植物的水分生理

合集下载

植物的水分生理

植物的水分生理
10MPa),作物吸水困难。
第四节 植物的蒸腾作用
蒸腾作用 (transpiration) -植物体内的水 分以气态散失到 大气中去的过程。
一、蒸腾作用的生理意义和方式
(一)蒸腾作用的生理意义
1.蒸腾拉力是植物吸水与转运水分的主要动 力 2.促进木质部汁液中物质的运输 3.降低植物体的温度 (夏季,绿化地带的气温比非绿化地带的气温 要低3-5 ℃) 4.有利于CO2的吸收、同化
(二)渗透作用
水分从水势高的系统通过半透膜向水势低的系统移动的现 象
由渗透作用引起的 水分运转
a.烧杯中的纯水和 漏斗内液面相平; b.由于渗透作用使 烧杯内水面降低而
漏斗内液面升高
(通过渗透计可测 定渗透势、溶质势)
(三)植物细胞可以构成一个渗透系统
原生质层:包括 质膜、细胞质 和液泡膜看成 一个半透膜 液泡内的细胞 液含许多溶解 在水中的物质, 具有水势。
➢风干种子中,处于凝 胶状态的原生质的衬 质势常低于-10MPa, 甚至-100MPa,所以吸 胀吸水就很容易发生。
➢未形成液泡的幼嫩细 胞能利用细胞壁的果 胶、纤维素以及细胞 中的蛋白质等亲水胶 体对水的吸附力吸收 水分。
降压吸水
-因ψp的降低而引发的细胞吸水 ➢蒸腾旺盛时,导管和叶肉细胞的细胞
蔓陀萝叶气孔 小麦叶气孔
引起气孔运动的主要 原因是:保卫细胞的 吸水膨胀或失水收缩
细胞的压力势 (press potential)
原生质体、液泡 吸水膨胀,对细胞 壁产生的压力称为 膨压(turgor pressure)。 胞壁在受到膨压 作用的同时会产生 一种与膨压大小相 等、方向相反的壁 压,即压力势。
➢压力势一般为正值,它提高了细胞的水势。 ➢草本植物叶肉细胞的压力势,在温暖天气的午后为

植物生理学2_植物的水分生理

植物生理学2_植物的水分生理
(1)代谢型抗蒸腾剂 影响保卫细胞膨胀,减小气孔开度,如脱落酸、 CO2 、 阿斯匹林、阿特拉津、敌草隆、
(2)薄膜型抗蒸腾剂 能在叶面形成薄层,阻碍水分散失,如硅酮、胶 乳、聚乙烯蜡、丁二烯丙烯酸等。
(3)反射型抗蒸腾剂 增加叶面对光的反射,降低叶温,减少蒸腾量, 如高岭土。
Ψw =Ψs + Ψp + Ψm + Ψg
Ψs为渗透势, Ψp为压力势, Ψm为衬质势, Ψg为重力势
2、压力势:由于压力的存在而使体系水势 改变的数值,用ψp表示。
原生质吸水膨胀,对细胞壁产生压力,而
细胞壁对原生质会产生一个反作用力,这就
是细胞的压力势。
一般情况下,压力势为正值
渗透势(Ψπ) 一般叶组织 旱生植物叶片 -1.0~ -2.0 MPa -10.0 MPa
Ψs = - 1.4 Mpa
Ψs = - 1.2 Mpa
Ψp = + 0.8 Mpa
Ψw = - 0.6 Mpa X
Ψp = + 0.4 Mpa
Ψw = - 0.8 Mpa Y
两个相邻的细胞之间的水分移动方向是由二者的水势差 决定;多个细胞相连时,水分从水势高的一端流向水势低 的一端。
第三节根系吸水和水分向上运输
(三)影响气孔运动的因素
1、光照:光照—张开 黑暗—关闭
景天科植物例外
2、温度:上升—气孔开度增大
10℃以下小,30℃最大,35℃以上变小
3、CO2
:低浓度—促进张开
高浓度—迅速关闭 4、水分:水分胁迫—气孔开度减小或关闭 5、植物激素(CTK、ABA)
小结
水势是指每偏摩尔体积水的化学势差。植物细胞的水
Free Water

第一章植物的水分生理(共54张PPT)

第一章植物的水分生理(共54张PPT)

水分通过胞间连丝的吸收。移动速度较慢。

由于水势梯度引起水分进入中柱后产生 的压力。
和 现象可以证明根压的存在。
伤流(bleeding)
吐水(guttation)
从受伤或折断的植物组织溢 从未受伤叶片尖端或边缘向
出液体的现象
外溢出液滴的现象
水、无机盐、有机物、植物激素(细胞 分裂素)。
伤流液的数量和成分,可以作为根系活 力强弱的指标。
lower epidermis more than in the upper epidermis.
• In grain plants, those distribution is nearly equal in the lower epidermis to in
the upper epidermis.
• T—absolute temperature
• 植物细胞膜的特点—生物膜(质膜、液泡
膜),半透膜,选择透性,水分子易于通 过,而对溶质则有选择性;而且细胞液与 外界溶液具有Ψw 差。
• 质壁分离(Plasmolysis)和质壁分离复原
( Deplasmolysis)现象可以验证之。
高浓度溶液中, 细胞失水,质壁 分离。
扩散 依浓度梯度进行,短距离运输 集流 依压力梯度进行,长距离运输
A. 单个水分子通过膜 脂双分子层进入细胞
B.多个水分子通过水孔蛋白形成的水
通道进入细胞
水分移动需要能量做功,该动力来自于 渗透作用。
渗透作用:
通过半透膜移动的现象。
发生条件:半透膜,膜两边有浓度差。
1 mol物质的自由能。
每偏摩尔体积水的化学势,用Ψ表示,
0.5
0
-0.5

