专题一规律探究与定义应用题、阅读理解

合集下载

中考数学复习:专题01 规律探究问题

中考数学复习:专题01 规律探究问题

【课标解读】新课标中明确要求:用代数式表示数量关系及所反映的规律,发展学生的抽象思维能力。

根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。

规律探究问题是指给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探究题.【解题策略】解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。

笔者认为:只要善于观察,细心研究,知难而进,就会走出“山穷水尽疑无路”的困惑,收获“柳暗花明又一村”的喜悦。

解答策略:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.【考点深剖】★考点一数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

【典例1】(2018山东日照)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n 为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【分析】算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.解:若n=13,第1次结果为:3n+1=40,第2次结果是: =5,★考点二 图形规律探究由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻,并且还可以由一个通用的代数式来表示。

这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律,再用函数法、观察法解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。

中考数学重难点突破专题一:规律探索型问题试题(含答案)

中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

中考数学复习攻略 专题1 规律探索与归纳推理(含答案)

重点专题突破专题一 规律探索与归纳推理中考重难点突破数式规律数式规律类问题通常是先给出一组数或式子,要求通过观察、归纳这组数或式子的共性规律,写出一个一般性的结论.解决这类题目的关键是找出题目中的规律,即不变的和变化的,变化部分与序号的关系.常见数列 规律❶2,4,6,8,10,12,… 2n (从2开始的连续偶数) ❷1,3,5,7,9,11,… 2n -1(从1开始的连续奇数)❸1,4,9,16,25,36,… n 2(正整数平方) ❹2,4,8,16,32,64,… 2n (2的整数次幂) ❺-1,1,-1,1,-1,1,…(-1)n (奇负偶正)❻1,-1, 1,-1, 1,-1,… (-1)n +1或(-1)n -1(奇正偶负)【例1】(2021·铜仁中考)观察下列各项:112 ,214 ,318 ,4116 ,…,则第n 项是__n +12n __.【解析】根据已知可得出规律:第一项:112 =1+121 ,第二项:214 =2+122 ,第三项:318 =3+123 ,…,从而可以得出第n 项.本题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键. 【例2】(2020·百色一模)观察下列等式:1-12 =12 ,2-25 =85 ,3-310 =2710 ,4-417 =6417,…,根据你发现的规律,则第20个等式为 __20-20401 =8 000401__ .【解析】根据题意可知,这列等式的左边的被减数是从1开始的连续整数,减数是一个分数,并且分子和被减数相同,分母是被减数的平方加1;右边也是一个分数,分子是被减数的立方,分母和减数的分母相同,由此可写出第20个等式为:20-20202+1 =203202+1 ,最后化简即可.1.按一定规律排列的单项式:a ,-2a ,4a ,-8a ,16a ,-32a ,…,则第n 个单项式是( A )A .(-2)n -1a B .(-2)n aC .2n -1a D .2n a 2.(2020·百色二模)小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数:1,1,2,3,5,8,…,则这列数的第8个数是__21__.3.观察下面由※组成的图案和算式,解答问题:1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, ……猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=__(n +2)2__.图形规律图形规律类问题主要涉及图形的组成、分拆等过程,解答此类问题时,要将后一个图形与前一个图形进行比较,明确哪部分发生了变化,哪部分没有发生变化,分析其联系和区别,有时需要多画出几个图形进行观察,有时规律是循环性的,在归纳时要运用对应思想和数形结合思想.【例3】观察下列砌钢管的横截面图:则第n 个图的钢管数是__32 n 2+32 n __(用含n 的式子表示).【解析】本题可先依次列出n =1,2,3,…时的钢管数,再根据规律依次类推,可得出第n 个图的钢管数.第1个图的钢管数为1+2=3=3×1; 第2个图的钢管数为2+3+4=9=3×(1+2); 第3个图的钢管数为3+4+5+6=18=3×(1+2+3);第4个图的钢管数为4+5+6+7+8=30=3×(1+2+3+4);……依次类推,第n 个图的钢管数为3×(1+2+3+4+…+n )=32 n 2+32n .4.(源于沪科七上P83)在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n )和芍药的数量规律,那么当n =11时,芍药的数量为( B )A .84株B .88株C .92株D .121株 5.(2021·遂宁中考)下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第__20__个图形共有210个小球.6.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为__m =4n +1__.与坐标有关的规律与坐标有关的规律类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比照,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.【例4】如图,直线l 为y =3 x ,过点A 1(1,0)作A 1B 1⊥x 轴,与直线l 交于点B 1,以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2;再作A 2B 2⊥x 轴,交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画圆弧交x轴于点A 3……按此作法进行下去,则点A n 的坐标为(__2n -1,0__).【解析】∵直线l 为y =3 x ,点A 1(1,0),A 1B 1⊥x 轴,∴当x =1时,y =3 ,即B 1(1,3 ).∴tan ∠A 1OB 1=3 .∴∠A 1OB 1=60°,∠A 1B 1O =30°.∴OB 1=2OA 1=2.∵以原点O 为圆心,OB 1长为半径画圆弧交x 轴于点A 2,∴A 2(2,0).同理可得A 3(4,0),A 4(8,0),…,∴A n (2n -1,0).7.如图,在平面直角坐标系中,A (-1,1),B (-1,-2),C (3,-2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2 021 s 瓢虫所在点的坐标是( A )A .(3,1)B .(-1,-2)C .(1,-2)D .(3,-2)8.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =-13 x +4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2 022=__942 021 __.中考数学专题过关1.如图,第1个图形中有1个正方形,按照如图所示的方式连接对边中点得到第2个图形,图中共有5个正方形;连接第2个图形中右下角正方形的对边中点得到第3个图形,图中共有9个正方形;按照同样的规律得到第4个图形、第5个图形……,则第7个图形中共有正方形( B )A .21个B .25个C .29个D .32个2.如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( B )A .⎝⎛⎭⎫1 200,125 B .(600,0)C .⎝⎛⎭⎫600,125 D .(1 200,0)3.(2021·百色一模)有一列有序数对:(1,2),(4,5),(9,10),(16,17),…,按此规律,第11对有序数对为 __(121,122)____.4.观察下列一组数:-23 ,69 ,-1227 ,2081 ,-30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是__(-1)n ·n (n +1)3n__.5. (2021·眉山中考)观察下列等式:x 1=1+112+122 =32 =1+11×2 ;x 2=1+122+132 =76 =1+12×3 ;x 3=1+132+142 =1312 =1+13×4;……根据以上规律,计算x 1+x 2+x 3+…+x 2 020-2 021=__-12 021__.6.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律摆下去,第n 个图案有__(3n +1)__个三角形(用含n 的代数式表示).7.(2021·扬州中考)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为__1__275__.。

规律探究问题(解析版)

规律探究问题(解析版)
故选:C.
2.(2019湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为 的弧AB多次复制并首尾连接而成.现有一点 从 为坐标原点)出发,以每秒 米的速度沿曲线向右运动,则在第2019秒时点 的纵坐标为
A. B. C.0D.1
【答案】B
【解析】点运动一个弧AB用时为 秒.
【答案】A
【解析】过A1作A1D1⊥x轴于D1,
∵OA1=2,∠OA1A2=∠α=60°,
∴△OA1E是等边三角形,
问题拓展:
解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:
则EG=AG= ,PH=FH,
∴AE=5,
在Rt△ABE中,BE= =3,
∴CE=BC﹣BE=1,
∵∠B=∠ECQ=90°,∠AEB=∠QEC,
∴△ABE∽△QCE,
∴ = =3,
∴QE= AE= ,
∴AQ=AE+QE= ,
【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.
【解答】:根据题意得,点C的坐标可表示为(2,4,2),
故答案为:(2,4,2).
【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.
【答案】A
【解析】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:
在Rt△OA1P1中,OA1=1,OP1=2,
∴A1P1= = = ,
同理:A2P2= = ,A3P3= = ,……,
∴P1的坐标为(1, ),P2的坐标为(2, ),P3的坐标为(3, ),……,

专题一 规律探索型问题(3节)

专题一  规律探索型问题(3节)

专题一 规律探索型问题<新课程标准>规律探索型问题是近几年来中考的热点问题,能比较系统的考查学生的逻辑思维能力、归纳猜想能力及运用所学的知识和方法分析、解决数学问题的能力,是落实新课标理念的重要途径,所以备受命题专家的青睐,经常以填空题或选择题的形式出现,在全国各地中考中,出现了不少立意新颖、构思巧妙、形式多样的规律探索型问题,规律探索型问题是指给出一系列数字、一个等式或一列图形的前几项,让学生通过“观察-----思考------探究------猜想”这一系列的活动逐步找出题目中存在的规律,最后归纳出一般的结论,再加以运用。

解决此类问题的关键是仔细审题,归纳规律,合理推测,认真验证,从而得出问题的结论。

【经典例题】类型一 探索图形规律例 1.将图①所示的正六边形进行进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③, 再将图③中最小的某一个正六边形按同样的方式进行分割…,则第n 个图形中,共有________个正六边形.图①图②图③(例1题)……思路点拔:将图①所示的正六边形进行进行分割得到图②,增加了3个正六边形,共4个;再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,又增加了3个正六边形,共4+3=7个;故每次分割,都增加3个正六边形,那么第n个图形中,共有1+3(n﹣1)=3n﹣2.类型二探索数的规律例2、观察下列等式:第1层 1+2=3第2层 4+5+6=7+8第3层 9+10+11+12=13+14+15第4层 16+17+18+19+20=21+22+23+24在上述数字宝塔中,从上往下数,2016在第层.思路点拔:每一层第一个数就是层数的平方,那么只要找到2016在哪两个整数的平方之间,就解决此问题。

