发电厂和变电所的防雷保护措施

合集下载

变电所防雷接地等防雷保护措施

变电所防雷接地等防雷保护措施

发电厂和变电所的防雷保护供电系统在正常运行时,电气设备的绝缘处于电网的额定电压作用之下,但是由于雷击的原因,供配电系统中某些部分的电压会大大超过正常状态下的数值,通常情况下变电所雷击有两种情况:一是雷直击于变电所的设备上;二是架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所。

其具体表现形式如下:1、直击雷过电压。

雷云直接击中电力装置时,形成强大的雷电流,雷电流在电力装置上产生较高的电压,雷电流通过物体时,将产生有破坏作用的热效应和机械效应。

2、感应过电压。

当雷云在架空导线上方,由于静电感应,在架空导线上积聚了大量的异性束缚电荷,在雷云对大地放电时,线路上的电荷被释放,形成的自由电荷流向线路的两端,产生很高的过电压,此过电压会对电力网络造成危害。

因此,架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所,是导致变电所雷害的主要原因,若不采取防护措施,势必造成变电所电气设备绝缘损坏,引发事故。

(1)变电所防雷的原则针对变电所的特点,其总的防雷原则是将绝大部分雷电流直接接闪引入地下泄散(外部保护);阻塞沿电源线或数据、信号线引入的过电压波(内部保护及过电压保护);限制被保护设备上浪涌过压幅值(过电压保护)。

这三道防线,相互配合,各行其责,缺一不可。

应从单纯一维防护(避雷针引雷入地———无源保护)转为三维防护(有源和无源防护),包括:防直击雷,防感应雷电波侵入,防雷电电磁感应等多方面系统加以分析。

1、外部防雷和内部防雷避雷针或避雷带、避雷网引下线和接地系统构成外部防雷系统,主要是为了保护建筑物免受雷击引起火灾事故及人身安全事故;而内部防雷系统则是防止雷电和其它形式的过电压侵入设备中造成损坏,这是外部防雷系统无法保证的。

为了实现内部防雷,需要对进出保护区的电缆,金属管道等都要连接防雷、及过压保护器,并实行等电位连接。

2、防雷等电位连接为了彻底消除雷电引起的毁坏性的电位差,就特别需要实行等电位连接,电源线、信号线、金属管道等都要通过过电压保护器进行等电位连接,各个内层保护区的界面处同样要依此进行局部等电位连接,各个局部等电位连接棒互相连接,并最后与主等电位连接棒相连。

发电厂和变电所的防雷保护

发电厂和变电所的防雷保护

分析用图
避雷器上的电压
变压器上的电压波形
变压器承受雷电波能力
U c.5
2
l
Uj
变电所中变压器距避雷器的最大允许电气距离
lm
U j U c.5
2 /
三.变电所的进线段保护
保护目的:
为使变电所内避雷器能可靠地保护电气设 备,限制流经避雷器的电流幅值不超过 5kv、限制侵入波陡度α不超过一定的允 许值
1.进线段首端落雷,流经避雷器电流的计算 计算条件:
进线段1---2公里 雷电侵入波最大幅值为线路绝缘50%冲击 闪络电压
原理接线和等值电路图
3. 35kv及以上变电所的进线段保护
计算方程:
2.进入变电所的雷电波陡度α的计算
u
u
l
0.5
0.008u hd
令v=300m/us,陡度化为kv/m单位
2u
ib
ub z1
z1
ub
ub
ib
z1 2
u
用图解法求解
分析
避雷器电压有两个峰值:
uch
避雷器冲击放电电压,由于阀式避雷
器的伏的特性较平,可认为是一个定

uca 避雷器最高的残压,由于流经避雷器
的雷电流一般不超过5kA,因此其值取 为5kA下的残压
(2).变压器和避雷器之间有一定的电器距离 接线图
110kv及以上 可以相连,若ρ>1000Ω·m 应 加集中接地装置
35—60kv 当ρ<=500Ω·m 允许相连,但应 加集 中接地装置
当ρ>500Ω·m 不允许相连
二.变电所的侵入波保护
1.阀式避雷器的保护作用分析
(1).变压器与避雷器之间的距离为零