第1章 植物水分生理

第1章 植物水分生理
水的化学势差。
2、水势
水势(water potential):是指在等温等压下,体系
中每偏摩尔体积的水与纯水的化学势差。
ψw=(μw-μwO)/ Vw,m μwO :纯水的化学势。 μw-μwO :表示水的化学势差,单位为J/mol。 Vw,m :表示水的偏摩尔体积,单位为m3/mol。是指在恒温
第一章 植物的水分生理
水是植物的一个重要环境条件。植物一切正常生 命活动只有在细胞含有一定的水分状况下才能进行; 否则,植物的正常生命活动就会受阻,甚至死亡。所 以,在农业生产中,水是决定收成有无的重要因素之 一。农谚说:“有收无收在于水,收多收少在于肥”, 就是这个道理。
植物对水分的吸收、运输、利用和散失的过程, 称为植物的水分代谢(water metabolism)。
植物细胞高含水量及水的不可压缩性,使细胞产生 静水压,维持一定的紧张度,使植物保持固有姿态。 5、水调节植物体温和环境气候
水份可维持体温相对稳定。蒸腾散热,调节体温; 低温时灌水护苗;高温干旱时灌水调节温度和湿度。
早春寒潮降临时,秧田灌水可保温抗寒
第二节 植物细胞对水分的吸收
一、植物细胞的水势
1、自由能与化学势 系统中物质总能量=束缚能+自由能
主要内容
第一节 水分在生命活动中的作用 第二节 植物细胞对水分的吸收 第三节 植物根系对水分的吸收 第四节 植物的蒸腾作用 第五节 植物体内水分向地上部分的运输 第六节 合理灌溉的生理基础
第一节 水分在生命活动中的作用
一、水分子的结构
二、水的物理化学性质 1、高比热容 2、高气化热 3、高溶解热 4、水的密度 5、水的蒸汽压 6、水的内聚力、粘附力和表面张力 7、水的高抗张(拉)力及不可压缩性 8、水的介电常数及溶解性

植物的水分生理

植物的水分生理

第一章植物的水分生理第一节植物对水分的需要一、植物的含水量(几-90以上%)主要影响因素:植物种类:水生植物、肉质植物>90%以上,草本植物为70-85%,在干旱环境中生长的低等植物(地衣、藓类)为6%。

生长环境:生长于阴蔽、潮湿环境中的植物较向阳、干燥环境中的高。

器官、组织种类:幼嫩>衰老。

根尖、茎尖、嫩幼苗、绿叶为60-90%,树干为40%,休眠芽为40%,风干种子为10-14%。

二、植物体内水分的存在状态1、束缚水—植物体内距离亲水物质(蛋白质、核酸等)较近而被之吸咐束缚不易自由移动的水分子。

2、自由水—植物体内距离亲水物质(蛋白质、核酸等)较远而不被吸咐束缚易自由移动的水分子。

自由水/束缚水:高,植物代谢旺,抗逆能力弱;低,植物代谢弱,抗逆能力强。

如:越冬植物和休眠的干燥种子,自由水/束缚水低,仅以极弱的代谢维持生命活动,但抗性却明显增强,能度过不良的逆境条件。

松、竹、梅,被称作“岁寒三友”,抗寒能力极强,也与体内束缚水多有关。

三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢过程的反应物质3、水分是植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收吸水方式:扩散集流渗透性吸水(主要方式)三、渗透性吸水(一)概念1、渗透性吸水:细胞通过渗透作用吸水。

2、渗透作用:(广义)—物质由浓度高处向浓度低处扩散移动的现象。

(狭义)—水分子通过半透膜由水势高处向水势低处移动的现象。

3、半透膜:只能让水分子、葡萄糖分子等小分子物质自由通过,而不能让大分子物质自由通过的膜。

种子的种皮、细胞膜、猪膀胱等。

反之称为透性膜,如细胞壁。

4、水势—每偏摩尔体积水的化学势或水的偏摩尔自由能。

符号:ψ国际单位:兆帕(Mpa=106pa),1atm=1.013×103pa重要用途:衡量一个系统中水分子自由扩散能力的强弱,水势高,水分子自由扩散力强,反之则弱。

植物的水分生理

植物的水分生理

细胞液
上一页
15
洋葱上表皮细胞的质壁分离
刚开始发生质壁分离
明显发生质壁分离
上一页
2.发生质壁分离的条件
(1)外界环境水势低于细胞水势;
(2)原生质层具有选择性; (3)细胞壁与细胞质的收缩能力不同。
3.质壁分离说明以下问题
(1)原生质层具有半透膜的性质; (2)判断细胞的死活; (3)能测定细胞的渗透势(?),进行农作物品种抗旱性鉴定。 (4) 测定物质进入原生质体的速度和难易程度。
17
(二)植物细胞的水势
细胞的水势公式: ψw=ψs+ ψp +ψg + ψm 1 .渗透势(溶质势):由于溶质颗粒的存在而使水势降低
的部分(水的自由能降低),一般为负值。
2 .压力势:由于细胞壁压力的存在而增加的水势,一般 为正值,但质壁分离时为0,剧烈蒸腾时为负。 3 .重力势:水分因重力下移与相反力量相等时的力量。 有液泡的细胞或细胞群 :ψw=ψs+ ψp
水通道蛋白
生物膜上具有通透水分
功能的内在蛋白,亦称水 孔蛋白(aquaporin)。
质膜内在蛋白
液泡膜内在蛋白
6个跨膜螺旋与两个保留的NPA(AsnPro-Ala)残基的水孔蛋白的结构
三、渗透作用
渗透作用:水分从水势高的系统通过半透膜向水势低的系 统移动的现象。
水势:衡量水分反应或作功能量的高低。指每偏摩尔体积 水的化学势差。 纯水 Ψ o w =零 溶液:溶液的水势为负值,浓度越大,水势越低。
(二)根系吸水的方式及动力
1、主动吸水和根压 (1)根压的产生 由于离子的主动吸收,使皮层内外产生水势差,水分向 中柱扩散而产生静水压力(根压)——由于水势梯度引起水 分进入中柱后产生的压力。 (2)伤流 (3)吐水

