第9章_齿轮传动

合集下载

机械设计第九章课后习题答案

机械设计第九章课后习题答案

9-1答退火:将钢加热到一定温度,并保温到一定时间后,随炉缓慢冷却的热处理方法。

主要用来消除内应力、降低硬度,便于切削。

正火:将钢加热到一定温度,保温一定时间后,空冷或风冷的热处理方法。

可消除内应力,降低硬度,便于切削加工;对一般零件,也可作为最终热处理,提高材料的机械性能。

淬火:将钢加热到一定温度,保温一定时间后,浸入到淬火介质中快速冷却的热处理方法。

可提高材料的硬度和耐磨性,但存在很大的内应力,脆性也相应增加。

淬火后一般需回火。

淬火还可提高其抗腐蚀性。

调质:淬火后加高温回火的热处理方法。

可获得强度、硬度、塑性、韧性等均较好的综合力学性能,广泛应用于较为重要的零件设计中。

表面淬火:迅速将零件表面加热到淬火温度后立即喷水冷却,使工件表层淬火的热处理方法。

主要用于中碳钢或中碳合金钢,以提高表层硬度和耐磨性,同时疲劳强度和冲击韧性都有所提高。

渗碳淬火:将工件放入渗碳介质中加热,并保温一定时间,使介质中的碳渗入到钢件中的热处理方法。

适合于低碳钢或低碳合金钢,可提高表层硬度和耐磨性,而仍保留芯部的韧性和高塑性。

9-2解见下表9-3解查教材表 9-1,Q235的屈服极限查手册 GB706-88标准,14号热轧工字钢的截面面积则拉断时所所的最小拉力为9-4解查教材表9-1,45钢的屈服极限许用应力把夹紧力向截面中心转化,则有拉力和弯距截面面积抗弯截面模量则最大夹紧力应力分布图如图所示图 9.3 题9-4解图9-5解查手册,查手册退刀槽宽度,沟槽直径,过渡圆角半径,尾部倒角设所用螺栓为标准六角头螺栓,对于的螺栓,最小中心距,螺栓轴线与箱壁的最小距离。

9-6解查手册,当圆轴时,平键的断面尺寸为且轴上键槽尺寸、轮毂键槽尺寸。

图 9.5 题9-6解图9-7解(1)取横梁作为示力体,当位于支承右侧处时由得由得由得由得( 2)横梁弯矩图图 9.7 题9-7解图( 3)横梁上铆钉组的载荷力矩水平分力垂直分力9-8解水平分力在每个铆钉上产生的载荷垂直分力在每个铆钉上产生的载荷力矩在每个铆钉上产生的载荷各力在铆钉上的方向见图所示图 9.9 题9-8解图根据力的合成可知,铆钉 1的载荷最大9-9解铆钉所受最大载荷校核剪切强度校核挤压强度均合适。

齿轮传动

齿轮传动

第四章齿轮传动基本要求:了解齿轮机构的模型及应用;了解齿廓啮合基本定律,渐开线及其性质、渐开线齿轮能保证定传动比;掌握齿轮各部分名称,渐开线标准齿轮尺寸计算;了解渐开线齿轮啮合过程;掌握渐开线齿轮正确啮合条件;了解渐开线齿轮切齿原理,根切现象及最少齿数齿轮;了解齿轮轮齿失效形式及计算准则,齿轮材料和热处理,齿轮的精度等;掌握直齿圆柱齿轮传动的受力分析、强度计算;了解斜齿圆柱齿轮机构的参数关系;了解直齿圆锥齿轮机构的齿廓曲面、背锥、当量齿数,受力分析;了解蜗杆传动的类型、应用;了解齿轮、蜗杆、蜗轮的构造。

重点:齿轮各部分名称及标准直齿圆柱齿轮的基本尺寸;渐开线齿轮的正确啮合和连续传动条件;轮齿的失效和齿轮材料;直齿圆柱齿轮传动的受力分析、强度计算。

难点: 轮齿的根切现象及最少齿数;直齿圆柱齿轮传动的受力分析、强度计算;斜齿圆柱齿轮机构的参数关系;直齿圆锥齿轮机构的齿廓曲面、当量齿数。

学时:课堂教学:10学时,实验教学:2学时。

教学方法:多媒体结合板书。

第一节 齿轮传动的类型和特点4.1.1齿轮传动的类型4.1.1.1 根据其传动比(i 12=ω1/ω2)是否恒定分1、定传动比(i 12 = 常数)传动的齿轮机构,圆形齿轮机构。