第七章 发电厂和变电所的防雷保护

第七章 发电厂和变电所的防雷保护

2、35kV小容量变电站简化接线
变电站面积小,避雷器与变压器距离在10m以内。
四、旋转电机的防雷保护
(一)旋转电机防雷特点: 1)重要、昂贵、修复困难; 2)绝缘易老化(固体绝缘介质气隙多、易损伤,且运行
条件恶劣,受潮、振动、电动力作用)
3)冲击耐压低(仅为同电压等级变压器的1/2.5-1/4) 4)保护用的避雷器保护裕度低; 5)为降低纵绝缘压降需将来波陡度限制在a≤5kV/μs。 ∴不仅要把避雷器雷电流限制在3kA以下而且需将侵入波 陡度限制在5kV/μs以下。
避雷针
避雷针用于防止雷闪直接击中被 保护物,称为直击雷保护装置。 (一)保护原理 畸变电场 形成局部场强集中 影响先导发展路径 引雷作用 H: 定向高度 针: 线: h≤30m H≈20h H ≈10h h >30m H=600m H=300m
(二)避雷针结构 接闪器:Φ10-12mm长1-2m的镀锌或镀镍钢棒。 接地引下线: Φ6mm圆钢或截面积≮25mm的镀锌钢 绞线, 也可以利用钢筋或铁塔。 接地体:一组满足规定接地电阻值的管状或带状接地 电极。 注意各部分之间的连接(采用烧焊、线夹或螺栓)。 2.保护范围
故需采用避雷器作为变电站内侵入波的保护。 一、避雷器的保护动作过程 避雷器直接并在设备旁
避雷器动作前: ub=u(t) 动作后:
ub ib z1 2 u (t )
ub f (ib )
避雷器电压
(二)避雷器与变压器间的距离对过电压的影响
避雷器和被保护设备并在一起时,被保护设备上的过电压 就是避雷器上的电压,但实际工程中不可能在每台被保护 设备上并一台避雷器,也就是说避雷器与被保护设备存在 一定距离,距离对过电压有影响。
第七章 发电厂和变电所的 防雷保护

10 发电厂和变电站的防雷保护

10 发电厂和变电站的防雷保护
避雷器动作后:
变压器(也是避雷器)上电压有两个峰值: Uch :避雷器冲击放电电压 Ubm:避雷器残压的最大值,取5kA下的数值
两个峰值Uch和Ubm基本相同
1.避雷器与被保护设备距离为零时的过电压
变压器得到可靠保护条件:变压器冲击放电电压大于避雷 器的冲击放电电压和5kA下的残压 110kV~220kV变电所雷电流不得超过5kA,故5kA下的 残压用Ub.5表示。
§10-3 变电所的进线段保护
进线段:输电线靠近变电站1-2km的线段 进线段保护:加强进线段防雷保护措施(无避雷线的架设
避雷线,有避雷线减小保护角,增加绝缘子片数,加强检查巡 视);使进线段耐雷水平高于线路其它部分,减小进线段发生 绕击和反击形成侵入波的概率,这样侵入变电站的雷电波主要 来自进线段之外.
32
例:220kV线路的冲击绝缘强度U50%=1200kV,线 路波阻400,变电站中氧化锌避雷器的残压520kV
21200 520
Ibm
400
4.7kA
避雷器中的雷电流不超过5kA ,这也是避雷器残
压按照5kA考虑的原因。
33
2. 进入变电站的雷电波陡度a
τ

τ0

(0.5

0.008U hc

2a
l2 v
uT
(t)

2at p
Ub5

2a
l2 v
由于入侵波在变压器与避雷器之间多次反射,作用
在变压器上的电压具有振荡性质,相当于截波的作用。
uT
U b5
变压器上典型的实际电压波形
t
22
3.变压器与避雷器之间允许的最大电气距离
实际中以变压器承受多次截波的能力(多次截波耐压值 uj)表示承受雷电波的能力。

发电厂、变电站防雷保护

发电厂、变电站防雷保护

发电厂、变电站防雷保护
变电站是电力系统的枢纽,担负着电网供电的重要任务。

在变电站内的主要设备,如变压器、断路器、互感器等价格昂贵,一旦变电站遭受雷击,发生设备损坏,就有可能造成大面积停电。

因此,对变电站的防雷保护要求更可靠。

变电站遭受雷害可来自两个方面:一是雷直击于变电站;二是雷击线路,沿线路向变电站入侵的雷电波。

对直击雷的防护一般采用避雷针或避雷线。

对入侵波防护的主要措施是:在变电站内装设阀式避雷器以限制入侵雷电波的幅值,使设备上的过电压不超过其冲击耐压值;在变电站的进线上设置进线保护段以限制流过阀式避雷器的雷电流和降低入侵波的陡度;对直接与架空线相连的旋转电机(称直配电机),还在电机母线上装设电容器来限制入侵波陡度,以保护电机匝间和中性点绝缘。

1、发电厂、变电站直击雷保护
发电厂、变电站内的设备和建筑物应有可靠的直击雷保护装置如避雷针、避雷线,使所有设备均处于避雷针(线)的保护范围之内。

又由于雷击于避雷针(线)后,其地电位可能提高,如果它们与被保护设备的距离不够大,则有可能在避雷针(线)与被保护设备之间发生放电,这种现象称为避雷针(线)对设备的反击或逆闪络,因此避雷针与被保护设备之间的距离应进行计算。