1植物的水分生理

1植物的水分生理
在而使水势降低的值;或称溶质势(solute potential, ΨS),为负值
❖Ψπ =-iCRT ❖ C-溶液的摩尔浓度,T-绝对温度
R-气体常数,i-解离系数
❖ 压力势(pressure potential, Ψp ):由于细胞壁压力的 存在而引起细胞水势增加的值;一般为正值
❖ 衬质势(matrix potential, Ψm):细胞胶体物质亲水性 和毛细管对自由水的束缚(吸引)而引起的水势降低 值;为负值
❖ 2)植物细胞的渗透性吸水 ❖ 半透膜:只允许水等小分子物质透过,其它溶
质分子或离子则不易透过的膜。如质膜和液泡膜
❖水分从水势高的系 统通过半透膜向水势 低的系统移动的现象, 称为渗透作用 ❖(osmosis)
❖ 3)植物细胞与外部溶液之间就构成了一个渗透 系统
高渗
原生质膜、
溶液
液泡膜是
半透膜
❖ 例如,休眠种子和越冬植物体内的自由水/束缚水比 例低。
❖1.1.3 水分对植物生命活动中的作用 ▪ 1)原生质的主要组分 原生质一般含 水量在70%-90% ▪ 2)代谢作用过程的反应物质 ▪ 3)植物对物质吸收和运输的溶剂 ▪ 4)保持植物的固有姿态
1.2 植物细胞对水分的吸收
❖1.2.1 水分进出细胞的途径 ❖ 1)单个水分子:通过膜脂双分子层的间隙进入细
❖ 换算关系:

1 bar=0.1 MPa=0.987 atm,
❖ 或1 atm=1.013×105 Pa=1.013 bar。
溶液 纯水 海水
Ψw /MPa 0
-2.50
1mol·L-1蔗糖 1mol·L-1 KCl Hoagland营养液
-2.69 -4.50 -0.05

1. 植物的水分生理

1. 植物的水分生理

(2)导管存在支路,气泡的影响不大。
第六节 水分生理与农业生产 Water and Agriculture
一、作物的需水规律
二、合理灌溉的指标和科学的灌溉方法
一、作的的需水规律 • 不同作物对水分的需求不同 • 同一作物不同生育期需水不同 • 水分临界期 植物对水分不足特别敏感的时期。 如小麦孕穗期为第一临界期; 灌浆到乳熟末期为第二临界期。
-2.69 -4.46 -0.2 ~ -0.8 -0.8 ~ -1.5 -2 ~ -3 -4 ~ -5
二 植物细胞的水势
1.典型的细胞水势组成
Ψw = Ψs + Ψp + Ψm 溶 质 势 压 力 势 衬 质 势
Ψ w = Ψs + Ψp + Ψ m
Ψ s— 溶质势 solute potential : 溶液中由于溶质的存在而引起水势的 变化。一般它使水分子自由能降低,水势 下降,是一个负值。其大小决定于溶质颗
一、根系吸水区域 • 根尖的根毛区吸水 能力最强
根 毛 区
伸 长 区
分 生 区
二、根系吸水的途径
细胞途径 质外体途径
二、根系吸水的途径
1. 共质体途径:水分从一个细胞的细胞质经过 胞间连丝,移动到另一个细胞的细胞质,形成 一个细胞质的连续体的途径。 2. 跨膜途径:水分从一个细胞到另一个细胞, 要两次通过质膜,故称跨膜途径。跨膜途径和 共质体途径统称为细胞途径。 3. 质外体途径:水分通过细胞壁、细胞间隙等 没有细胞质的移动途径。
二、蒸腾作用的部位和途径
(1) 蒸腾部位
(2) 叶片蒸腾方式
• 角质蒸腾
• 气孔蒸腾
二、气孔蒸腾 (stomatal control of transpiration)

第二章 水分生理

第二章 水分生理

44
3.温度
▵ 气孔开度一般随温度的升高而增大。在30℃左右,气孔
开度达最大。
但35℃的温度会引起气孔开度减小。
低温下(如10℃)长时期光照也不能使气孔张开。 ▵ 温度对气孔开度的影响可能是通过影响呼吸作用和光合 作用,改变叶内CO2 浓度而起作用的。
45
4.水分
▵ 缺水可导致植物保卫细胞失水而关闭气孔。
第四节 蒸腾作用 一、蒸腾作用的生理意义和蒸腾部位 二、气孔蒸腾 三、影响蒸腾作用的外、内条件 第五节 植物体内水分的运输 一、水分运输的途径 二、水分运输的速度 三、水分沿导管或管胞上升的动力
第三节 植物根系对水分的吸收
一、根系吸水的途径 二、根系吸水的动力 三、影响根系吸水的土壤条件
第六节 合理灌溉的生理基础
2.压力势Ψp 由于细胞壁压力的存在而引起的细胞水势增加
的值叫压力势,一般为正值。
3.衬质势Ψm 是细胞胶体物质的亲水性和毛细管对自由水的
束缚作用而引起水势降低的值,以负值表示。 一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成, 即 Ψw=Ψπ+Ψp
14
㈣ 细胞间的水分移动
▵ 相邻两细胞的水分移动方向,决定于两细胞间的水 势差异,水势高的细胞中的水分向水势低的细胞流动。
15
二、细胞的吸涨作用
▵吸涨:指亲水胶体吸水膨胀的现象。 ▵吸胀力:干燥种子细胞质、细胞壁、淀粉粒、蛋白质等等生 物大分子都是亲水性的,而且都处于凝胶状态,它们对水分子的 吸引力很强,这种吸引水分子的力称为吸胀力。 ▵吸胀作用:因吸胀力的存在而吸收水分子的作用称为吸胀作 用。 吸胀力实际上就是衬质势,即由吸胀力的存在而降低的水势值。
渗 透:是指溶剂分子通过半透膜而移动的现象。

