答:共有9种不同的取法。

3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。

4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?需要考虑吃的顺序不同。

7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3 答:有8种不同的吃法。

5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。

问一共有多少种不同的订法?解答:3个工厂各不相同,3数之和是300份,要考虑顺序。

99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99答:一共有7种不同的订法。

16. 在所有的四位数中,各个数位上的数字之和等于34的数有多少个?解答:4个数字之和是34,只有9+9+9+7=34,9+9+8+8=34,不同的数字放在不同位是组成的四位数不同,考虑顺序。

9997,9979,9799,7999;9988,9898,9889,8998,8989,8899 答:有10个。

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

三年级奥数第七讲 简单枚举一

三年级奥数第七讲  简单枚举一

第七讲简单枚举(一)
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
练习一
从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?
例题2用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○
例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?
练习三
一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
基础练习
1.大合唱表演中每行的人数都相同,小东从前数排第6,从后数排第4,从左数排第5,从右数排第12。

这个合唱队一共有多少人?
2.陈大爷的正方形养牛场边长12米,如果按一头牛占4平方米计算,他一共能养多少头牛?
3.陈云家有一个长30米,宽12米的长方形鸡圈,如果每平方米能养4只鸡,他家一共能养多少只鸡?。

三年级奥数简单枚举

三年级奥数简单枚举

4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。

对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。

例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。

例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。

练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学 奥数讲座 枚举法1. 1. 如图9-19-1,有,有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?。

问有多少种不同的取法?解答:三数之和是9,不考虑顺序。

,不考虑顺序。

1+2+6=91+2+6=91+2+6=9,,1+3+5=91+3+5=9,,2+3+4=9答:有3种不同的取法。

种不同的取法。

2. 2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于1010,共有多,共有多少种不同的取法?少种不同的取法?解答:两数之和大于1010,不考虑顺序。

,不考虑顺序。

,不考虑顺序。

8+78+78+7,,8+68+6,,8+58+5,,8+48+4,,8+3 8+3 7+67+67+6,,7+57+5,,7+4 7+4 6+5 6+5 答:共有9种不同的取法。

种不同的取法。

3. 3. 现在1分、分、22分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?种不同的支付方法?解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。

种不同的支付方法。

4. 4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?个,吃完为止,有多少种不同的吃法? 需要考虑吃的顺序不同。

需要考虑吃的顺序不同。

77,5+25+2,,4+34+3,,3+43+4,,3+2+23+2+2,,2+52+5,,2+3+22+3+2,,2+2+3答:有8种不同的吃法。

种不同的吃法。

5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。

小学奥数知识点趣味学习——枚举法

小学奥数知识点趣味学习——枚举法

小学奥数知识点趣味学习——枚举法1.小明用70元钱买了甲、乙、丙、丁4种书,共10册。

已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、11元,而且每种书至少买了一本。

那么,共有多少种不同的购买方法?解答:4种书每种1本,共3+5+7+11=26(元),70-26=44,44元买6本书11×3+5×1+3×2,11×2+7×2+5×1+3×1,11×2+7×1+5×3,11×1+7×4+5×1答:共有4种不同的购买方法。

2.甲、乙、丙、丁4名同学排成一行。

从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?解答:不同的排法共有9种。

3.abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。

请写出所有满足关系a<b,b>c,c<d的四位数abcd来。

解答:若a最小:1324,1423;若c最小:2314,2413,3412答:有5个:1324,1423,2314,2413,3412。

4.位数的个位与百位数字的和恰好等于十位上的数字。

问一共有多少个这样的数?解答:设两位数是AB,三位数是CDE,则AB*5=CDE。

CDE能被5整除,个位为0或5。

若E=0,由于E+C=D,所以C=D;又因为CDE/5的商为两位数,所以百位小于5。

当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。

若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495。

答:一共有8个这样的数。

5.3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。

现在25个小球,首先发给甲1个球,乙2个球,丙3个球。

3年级第7讲简单枚举

3年级第7讲简单枚举

三年级秋第7讲分类计数初步姓名:李老师提示:1:分类枚举仔细审题,看清要求。

2:按照顺序,不重不漏。

3:掌握树状图,标数法。

例子1:马戏团有三只动物:猴子,老虎,狮子。

为了收入好,打算分3天展出这些动物,每天展出1只,小朋友,请帮忙算算不同的展出顺序有多少种?例子2:卖水果的王阿姨批发回来一批橘子,苹果,和香蕉。

分给他的三个孩子---王大,王二,和王小,每人一个水果,小朋友,你知道他有多少种不同的分法吗?例子3:马戏团饲养员到王阿姨那里买了7份水果给小猴子,小猴子每天最少吃2份水果,那么吃完这7份水果,有多少种不同的吃法呢?例子4:十一国庆,小王计划游览A,B,C三个风景区。