2、变传动比(i 12按一定的规律变化)传动的齿轮机构,非圆形齿轮机构。

4.1.1,2 在定传动比中两啮合齿轮的相对运动是平面运动还是空间运动分 1、平面齿轮机(圆柱齿轮传动)⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩外啮合齿轮传动(图4-1a)直齿圆柱齿轮内啮合齿轮传动(图4-1b)齿轮与齿条传动斜齿圆柱齿轮传动(图4-1c)人字齿轮传动(图4-1d)(a) (b) (c) (d)图4-1 齿轮传动类型2、空间齿轮机构⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩直齿圆锥齿轮传动(图4-2a)圆锥齿轮传动(伞齿轮传动)斜齿圆锥齿轮传动(图4-2b)曲齿圆锥齿轮传动(图4-2c)交错轴齿轮传动(螺旋齿轮传动)(图4-2d)蜗杆传动(图4-2e)(d) (e)图4-2 齿轮传动类型4.1.2齿轮传动的特点 1.优点:①传动比准确; ②传动效率高; ③工作可靠、寿命长; ④结构紧凑; ⑤适用范围广。

齿轮传动概述

齿轮传动概述

齿轮传动的分类:
1、按两齿轮轴线的相对位置及轮齿的形状 2、按齿轮啮合方式 3、按齿轮传动工作条件 4、按齿轮圆周速度高低 5、按齿轮齿廓曲线的形状
1
2
3
1、按两齿轮轴线的相对位置及轮齿的形状
(1)平行轴齿轮传动 (2)相交轴齿轮传动
(3)交错轴齿轮传动
(1)平行轴齿轮传动
直齿 圆柱齿轮传动
斜齿圆柱齿轮传动
人字齿圆柱齿轮传动
轮齿与其轴线倾斜一个角 度
由两个螺旋角方向相反的 斜齿轮组成
(2)相交轴齿轮传动
直齿圆锥齿轮传动
斜齿圆锥齿轮传动
圆锥齿轮传动 曲齿
(3)交错轴齿轮传动
交错轴斜齿圆柱齿轮传动
蜗轮蜗杆传动
2、按齿轮啮合方式
外齿轮
直 齿 圆 柱 齿 轮 传 动
外啮合齿轮传动
两齿轮的转动方向相反
内齿轮 内啮合齿轮传动
两齿轮的转动方向相同
齿轮齿条啮合
齿 条
3、按齿轮传动工作条件
◆ 闭式齿轮传动
◆ 开式齿轮传动
齿轮传动的分类
按工作条件分类
①闭式齿轮传 动 齿轮传动 封闭在箱体内, 具有良好的润 滑条件,能防 尘。 ②开式齿 轮传动 齿轮外露, 润滑条件 差,不能 防尘。 ③半开式齿轮传 动 齿轮在护罩 内,但不密封, 可以设置油池润 滑,润滑条件较 好;亦有的仅把 齿轮罩上,只起 防尘作用,润滑 条件较差。
4、按齿轮圆周速度高低

极低速齿轮传动
小于0.5m/s 0.5~3 m/s 3~15 m/s 大于15m/s
◆ 低速齿轮传动 ◆ 中速齿轮传动 ◆ 高速齿轮传动
5、按齿轮齿廓曲线的形状
◆ 渐开线齿轮传动