对于110kV及以上的配电装置,由于绝缘水平较高不易造成。

第7章发电厂和变电站的防雷保护

第7章发电厂和变电站的防雷保护
段杆塔接地电阻难于下降,不能达到要求的耐雷水平,
可在进线的终端杆上安装一组 1000左右的电抗线圈来
H
代替进线段,此电抗线圈既能限制流过避雷器的雷电
流又能限制入侵波陡度。
变压器的防雷保护
一、三绕组变压器的防雷保护
高压侧有雷电过电压波时,通过绕组间
的静电耦合和电磁耦合,低压侧出现一
定过电压。在任一相低压绕组加装阀式
➢ 电缆段保护(进线段保护):限制流经避雷器中
的雷电流小于3kA(对直配电机以3kA下的残压作
为设计标准)
➢ 电抗器保护:使F2可靠动作
电机母线上装设电容C以限制来波陡度
(a)原理接线图 (b)等值电路 Zg—电机波阻抗
有电缆段的电机进线段保护接线
L1-电缆芯线的自感;L2- 电缆外皮的自感;
L3- 电缆末端外皮接地线的自感 ;L4- 电缆末
➢110kV及以上的中性点有效接地系统
1、中性点为全绝缘时,一般不需采用专门的保护。但在变电
所只有一台变压器且为单路进线的情况下,仍需在中性点加装
一台与绕组首端同样电压等级的避雷器。
2、当中性点为降级绝缘时,则必须选用与中性点绝缘等级相
当的避雷器加以保护,同时注意校核避雷器的灭弧电压
➢ 35kV及以下的中性点非有效接地系统
发电厂和变电所雷电过电压来源及危害



雷直击发电厂和变电所
雷击输电线路产生的过电压沿线路侵入
发电厂和变电所
造成大面积停电。发电机、变压器等主
要电气设备的内绝缘大都没有自恢复的
能力
过电压防护的主要措施
防止直击雷过电压的主要措施是装设专门的避雷针或
悬挂避雷线。
对雷电侵入波过电压防护的主要措施是在发电厂、变

变电所防雷安全技术措施

变电所防雷安全技术措施

变电所防雷安全技术措施
为了保障变电所正常、安全、稳定运行,防止雷击事故的发生,需要采取一系列防雷安全技术措施,以下为相关内容。

一、选址和布局
变电所选址应在低地形地带和电气环境好、无火灾危险源、不
受环境污染的地方。

布局要合理,主变压器、配电变压器、开关设
备合理布置,防止雷电冲击直接侵入变电设备。

二、接地引下
变电所应设置雷电接地系统,采用三阶或四阶接地系统,增加
接地体密度,安装避雷针或钢管杆等雷电接地引下装置,在雷暴发
生时将雷电引入地中。

三、避雷器
变电所安装避雷器,作为一道防守雷电冲击的重要措施。

避雷
器品种繁多,应根据实际需要选择合适的避雷器,串联或并联方式
使用。

四、接闸器和开关器
接闸器和开关器作为变电所电力控制的主要设备,应加强对其
防雷的控制。

采用合适的防雷器接入电源回路,以保证变电所电气
设备正常使用。

五、合理电缆布线
合理布线有利于减少雷电冲击的影响,方便维修,在布线过程
中应避免多头插座、绝缘材料老化等影响电缆安全的情况。

六、设立雷电探测器
雷电探测器可准确地测定雷电距离和方向,实现针对性的防雷
对策,对保障变电所安全运行具有很大作用。

七、维护管理
定期对变电所设施进行巡视,发现问题及时处理和维护,避免
设备老化和维护不及时带来的安全隐患。

综上所述,变电所防雷安全技术措施是确保变电所正常、安全、稳定运行的关键,需要针对实际情况采取一系列的技术措施,使其
实现最佳防雷效果。

第七章 发电厂和变电所的防雷保护(2012级)

第七章 发电厂和变电所的防雷保护(2012级)