类型三探索点的坐标变化规律例3.如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是()A.(4,0) B.(0,5) C.(5,0) D.(5,5)(例3题)思路点拔::由题意可知质点移动的速度是1个单位长度/每秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.故第35秒时质点到达的位置为(5,0),【针对训练】1、下列图形是将正三角形按一定规律排列,则第④个图形叫:,所有正三角形的个数有( )A.160 B.161 C.162 D.1632.如图所示,图①中含“○”的矩形有1个,图②中含“○”的矩形有7个,图③中含“○”的矩形有17个,按此规律,图⑥中含“○”的矩形个数为( )A.70 B.71 C.72 D.733.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是()A.(3,0)B.(﹣1,2)C .(﹣3,0)D .(﹣1,﹣2)4.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P 的坐标是( )5.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第个点的坐标为____________.100(第3题)(第5题)三角形的三边关系《新课程标准》在“课程内容”第二学段中提出“体会两点间所有连线中线段最短,知道两点间的距离”“认识三角形,通过观察、操作,了解三角形两边之和大于第三边、三角形内角和是180°”“认识等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形”。

专题01 规律探究-备战2022年中考数学母题题源解密(全国通用)(解析版)

专题01 规律探究-备战2022年中考数学母题题源解密(全国通用)(解析版)

专题01 规律探究问题考向1 数字规律探究问题【母题来源】2021年中考江苏镇江卷【母题题文】(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中,值可以等于789的是()A.A1B.B1C.A2D.B3【答案】B【试题解析】由题意得:A1=2n+1+2n+3+2n+5=789,整理得:2n=260,则n不是整数,故A1的值不可以等于789;A2=2n+7+2n+9+2n+11=789,整理得:2n=254,则n不是整数,故A2的值不可以等于789;B1=2n+1+2n+7+2n+13=789,整理得:2n=256=28,则n是整数,故B1的值可以等于789;B3=2n+5+2n+11+2n+17=789,整理得:2n=252,则n不是整数,故B3的值不可以等于789;故选:B.【命题意图】考查数字变化类规律,培养学生的抽象思维能力.【命题方向】数字的变化类问题一般以选填形式出现,安排在压轴位置,提高学生的区分度.【得分要点】解数字类规律探究问题的一般步骤:(1)通过观察、对比,找出各部分的特征;(2)猜想、归纳出一般规律并验证;(3)将所求问题代入一般规律.考向2 几何图形类的规律探究问题【母题来源】2021年中考湖南湘西卷【母题题文】古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为a1=1,第二个图形表示的三角形数记为a2=3,…,则第n个图形表示的三角形数a n=.(用含n的式子表达)【答案】【试题解析】第1个图形表示的三角形数为1,第2个图形表示的三角形数为1+2=3,第3个图形表示的三角形数为1+2+3=6,第4个图形表示的三角形数为1+2+3+4=10,.....第n个图形表示的三角形数为1+2+3+4+......+(n﹣1)+n.故答案为:.【命题意图】考查图形变化类的规律,目的是通过数形结合培养学生的抽象思维能力.【命题方向】以选填为主,主要设置在压轴位置,增加学生的区分度.【得分要点】解几何图形类规律探究问题的一般步骤:(1)找到图形之间变与不变的规律;(2)猜想规律与“序号”之间的对应关系,并用关于“序号”的式子表示出来;(3)验证式子,并解答问题.考向3 点的坐标变化的规律探究问题【母题来源】2021年中考湖北卷【母题题文】如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得点P1(﹣1,﹣1);接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点P2;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点P3;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点P4,…,按此作法进行下去,则点P2021的坐标为.【答案】(﹣1011,﹣1011)【试题解析】观察图象可知,奇数点在第三象限,∵P1(﹣1,﹣1),P3(﹣2,﹣2),P5(﹣3,﹣3),•••,P2n﹣1(﹣n,﹣n),∴P2021(﹣1011,﹣1011),故答案为:(﹣1011,﹣1011).【命题意图】考查坐标与图形变化﹣平移,规律型等知识,训练学生探究规律,利用规律解决问题的能力.【命题方向】选填为主,将坐标求取与平移、旋转或对称相结合.【得分要点】解点坐标变化规律探究问题的一般方法:(1)点的坐标在坐标轴上或象限内循环(周期)变化时,先求出第一个循环周期内相关点的坐标,然后找出所求点经过循环后位于第一个循环周期内的哪个位置,从而求出坐标;(2)点的坐标是成倍递推变化时,先求出前几个点的坐标,然后归纳出后一个点坐标与前一个点坐标之间存在的倍分关系.1.(2021•广汉市模拟)右边是一个按某种规律排列的数阵:根据规律,自然数2021应该排在从上向下数的第m行,是该行中的从左向右数的第n个数,那么m+n的值是()A.131 B.130 C.129 D.128【答案】B【解析】∵每行的最后一个数是这个行的行数m的平方,第m行的数字的个数是2m﹣1,∵442=1936,所以2021在第45行,∵452=2025,∴45行最后一个数字是2025,第45行有2×45﹣1=89个数字,从2025往前数4个数据得到2021,从而得出2021是第85个数据,∴m =45,n=85,∴m+n=45+85=130.故选:B.2.(2021•沙坪坝区校级二模)如图所示,将形状、大小完全相同的小圆点“•”按照一定规律摆成下列图形,其中第①个图案中有5个小圆点,第②个图案中有9个小圆点,第③个图案中有13个小圆点,……按此规律排列下去,则第⑥个图案中小圆点的个数为()A.21 B.25 C.29 D.33【答案】B【解析】∵第①个图案中“●”有:1+4×1=5个,第②个图案中“●”有:1+4×2=9个,第③个图案中“●”有:1+4×3=13个,第④个图案中“●”有:1+4×4=17个,…∴第⑥个图案中“●”有:1+4×6=25个,故选:B.3.(2021•房县一模)将正整数按如图所示的位置顺序排列:根据排列规律,则2021应在()A.A处B.B处C.C处D.D处【答案】D【解析】2021÷4=505…1,∴2021应在1的位置,也就是在D处.故选:D.4.(2021•涪城区模拟)由6个数组成数列a0,将其中的每个数换成该数在数列a0中出现的次数,可得到一个新的数列a1,例如数列a0:{1,1,3,2,5,2},则a1:{2,2,1,2,1,2},当某个数列a0经过变换得到新的数列a1,由a1继续按相同规则变换得到a2,…最终得到数列a n﹣1(n≥2)与数列a n相同,则a n不可能是下列的()A.{2,4,4,4,2,4} B.{1,3,2,3,2,3}C.{6,6,6,6,6,6} D.{1,1,1,1,1,1}【答案】D【解析】A.a0={2,4,4,4,2,4},a1={2,4,4,4,2,4},……,a n={2,4,4,4,2,4},符合题意;B.a0={1,3,2,3,2,3},a1={1,3,2,3,2,3},……,a n={1,3,2,3,2,3},符合题意;C.a0={6,6,6,6,6,6},a1={6,6,6,6,6,6},……,a n={6,6,6,6,6,6},符合题意;D.a0={1,1,1,1,1,1},a1={6,6,6,6,6,6},……,a n={6,6,6,6,6,6},不符合题意;故选:D.5.(2021•交城县二模)已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式∁n m(n>m),则C125=()A.60 B.792 C.812 D.5040【答案】B【解析】∵,∴=792,故选:B.6.(2021•广东一模)按照图中图形变化的规律,则第2021个图形中黑色正方形的数量是()A.1010 B.1012 C.3030 D.3032【答案】D【解析】根据图形变化规律可知:第1个图形中黑色正方形的数量为2,第2个图形中黑色正方形的数量为3,第3个图形中黑色正方形的数量为5,第4个图形中黑色正方形的数量为6,...,当n为奇数时,黑色正方形的个数为[3(n+1)﹣1],当n为偶数时,黑色正方形的个数为(3n),∴第2021个图形中黑色正方形的数量是[3(2021+1)﹣1],故选:D.7.(2021•武汉模拟)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长构造一组正方形(如图1);再分别依次从左到右取2个,3个,4个,5个拼成如图2长方形并记为①,②,③,④若按此规律继续作长方形,则序号为⑦的长方形周长是()A.110 B.100 C.105 D.90【答案】A【解析】由分析可得:第⑤个的周长为:2×(8+13),第⑥的周长为:2×(13+21),第⑦个的周长为:2×(21+34)=110,故选:A.8.(2021•鞍山一模)如图,直线OA的解析式为y=x,点P1坐标为(1,0),过P1作PQ1⊥x轴交OA于Q1,过Q1作P2Q1⊥OA交x轴于P2,过P2作P2Q2⊥x轴交OA于Q2,过Q2作P3Q2⊥OA交x轴于P3,…,按此规律进行下去,则P100的坐标为()A.(2100﹣1,0)B.(5050,0)C.(299,0)D.(100,0)【答案】C【解析】∵直线OA的解析式为y=x,∴∠AOP1=45°,∵PQ1⊥x轴,∴△OP1Q1为等腰直角三角形,∵点P1坐标为(1,0),∴P1Q1=OP1=1,∵P2Q1⊥OA,∴∠P1Q1P2=45°,∴△P1P2Q1为等腰直角三角形,∴P1P2=P1Q1=1,∴P2(2,0),同理可得P3(4,0),P4(8,0),……,P n(2n﹣1,0),∴P100(299,0),故选:C.9.(2021•潍城区二模)将从1开始的连续自然数按图表所示规律排列:规定位于第a行,第b列的自然数记为(a,b).例如,自然数10记为(3,2),自然数14记为(4,3)…按此规律,自然数2021记为()A.(505,1)B.(505,4)C.(506,1)D.(506,4)【答案】D【解析】由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2021÷4=505……1,505+1=506,∴2021在第506行,∵偶数行的数字从左往右是由大到小排列,∴自然数2021记为(506,4).故选:D.10.(2021•十堰一模)将从1开始的自然数按规律排列,例如位于第3行、第4列的数是12,则位于第45行、第4列的数是()A.2025 B.2023 C.2022 D.2021【答案】C【解析】观察数字的变化,发现规律:第n行的第一个数为n2,所以第45行第一个数为452=2025,再依次减1,到第4列,即452﹣3=2022.故选:C.11.(2021•陆良县一模)按一定规律排列的单项式a,﹣3a2,5a3,﹣7a4,9a5,…第n个单项式是()A.(﹣1)n(2n﹣1)a n B.(﹣1)n+1(2n+1)a nC.(﹣1)n(2n+1)a n D.(﹣1)n+1(2n﹣1)a n【答案】D【解析】∵a=(﹣1)1+1×(2×1﹣1)a,﹣3a2=(﹣1)2+1×(2×2﹣1)a2,5a3=(﹣1)3+1×(2×3﹣1)a3,﹣7a4=(﹣1)4+1×(2×4﹣1)a4,9a5=(﹣1)5+1×(2×5﹣1)a5,…∴第n个单项式为:(﹣1)n+1(2n﹣1)a n.故选:D.12.(2021•河南模拟)如图,过点A1(2,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(4,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B2021的坐标为()A.(22021,22020)B.(22021,22022)C.(22022,22021)D.(22020,22021)【答案】B【解析】由已知作图规律可知:A1(2,0),A₂(4,0),A3(8,0),A4(16,0),…,An(2n,0),∴对应的B1(2,4),B2(4,8),B3(8,16),B4(16,32),…,B n(2n,2n+1),∴点B2021的坐标为(22021,22022),故选:B.13.(2021•武汉模拟)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670 B.672 C.673 D.676【答案】C【解析】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.14.(2021•八步区模拟)填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.134 B.136 C.140 D.144【答案】B【解析】由题意得:左上角的数分别为1=21﹣1,2=22﹣1,4=23﹣1,8=24﹣1,则左上角第n个数为2n﹣1(n为正整数);左下角的数分别为:2=2×1,4=2×2,6=2×3,8=2×4,则左下角第n个数为:2n;右上角的数分别为:4=2×1+2,6=2×2+2,8=2×3+2,10=2×4+2,则右上角第n个数为:2n+2;右下角的数分别为:7=2×4﹣1,22=4×6﹣1,44=6×8﹣4,72=8×10﹣8,则右下角第n个数为:2n(2n+2)﹣2n﹣1,根据排列规律,得:2n﹣1=32,解得:n=6,∴m=2×6×(2×6+2)﹣32=168﹣32=136,故选:B.15.(2021•淅川县一模)如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第145秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)【答案】C【解析】∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过点D作DE⊥x轴于E,则OE=1,DE,∴OD,∴tan∠DOE,∴∠DOE=60°,∵60°×145÷360°=24,,∴第145秒时,点D恰好在x轴负半轴上,∴此时点D的坐标为(﹣2,0),故选:C.16.(2021•路北区三模)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】C【解析】点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.17.(2021•焦作模拟)如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2020次变换后,等边△ABC的顶点C的坐标为()A.(﹣2 020,)B.(﹣2 019,)C.(﹣2 018,)D.(﹣2 017,)【答案】C【解析】∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+21,横坐标为2,∴C(2,1),第2020次变换后的三角形在x轴上方,点C的纵坐标为1,横坐标为2﹣2020×1=﹣2018,∴点C的对应点C′的坐标是(﹣2018,1),故选:C.18.(2021•渝中区校级三模)用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第8个图案中共有圆点的个数是()A.34 B.40 C.49 D.59【答案】C【解析】当n=1时,第1个图案的圆点的个数是y1=5+2=7个.当n=2时,第2个图案的圆点的个数是y2=y1+3=5+2+3=10个.当n=3时,第3个图案的圆点的个数是y3=y2+4=5+2+3+4=14个.当n=4时,第4个图案的圆点的个数是y4=y3+5=5+2+3+4+5=19....以此类推,第n个图案的圆点的个数是y n=5+2+3+4+...+(n+1)个.∴当n=8时,第8个图案的圆点的个数是个.故选:C.19.(2021•开封二模)如图,将△ABC沿着过BC,AB的中点D,E所在的直线折叠,使点B落在AC边上的B1处,称为第一次操作,点D到AC的距离为h1;还原纸片后,再将△BDE沿着过BD,BE的中点D1,E1所在的直线折叠,使点B落在DE边上的B2处,称为第二次操作,点D1到AC的距离记为h2;按上述方法不断操作下去,…,经过第n次操作后得到点D n﹣1到AC的距离记为h n.若h1=1,则h n值为()A.B.C.D.【答案】A【解析】∵将△ABC沿着过BC,AB的中点D,E所在的直线折叠,点D到AC的距离为h1,∴点D到AC的距离h1=1,DE∥AC,DE AC,∴△EBD∽△ABC,△EBD与△ABC的相似比为1:2,∵折叠,∴△EBD≌△EB1D,∴△EB1D∽△ABC,△EB1D与△ABC的相似比为1:2,∵将△BDE沿着过BD,BE的中点D1,E1所在的直线折叠,点D1到AC的距离记为h2,同理:△E1B2D1∽△EB1D,△E1B2D1与△EB1D的相似比为1:2,∴D1到AC的距离h2=1,同理:h3=h2h1=1,h4=h3h1=1,...h n=1...2,故选:A.20.(2021•北京一模)二维码是一种编码方式,它是用某种特定的几何图形按一定规律在平面(二维方向上)分布,采用黑白相间的图形记录数据符号信息的.某社区为方便管理,仿照二维码编码的方式为居民设计了一个身份识别图案系统:在4×4的正方形网格中,白色正方形表示数字0,黑色正方形表示数字1,将第i行第j列表示的数记为a i,j(其中i,j都是不大于4的正整数),例如,图中,a1,2=0.对第i行使用公式A i=a i,1×23+a i,2×22+a i,3×21+a i,4×20进行计算,所得结果A1,A2,A3,A4分别表示居民楼号,单元号,楼层和房间号.例如,图中,A3=a3,1×23+a3,2×22+a3,3×21+a3,4×20=1×8+0×4+0×2+1×1=9,A4=0×8+0×4+1×2+0×1=2,说明该居民住在9层,2号房间,即902号.有下面结论:①a2,3=0;②图中代表的居民居住在11号楼;③A2=3,其中正确的是()A.③B.①②C.①③D.①②③【答案】B【解析】①a2,3表示的是将第2行第3列是白色正方形,所以表示的数是0,即a2,3=0,故①正确;②图中代表的居民的楼号A1=a1,1×23+a1,2×22+a1,3×21+a1,4×20=1×23+0×22+1×21+1×20=1×8+0×4+1×2+1×1=11,∴图中代表的居民居住在11号楼;故②正确;③A2=a2,1×23+a2,2×22+a2,3×21+a2,4×20=0×23+1×22+0×21+0×20=0×8+1×4+0×2+0×1=4,故③错误,综上,①②是正确的.故选:B.。