植物生理学植物的水分生理

植物生理学植物的水分生理
*高水势外液中(低渗溶液) 细胞吸水 体积增大 图 *等水势外液中(等渗溶液) 细胞水分交换动态平衡 体积不变 *低水势外液中(高渗溶液) 细胞失水 体积变小(咸菜、果脯等制作)
➢水孔蛋白(AQPs):一种存在于生物膜上的、分子量为28,000 、具有通透水分功能的内在蛋白。也称之为水通道蛋白。 (图)
第一章 植物的水分生理
植物对水分的吸收、运输、利用和散失的过程,
称为植物的水分代谢(water metabolism)。
植物从环境中不断吸取水分,以满足正常生命活动的需要。 但是,植物又不可避免地要丢失大量的水分到环境中去。这样就形 成了植物水分代谢的三个过程:植物通过根系吸收水分、水分在植 物体内的运输、植物通过气孔排出水分。(图)
➢ 导管上部呈开放状态,不产生压力,于是水柱就在指向上方 的压力下向上移动。
这样就形成了根压
有人指出:根压是由于根内外皮层存在水势梯度而产生的一种 现象,它可作为根产生水势差的一个量度,但不是一种动力,因 为水流的真正动力是水势差.
2. 被动吸水
动力――蒸腾拉力
➢ 蒸腾拉力(transpirational pull):指因为叶片蒸腾作用而产 生的使导管中水分上升的力量。(图)
ψw=ψs+ψp
Ⅱ.植物细胞吸水达到紧张状态 ψw=0,ψs = -ψp 体积最大 , 细胞吸水能力最小。
Ⅲ.植物细胞初始质壁分离状态 ψw =ψs,ψp=0 体积最小,细胞吸水能力最大。
Ⅳ.植物细胞水为蒸汽状态 ψp<0, ψw≤ψs+ψp
三、相邻细胞间水分的运转
相邻细胞的水分移动方向决定于两细胞间的水势差异,
或边缘的水孔向外溢 出液滴的现象。
✓吐水现象可作为根 系活动的生理指标, 并能用以判断植物苗 长势的强弱。 ★

植物的水分生理汇总

植物的水分生理汇总

第一章植物的水分生理名词解释水势:每偏摩尔体积水的化学势差。

渗透压:恰好能够使从半透膜一侧通过到另一侧的水分子数目平衡的在较高浓度溶液的液面上施加的额外压强称为渗透压。

质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。

渗透作用:指两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。

思考题4.水分是如何进入根部导管?水分优势如何运输到叶片?答:进入根部导管有三种途径:①质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。

②跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。

③共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

这三条途径共同作用,使根部吸收水分。

根系吸水的动力是根压和蒸腾拉力。

运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。

造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。

5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:气孔运动主要受保卫细胞的液泡水势的调节。

调节保卫细胞水势的渗透调节物有下列几种。

因为光照时保卫细胞内的叶绿体进行光合作用,水势降低,周围的水分流向保卫细胞,气孔就开(1)K+:在保卫细胞质膜上有ATP质子泵,分解由氧化磷酸化或光合磷酸化产生的ATP,将H+分泌到保卫细胞外,使得保卫细胞的pH升高。

质膜内侧的电势变得更负,驱动K+从表皮细胞经过保卫细胞质膜上的钾通道进入保卫细胞,再进入液泡。

在K+进入细胞内时,还伴随着少量氯离子的进入,以保持保卫细胞的电中性。

保卫细胞中积累较多的钾离子和氯离子,水势降低,水分进入保卫细胞,气孔就张开。

(2)苹果酸:照光下,保卫细胞内的二氧化碳用于光合碳循环,pH升高,导致淀粉分解生成PEP与二氧化碳反应,形成草酰乙酸转变成苹果酸,苹果酸和氯离子共同平衡钾离子。

1.植物的水分生理

1.植物的水分生理
定义(体系中水的水势,等于体系中水的偏摩尔体积化学势减去作为基准的标准态
水的偏摩尔体积化学势),标准态水的水势自然为零。植物的水势一般都低于零 (负
值)。在热力学上,水总是从水势高的相或区域自发地流向水势低的相或区域。水
势指体系中水的水势,通常将细胞中水的水势称为细胞的水势,大气中水的水势
称为大气的水势,等等。
部导管来说,压力势通常是导管中水溶液的张力( tension )或负压力
( negative pressure)。多数情况下,细胞的压力势>0,为正值,而木质
部导管的压力势<0,为负值。
当植物细胞受到干旱或冰冻脱水胁迫时,也会通过细胞壁产生细胞
内的负压力,严重时导致细胞壁向细胞塌陷( cytorhysis ),这时细胞的
体系内组分)不变时体系中每增加或减少一摩尔水所引起的自由能改变,
也可简单表述为特定条件下体系内每摩尔水所具有的自由能。
根据Kramer等人在1966年提出的水势概念和后来的完善,一个体系
中水的水势(Ψw)是体系中水的偏摩尔体积化学势与某一标准态的水
的偏摩尔体积化学势之差,即
μw-μw0
Ψw=
ഥ W
(三)植物细胞的水势
一个体系中水的化学势是温度、压力和水的摩尔分数的函数。在等
温条件下,体系中水的化学势和水势是压力和水的摩尔分数的函数。
在水溶液中,水的摩尔分数可以转换成渗透势,因此在等温条件下,
水势Ψw主要由压力势( pesure potential, Ψp )和渗透势( osmotic
potential, Ψπ)构成:
物的生态型(ecotype)等,都有决定性的影响。
图1-2显示了同一地区沙漠和湿地生长的芦苇的生态型的差别。