此外,还须注意的情况:
当中压侧接有出线时(相当于 A点经线路波阻抗 接地),如高压侧有过电压波入侵, A点的电位接近 于零,大部分过电压将作用在 AA 一段绕组上,这显然 是危险的,同样地,高压侧接有出线时,中压侧进波 也会造成类似的结果。
显然, AA 绕组越短(变比k越小),危险性越大。 一般在 k 1.25 时,还应在AA 之间再跨接一组避雷器 (FV3)。
下的残压,所以还需配合进线保护措施以限制 流经FCD型避雷器中的雷电流小于3KA。
UC G
Z
FCD
(2)电容器保护
它主要功能是限制侵入波陡度a和降低感应过电压。通 常在发电机母线上 装设电容器来降低侵入波陡度。若侵入 波幅值为U0 的直角波,则发电机母线上电压(即电容C上 电压 UC )可按等值电路计算,计算结果表明,每相电容 为 0.25 ~ 0.5F 时,能够满足 a 2kV / s 的要求。同时也满 足限制感应过电压使之低于电机冲击耐压的要求。
在芯线中就不会有电流流过,但因电缆外皮末端的接地引下线总有电
感 L3存在,则 iR1 与 L2di2 / dt 之间就有差值,差值越大则流经芯线的雷
电流就愈大。
A
G
L4
L2
L3
C
FCD
i2
FE2
i R1
G L4
C
FCD
L2 L3
70m
i2
FE2
i R1
FE1
(4)电抗器
主要功能是在雷电波侵入时抬高电缆首端冲击电压, 从而使管型避雷器放电。例: 在电缆首端与FE2之间加装 100 ~ 300H 电感; 将FE2沿架空线前移70m。
最大允许电气距离
对于一般变电所的入侵雷电波防护设计 主要是选择避雷器的安装位置,其原则是在 任何可能的运行方式下,变电所的变压器和 各设备距避雷器的电气距离皆应小于最大允 许电气距离 lmax 。

变电所的防雷保护措施

变电所的防雷保护措施

变电所的防雷保护措施作者:潘书玲来源:《管理观察》2010年第17期摘要:变电所是电力系统中对电能电压和电流进行变换、集中和分配的场所,是联系发电厂与电力用户的纽带,担负着电压变换和电能分配的重要任务。