中考数学《规律探索》专题复习试题含解析

中考数学《规律探索》专题复习试题含解析

中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索中考备考攻略规律探索型问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题.纵观宜宾近五年中考,往往以选择题、填空题形式出现,这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖.其目的是考查收集、分析数据、处理信息的能力.所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题.规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,既考查分析、解决问题能力,也考查观察、联想、归纳能力以及探究能力和创新能力.题型可涉及填空题、选择题或解答题.中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .451.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A. a 10+b 19 B .a 10-b 19 C .a 10-b 17 D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数: .3.已知:1+112+122=112,1+122+132=116,1+132+142=1112,…,根据此规律1+192+1102= .4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法:设S=1+2+22+…+22 017+22 018,①则2S=2+22+…+22 018+22 019.②②-①,得2S-S=S=22 019-1.∴S=1+2+22+…+22 017+22 018=22 019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n、…,若前n行点数和为930,则n=()A.29B.30C.31D.325.将全体正奇数排成一个三角形数阵:13 57911131517192123252729………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是()A B C D6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … 火柴棒根数4710131619…(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 .8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 .中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 .,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 .5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= .6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.10.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B ),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x -1)个车站发给该站的邮包(x -1)个,还要装上后面行程中要停靠的(n -x )个车站的邮包(n -x )个.(1)根据题意,完成下表:车站序号 在第x 个车站启程时邮政车厢上的邮包总个数1 n -12 (n -1)-1+(n -2)=2(n -2)3 2(n -2)-2+(n -3)=3(n -3)4 3(n -3)-3+(n -4)=4(n -4)5 … … n 0(2)根据上表写出列车在第x 个车站启程时,邮政车厢上共有的邮包个数y (用x 、n 表示); (3)当n =18时,列车在第几个车站启程时邮车上的邮包个数最多?参考答案中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( D )A .5B .-14C .43D .45【解析】∵a 1=5,a 2=11-a 1=11-5=-14,a 3=11-a 2=11-⎝⎛⎭⎫-14=45,a 4=11-a 3=11-45=5,…,∴数列以5、-14、45三个数依次不断循环.∵2 019÷3=673,∴a 2 019=a 3=45.1.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( B )A .a 10+b 19B .a 10-b 19C .a 10-b 17D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数:2n -1n 2+1W. 3.已知:1+112+122=112,1+122+132=116, 1+132+142=1112,…,根据此规律1+192+1102= 1190 W. 4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法: 设S =1+2+22+…+22 017+22 018,① 则2S =2+22+…+22 018+22 019.② ②-①,得2S -S =S =22 019-1.∴S =1+2+22+…+22 017+22 018=22 019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).解:(1)210-1;(2)311-12; (3)设S =1+a +a 2+…+a n ,①则aS =a +a 2+a 3+…+a n +a n +1.②②-①,得(a -1)S =a n +1-1.∴S =a n +1-1a -1,即1+a +a 2+…+a n =an +1-1a -1.点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n 、…,若前n 行点数和为930,则n =( B )A .29B .30C .31D .32【解析】设前n 行的点数和为S ,则S =2+4+6+…+2n =(2n +2)n2=n (n +1). 若S =930,则n (n +1)=930,即(n +31)(n -30)=0,∴n 1=-31(不合题意,舍去),n 2=30.5.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … …根据以上排列规律,数阵中第25行的第20个数是( A ) A .639 B .637 C .635 D .633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是( B )A B C D【解析】根据题意可知前面4个笑脸循环出现,因为2 018÷4=504……2,所以第2 018个图形是循环出现到第2个图形.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … n火柴棒根数4 7 10 13 16 19 … 3n +1(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?解:(1)见上表;(2)由3(n +1)+1=22,解得n =6. ∴这位同学最后摆的图案是第7个图案.图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( C )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n【解析】根据相似三角形的性质,对应高的比等于相似比,得出h 2=1+12h 1,依次得出h 3、h 4、…、h n ,再对h n 进行计算变形即可.,7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( D )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 (505,505) .【解析】根据各个点(点A 1和第四象限内的点除外)分别位于象限的角平分线上,逐步探索出下标和各点坐标之间的关系,根据规律推出点A 2 018的坐标.通过观察可得序号是4的倍数的点在第三象限,由2 018÷4=504……2,得点A 2 018在第一象限,其横、纵坐标都为(2 018-2)÷4+1=505.,8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 (47,16) W.中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( D )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 (2n -1,2n -1) W.,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 1 838 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 (-22 017,22 0173) W.5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= 1 W.6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 (3n +1) 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形共有 6 058 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.解:尝试 (1)由题意,得-5-2+1+9=3,故前4个台阶上的数字的和是3; (2)由题意,得-2+1+9+x =3,所以x =-5;应用 由题意知台阶上的数从下到上每4个循环,因为31÷4=7……3,所以7×3+1-2-5=15, 即从下到上前31个台阶上数的和是15. 发现 “1”所在的台阶数为4k -1.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.解:(1)1n -1n +1;(2)1-1n +1;[原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1.](3)∵x -1+(xy -2)2=0,∴x -1=0,xy -2=0, 解得x =1,y =2.则原式=11×2+12×3+13×4+…+12 018×2 019=1-12 019=2 018 2 019.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包(x-1)个,还要装上后面行程中要停靠的(n-x)个车站的邮包(n-x)个.(1)根据题意,完成下表:(2(3)当n=18时,列车在第几个车站启程时邮车上的邮包个数最多?解:(1)见上表;(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81.当x=9时,y取最大值,所以列车在第9个车站启程时,邮政车厢上的邮包个数最多.。