计划旅游5天,如果他第一天在A地,最后一天回到A地,同时要求不能连续2天在同一个风景区。

符合条件的游览路线有几条?拓展:十一国庆,小王计划游览A,B,C三个风景区。

计划旅游5天,最后一天回到A地,同时要求不能连续2天在同一个风景区。

符合条件的游览路线有几条?例子5:王大的家在方格上的A点,他的学校在B点,要求他上学必须沿着格线走,王大上学最短的路线有多少条呢?拓展:小蚂蚁从A点爬到B点,要求必须沿着格线走,聪明的小朋友,你知道小蚂蚁的最短路线有多少条吗?B金牌挑战:(华杯赛)编号为1到10 的10个白色小球排成1排,现按照如下要求涂红色,(1)图2个球,(2)被涂色的2个球的编号之差大于2,那么满足着两个条件的涂色方法有多少种?课后作业:1:把10 拆成3个不同的自然数相加的形式,一共有多少种不同的拆法?2:有足够多的下面三种数字卡片,用这些数字卡片可以组成几个不同的三位数?3:兔子妈妈摘了15个相同的蘑菇,分装在2个相同的篮子里。

如果不允许有空蓝,有多少种不同的装法?4:十一国庆节,王叔叔去北京玩,小朋友,请你找找看,从北京到黄山的最短路线有几条?AB。

小学三年级数学分类枚举知识点讲解

小学三年级数学分类枚举知识点讲解

小学三年级数学分类枚举知识点讲解关于小学三年级数学分类枚举知识点讲解小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。

她想数数有多少钱。

小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。

所以很快就数好了。

小芳数钱,用的就是分类枚举的方法。

这是一种很重要的数学思考方法,在很多问题的思考过程中都发挥了很大的作用。

下面就让我们一起来看看它的本领吧!经典试题例[1]下图中有多少个三角形?分析我们可以根据图形特征将它分成3类:第一类:有6个;第2类:有6个;第3类:有3个;解6+6+3=15(个)图中有15个三角形。

例[2]下图中有多少个正方形?分析根据正方形边长的大小,我们将它们分成4类。

第1类:由1个小正方形组成的正方形有24个;第2类:由4个小正方形组成的正方形有13个;第3类:由9个小正方形组成的正方形有4个;第4类:由16个小正方形组成的正方形有1个。

解24+13+4+1=42。

图中有42个正方形。

例[3]在算盘上,用两粒珠子可以表示几个不同的三位数:分别是哪几个数?分析根据两粒珠子的位置,我们可将它们分成3类:第1类:两粒珠子都在上档,可以组成505,550;第2类:两粒珠子都在下档,可以组成101,110,200;第3类:一粒在上档,另一粒在下档,可以组成510,501,150,105,600。

解可以表示101,105,110,150,200,501,505,510,550,600共10个三位数。

例[4]用数字7,8,9可以组成多少个不同的三位数?分别是哪几个数?分析根据百位上数字的不同,我们可以将它们分成三类:第1类:百位上的数字为7,有789,798;第2类:百位上的数字为8,有879,897;第3类:百位上的数字为9,有978,987。

解可以组成789,798,879,897,978,987共6个三位数。

例[5]往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站。

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

三年级数学奥赛起跑线第7讲 分类枚举

三年级数学奥赛起跑线第7讲  分类枚举

三年级数学奥赛起跑线
第7讲分类枚举
1、下图中有多少个三角形:
2、小明,小红和小军三人比赛跑步,没有两人同时到达终点,三人比赛的结果共有几种情况?
3、用0,1,2,3能组成多少个不同的三位数?
4、从北京到南京的特快列车,中途要停靠9个站,有几种不同票价的车票?
5、用3张10元和2张50元一共可以组成多少种币值(组成的钱数)?
6、中、日、韩、朝进行四国足球赛,每两队踢一场,一共要踢多少场?
7、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。