变电所是电力系统防雷的重要保护部分,如果发生雷击,大气过电压使变压器等设备内绝缘发生损坏,将造成严重的停电事故,严重影响社会生产和人民生活。

变电所必须采取防雷保护措施。

关键词:变电所防雷保护雷击原因防雷原则具体措施一、变电所遭受雷击主要来源及解决方法(1)变电所雷击来源。

雷直击于变电所的设备上;架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入。

(2)解决方法。

变电所对于直击雷的保护一般采取装设避雷针或采用沿变电所进线段一定距离内架设避雷线的方法解决。

在变电所内装设避雷器的目的在于限制入侵雷电波的幅值,使电气设备的过电压不致于超过其冲击耐压值。

而变电所的进线段上装设保护段的主要目的,在于限制流经避雷器的雷击电流幅值及入侵雷电波的陡度。

二、变电所防雷设备(1)避雷针。

①接闪器(“受雷尖端”)是避雷针最高部分,用来接受雷电放电。

②引下线,用它将接闪器上的雷电流安全地引到接地装置,使之尽快泄入大地。

③接地装置,它是避雷针的最下部分,埋入地下。

其接地电阻一般不能超过10Ω。

(2)避雷线。

避雷线(架空线),它是悬挂在高空的接地导线,一般为35-70m2的镀锌钢绞线;避雷线和避雷针一样,将雷电引向自身,并安全地将雷电流导入大地。

如果避雷线挂得较低,离导线很近,雷电有可能绕过避雷线直击导线,将它悬挂得高一些,提高避雷线的保护作用。

(3)避雷器。

避雷器可以有效的保护电力设备。

一旦出现高电压,且危及被保护设备绝缘时,避雷器立即动作,将高电压冲击电流导向大地,从而限制电压幅值,保护电气设备绝缘。

当过电压消失后,避雷器迅速恢复原状,使系统能够正常供电。

避雷器的主要作用是通过并联放电间隙或非线性电阻的作用,对入侵流动波进行削幅,降低被保护设备所受过电压值,从而达到保护电力设备的作用。

变电站的防雷保护措施

变电站的防雷保护措施

变电站的防雷保护措施变电站是电力系统中重要的设备,也是较为脆弱的环节。

雷电是造成电力设备损坏的主要原因之一,因此对于变电站的防雷保护措施非常重要。

以下是变电站常用的几种防雷措施:1.接闪器的安装:接闪器是变电站中常用的防雷设备,它主要通过对雷电电流进行导引,将雷电电流引入地下,保护变电设备。

在变电站的高处,如厂房屋顶、铁塔等地方安装接闪器,以确保变电站安全。

2.金属屋顶和金属网的应用:在变电站的建筑物周围,可采用金属板覆盖屋顶以及安装金属网,它们可以起到导电、接地的作用,将雷电电荷集中引向地下。

金属屋顶和金属网是一种比较传统的防雷方法,在变电站中仍然被广泛使用。

3.外部接地系统的建设:外部接地系统是变电站防雷措施中非常关键的一环,它可以将变电站系统中的雷电电荷引入地下,从而保护变电设备。

这要求变电站建设时,考虑到土壤的特性和变电设备的类型,合理设计外部接地系统,确保接地电阻低于规定标准。

4.防雷装置的使用:变电站内部设备中常常使用一些防雷装置,如避雷器、过压限流器等。

避雷器是一种能够快速放电吸收过电压能量的装置,它可以保护变电设备免受雷击。

过压限流器可以通过限制过压电流,保护变电设备不受损坏。

5.设备的绝缘:绝缘是保护变电设备免受雷击的重要手段之一、在变电站中,应合理选择绝缘材料,对设备进行绝缘处理,从而减少雷电对设备的影响。

6.监测系统的建设:变电站防雷措施的有效性需要通过监测系统进行实时监测与分析。

通过安装合适的监测设备,及时发现可能存在的雷电威胁,并采取相应的处理措施,可以有效降低雷电对变电站的影响。

总结起来,变电站的防雷保护措施主要包括接闪器的安装、金属屋顶和金属网的应用、外部接地系统的建设、防雷装置的使用、设备的绝缘以及监测系统的建设等。

通过综合应用这些措施,可以有效保护变电站设备免受雷电的侵害,确保电力系统的正常运行。

变电所的防雷措施

变电所的防雷措施
雷击避雷针时,雷电流流经避雷针及其接地装置,为了防止避雷针与被保护设备或构 架之间的空气间隙被击穿而造成反击事故,空气间隙必须大于最小安全净距。
为了防止避雷针接地装置与被保护设备或构架之间在土壤中的间隙被击穿而造成反击 事故,空气间隙必须大于最小安全净距。
对于 35kV 及以下的变电所,因其绝缘水平较低,必须装设独立的避雷针,并满足不 发生反击的要求。
(3)架空线路的雷电感应过电压和直击雷过电压形成的雷电波沿线路侵入变电所,是 导致变电所雷害的主要原因,若不采取防护措施,势必造成变电所电气设备绝缘损坏,引 发事故。在变电所内装设避雷器的目的在于限制入侵雷电波的幅值,使电气设备的过电压 不致于超过其冲击耐压值。而变电所的进线段上装设保护段的主要目的,在于限制流经避 雷器的雷电流幅值及入侵雷电波的陡度。
所有被保护设备均应处于避雷针(线)的保护范围之内,以免遭受雷击。 当雷击避雷针时,避雷针对地面的电位可能很高,如它们与被保护电气设备之间的绝 缘距离不够,就有可能在避雷针遭受雷击后,使避雷针与被保护设备之间发生放电现象, 这种现象叫反击。此时避雷针仍能将雷电波的高电位加至被保护的电气设备上,造成事故。 不发生反击事故的避雷针与电气设备之间的距离称为避雷针与电气设备之间防雷最小距离。
根据以上的分析,变电所的防雷是不可忽视的问题,建设单位和设计部门都应认真考 虑,加以重视。
由于变电所的配电装置至变电所出线的第一杆塔之间的距离可能比较大,如允许将杆 塔上的避雷线引至变电所的构架上,这段导线将受到保护,比用避雷针保护经济。由于避 雷线两端的分流作用,当雷击时,要比避雷针引起的电位升高小一些。因此,110kV 及以 上的配电装置,可将线路避雷线引接至出线门型构架上,但土壤电阻率大于 1000Ω·m 的 地区,应装设集中接地装置。对于 35~60kV 配电装置,土壤电阻率不大于 500Ω·m 的地 区,允许将线路的避雷线引接至出线门型构架上,但应装设集中接地装置。当土壤电阻率 大于 500Ω·m 时,避雷线应终止于线路终端杆塔,进变电所一档线路保护可用避雷针保 护。

007--发电厂和变电所的防雷保护

007--发电厂和变电所的防雷保护
高电压技术
第七章
发电厂和变电所的
防雷保护
高电压技术


一、发、变电所雷电过电压来源及危害: 发电厂、变电所是电力系统的中心环节,另外变电所是 多条输电线路的交汇点和电力系统的枢纽。 1、雷电直击发电厂和变电所 2、雷击线路产生的雷电过电压沿线路侵入发、变电所 3、雷电直击发电厂和变电所造成大面积停电,影响工 业生产和人民生活。 4、雷击线路产生的雷电过电压沿线路侵入发、变电所电 气设备,发电机、变压器等主要电器设备的内绝缘大都没 有自恢复的能力,一旦受损,直接经济损失严重;同时修 复困难,影响时间较长,间接损失无法估量。
旋转电机的防雷保护要比变压器困难得多,其雷害事故 也往往大于变压器,这是由它的绝缘结构、运行条件等方 面的特殊性造成的。 1、旋转电机主绝缘的冲击耐压值远低于同级变压器的冲 击耐压值。在同一电压等级的电气设备中,以旋转电机的冲 击电气强度为最低。运行中的旋转电机主绝缘更低于出厂时 的核定值。
高电压技术
第一节 发电厂、变电所的直击雷保护
发电厂、变电所防雷保护的措施: 按照安装方式的不同,装设独立避雷针、构架避雷针。
直击雷防护设计内容:
选择避雷针的支数、高度、装设位置、验算它们的保护范 围、应有的接地电阻、防雷接地装置设计等。
高电压技术
一、独立避雷针
适用范围:35kv及以下变电所 1、 避雷针的反击问题: 雷电经引下线入地时,在引下线上产生高电位,会 对被保护对象或与其有联系的物体(母线、电缆、金属 管道等)产生反击。 2、安全距离的确定: 为避免反击发生,就要求避雷针的引下线与被保护物体之 间有一定的安全距离。
设辅助集中接地装置,且避雷针与主接地网的地下连接 点到变压器接地线到主接地网的地下连接点,沿接地体