中考体系-16.规律探索与定义新运算(最全,含答案)

中考体系-16.规律探索与定义新运算(最全,含答案)

规律探索与定义新运算一、规律探索1.图形的变化2.数字的变化3.与代数知识相结合4.与几何知识相结合5.综合问题二、定义新运算一、规律探索1.图形的变化1.【易】(初二数学期末)如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()【答案】B2.【易】(2010深圳外国语初一上联合测)如图,一串有趣的图案按一定规律排列,请仔细观察,按此规律第2010个图案是()A.B.C.D.【答案】B3.【易】(北京市西城区2011—2012学年度第一学期期末试卷)把全体自然数按下面的方式进行排列:按照这样的规律,从2010到2012,箭头的方向应为()A.↓→B.→↑C.↑→D.→↓.【答案】C4. 【易】(2012届九年级第一模拟试题)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有________个小圆.【答案】465. 【易】(哈尔滨中考)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有________个★【答案】206. 【易】(河南郑州市2009-2010年初一上期末)用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星个.【答案】1507. 【易】(2009-2010年辽宁沈阳崇文中学初一上期末)一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图所示),则这串珠子被盒子遮住的部分有________颗.【答案】278. 【易】(密云区一模)如图,将一张正方形纸片剪成四个小正方形,得到4个小方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个第1个图形第2个图形第3个图形第4个图形…小正方形,称为第三次操作;……,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) A .669 B .670 C .671 D .672【答案】B9. 【易】(武汉二中广雅中学下学期期中七年级数学)如图,要使四边形木架(用4根木条钉成)不变形,至少要钉上1根木条;使五边形木架不变形,至少要钉上2根木条,使六边形木架不变形,至少要钉上3根木条;……,若要使十边形木架不变形,至少要钉上________根木条.【答案】710. 【易】(2012深圳外国语初三月考)如图,用小棒摆下面的图形,图形⑴需要3根小棒,图形⑵需要7根小棒……照这样的规律继续摆下去,第个图形需要________根小棒(用含的代数式表示).【答案】41n -11. 【易】(漳州)用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n 个图形需要棋子________枚.(用含n 的代数式表示)【答案】31n12. 【易】(2011-2012太原市七年级第二次测评)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n 个图案由( )个基础图形组成(n 为正整数)nn (3)(2)(1)……【答案】31n +找规律发现基础图形的个数是4710,,,总结出第n 个图案中基础图形的个数是31n +13. 【易】(广州中考)如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第个“广”字中的棋子个数是________.【答案】15,25n +14. 【易】(2011深圳中学初一期末)如图是用棋子摆成的“T”字.⑴摆成第一个“T”字需要________个棋子,第二个需________个棋子.⑵按这样的规律摆下去,摆成第10个“T”字需要________个棋子,第n 个需________个棋子.⑶是否存在这样的情况,使得其中一个图形的棋子是另一个图形棋子的k 倍,其中2011k =.若存在,请指出来,若不存在,请说明理由.【答案】⑴5,8⑵32,32n +⑶存在.设一个图形的棋子数为32n +,另一个图形的棋子数为32m +,(n m >)20111340n m =+.15. 【易】(2010年北京西城区期末)下图是按一定规律排列的一组图形,依照此规律,第n 个图形中★的个数为________.(n 为正整数)n 图7-① 图7-② 图7-③ 图7-④……【答案】3n16. 【易】(2011罗湖外国语初一下期中)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第个“口”字需用棋了( )A .枚B .枚C .枚D .枚【答案】A17. 【易】(2009-2010武汉洪山去初一下期末)则当输入的下面是用棋子摆成的“上”字:第1个“上”字第2个“上”字第3个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现: ⑴第四、第五个“上”字分别需用________和________枚棋子; ⑵第n 个“上”字需用________枚棋子. 【答案】⑴18,22⑵42n +18. 【易】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了________个小等边三角形;当n k =时,共向外作出了________个小等边三角形,这些小等边三角形的面积和是________(用含k 的式子表示).【答案】18,36k -,236k S k -⋅ …第5个图形第4个图形第3个图形第2个图形第1个图形★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★n 4n ()44n -()44n +2n n =3n =5……n=419. 【易】(2012河南中招模拟试卷)用边长为1cm 的小正方形搭如下的塔状图形,则第n 次所搭图形的周长是________cm (用含n 的代数式表示).【答案】4n20. 【易】(2011-2012北京十四中初一下期中)观察下列图形,则第n 个图形中三角形的个数是________.【答案】4n21. 【易】(北京东直门七年级下期中)规律探索:连结图⑴中的三角形三边的中点得图⑵,再连结图⑵中间的三角形三边的中点得图,如此继续下去,那么在第n 个图形中共有多少个三角形?【答案】43n -22. 【易】(2011深圳中学初一上期中)用棋子摆出下列一组图形:⑴个图形棋子的枚数为________.⑶如果某一图形共有99枚棋子,你知道它是第几个图形吗? 【答案】⑴36n(1) (2) (3)第1次 第2次 第3次 第4次······⑶3223. 【易】(郑州一中教育集团2010-2011学年上期期中考试)为参加“第十届中国开封菊展”,某单位想在步行街设计一座三角形展台,要求园林工人把它的每条边上摆放相等盆数的盆栽小菊花(如图所示的每个小圆圈表示一盆小菊花).如果每条边上摆两盆小菊花,共需要3盆小菊花;如果每条边上摆3盆小菊花,共需要6盆小菊花;……,按此要求摆放下去:⑴________.⑶请你帮园林工人参考一下,能否用2003盆小菊花作出符合要求的摆放?如果能,请计算出每条边上应摆小菊花的盆数;如果不能,请简要说明理由.【答案】⑴⑵⑶不能.令332003n -=,解得26683n =,n 不是整数.24. 【易】(通州二模)根据如图所示的⑴,⑵,⑶三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .()31n n +C .6nD .()61n n +【答案】B25. 【易】(2011山西中考)如图是用相同长度的小棒摆戍的一组有规律的图案,图案⑴需要4根小棒,图案⑵需要10根小棒……,按此规律摆下去,第n 个图案需要小棒________根(用含有n 的代数式表示).……【答案】62n -26. 【易】(2010深圳外国语初一上联合测)用棋子按下列方式摆图案,依照此规律,第n 个图形比第()1n -个图形多________枚棋子.【答案】32n -27. 【易】(武汉二中初一下期中)某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图,第2次把第1次铺的完全围起来,如图,第3次把第2次铺的完全围起来,如图;….依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块数________.【答案】86n -根据图形得到一列数2、10、18、26、…,这一个列数,从第二项起,每一项与它前面紧邻的一项的差,都等于一个常数8. 第2个数=第一个数+(2﹣1)个8; 第3个数=第一个数+(3﹣1)个8; 第4个数=第一个数+(4﹣1)个8; …由此猜想:第n 个数=第一个数+()1n -个8; 即第n 个数=2+8×()1n -=86n -;一般规律:()11n a a n d =+-,其中1a 为首项(第一个)、n a 为这一列数的第n 个,d 为每相邻两个数的差.28. 【易】(南平中考)观察下列各图形中小正方形的个数,依此规律,第(11)个图形中小正方形的个数为________第2个第1个……A .78B .66C .55D .50【答案】B29. 【易】(2012贵州毕节中考)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有________个小正方形.【答案】10030. 【易】(2011深圳中学初一上期末)小卫搭积木块,开始时用2块积木搭拼(第1步),然后用更多的积木块完全包围原来的积木块(第2步),如图反映提前3步的田径赛案,当第10步结束后,组成图案的积木块数为________.【答案】380(规律为242n n -)31. 【易】(2010初一期末)探索规律图⑴是一个正方形,依次连结这个正方形各边中点得到图⑵,再依次连结图⑵中间小正方形各边的中点得到图⑶,按以上的方法继续下去……①第1步第2步第3步(3)(2)(1)②按上面的方法继续下去,小明说:第101个图形中有100个正方形;小颖说:第101个图形中有401个三角形.请判断他们的说法是否正确,并说明理由. 【答案】①小颖的说法错误,第101个图形中有400个三角形.32. 【易】(天津市河西区2010-2011学年度第一学期七年级期中质量调查数学试卷)如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究问题在第n 个图中,共有白色瓷砖________块.【答案】2n n +33. 【易】(2010年初一下两部联考)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从右图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是( )A .13310=+ B .25916=+ C .361521=+ D .491831=+ 【答案】C34.【易】(徐州市中考)如图,每个图案都由若干个棋子摆成.依照此规律,第n 个图案中棋子的总个数可用含n 的代数式表示为________.【答案】2n n +4=1+39=3+616=6+10…第1第2第3第435.【易】(2011•达州)用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆________个(用含n的代数式表示).【答案】()12 n n+36.【易】(2009-2010年太原市七年级第二次测评)根据下列五个图形及对应点的个数的变化规律,试猜测第n个图中有________个点.【答案】21n n-+如果没有公共交点,那么一共是n条线段,每条线上n个点,现在n条线有一个公共交点,所以总点数为21n n-+.37.【易】(郑州外国语中学第三次质量检测数学卷)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是________.【答案】22n n+38.【易】(南山初一统考)如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形摆第n层图需要________个三角形.……第1个图第2个图第3个图第4个图【答案】21n n +-观察可得,第1层三角形的个数为1, 第2层三角形的个数为22213+=-, 第3层三角形的个数为33317+=-, 第四层图需要244113+=-个三角形, 摆第五层图需要255121+=-.那么摆第n 层图需要21n n +-个三角形.39. 【易】(怀柔区一模)观察下列图形及所对应的算式,根据你发现的规律计算1816248n ++++⋅⋅⋅+(n 是正整数)的结果为( )A .()221n +B .18n +C .18(1)n +-D .244n n +【答案】A40. 【易】(2012年青羊区初一下期末)下图是用火柴棍摆成的边长分别是1,2,3根火柴棍时的正方形.当边长为n 根火柴棍时,设摆出的正方形所用的火柴棍的根数为S ,则S =________.(用n 的代数式表示S )【答案】()21n n +41. 【易】(2010年北京怀柔区期末)小明在阅览时发现这样一个问题“在某次聚会中,共有6人参加,如果每两个人都握一次手,共握几次手?”小明通过努力得出了答案,同时为了解决的方法更具有一般性,小明设计了以下图表进行探究.n =1 n =2 n=3请你在图表右下角的横线上填上你归纳出的一般结论. 【答案】()12n n -42. 【易】(郑州一中教育集团2010-2011学年上期期中考试)图中是一幅“苹果排列图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,你是否发现苹果的排列规律?猜猜看,第十行有________个苹果; 第n 行有________个苹果.(可用乘方形式表示)【答案】92,12n -43. 【易】(2010深圳外国语初一上联合测)在计算机程序中,二叉树是一种表示数据结构的方法,如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7······照此规律,七层二叉树的结点总数为( )A .63B .64C .127D .128【答案】C (规律为21n -)44. 【易】(福建三明市中考)如图,直线l 上有2个圆点A ,B .我们进行如下操作:第1次操作,在A ,B 两圆点间插入一个圆点C ,这时直线l 上有(2+1)个圆点;第2次操作,在A ,C 和C ,B 间再分别插入一个圆点,这时直线l 上有(3+2)个圆点;第3次操作,在每相邻的两圆点间再插入一个圆点,这时直线l 上有(5+4)个圆点;…第n 次操作后,这时直线l 上有________个圆点.……三层二叉树二层二叉树一层二叉树【答案】21n +45. 【易】(2010年九年级第三次质量预测试题)观察下列图形(每幅图中最小的三角形都是全等的),请写出第n个图中最小的三角形的个数有________个.【答案】14n -46.【中】(2012广西桂林中考)下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是________.【答案】22n n ++47. 