植物水分生理的名词解释

植物水分生理的名词解释

植物水分生理的名词解释植物水分生理是研究植物如何获取、传输和利用水分的学科。

水分对于植物的生存和发展起着至关重要的作用,它参与植物的新陈代谢、光合作用、营养物质运输等各个方面。

本文将解释与植物水分生理相关的重要名词,以便更好地了解植物的水分调节机制。

1. 渗透压:渗透压是指溶液中的溶质造成的水分子浓度差异所导致的压力差别。

植物细胞内含有许多溶解物质,而外界土壤和环境中的水也是含有各种溶质的溶液。

当植物体内的渗透物质浓度高于外界环境时,植物细胞就会吸收外界水分进入细胞内,实现渗透调节和维持细胞内稳定的渗透压。

2. 蒸腾作用:蒸腾作用是植物通过气孔散发水分的过程。

在植物叶片的气孔开放状态下,由于气孔内外的水蒸气压差使得水分从植物体内的根系流向叶片表面,并由气孔排出。

蒸腾作用在植物体内形成了一条连续的水分通道,不仅用于水分供应,还起到调节温度、输送养分和维持细胞形态等重要生理功能。

3. 根压力:根压力是细胞内的物质代谢以及根系对水分的吸收带来的压力。

当土壤的水分供应充足时,根系吸收更多的水分并通过细胞间隙向上输送,产生一定的正压力。

根压力的存在有助于推动水分在植物体内的上升运输,并提供足够的水分供应,以应对干旱和蒸腾作用等环境压力。

4. 叶片水势:叶片水势是指植物叶片内的水分压力。

它可以反映植物体内的水分状况,并与渗透调节、蒸腾作用和水分传输等密切相关。

叶片水势的变化对植物的生长、开花和落叶等生理过程具有重要影响。

通过合理控制和调节叶片水势可以提高植物对水分的利用效率,保持植物体内的稳定状态。

5. 温度胁迫:温度胁迫是指植物由于环境温度过高或过低而产生的生理反应。

高温胁迫会导致植物体内水分的丧失加剧,加速蒸腾作用和蒸散速率,严重时甚至引发植物脱水和凋萎等问题。

低温胁迫则会影响植物根系吸收和传输水分的能力,导致植物体内水分的紧缺,甚至引发冻害。

6. 水分利用效率:水分利用效率是指植物在获取和利用水分时所产生的生物量和产量之间的关系。

植物水分生理

植物水分生理

植物生理学水分生理水是生命的源泉,是植物重要的生存条件之一。

水分对植物的生命活动有极其重要的生理和生态作用。

植物通过不断的从环境中吸取水分,保持其正常的含水量,参与各项生理代谢活动。

而植物吸收的绝大多数水分主要通过蒸腾作用散失至大气,就是通过蒸腾作用产生的“蒸腾拉力”以及根系主动吸水所产生的“根压”发挥其生物学功能,来促进植物对土壤矿质元素的吸收和运输,促进体内有机物运输。

植物正常的生命活动就是建立在对水分不断地吸收、运输、利用和散失的过程中。

水分在植物体内有自由水和束缚水两种存在形式,两种水分存在形式不是固定不变的。

自由水起到溶剂的作用,直接参与植物的生理过程和生化反应;束缚水则是被植物细胞的胶体颗粒或渗透物质亲水基团所吸引而不能自由移动。

因此,自由水/束缚水比值较高时,植物代谢活跃生长较快,抗逆性较差;反之则代谢活性低生长缓慢,抗逆性较强。

植物水势是偏摩尔体积的水在一个系统中的化学式与纯水在相同温度、压力下的化学式之间的差。

植物细胞和土壤溶液水势的组分均由溶质势(Ψs)、衬质势(Ψm)、压力势(Ψp)和重力势(Ψg)组成,即:Ψw=Ψm+Ψs+Ψp+Ψg。

其中,溶质势恒为负值、衬质势趋于零、压力势一般为正值、重力势为正值但可忽略不计,所以水势可表示为Ψw=Ψs+Ψp。

相同点:(1)土壤中构成溶质势的成分主要是无机离子,而细胞中构成溶质势的成分除无机离子外,还有有机溶质;(2)土壤衬质势主要是由土壤胶体对水分的吸附所引起的,而细胞衬质势则主要是由细胞中蛋白质、淀粉、纤维素等亲水胶体物质对水分的吸附而所引起的;(3)土壤溶液是个开放体系中,土壤的压力势易受外界压力的影响,而细胞是个封闭体系,细胞的压力势主要受细胞壁结构和松驰情况的影响。