变电所的防雷保护措施

变电所的防雷保护措施

变电所的防雷保护措施由于变电所和架空线直接相连接,而线路的绝缘水平又比变电所内的电气设备高,因此沿着线路侵入到变电所的雷电波的幅值很高。

如果没有相应的保护措施,就有可能使变电所内的主变压器或其他电气设备的绝缘损坏。

而变电所一旦发生雷击事故,将使设备损坏,造成大面积停电,给工农业生产和人们的日常生活带来重大损失和严重影响。

所以,对于变电所而言,必须采取有效的措施,防止雷电的危害。

变电所的防雷保护措施如下。

1.装设避雷针装设避雷针保护整个变电所建筑物免受直接雷击。

避雷针可以防护直击雷。

避雷针可以单独立杆,也可以利用户外配电装置的构架或投光灯的杆塔;但变压器的门型构架不能用来装设避雷针,以防止雷击产生的过电压对变压器发生闪络放电。

选择独立避雷针的安装地点时,避雷针及其接地装置与配电装置之间应保持合适距离:在地上,由独立避雷针到配电装置的导电部分之间.以及到变电所电气设备与构架接地部分之间的空气隙一般不小于5m。

在地下,由独立避雷针本身的接地装置与变电所接地网间最近的地中距离一般不小于3m。

2.装设架空避雷线及其他避雷装置装设架空避雷线及其他避雷装置作为变电所进出线段的防雷保护,主要是用来保护主变压器,以免雷电冲击波沿高压线路侵入变电所损坏了主变电所的这一关键设备。

为此要求避雷器应尽量靠近主变压器安装。

35或66kV电力线路,一般不采用全线装设架空避雷线的方法来防直击雷,但为防止变电所附近线路上受到雷击时雷电沿线路侵入变电所破坏设备,需在变电所进出线l-2km段内装设架空避雷线作为保护,使该段线路免遭直接雷击。

为使上项保护段以外的线路受雷击时侵入变电所内的过电压有所限制,一般可在架空避雷线的两端装设管型避雷器,其接地电阻不得大于10Ω。

对于电压35kV、容量3200kVA以下的一般负荷变电所,可采用简化的进出线段保护接线方式。

对于10kV以下的高压配电线路进出线段的防雷保护,可以只装设FZ型或FS型阀型避雷器,以保护线路断路器及隔离开关。

第十章 发电厂和变电所的防雷保护

第十章 发电厂和变电所的防雷保护

2U 50% I b z U bm
进线段导线波阻
从P288表10-3-2可知,1~2Km的进线端已能够 满足限制避雷器中雷电流不超过5KA或10KA的要 求。 2.进入变电所的雷电流波陡度α的计算 行波电压(KV)

KV s 0.008 u 0 .5 l hd 进线段长度(m) u
入侵波幅值和陡度位于区域Ⅰ, 则变电所出现雷害事故;位于 Ⅱ区,则无雷害事故。危险波 形越偏上或偏右,则运行方式 下的防雷性能越好。
2)改变入侵波幅值,重复上 述过程。
三、变电所避雷器保护配置 1.配电装置的每组母线上应装设避雷器,但进出 线都装有避雷器的除外。 2.旁路母线是否装设避雷器视其运行时避雷器到 被保护设备的电气距离是否满足要求而定。 3.330KV及以上变压器和并联电抗器处必须装设 避雷器,避雷器应尽可能靠近设备本体。
4.220KV及以下变压器到避雷器之间的电气距离 超过允许值时,应在变压器附近增设一组避雷器。 5.三绕组变压器到低压侧的一相上宜装设一台避 雷器。
6.自耦变压器必须在两个自耦合的绕组出线上装 设避雷器,避雷器装设于变压器与断路器之间。
7.下列情况变压器中性点应装设避雷器: 1)中性点直接接地系统,变压器中性点为分级 绝缘且装有隔离开关时;
动作后:
2u (t ) u b i b z1
避雷器动作前: u b u t
u
b
f i b
Ubm为避雷器残压的最大值,虽然 残压与雷电流的大小有关,但因阀 片的非线性特性,当流过的雷电流 在很大范围内变动时,其残压近乎 不变。
由图可知: 避雷器电压有 两个峰值Uch和 Ubm, Uch是避 雷器冲击放电 电压,由于阀 型避雷器的伏 秒特性uf很平, 故此值基本上 不随侵入波陡 度而变;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电厂和变电所的防雷保护措施
雷电是一种壮观的自然现象。