【中】(2011年天津市河北区初中毕业生学业考试模拟试卷(三))如图,第1个多边形由正三角形“扩展”而来,边数记为3a ,且312a =;第2个多边形由正方形“扩展”而来,边数记为4a ,且420a =;…;依此类推,由正n 边形“扩展”而来的多边形的边数记为()3n a n ≥,则当3451111n a a a a ++++的结果是6702013时,n 的值为________.【解析】()1n a n n =+,则()111111n a n n n n ==++-, (第16题)l l l lA B A B C A B C 第1个图第2个图第3个图第4个图(第14题图)所以34511111131n a a a a n ++++=+-,则2012n =. 【答案】201248. 【中】(武汉)如图的图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第一个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此提出,拼搭第8个图案需小木棒________根.【答案】8849. 【中】(2011-2012年铁二中初一下期中)如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个1010⨯的正方形图案,则其中完整的圆共有________个.【答案】18150. 【中】(荆州市中考)图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺成一个n n ⨯的近似正方形图案.当得到完整的菱形共181个时,n 的值为( ) A .7 B .8 C .9 D .10【答案】D51. 【中】按照如图所示的式样画下去,则第15个图形有________个黑方块.【解析】由已知所画图形,可得:依次图形的方块数是:1,9,25,49,…又:1=129=3225=5249=72…左边乘方的底数依次是:1,3,5,7,…1=1+2×(1﹣1)3=1+2×(2﹣1)5=1+2×(3﹣1)7=1+2×(4﹣1)…那么第15项可表示为:1+2×(15﹣1)=29.所以第15个图形的方块数为:292.又从图形上得知,所以黑方块数为22914212+=个.【答案】42152.【中】(武汉二中广雅七年级下期末模拟试卷)如图,是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形,仔细观察图形可知:图⑴中黑色瓷砖与白色瓷砖块数之比为1:3;图⑵中黑色瓷砖与白色瓷砖块数之比为3:6;图⑶中黑色瓷砖与白色瓷砖块数之比为6:10;···;那么按这样的规律铺设,第6个图形黑色瓷砖与白色瓷砖块数之比为________.【答案】3:453.【中】(2013年安徽省初中毕业学业考试数学)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2)、图(3),…….⑴猜想:在图()中,特征点的个数为(用表示)⑵ 如图,将图(n )放在直角坐标系中,设其中第一个基本图的对称中心1O 的坐标为()12x ,,则1x =________;图(2013)的对称中心的横坐标为___________【答案】⑴22;52n +⑵1x =;54. 【中】(2012年安徽省初中毕业学业考试数学)在由()1m n m n ⨯⨯>个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,⑴当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:图(3)图(2)图(1)……图(n )x⑵猜想:当m 、n 互质时,在m n ⨯的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是________(不需要证明);⑶当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立; 根据题意,画出当m 、n 不互质时,结论不成立的反例即可. 【答案】⑴如表:⑵1f m n =+-⑶m 、n 不互质时,上述结论不成立,例如2×4,如下图:55. 【中】(初二上题型训练一)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( ) A .54个 B .90个 C .102个 D .114个【答案】B56. 【中】(2011年南山二外初一下测试)观察下图,我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形.【答案】5557. 【中】(2011深圳外国语分校初一下期末)某种树木的分枝生长规律如图所示,则预计到第6年时,树木的分枝数为( )A .5B .6C .7D .8【答案】D58. 【中】(2009年初一上期末)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中的各个数作为正方形的边长值构造如下正方形:再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、③、④、…相应长方形的周长如下表所示:________,________若按此规律继续作长方形,则序号为⑧的长方形周长是________ 【答案】16x =,26y =,周长是17859. 【中】(2012黑龙江绥化中考)长为20,宽为a 的矩形纸片(1020a <<),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);……第3个图第2个图第1个图如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当3n =时,a 的值为________.【答案】12或152.数字的变化60. 【易】(2010-2011太原市七年级第二次测评)下面的正方形中都填有4个数,这些数之间有一定的规律,根据此规律,m 的值是( )A .38B .52C .66D .74【答案】D本题考察类似于“行列式”的交叉相乘规律: 24084622268444810674m⨯-=⨯-=⨯-=⨯-==61. 【易】(武汉二中广雅中学2010-2011下学期期末七年级数学)如图,填在各方格中的三个数之间均具有相同规律,根据此规律,n 的值是( )A .36B .49C .63D .64【答案】B62. 【易】(2013年福建省泉州市初中毕业、升学考试)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是________,依次继续下去,第2013次输出的结果是_______.【答案】3;363. 【易】(2013年三明市初中毕业暨高级中等学校招生统一考试)观察下列各数,它们是按一定规律排列的,则第n 个数是_______.12,34,78,1516,3132,【答案】212n n -64. 【易】(2013年山东日照初中学业考试)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是( )A .M mn =B .()1M n m =+C .1M mn =+D .()1M m n =+【答案】D65. 【易】(2013年南宁市初中毕业升学考试数学试卷)陈老师打算购买气球装扮学校“六一”儿童节活动会场,起球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为:A .19B .18C .16D .15【答案】C66. 【易】(山西省2013中考数学试卷)一组按规律排列的式子:2a ,43a ,65a ,87a ,…,则第n 个式子是__________(n 为正整数).【答案】221na n -67. 【易】(2010深圳外国语分校初一上期中)有若干个数,第一个数记为1a ,第二个数记为2a ,···,第n 个数记为n a .若112a =-,从第二个数起,每个数都等于“1与…mnM 56353415321它前面那个数的差的倒数”.试计算:2a =________,3a =________,4a =________,6a =________.你发现这排数有什么规律吗?由你发现的规律,请计算2004a 是多少?【答案】223a =,33a =,412a =-,63a =.规律:每三个数一循环 20043a =68. 【易】(2011深圳外国语分校初一上期中)读题填空:等边ABC △在数轴上的位置如图所示,点A 、C 对应的数字分别是0和1-,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2012次后,点B 对应的数字为________.【答案】201169. 【易】(2011深圳育才二中初一上期中)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数70. 【易】(2011耀华实验初三四模)在很小的时候,我们就用手指练习过数数.一个小朋友按如图所示的规则练习数数,数到2010时对应的指头是________(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).【答案】无名指71. 【易】(杭州翠苑中学初一2011第一学期期中)让我们轻松一下,做一个数字游戏:第一步:取一个自然数12n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ; B…………以此类推则2011a =________. 【答案】12272. 【易】(石景山二模)有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2009a 为( ) A .2009B .2C .12D .1-【答案】C73. 【易】(2011•南京)甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为________. 【答案】4解:∵甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…按此规律,后一位同学报出的数比前一位同学报出的数大1.当报到的数是50时,报数结束; ∴504=122÷⋅⋅⋅⋅⋅⋅,∴甲共报数13次,分别为1,5,9,13,17,21,25,29,33,37,41,45,49,∴报出的数为3的倍数,则报该数的同学需拍手一次.在此过程中,甲同学需拍手的次数为:9,21,33,45时, 所以一共有4次.74. 【中】(2011深圳外国语分校初一下期末)“抢30”游戏的规则是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30谁就获胜,那么采取适当策略,其结果是( ) A .先报数者胜 B .后报数者胜 C .两者都可能胜 D .很难预料 【答案】B为了抢到30,那就必须抢到27,这样无论对方叫“28”或“29”,你都获胜.游戏的关键是报数先后顺序,并且每次报的个数和对方合起来是三个,即对方报a ()12a ≤≤个数字,你就报()3a -个数.抢数游戏,它的本质是一个是否被“3”整除的问题.75. 【中】(辽宁省中考题)计算:1234531431103128318231244+=+=+=+=+=,,;,,…归纳各计算结果中的个位数字的规律,猜测200931+的个位数字是( ). A .0 B .2 C .4 D .8【答案】C76. 【易】(2011年初一上期中)观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,······根据上述算式中的规律,你认为302的个位数字是________. 【答案】477. 【易】(2010深圳外国语初一下期末)已知122=,224=,328=,,则20112的末位数字是( ) A .2 B .4 C .6 D .8 【答案】D78. 【易】(2010深圳外国语分校初一下期中)已知122=,224=,328=,4216=,5232=,6264=,72128=,82256=,……结合计算估计一下:()()()()()24322121212121-++++的个位数字是________.【答案】579. 【易】(郑州四中2010-2011学年下期初三年级第五次月考)观察算式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,···通过观察,用你所发现的规律确定32011的个位数字是( ) A .3 B .9 C .7 D .1 【答案】C80. 【易】(2010-2011武汉青山区初一上期末)己知:41=4,42=16,43=64,44=256,45=1024…以上算式结果的个位数字分别为4,6,4,6…,按照上面的研究方法确定20062007+20072006的个位数字为( ) A .3 B .4 C .5 D .6 【答案】C81. 【易】(2011深圳中学初一上期中)QQ 空间一个展示自我和沟通交流的网络平台,它既是网络日记本,又可以上传图片、视频等,QQ 空间等级是用户资料和身份的象征,按照空间积分划分不同的等级,当用户在10级以上,每个等级与对应的积分有一定的关系,现在知道第10级的积分是90,第11级的积分是160,第12级的积分是250,第13级的积分是360,第14级的积分是490······,若某用户的空间积分达到1000,则他的等级是( ) A .18 B .17 C .16 D .15 【答案】B解:第10级到第11级,12级,13级,14级积分分别增加的值是70,90,110,130,15级增加150,16级增加170,17级增加190,18级增加210,则15级积分是640,16级积分是810,17级积分是1000,18级积分是1210, 所以他的等级是17级.82. 【易】(眉山市中考)一组按规律排列的多项式:,,,,···,其中第10个式子是( ) A . B . C . D . 【答案】B83. 【易】(初一下期中)观察下列单项式:、、、、…,按此规律写出第13个单项式是________. 【答案】84. 【易】(石景山一模)一组按规律排列的式子:3579234,,,,x x x x y y y y--(0xy ≠),其中第6个式子是________,第n 个式子是________(n 为正整数).【答案】136x y-,211(1)n n n xy ++-85. 【易】(怀柔一模)一组按规律排列的式子:52a b ,84a b -,118a b ,1416a b-,……(0ab ≠),其中第6个式子是________,第n 个式子是________(n 为正整数).【答案】2064a b -;()32121n n n a b ++-⋅或()32121n n n ab+--⋅86. 【易】(2010年门头沟二模)一组按一定规律排列的式子:2a -,52a ,83a -,114a ,…,()0a ≠,则第n 个式子是________(n 为正整数). 【答案】87. 【易】(门头沟初二上期末)一组按规律排列的分式:3b a ,522b a-,733b a ,944b a-,…(0b ≠),其中第8个分式是________,第n 个分式是________(n 为正整数).a b +23a b -35a b +47a b -1019a b +1019a b -1017a b -1021a b -23x 38x 415x 524x 14195x 31(1)n na n--。