如将一个植物细胞放在纯水中,因纯水水势永远大于植物细胞水势故植物细胞吸水植物细胞水势升高,有植物细胞壁的存在植物细胞不会吸水涨破,水势升高到一阶段遍不再变化。

在一个成熟的细胞中,原生质层相当于一个半透膜。

植物生理学——植物的水分生理

植物生理学——植物的水分生理

二、集流(P11图1-1)
集流:指液体中成群的原子或分子在压力梯度下共同移动。
水孔蛋白:具有选择性,高效运转水分的膜通道蛋白。单体 是中间狭窄的四聚体呈“呈滴漏”模型。活性由磷酸化调节 (如丝氨酸残基磷酸化)
三、渗透作用
(一)、自由能和水势 根据热力学原理:系统中物质的总能=束缚能(bound energy )+自由能(freeenergy)。 (1)、自由能——在温度恒定条件下用于做功的能量。 (2)、束缚能——在温度恒定条件下不能用于做功的能量。 (3)、化学势(chemical potential)——1mol物质的自由 能。用来描述体系中各组分参与化学反应的本领及转移的潜 在趋势(或所需的能量)。衡量水反应或转移能量的高低可用水 的化学势(水势)表示。 (4)、水势(water potential)——就是每偏mol体积水的化 学势。就是说水溶液的化学势与同温同压同一系统中的纯水 的化学的化学势之差,除以水的偏mol体积所得的商。
图1-1亲水胶体与水层示意
量); 2.水是代谢过程的反应物;光合、呼吸、有机物 的分解合成都有水的参与 3.水是生命活动的的介质;水是植物对矿质吸收 和运输溶剂。 4.水能保持植物固有姿态; 5.水可以调节植物体温。 水的比热、汽化热高,环境温度剧烈变化时, 植物体温变化不大; 植物的蒸腾作用还会散发大量 的热,因此,植物在烈日下不会被灼伤。
(1) 渗透理论: 内皮层的作用: 根系主动吸收的无机离子进入共质体达中柱内 的活细胞。这样导管周围的活细胞在代谢过程 中不断向导管分泌有机离子和有机物,使其水 势下降,而附近细胞的水势较高。因而水分就 不断通过渗透作用进入导管,依次向地上部分 运输。这样就产生一种静水压力,即根压。 (2)代谢理论:认为呼吸作用所产生的能量 参与根系的主动吸水过程。当外界温度降低时、 氧分压下降、呼吸作用抑制剂存在时根压、伤 流或吐水会降低或停顿。

第一章 植物的水分生理1

第一章 植物的水分生理1
(重力势是水分因重 力下移与相反力量相 等时的力量。 )
压力势 细胞壁在受到膨压作 草本植物叶肉细胞的ψ p,在温暖天气的 用时会产生与膨压大 午后为0.3~0.5MPa,晚上则达1.5 MPa ψp
小相等、方向相反的 壁压,即压力势, ψ p一般为正值.
特殊情况下ψ p也可为负值或零,初始质 壁分离时,细胞的ψ p为零;剧烈蒸腾时, 细胞壁出现负压,即细胞的ψ p呈负值
细胞渗透吸水的三种情况
Ø 植物细胞置于浓溶液中,由 于细胞壁的伸缩性有限,而 原生质层的伸缩性较大,当 细胞继续失水时,原生质层 便和细胞壁慢慢分离开来, 这种现象被称为质壁分离。
质壁分离
质壁分离复原
Ø 把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中, 外液中的水分又会进入细胞,液泡变大,原生质层很快会恢 复原来的状态,重新与细胞壁相贴,这种现象称为质壁分离 复原。利用细胞质壁分离和质壁分离复原的现象可以判断细 胞死活,同时,也证明植物细胞是一个渗透系统。
2.细胞的压力势 原生质体、液泡吸水膨胀, 对细胞壁产生的压力称为膨压 (turgor pressure)。 细胞壁在受到膨压作用的同时 会产生一种与膨压大小相等、 方向相反的壁压,即压力势。
Ø 压力势一般为正值,它提高了细胞的水势。 Ø 草本植物叶肉细胞的压力势,在温暖天气的午后为0.3~ 0.5MPa,晚上则达1.5MPa。 Ø 在特殊情况下,压力势也可为等于零或负值。 例如初始质壁分离时,细胞的压力势为零; 剧烈蒸腾时,细胞壁出现负压,细胞的压力势呈负值。
(七)植物细胞间的水分移动
相邻两个细胞之间水分移动的方向,取决于两 细胞间的水势差,水分总是顺着水势梯度移动。
Ψπ = -1.5MPa Ψp = 0.7MPa Ψw = -0.8MPa

第一章植物的水分生理

第一章植物的水分生理
② 代谢理论 认为呼吸释放的能量参与根系的吸水
过程。
根压是根系主动吸水的动力
2、蒸腾拉力(transpirational pull)
蒸腾作用(transpiration)是指水分以 气体状态,通过植物体的表面,从体内散 失到体外的现象。
蒸腾拉力是根系被动吸水的动力
根压一般不超过0.2MPa, 只能使水分上升20.4m。
(2)压力势
由于压力的存在而使体系水势改变的数值,用ψp 表示。
原生质吸水膨胀,对细胞壁产生压力,而细胞壁对原生质会 产生一个反作用力,这就是细胞的压力势。细胞压力势一般为正 值,只有在蒸腾过旺时为负值。
(3)重力势
由于重力存在而使体系水势改变的数值,
用ψg表示 。
当体系的两个区域高度相差不大时, 重力势可以忽略不计。
2. 共质体途径(symplast pathway):是指水分从
一个细胞的细胞质经过胞间连丝(plasmodesma)移动 到另一个细胞的细胞质。共质体是细胞质的连续体。
3. 跨膜途径(transmembrane pathway):是指水分从 一个细胞移动到另一个细胞,要通过质膜和液泡膜。
二、根系吸水的动力 1、根压(root pressure):0.05-0.5MPa (1) 伤流(bleeding )现象
途径:气孔
叶面扩散层
大气
蒸腾速率大小的决定因素: 气孔下腔和外界之间的蒸气压差
内部因素
❖ 气孔的频度 ❖ 气孔的大小 ❖ 叶片内部的面积
时间较长,就形成无氧 呼吸,产生和累积较多 酒精,根系中毒受伤, 吸水更少。
(3)土壤温度
低温能降低根系的吸水速率
① 水分本身的黏性增大,扩散速率降低;
② 细胞质黏性增大,水分不易通过细胞质;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章植物的水分生理一、名词解释1.自由水 2.束缚水 3.渗透作用 4.水势(ψw) 5.渗透势(ψπ) 6.压力势(ψp) 7.衬质势(ψm) 8.吸涨作用 9.蒸腾作用10.根压 11.蒸腾拉力 12.蒸腾速率 13.蒸腾比率 14.蒸腾系数15.内聚力学说 16.质壁分离与质壁分离复原二、填空题1.植物细胞吸水有、和三种方式。