但是目前人类尚未掌握它和利用它,处于防范它所造成危害的阶段。

变电所(tansformer substation)担负着从电力系统受电,经过变压,然后配电的任务。

1. 雷电的形成和特点
雷电是带有电荷的雷云之间或雷云对大地(或物体)之间产生急剧放电的一种自然现象。

当雷电发生时,放电电流使空气燃烧出一道强烈的火花,并使空气迅速猛烈膨胀,发出巨大响声。

雷电的特点是:时间短,电流强,频率高,感应或冲击电压大。

雷电出现的地方,可能对电气设备、建筑物、构筑物造成破坏,对人畜造成伤害,甚至可能造成爆炸、火灾等事故。

2. 雷电的主要危害
2.1雷电放电时产生高温损坏设备
带电云对地面物体发生放电时,雷电流可达几十千安,甚至几百千安。

这样大的电流,即使持续时间非常短,也能在通道上产生大量的热,温度最高可达几万度。

显然,这样强烈的弧光若
与易燃易爆物质相接触,必然会引起燃烧、爆炸或造成火灾。

如果厂房的屋顶是可燃的,雷击时就可能引起火灾。

3. 雷电的特性
3.1直击雷
大气中带有电荷的雷云对地电压可高达几
十万KV。

当雷云同地面凸起物之间的电场强度达到该空间的击穿强度时所产生的放电现象,就是通常所说的雷击。

此时,雷电直接对建筑物或其他物体放电,产生具有很大破坏性的热效应和机械效应,相伴的还有电磁效应和闪络放电。

线路或设备直接受到雷击,对电气设备危害极大。

架空线路遭雷击,不仅危害线路本身,而且雷电还会沿导线传播到发、变、配电所,从而危害发、变、配电所的正常运行,严重时还会引起火灾、房屋倒塌或损坏电气设备。

3.2感应雷
落雷处邻近物体因静电感应或电磁感应产
生高电位所引起的放电称为感应雷。

当建筑物、
构筑物或架空线路上空有雷云时,在建筑物、构筑物或架空线路上便会感应出与雷云所带电荷性质相反的电荷。

雷云向其他地方放电之后,云与大地之间的电场消失了,但聚集在建筑物、构筑物顶部上或线路上的电荷并不能立刻散去,而是向地面流散或向线路两端流动,此时建筑物、构筑物的顶部上或线路对地面便有很高的电位,形成感应过电压。

它往往造成屋内电线、金属管道和大型金属设备放电,引起火灾、爆炸,危及人身安全或对供电系统造成危害。

4.变电所的防雷保护措施
4.1防雷保护的必要性
变电所是电力系统的枢纽,担负着电网供电的重要任务。

由于变电所和架空线直接相连接,而线路的绝缘水平又比变电所内的电气设备高,因此沿着线路侵入到变电所的雷电波的幅值很高。

如果没有相应的保护措施,就有可能使变电所内的主变压器或其它电气设备的绝缘损坏。

而变电所一旦发生雷击事故,将使设备损坏,造成大面积停电,给工农业生产和人们的日常生活带来重大损失和严重影响。

所以,对于变电所而言,必须采取有效的措施,防止雷电的危害。

4.2 防雷保护措施
4.2.1 装设避雷针保护整个变电所建(构)筑物以免直接雷击
避雷针可以防护直击雷。

避雷针可以单独立杆,也可以利用户外配电装置的构架或投光灯的杆塔;但变压器的门型构架不能用来装设避雷针,以防止雷击产生的过电压对变压器发生闪络放电。

选择独立避雷针的安装地点时,避雷针及其接地装置与配电装置之间应保持以下距离。

在地上,由独立避雷针到配电装置的导电部分之间,以及到变电所电气设备与构架接地部分之间的空气隙一般不小于5m。

在地下,由独立避雷针本身的接地装置与变电所接地网间最近的地中距离一般不小于3m。

4.2.2 装设架空避雷线及其他避雷装置作为变
电所进出线段的防雷保护
这主要是用来保护主变压器,以免雷电冲击波沿高压线路侵入变电所损坏了主变电所的这
一关键设备。

为此要求避雷器应尽量靠近主变压器安装。

35KV电力线路,一般不采用全线装设架空避雷线的方法来防直击雷,但为防止变电所附近线路上受到雷击时雷电沿线路侵入变电所破坏
设备,需在变电所进出线1km~2km段内装设架空避雷线作为保护,使该段线路免遭直接雷击。