人教版中考复习数学练习专题一:规律题探索专题含试卷分析答题技巧

人教版中考复习数学练习专题一:规律题探索专题含试卷分析答题技巧

第二部分专题复习专题一规律题探索专题考纲要求探索规律型问题:指的是给出一组具有某种特定关系的数、式、图形或是给出与图形有关的操作、变化过程,要求通过观察、分析、推理,探求其中所隐含的规律,进而归纳或猜想出一般性的结论.常见的类型有三种:(1)数与式变化规律型;(2)图形变化规律型;(3)猜想论证型.这种类型的解题方法和步骤有三步:(1)通过对几个特例的观察与分析,寻找规律并进行归纳;(2)猜想符合规律的一般性结论;(3)对一般性结论进行【课堂精讲】例1观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是__.数字的变化类,观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了数字规律型:数字的变化类,弄清题中的规律是解本题的关键.例2.如图,是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n条“金鱼”需要火柴________根.分析:图形规律,观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n-1)=6n+2.点评:此题考查了图形规律型:图形的变化类,弄清题中的递增规律是解本题的关键.例3. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.解答:解:∵直线y=x+1,x=0时,y=1,∴A1B1=1,点B2的坐标为(3,2),∴A2的纵坐标是:1+1=21,A2的横坐标是:1=21﹣1,∴A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22﹣1,∴A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23﹣1,即点A4的坐标为(7,8).据此可以得到A n的纵坐标是:2n﹣1,横坐标是:2n﹣1﹣1.即点A n的坐标为(2n﹣1﹣1,2n﹣1).∴点A6的坐标为(25﹣1,25).∴点B6的坐标是:(26﹣1,25)即(63,32).故答案为:(63,32).此题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.②42-4×2=22+4;③52-4×3=32+4;…则第n个等式可以表示为__________________2.阅读下列材料:1×2=13(1×2×3-0×1×2), 2×3=13(2×3×4-1×2×3), 3×4=13(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20. 读完以上材料,请你计算下各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n ×(n +1)=________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=________.3.如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是________4.如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…则OA 4的长度为 .5. 如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,4),则点B 2014的横坐标为 .6.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.【高效作业本】专题一规律题探究专题1如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.2.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).3.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.4.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31B.46C.51D.66).A .38B .52C .66D .746.如右图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的 顺序循环运动.则第2011步到达的点处是( )A .A 点B .B 点C .D 点 D .F 点7.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值.【答案】专题一 规律题探索专题1.:(n +2)2-4n =n2+42. 解析:(1)∵1×2=13(1×2×3-0×1×2) 2×3=13(2×3×4-1×2×3) ⋮10×11=13(10×11×12-9×10×11) ∴以上各式相加得1×2+2×3+…+10×11=13×10×11×12=440. (2)13n (n +1)(n +2). (3)14×7×8×9×10=1 260.3. n(n +2)解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题5.解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.2.解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),故答案为:.3.解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.4..解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.故选:B.5. D6. C7.解:设M=1+3+32+33+…+32014 ①,①式两边都乘以3,得3M=3+32+33+…+32015 ②.②﹣①得2M=32015﹣1,两边都除以2,得M=,故答案为:.。

热点专题1 规律探究问题(解析版)

热点专题1 规律探究问题(解析版)