2.植物调节蒸腾的方式有、和。

3.植物散失水分的方式有和。

4.植物细胞内水分存在的状态有和。

5.植物细胞原生质的胶体状态有两种,即和。

6.一个典型的细胞的水势等于;具有液泡的细胞的水势等于;形成液泡后,细胞主要靠吸水;干种子细胞的水势等于。

7.植物根系吸水方式有:和。

8.根系吸收水的动力有两种:和。

9.证明根压存在的证据有和。

10.叶片的蒸腾作用有两种方式:和。

11.某植物制造1克干物质需消耗水400克,则其蒸腾系数为;蒸腾效率为。

12.影响蒸腾作用的环境因子主要是、、和。

13.C3植物的蒸腾系数比C4植物。

14.可以比较灵敏地反映出植物的水分状况的生理指标主要:、、_____________和。

15.目前认为水分沿导管或管胞上升的动力是和。

三.选择题1.一个成熟的植物细胞,它的原生质层主要包括:。

A.细胞膜、核膜和这两层膜之间的细胞质B.细胞膜、液泡膜和这两层膜之间的细胞质C.细胞膜和液泡膜之间的细胞质D.细胞壁和液泡膜和它们之间的细胞质2.在同一枝条上,上部叶片的水势要比下部叶片的水势。

A.高B.低C.差不多D.无一定变化规律3.植物水分亏缺时。

A.叶片含水量降低,水势降低,气孔阻力增高B.叶片含水量降低,水势升高C.叶片含水量降低,水势升高,气孔阻力增高D.气孔阻力不变4.当植物细胞溶质势与压力势绝对值相等时,这时细胞在纯水中:。

A.吸水加快 B.吸水减慢C.不再吸水 D.开始失水5.将一个细胞放入与其胞液浓度相等的糖溶液中,则:。

A.细胞失水 B.既不吸水,也不失水C.既可能吸水,也可能失水D.是否吸水和失水,视细胞压力势而定6.已形成液泡的细胞,在计算细胞水势时其衬质势可省略不计,其原因是:。

A.衬质势很低 B.衬质势很高 C.衬质势不存在D.衬质势等于细胞的水势7.苍耳种子开始萌芽时的吸水属于:。

A.吸胀吸水B.代谢性吸水 C.渗透性吸水 D.降压吸水8.植物分生组织的吸水依靠:。

A.吸胀吸水 B.代谢性吸水 C.渗透性吸水 D.降压吸水9.当细胞在0.25mol/L蔗糖溶液中吸水达动态平衡时,将该细胞置纯水中会。

A.吸水 B.不吸水也不失水 C.失水10.水分在根或叶的活细胞间传导的方向决定于。

A.细胞液的浓度 B.相邻活细胞的渗透势梯度C.相邻活细胞的水势梯度 D.活细胞水势的高低11.设根毛细胞的Ψs为-0.8MPa,Ψp为0.6MPa,土壤Ψs为-0.2MPa,这时是。

A.根毛细胞吸水 B.根毛细胞失水 C.水分处于动态平衡12.在保卫细胞内,下列哪一组因素的变化是符合常态并能促使气孔开放的________?A.CO2含量上升,pH值升高,K+含量下降和水势下降B.CO2含量下降,pH值下降,K+含量上升和水势下降C.CO2含量上升,pH值下降,K+含量下降和水势提高D.CO2含量下降,pH值升高,K+含量上升和水势下降13.植物细胞吸水后,体积增大,这时其Ψs 。

A.增大B.减小 C.不变 D.等于零14.蒸腾旺盛时,在一张叶片中,距离叶脉越远的部位,其水势。

A.越高 B.越低 C.基本不变 D.与距离无关15.在温暖湿润的天气条件下,植株的根压。

A.比较大 B.比较小 C.变化不明显 D.测不出来16.植物刚发生永久萎蔫时,下列哪种方法有可能克服永久萎蔫?A.灌水 B.增加光照 C.施肥 D.提高大气湿度17.蒸腾作用的快慢,主要决定于。

A.叶面积的大小B.叶内外蒸汽压差的大小C.蒸腾系数的大小D.气孔的大小18.微风促进蒸腾,主要因为它能。

A.使气孔大开 B.降低空气湿度 C.吹散叶面水汽 D.降低叶温19.将Ψp为0的细胞放入等渗溶液中,其体积。

A.不变B.增大C.减少20.风和日丽的情况下,植物叶片在早晨、中午和傍晚的水势变化趋势为。

A.低-高-低B.高-低-高C.低-低-高D.高-高-低21.气孔关闭与保卫细胞中下列物质的变化无直接关系:A.ABA B.苹果酸C.钾离子D.GA22.压力势呈负值时,细胞的Ψw 。