为使上项保护段以外的线路受雷击时侵入变电
所内的过电压有所限制,一般可在架空避雷线的两端装设管型避雷器,其接地电阻不得大于10Ω。

对于电压35KV、容量3200KVA以下的一般负荷变电所,可采用简化的进出线段保护接线方式。

对于10KV以下的高压配电线路进出线段的防雷保护,可以只装设FZ型或FS型阀型避雷器,以保护线路断路器及隔离开关。

4.2.3 装设阀型避雷器对沿线路侵入变电所的雷电波进行防护
变电所的进出线段虽已采取防雷措施,且雷电波在传播过程中也会逐渐衰减,但沿线路传入变电所内的部分,其过电压对内设备仍有一定危害。

特别是对价值最高、绝缘相对薄弱的主变压器更是这样。

故在变压器母线上,还应装设一组阀型避雷器进行保护。

6~10KV变电所中,阀型避雷器与被保护的变压器间的电气距离,一般不应大于5m。

为使任何运行条件下,变电所内的变压器都能够得到保护,当采用分段母线时,其每段母线上都应装设阀型避雷器。

4.2.4低压侧装设避雷器
这主要用在多雷区用来防止雷电波沿低压线路侵入而击穿电力变压器的绝缘。

当变压器的低压侧中性点不接地时(如IT系统),其中性点可装设阀式避雷器或金属氧化物避雷器或保护间隙。

需要注意的是,防雷系统的各种钢材必须采用镀锌防锈钢材,联接方法要用焊接。

圆钢搭接长度不小于6倍直径,扁钢搭接长度不小于2倍宽度。

在装设避雷针时,应注意以下两点。

为防止雷击避雷针时雷电波沿导线传入室内,危及人身安全,所以照明线或电话线不要架设在独立的避雷针上。

独立避雷针及其接地装置,不应装设在行人经常通行的地方。

避雷针及其接地装置与道路或出入口的距离不应小于3m,否则应采取均压措施,或铺设厚度为50mm~80mm的沥青加碎石层。

5. 变电所的进线保护
5.1一般变电所的进线保护
除了直击雷和感应雷外,当线路上受雷击时,雷电进行波就会沿着线路向变电所袭来,由于线路的绝缘水平较高,侵入变电所的雷电进行波的幅值往往很高,就有可能使主变压器和其他电气设备发生绝缘损坏事故。

此外,由于变电所和线路直接相连,线路分布广,长度较长,遭受雷击的
机会也较多,所以对变电所的进线线段必须有完善的保护措施,这是能否保证设备安全运行的关键。

对于未沿全线装设避雷线的35KV到110KV 的线路,为了保证变电所的安全,应在变电所的进线段1km~2km长度内应采用避雷线保护。

当变电所上有了避雷线保护以后,就可以防止在变电所附近的线路导线上落雷。

如果雷落在了保护线的首段,雷电波就会沿着线路侵入变电所。

如果进线端采用钢筋混凝土杆木横担或磁横担等电路,为了限制从进线端以外沿导线侵入的雷电波的幅值,应在进线端的首端装设一组管型避雷器,保护段内的杆塔工频接地电阻不应大于10Ω。

钢塔和钢筋混凝土杆铁横担线路以及全线有避雷线的线路,其进线段的首端可不装设管型避雷器。

5.2 35KV及以上电缆段的变电所的进线保护
变电所的进出线以35KV到100KV都有采用电缆的,有三芯电缆,也有单芯电缆,其保护线也应不同。

在电缆和架空线的连接处应装设阀型
避雷器保护,其接地必须与电缆的金属外皮线连接。

当电缆长度不超过50m或根据经验算法装设一组避雷器即能满足保护要求时,可只装设一组阀型避雷器;当电缆长度超过50m,而且,断路器在雨季可能经常短路运行,应在电缆末端装设管型避雷器或阀型避雷器。

此外,靠近电缆段的1km架空线路上还应架设避雷线保护。

5.3 小容量变电所的简化保护
对于35KV负荷不很重要且容量较小的变电所,采取简化的防雷保护方式,对绝缘正常的变压器绝大部分还是可以保证安全运行的,特别是在雷电不太强烈的地区采取简化的防雷保护方式,是可行的。

5.4 6KV到10KV变电所配电装置的保护
6KV到10KV变电所的每段母线上和每路架空进出线上都应装设避雷器。

架空进线采用双回路塔杆,有同时遭到雷击的可能,在确定避雷器与主变压器的最大电气距离时,应按一路考虑,而且,在雷雨季节中应避免将其中的一路断开。

综上所述,只要我们了解了雷电产生的危害,正确合理的选择发电厂、变电所的防雷保护措施和接地保护方式,保证电力系统的长期安全稳定运行,我们就能尽可能预防和减小雷电的危害。

相关文档
最新文档