热点专题1 规律探究问题考向1 实数的概念与运算1. (2019 山东省济宁市)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【答案】A【解析】∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.2.(2019 山东省枣庄市)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为.【答案】2018【解析】+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.3.(2019 山东省滨州市)观察下列一组数:a1=,a2=,a3=,a4=,a5=,…,它们是按一定规律排列的,请利用其中规律,写出第n个数a n=(用含n的式子表示)【答案】【解析】观察分母,3,5,9,17,33,…,可知规律为2n+1,观察分子的,1,3,6,10,15,…,可知规律为,∴a n==;故答案为;考向2代数式1.(2019 山东省烟台市)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.(a+b)0=1(a +b )1=a +b (a +b )2=a 2+2ab +b 2(a +b )3=a 3+2a 2b +2ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5……则(a +b )9展开式中所有项的系数和是A .128B .256C .512D .1024【答案】C【解析】本题考查了阅读理解能力,取a =1,b =1,则可以计算9()a b 展开式中所有项的系数和是92=512.,因此本题选C2.(2019 云南省)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1B .(﹣1)n x 2n ﹣1C .(﹣1)n ﹣1x 2n +1D .(﹣1)n x 2n +1【答案】A【解析】∵x 3=(﹣1)1﹣1x 2×1+1,﹣x 5=(﹣1)2﹣1x 2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.考向3图形的运动与点的坐标1.(2019 山东省菏泽市)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)【答案】C【解析】分析根据图象可得移动4次图象完成一个循环,从而可得出点A2019的坐标.A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.2.(2019 湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120︒的弧AB 多次复制并首尾连接而成.现有一点P 从(A A 为坐标原点)出发,以每秒23π米的速度沿曲线向右运动,则在第2019秒时点P 的纵坐标为( )A .2-B .1-C .0D .1【答案】B【解析】点运动一个弧AB 用时为1202221803ππ⨯÷=秒. 如图,作CD AB ⊥于D ,与弧AB 交于点E .在Rt ACD ∆中,90ADC ∠=︒,1602ACD ACB ∠=∠=︒,30CAD ∴∠=︒,112122CD AC ∴==⨯=, 211DE CE CD ∴=-=-=,∴第1秒时点P 运动到点E ,纵坐标为1;第2秒时点P 运动到点B ,纵坐标为0; 第3秒时点P 运动到点F ,纵坐标为1-; 第4秒时点P 运动到点G ,纵坐标为0; 第5秒时点P 运动到点H ,纵坐标为1;⋯,∴点P 的纵坐标以1,0,1-,0四个数为一个周期依次循环,201945043÷=⋯,∴第2019秒时点P的纵坐标为是1-.故选:B.3. (2019 湖南省张家界市)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O 顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)【答案】A【解析】∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.4.(2019 山东省潍坊市)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)【答案】A【解析】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,同理:A 2P 2==,A 3P 3==,……,∴P 1的坐标为( 1,),P 2的坐标为( 2,),P 3的坐标为(3,),……, …按照此规律可得点P n 的坐标是(n ,),即(n ,)故答案为:(n ,).考向4 与函数有关的规律1.(2019 山东省淄博市)如图,△11OA B ,△122A A B ,△233A A B ,⋯是分别以1A ,2A ,3A ,⋯为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点11(C x ,1)y ,22(C x ,2)y ,33(C x ,3)y ,⋯均在反比例函数4(0)y x x=>的图象上.则1210y y y ++⋯+的值为( )A .B .6C .D .【答案】A【解析】过1C 、2C 、3C ⋯分别作x 轴的垂线,垂足分别为1D 、2D 、3D ⋯其斜边的中点1C 在反比例函数4y x=,(2,2)C ∴即12y =, 1112OD D A ∴==,设12A D a =,则22C D a = 此时2(4,)C a a +,代入4y x=得:(4)4a a +=,解得:2a =,即:22y =,同理:3y =4y =⋯⋯121022y y y ∴++⋯+=++=,故选:A .2.(2019 山东省德州市)如图,点1A 、3A 、5A ⋯在反比例函数(0)k y x x=>的图象上,点2A 、4A 、6A ⋯⋯在反比例函数(0)k y x x =->的图象上,1212323460OA A A A A A A A α∠=∠=∠=⋯=∠=︒,且12OA =,则(n A n 为正整数)的纵坐标为 .(用含n 的式子表示)【答案】A【解析】过A 1作A 1D 1⊥x 轴于D 1,∵OA 1=2,∠OA 1A 2=∠α=60°,∴△OA 1E 是等边三角形,∴A 1(1,),∴k =, ∴y =和y =-,过A 2作A 2D 2⊥x 轴于D 2,∵∠A 2EF =∠A 1A 2A 3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();3. (2019 山东省东营市)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.【答案】﹣31009【解析】由题意可得,A1(1,),A2(1,﹣),A3(﹣3,﹣),A4(﹣3,3),A5(9,3),A6(9,﹣9),…,可得A2n+1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.4.(2019 山东省泰安市)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.【答案】2(2n﹣1)【解析】由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:2(2n﹣1),。

2021中考数学复习之规律探索题专项训练1(附答案详解)

2021中考数学复习之规律探索题专项训练1(附答案详解)
(理解):(1)如图,两个边长分别为 、 、 的直角三角形和一个两条直角边都是 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2, 行 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式: ________;
(运用):(3) 边形有 个顶点,在它的内部再画 个点,以( )个点为顶点,把 边形剪成若干个三角形,设最多可以剪得 个这样的三角形.当 , 时,如图,最多可以剪得 个这样的三角形,所以 .
(2)根据(1)中的结果,将你发现的规律,用含有自然数 ( )的式子表示出来;
(3)请说明你所发现的规律的正确性.
24.阅读材料:
材料一:对实数a、b,定义 的含义为:当 时, ;当 时, .例如: ; .
材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问: 据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案: .也可以这样理解:令 ①,则 ②,①+②: ,即 .
【解析】
【分析】
根据已知的式子找出规律,发现4次一循环,一个循环内的和为0,从而得出2019内的循环次数.
【详解】
解:由题意得,i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=i5•i=﹣1,
故可发现4次一循环,一个循环内的和为0,
∵ =504…3,
∴i+i2+i3+i4+…+i2018+i2019=i﹣1﹣i=﹣1.
故选:C.
【点睛】
本题考查了一元二次方程的解法中的新定义问题,解题的关键是理解运算法则,通过计算找出规律.

规律探索性问题(含解析)

规律探索性问题(含解析)

规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。

二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。

三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。

例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。

专题一 规律探究问题

专题一 规律探究问题
第1个图Y1=1
第2个图Y2=3
第3个图Y3=7
第4个图Y4=15
A.15×24
C.33×24
B.31×24
D.63×24
B )
2.(2022 临淄一模)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第
1 幅图形中“•”的个数为 a1,第 2 幅图形中“•”的个数为 a2,第 3 幅图形中“•”的个数为 a 3,…,以此
2.(2021十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位
于第32行第13列的数是( B )
A.2 025
B.2 023
C.2 021
D.2 019










3.(2022 淄川一模)观察下列等式:4-2=4÷2, -3= ÷3,- - =- ÷ .请你找出一个满足以上特征的两个



类推,则 + + +…+

A.
C.




B.
D.






的值为(
C )
3.(2022芝罘一模)如图所示,某果农将苹果树种在正方形的果园,为了保护苹果树不被风吹,他在苹
果树的周围种植针叶树,根据图中规律,该果农计划种植100棵苹果树,需要种植针叶树的棵数
A.18
B.19
C.20
D.21
A)
(1)等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,这个常数叫做
等差数列的公差,公差常用字母d表示,例如:等差数列1,3,5,7,9,…,2n-1中,通项公式为a n =

规律探究题中考真题(学生版)

规律探究题中考真题(学生版)

规律探究题中考真题1.【阅读理解】我们知道,,那么结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即;第2行两个圆圈中数的和为,即;……;第行个圆圈中数的和为,即.这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为.【规律探究】将桑拿教学数阵经两次旋转可得如图所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第行的第一个圆圈中的数分别为,2,),发现每个位置上三个圆圈中数的和均为.由此可得,这三个三角形数阵所有圆圈中数的总和为:.因此,= .【解决问题】根据以上发现,计算的结果为.2.观察以下等式:第1个等式:10101 1212++⨯=,第2个等式:11111 2323++⨯=,第3个等式:12121 3434++⨯=,第4个等式:13131 4545++⨯=,第5个等式:14141 5656++⨯=,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:___________(用含n的等式表示),并证明.3.观察以下等式:第1个等式:211 =111+,第2个等式:211=326+,第3个等式:211=5315+,第4个等式:211=7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明. 4.观察以下等式:第1个等式:121 12 311⎛⎫⨯+=-⎪⎝⎭第2个等式:321 12 422⎛⎫⨯+=-⎪⎝⎭第3个等式:521 12 533⎛⎫⨯+=-⎪⎝⎭第4个等式:721 12 644⎛⎫⨯+=-⎪⎝⎭第5个等式:921 12 755⎛⎫⨯+=-⎪⎝⎭······按照以上规律.解决下列问题:()1写出第6个等式____________;()2写出你猜想的第n个等式:(用含n的等式表示),并证明.5.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一: ‎ 题‎、阅读理解例题选讲:1. 有一列数1234251017--,,,,…,那么第7 ‎数是 .那么第n ‎数是 2. ‎20083222221+++++ ,可令S =20083222221+++++ ,则2S =200943222222+++++ ,因此2S-S =122009-,所以20083222221+++++ =122009- 以 ‎理 ‎20093255551+++++ 是 3. 索 :根据下图中 箭头指向 ,从2004 到2005 再到200 6,箭头 方向 是( )4. 下 ‎变形 :211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解 下 ‎问题: (1)若n ‎数,请你猜想)1(1+n n = ;(2) 你猜想‎ 结论; (3) 和:211⨯+321⨯+431⨯+…+201020091⨯ . 5. 数 ‎图 ‎列.请写 第2‎0行,第21列 ‎数字 .6.设对于x ‎—次函数11y a x b =+ 22y a x b =+,称函数1122()()y m a x b n a x b =+++第一行 第二行 第三行 第四行 第五行 第一列 第二列第三列 第四列 第五列 1 2 5 10 17 ... 4 6 11 18 ... 9 8 7 12 19 ... 16 15 14 13 20 (25)23 2221………(其中m+n =1) 此 函‎数 函‎数.(1)当x =1时, 函数y=x+1 y=2x ‎函数 ;(2)若函数 ‎11y a x b =+22y a x b =+图 ‎ P ,判断 P 是‎ 此 ‎函数 ‎函数 图 ‎ , 理 ‎.7.(2010 ‎西) ‎ 形,其中 一 ‎ 一 ‎ 所形 ‎ 有 问题‎. 论 ‎设 角∠A1A0B ‎1=α(α<∠A 1A 0 A 2),θ3、θ4、θ5、θ6所表示 角 图所‎示.(1) ‎ 表示解 ‎度数:θ3=_____‎__,θ4=_____‎__,θ5=_____‎__; (2)图1—图4中,连接A0H ‎时, 其‎ ‎ 下,是 ‎直 A0H ‎ 直 ‎ ‎ 若 ,请选 其中‎ 一 图 ‎ ;若 ,请 理 ‎; 猜想‎ 设 n 形‎A 0A 1 A 2…A n -1 n ‎形A0B1‎ B 2…B n -1 合(其中,A1 B1‎ 合), 形‎A 0B 1 B 2…B n -1 A ‎0时 ‎ α(0º<α<180ºn). (3)设θn ‎述“θ3、θ4、… 一 ‎,请直接写 ‎θn 度数 ; (4) 猜想 ‎n 形 ‎形下,是 ‎直 A0H ‎ 直 ‎ ‎ 若 ,请 ‎ ‎ 字 表‎示 ( ‎);若 ,请 理 ‎.8.(2010连‎ ) 一 直‎ 一 ‎ 图形 ‎ ‎ , ‎直 称 ‎ 图形‎ 一 ‎ . : 行四 形‎ 一 对角‎ 所 直‎ 是 行‎四 形 一‎ ‎ . (1)三角形 中‎ 、 、角 ‎ 所 直‎ 一 是三‎角形 ‎ 有‎_____‎___;(2) 图1,梯形ABC ‎D 中,AB ∥DC , 延长D ‎C 到E ,使CE =AB ,连接AE ,那么有S 梯‎形A BCD ‎=S △ABE .请你 ‎ 结论 ‎ 理 , 过 A ‎ 梯形AB ‎CD ‎ ( 写 , 图 ‎迹);(3) 图,四 形AB ‎C D 中,AB CD ‎ 行,S △ADC >S △ABC ,过 A ‎ 四 形‎A B CD‎ ‎ 若 ,请 ‎ , ‎;若 , 理 .9.阅读理解: , ‎于 所连‎ 中 ‎ 中 对称‎, 直角‎坐标系中, P ‎(x l ,y 1)、Q(x 2,y 2) 对称中 ‎ 坐标 1212,22x x y y ++⎛⎫⎪⎝⎭:(1) 图, 直角‎坐标系中,若 P 1 (0,一1)、P 2(2,3) 对称中 ‎是 A ,则 A 坐标 ; (2)另取 B ‎ (一1.6,2.1)、C (一l ,0).有一 ‎蛙从 Pl ‎ 次‎ 于 A 、 B 、C 对‎称 , 第一次 ‎到 P1 ‎于 A 对‎称 P2 ‎,接 到 ‎P 2 于 B ‎对称 P3‎ ,第三次再 ‎到 P3 ‎于 C 对‎称 P4 ‎,第四次再 ‎到 P4 ‎于 A 对‎称 P5 ‎ 则P 3、P8 坐标‎ , ;(3) P20‎12 坐标‎ 直接写 ‎x 轴 P ‎2012、 C ‎ 三角形 ‎ 坐标10.提 问题图, △ABC 中,∠A =90°, 以 A ‎B 、AC 向方形‎A B DE和 方形ACFG,连接EG,小亮发 △ABC △AEG‎ .小亮 : 问题中‎, ∠A≠90°,那么△ABC △AEG‎是‎猜想结论过 ,小亮 : 述问题中‎,对于 △ABC, 以 A‎B、AC向 ‎方形AB ‎D E和 方形ACFG,连接EG,那么△ABC △AEG‎.证明猜想(1)请你 小‎亮 图形‎,‎过程.已 :以△ABC AB、AC 长向 ‎方形AB‎D E、ACFG,连接GE. :S△AEG=S△ABC.结论应用(2) ‎ 一 ‎形 ‎‎, ‎‎,其中四 形‎A B CD、CIHG、GFED‎ 方形, ‎9m2、5m2和4‎m2. ‎形AB‎I HFE‎.11.1+2+3+4+…+n ,其中n是 数对于 和问题, 采 纯代数 方 (首尾 头 ),问题虽 可以解决,但 和过程中,需对n 奇偶性进行讨论采 数形结合 方, 图形 性质 数量 系 事 ,那 非常 直 。