A.大于Ψs B.等于Ψs C.小于Ψs D.等于023.植物带土移栽的目的主要是为了。

A.保护根毛 B.减少水分蒸腾 C.增加肥料 D.土地适应24.把植物组织放在高渗溶液中,植物组织。

A.吸水 B.失水 C.水分动态平衡 D.水分不动25.呼吸抑制剂可抑制植物的。

A.主动吸水 B.被动吸水 C.蒸腾拉力加根压 D.叶片蒸腾26.当细胞充分吸水完全膨胀时。

A.Ψp=Ψs,Ψw=0 B.Ψp>0,Ψw=Ψs+ΨpC.Ψp=-Ψs,Ψw=0 D.Ψp<0,Ψw=Ψs-Ψp27.当细胞处于质壁分离时。

A.Ψp=0,Ψw=Ψp B.Ψp>0,Ψw=Ψs+ΨpC.Ψp=0,Ψw=Ψs D.Ψp<0,Ψw=-Ψp28.进行渗透作用的条件是。

A.水势差 B.细胞结构 C.半透膜 D.半透膜和膜两侧水势差29.可克服植物暂时萎蔫。

A.灌水B.遮荫 C.施肥 D.增加光照30.水分临界期是指植物的时期。

A.消耗水最多 B.水分利用效率最高C.对缺水最敏感最易受害 D.不大需要水分31.植物的下列器官中,含水量最高的是。

A.根尖和茎尖 B.木质部和韧皮部 C.种子 D.叶片32.影响蒸腾作用的最主要环境因素组合是。

A.光,风,O2B.光,温,O2 C.光,湿,O2 D.光,温,湿33.生长在岩石上的一片干地衣和生长在地里的一株萎蔫的棉花,一场阵雨后,两者的吸水方式。

A.都是吸胀作用 B.分别是吸胀作用和渗透作用C.都是渗透作用 D.分别是渗透作用和吸胀作用34.植物中水分的长距离运输是通过.A.筛管和伴胞 B.导管和管胞 C.转移细胞 D.胞间连丝35.植物体内水分经的运输速度,一般为3~45m·h-1。

A.共质体 B.管胞 C.导管 D.叶肉细胞间36.施肥不当产生“烧苗”时。

A.土壤溶液水势(Ψ土)<根毛细胞水势(Ψ细)B.Ψw土>Ψw细C.Ψw细=Ψw土四、是非判断与改正1.影响植物正常生理活动的不仅是含水量的多少,而且还与水分存在的状态有密切关系。

()2.在植物生理学中被普遍采用的水势定义是水的化学势差。

()3.种子吸涨吸水和蒸腾作用都是需要呼吸作用直接供能的生理过程。

()4.根系要从土壤中吸水,根部细胞水势必须高于土壤溶液的水势。

()5.相邻两细胞间水分的移动方向,决定于两细胞间的水势差。

()6.蒸腾作用与物理学上的蒸发不同,因为蒸腾过程还受植物结构和气孔行为的调节。

()7.通过气孔扩散的水蒸气分子的扩散速率与气孔的面积成正比。

()8.空气相对湿度增大,空气蒸汽压增大,蒸腾加强。

()9.低浓度的C02促进气孔关闭,高浓度C02促进气孔迅速张开。

()10.糖、苹果酸和K+、Cl-进入液泡,使保卫细胞压力势下降,吸水膨胀,气孔就张开。

()五、问答题1.水分子的物理化学性质与植物生理活动有何关系?2.简述水分的植物生理生态作用。

3.植物体内水分存在的状态与代谢关系如何?4.水分代谢包括哪些过程?5.利用质壁分离现象可以解决哪些问题?6.土壤温度过高对根系吸水有什么不利影响?7.蒸腾作用有什么生理意义?8.气孔开闭机理的假说有哪些?请简述之。

9.小麦整个生育期中有哪两个时期为水分临界期?答案:一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分。

2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。

3.渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。

4.水势(ψw):每偏摩尔体积水的化学势差。

符号:ψw。

5.渗透势(ψπ):由于溶液中溶质颗粒的存在而引起的水势降低值,符号ψπ。

用负值表示。

亦称溶质势(ψs)。

6.压力势(ψp):由于细胞壁压力的存在而增加的水势值。

一般为正值。

符号ψp。

初始质壁分离时,ψp为0,剧烈蒸腾时,ψp会呈负值。

7.衬质势(ψm):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。

符号ψm。

8.吸涨作用:亲水胶体吸水膨胀的现象。

9.代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。

10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。

11.根压:植物根部的生理活动使液流从根部上升的压力。

12.蒸腾拉力:由于蒸腾作用产主的一系列水势梯度使导管中水分上升的力量。

13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量。

(g/dm2·h)14.蒸腾比率:植物每消耗l公斤水时所形成的干物质重量(克)。

15.蒸腾系数:植物制造 1克干物质所需的水分量(克),又称为需水量。

它是蒸腾比率的倒致。

16.内聚力学说:又称蒸腾流-内聚力-张力学说。

即以水分的内聚力解释水分沿导管上升原因的学说。

二、填空题1.渗透性吸水吸涨吸水代谢性吸水 2.蒸腾作用吐水 3.自由水束缚水4.凝胶溶胶 5.ψπ+ ψp+ ψm;渗透性ψp+ ψm;吸涨作用ψm6.主动吸水被动吸水 7.根压蒸腾拉力8.吐水伤流 9.角质蒸腾气孔蒸腾 10.400 2.5克 /公斤 11.光温度 CO2 12.大13.叶片相对合水量叶片渗透势水势气孔阻力或开度 14.根压蒸腾拉力三、选择题1.B2.B3.A4.C5.D6.D7.A8.A9.A 10.C 11.C 12.D 13.A 14.B 15.B 16.A 17.B 18.C 19.A 20.B 21.D 22.C 23.A 24.B 25.A 26.A 27.A 28.D 29.B 30.C 31.A 32.D33.B 34.B 35.C 36.A四、是非判断与改正1.(√) 2.(⨯)每偏摩尔体积水的 3. (⨯)不需 4.(⨯)低于 5.(√)6.(√) 7.(⨯)与小孔的边缘(周长)成正比 8. (⨯)蒸腾减弱9.(⨯)促进气孔张开促进气孔迅速关闭 10.(⨯)水势下降五、问答题1.水分子的物理化学性质与植物生理活动有何关系?水分子是极性分子,可与纤维素、蛋白质分子相结合。

水分子具有高比热,可在环境温度变化较大的条件下,植物体温仍相当稳定。

水分子还有较高的气化热,使植物在烈日照射下,通过蒸腾作用散失水分就可降低体温,不易受高温为害。

水分子是植物体内很好的溶剂,可与含有亲水基团的物质结合形成亲水胶体,水还具有很大的表面张力,产主吸附作用,并借毛细管力进行运动。

相关文档
最新文档