冬天,丽丽每天載一顶帽子,围一条围巾,有几种不同的搭配方式?
8、用分类枚举的方法(书中例5)表示1998年日期,六位数字各不相同的共有多少天?
9、用1、2、3、4、5这5个数字组成各个数位上数字都不相同的五位数,这样的五位数共有多少个?
10、有一种游戏,根据通过一关时间的多少可以得到2分,3分,5分积分中的一种,如果打完第三关,共有多少种不同的积分?。

小学三年级奥数题枚举法、填算式

小学三年级奥数题枚举法、填算式

小学三年级奥数题枚举法、填算式1.小学三年级奥数题枚举法1、一本书共100页,在排页码时要用多少个数字是6的铅字?解:把个位是6和十位是6的数一个一个地列举出来,数一数。

个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。

十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。

10+10=20(个)答:在排页码时要用20个数字是6的铅字。

2、印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?解:(1)数码一共有10个:0、1、2……8、9。

0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。

(2)页码是两位数的从第10页到第99页。

因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。

所以页码最高是3位数,不必考虑是4位数了。

往下要看1701个数码可以排多少页。

1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)2.小学三年级奥数题枚举法1、15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?2、经理有4封信先后交给打字员,要求打字员总是先打最近接到的信,比如打完第3封信时第4封信还未到,此时如果第2封信还未打完,那么就应先打第2封信而不能打第1封信。

打字员打完这4封信的先后顺序有多少种可能?3、甲、乙比赛乒乓球,五局三胜。

已知甲胜了第一盘,并最终获胜。

问:各盘的胜负情况有多少种可能?4、现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?5、小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。

小学三年级奥数--第七讲--枚举法(一)(学生版)

小学三年级奥数--第七讲--枚举法(一)(学生版)

第七讲枚举法(一)学习内容:用枚举法一一列举可能的情况学习目标:1、做到不重补漏,把复杂的问题简单化2、按照一定的规律,特点去枚举3、从思想上认识到枚举的重要性课题引入枚举法是一种常见的分析问题、解决问题的方法。

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来.知识点拨在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。

对此,我们可以先初步估计其数目的大小。

若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

例题精讲例1、用数字1、3、4可以组成多少个不同的三位数?例2、用0,2,5,9可以组成多少个能被5整除的三位数?例3、从1数到100,一共数了多少个3?例4、有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?1、用数字0,2,5可以组成多少个不同的三位数?2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?2、用数字3,8,9可以组成多少个不同的三位数 ?3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?家长签字:年月日。

三年级奥数—简单枚举

三年级奥数—简单枚举

三年级奥数训练——简单枚举姓名:思维训练:运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

关键是要正确分类,注意一下两点:一是分类要齐全,不能造成遗漏;二是枚举要清楚,要将每一个符合条件的对象都列举出来。

经典例题:例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?练习一从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。

从甲地到丙地有多少种不同走法?例题2用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?练习二用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?练习三一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?例题4有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?练习四6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?例题5一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?练习五上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?课堂练习1、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?2、用2、3、5、7四个数字,可以组成多少个不同的四位数?3、3个自然数的乘积是18,问由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

4、小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?5、在长江的某一航线上共有6个码头,如果每个起点终点只许用一种船票(中间至少要相隔2个码头),那么这样的船票共有多少种?课外练习1、新华书店有3种不同的英语书,4种不同的数学读物销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲枚举法(一)
学习内容:用枚举法一一列举可能的情况
学习目标:1、做到不重补漏,把复杂的问题简单化
2、按照一定的规律,特点去枚举
3、从思想上认识到枚举的重要性
课题引入
枚举法是一种常见的分析问题、解决问题的方法。

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

知识点拨
在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。

对此,我们可以先初步估计其数目的大小。

若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

例题精讲
例1、用数字1、3、4可以组成多少个不同的三位数?
例2、用0,2,5,9可以组成多少个能被5整除的三位数?
例3、从1数到100,一共数了多少个3?
例4、有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?
例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?
1、用数字0,2,5可以组成多少个不同的三位数?
2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?
3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?
4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?
1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?
2、用数字3,8,9可以组成多少个不同的三位数?
3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?
4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?
家长签字:
年月日。

相关文档
最新文档