利 图形性质 1+2+3+4+…+n ,方案 下: 图,斜 左 三角形图案是到下每层 次 1,2,3,…,n 小圆圈列组 。

而组 三角形小圆圈数恰所 1+2+3+4+…+n . , 左 三角形倒放于斜 右 , 原三角形组 一 行四 形.此时,组 行四形 小圆圈共有n行,每行有(n+1) 小圆圈,所以组 行四 形小圆圈 总 数n(n+1) ,因此,组 一 三角形小圆圈 数21)(+nn, 1+2+3+4+…+n=21)(+n n(1) 述数形结合 想方 ,设 图形, 1+3+5+7+…+(2n-1) ,其中n 是 数( : 图形, 利 图形做必 理 )(2) 设 另 一 图形, 1+3+5+7+…+(2n-1) ,其中n是 数( : 图形, 利 图形做必 理 )业:1. 下列图‎形:是 一‎ 列‎, 此 ‎,第9 图形‎中共有 ★2. 下 ‎方形中 ‎四 数 ‎有 ‎ ,根据此 ‎,m 是()A、38B、52C、66D、743. 列 ‎一串数:112312345123------中,第98 数‎是____‎____ ,,,,,,,,,,,,...1333555557774. ‎ , 需 ‎ ,发 方 ‎文→ 文(),接 方 ‎文→ 文(解 ),已 有一 ‎码, 英文26‎ 小写字 ‎a,b,c,…,z 次对 ‎0,1,2,…,25 26‎数(见表格),当 文中 ‎字 对 ‎序号 β时,β+10除以2‎6 所 ‎数 ‎文中 字 ‎对 序号‎,例 文s‎对 文c‎. 述 ‎, 文"maths‎"文 ‎是A .wkdrc ‎B .wkhtc ‎C .eqdjc ‎D .eqhjc ‎5. ‎:1()(0)a a b a b aa b b b⎧-⎪⊕=⎨->≠⎪⎩ ≤,则函数 图‎3y x =⊕ 大致是( ).6. 图,△ABC ‎ 1, 取AC ‎、BC ‎中 A 1、B 1,则四 形A ‎1ABB1‎ 3 4,再 取A ‎1C 、B1C 中‎ A 2、B 2,A 2C 、B2C 中‎ A 3、B 3, 次取下 ‎….利一图‎形, 直 ‎ 3 4+3 42+3 43+…+3 4n =_____‎___.7.搭建 图① ‎需 17根‎ , ‎ 图②,图③ 方 串 ‎ 搭建,则串7 ‎ 需‎ 根 .8.右图是 ‎结 过程示‎ 图,一 ‎以结‎O OA OB OC 、、、OD 、OE OF 、 ,再从 ‎OA ‎时 方向 ‎次OA 、OD 、OE 、OF 、O A O 、、… 结 ,若 ‎ 结 次‎记 1、2、3、4、5、6、7、8、…,那么第20‎0 结 ‎( )A . OAB . OBC . OCD . OF9. 图, 长 1 ‎菱形AB C D 中,60DAB ∠=°.连D .C . B .A .结对角 ‎AC ,以 第‎AC 二 菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以 ‎1AC 第三 菱形‎122AC C D ,使2160D AC ∠=°;……, 此 所‎ 第 菱‎n 形 长 ‎_____‎_____‎_.10. 下图是 ‎ ‎ ‎ 小 ‎, 图形 ‎变化 ,写 第n ‎小 ‎ 块11.如图,是用棋子摆 成的图案,摆第1个图 案需要7枚 棋子,摆第2个图 案需要 枚棋子摆第 3个图案需 要37枚棋 子,按照这样的 方式摆下去 ,则摆第6个 图案需要 枚棋子,摆第n 个图‎案需要 枚棋子.12. 题 小‎组对 ‎ 表 ‎三 ‎( 题小组 ‎ ‎ 标号 1‎,2,3) 长 ‎进行 记‎ . 三 ‎ 第一 ‎ 一 二‎, ‎ ( 标号‎ 4,5,6,7,8,9),接下 每 ‎ ‎ 变化‎, 每 ‎ 一 二‎,形 ‎ ( 题组 ‎ 图所示‎ 图形进行‎形 记 ‎).那么标号 ‎100 ‎ ‎ ( )A .第3B .第4C .第5D .第613. 数 ‎ 发‎ 下 ‎ 数三‎角形( 数是‎ 1, ‎数 数):第一行 11第二行12 12…第三行13 16 13 第四行 14 112 112 14第五行 15 120 130120 15… …… ……根据 五行‎ ,可以 第‎ 行 数 ‎次是: . 14.已 a b n ⊕=,(1)1a b n +⊕=+,(1)2a b n ⊕+=-,若112⊕=则20082008⊕= 15.材料:一般 ,n ‎因数a 乘:n n a a a a 记⋅. 23=8,此时,3叫做以2‎底8 对‎数,记 ()38log 8log 22= .一般 ,若()0,10>≠>=b a a b a n ,则n 叫做以‎a 底b 对‎数,记 ()813.log log 4== n b b a a ,则4叫做以‎3 底81‎ 对数,记 )481log (81log 33= . 问题:(1) 以下 ‎对数 : ===64log 16log 4log 222 .(2) (1)中三数4、16、64 ‎ ‎系 64log 16log 4log 222、、 ‎ 系‎(3) (2) 结 ,你 ‎一 一般性‎ 结论吗 ()0,0,10log log >>≠>=+N M a a N M a a(4)根据幂 ‎ 则:m n mna a a +=⋅以 对数 ‎ ‎述结论.16.问题背景图,已 矩形A ‎B C D 中, E 是BC ‎ 一 ,过 E E ‎F ⊥BD 于F ,EG ⊥AC 于C ,过 C C ‎H ⊥BD 于H , CH ‎=EF+EG .问题(1)若 E B ‎C 延长 ‎ , 图2,过 E E ‎F ⊥BD 于F ,则EF .EG 、CH 三 ‎ 有 ‎ 数量 系‎,直接写 你‎ 猜想; (2) 图3,BD 是 方‎形ABCD ‎ 对角 ,L BD ‎, BL=BC ,连接CL , E 是CL ‎ 一 ,EF ⊥BD 于F ,EG ⊥BC 于G ,猜想EF 、EG 、BD ‎有 数‎量 系,直接写 你‎猜想类比联想P是 ‎梯形底 A‎B所 直 ‎ 一 ‎,P到 ‎对角 ‎离P‎M、PN,BG⊥AC于G(图4‎图),则PM、PN.BG三 ‎ 有 ‎数量 系‎,‎.。

相关文档
最新文档