齿轮传动装置原理

齿轮传动装置原理

齿轮传动装置原理
齿轮传动装置是一种常用的机械传动装置,通过两个或多个齿轮之间的相互咬合,将动力从一个轴传递到另一个轴上。

它主要由驱动轴、从动轴和齿轮组成。

在齿轮传动装置中,驱动轴是提供动力的轴,从动轴是接受动力的轴。

齿轮则是将动力传递的媒介,它们通过在齿轮上的齿与相邻齿轮的齿之间的啮合来传递动力。

齿轮传动装置利用齿轮的传动原理实现速度和扭矩的转换。

根据齿轮齿数的不同,可以实现不同的转速比和扭矩比。

当驱动轴旋转时,驱动轴上的齿轮通过齿与从动轴上的齿轮的啮合,将动力传递到从动轴上。

在传递过程中,齿轮的大小、齿数以及安装位置等因素会影响传动的速度和扭矩。

齿轮传动装置具有传递效率高、承载能力强、传动稳定等优点。

它广泛应用于各种机械设备中,例如汽车变速器、工业机器人、起重机械等。

同时,齿轮传动装置的结构也可以根据具体需求进行设计和优化,以满足不同的传动要求。

总之,齿轮传动装置通过齿与齿的啮合将动力传递到从动轴上,实现了速度和扭矩的转换。

它是一种常用且可靠的机械传动装置,广泛应用于各个领域。

2024年机械设计基础课件齿轮传动

2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

第九章齿轮传动改

第九章齿轮传动改

弧齿(曲线齿)
交错轴斜齿轮传动 交错轴 蜗杆传动
准双曲面齿轮传动
1)平行轴间齿轮传动
2) 空间非平行轴传动,如图所示。
2、按照齿轮传动工作情况分:
1)开式
2)闭式
3)半开式
3、按照齿面硬度(350HBS)分: 1)软齿面齿轮
2)硬齿面齿轮
4、按照齿轮圆周速度分:
1)低速 (v<3m/s)
2)中速
分度圆、模数
z 设 d r为任意圆的直径, 为齿轮的齿数,根据齿距的定义可得 d p 或 pr r d r r z mr z z
分度圆 上式中含有无理数“ ”,为了便于设计、制造及互换使用,我 pr 们在齿轮上取一圆,使该圆上的 值等于一些比较简单的数值, 并使该圆上齿廓的压力角等于规定的某一数值,这个圆称为分度 圆。分度圆上的压力角以 表示,我国采用20°为标准值,其他 各国常用的压力角还有15°、14.5°等等。 模数 分度圆上的齿距对 的比值以m 来表示,称为模数。
啮合弧 齿距 p
DC
标准圆柱齿轮的重合度的近似计算
标准圆柱齿轮的重合度可按下式近似计算:
1 1 1.88 3.2 cos z 1 z2
对于直齿圆柱齿轮, 0 。若大、小齿轮的齿数 z 2 z1 17 ,代 入上式得 1.504 。可见,一般情况下 总大于1。齿轮精度高。 允许的 值可小些;反之,精度愈低, 值就要求大些。
*
d f 2 ( z 2 2ha 2c * )m (70 2 1 2 0.25) 2 135mm
*
h (2ha c* )m (2 1 0.25) 2 4.5mm d d2 m 2 a 1 ( z1 z 2 ) (20 70) 90mm 2 2 2

齿轮传动工作原理

齿轮传动工作原理

齿轮传动工作原理
齿轮传动是一种常见的机械传动方式,主要由一个或多个齿轮组成。

齿轮传动的工作原理基于齿轮之间的啮合,通过齿轮之间的转动来传递动力和运动。

在齿轮传动中,通常会有两个或多个齿轮,分别称为主动齿轮和从动齿轮。

主动齿轮通过外部力或动力源提供动力,从而驱动从动齿轮的转动。

主动齿轮一般具有较大的齿数,用来提供起动力和传递动力,而从动齿轮则根据主动齿轮的转动来实现相应的转动。

齿轮传动的关键在于齿轮之间的啮合。

两个齿轮之间的啮合会导致相互之间的力矩传递和转动。

主动齿轮转动时,通过齿轮的齿面与从动齿轮的齿面相互啮合,使得从动齿轮也开始转动。

齿轮传动的速度比和力矩比由齿轮的齿数比所决定,可以通过改变齿轮的齿数来实现不同的传动比。

齿轮传动拥有许多优点,例如高传动效率、稳定的传动比、较大的传动力矩和紧凑的结构等。

其应用范围十分广泛,可以用于汽车、机械设备、工程机械、机床以及各种其他需要传递动力和运动的领域。

总之,齿轮传动通过齿轮之间的啮合实现动力和运动的传递。

其简单可靠的工作原理使得其成为一种常见且重要的传动方式。

机械设计基础第9章齿轮传动

机械设计基础第9章齿轮传动

9.2 渐开线和渐开线齿廓
9.2.1 渐开线的形成及性质
当一直线BK 沿半径为rb的圆作纯 滚动时,该直线上任一点K 的轨迹
就是该圆的渐开线。
渐开线的性质
展角
1)发生线沿基圆滚过的长度,等 于基圆上被滚过的圆弧长度,即:
AB = BK
2)渐开线上任意点的法线必切于基圆。
3)渐开线距基圆越远的部分,曲率半 径愈大,反之亦然。
标准值,单位为mm.
◆ d=mz,p= m
◆ 齿数相同的齿轮,模数越大,尺寸越大。
分度圆压力角
任意圆压力角 基圆a上i 的压ar力cc角os等rrbi于0
分度圆压力角a (齿形角) a arccos rb
r
rb r cosa
分度圆大小相同的齿轮,其齿廓渐开线的形状随压力角
渐开线齿轮传力性能好。
(3)渐开线齿轮具有可分性
中心距变动不影响传动比
O1N1P ∽ O2N2P
i12

1 2

O2 P O1P

rb2 rb1
渐开线齿轮的传动比取 决于两轮基圆半径的比
传动的可分性 指渐开线齿轮传动中心距变化
不影响其传动比的特性
(4)四线合一 啮合线、啮合点的公法线、两齿轮基圆内公切线、 啮合点的受力方向线
(3)渐开线的极坐标参数方程
rk= rb/cos ak qk = inv ak= tg ak - ak
(4)渐开线的直角坐标方程
x rb sin u rbu cos u y rb cos u rbu sin u
9.3 渐开线直齿圆柱齿轮
9.3.1 渐开线齿轮各部分名称及符号
第9章 齿轮传动
9.1、齿轮传动的特点与基本类型

第九章 齿轮传动

第九章  齿轮传动

⌢⌢ BK = AB
2、发生线即是渐开线任意点的法线, 又是基圆的切线。 3、渐开线齿廓接触点的法线与该点速 度方向线所夹的锐角 α 称为该点压 k 力角。
cos α k = OB rb = OK rk
4、基圆内无渐开线。 5、切点B是K点的曲率中心, 线段BK是K点的曲率半径。
2、渐开线的特性 、
§ 9.5.4齿轮传动精度的选择
§ 9.6.1 轮齿的失效形式
• 1 轮齿折断 发生在齿根部分: 齿根弯曲应力最 大、受到脉动循 环或对称循环的 变应力;有应力 集中。 严重过载或大的 冲击载荷。
2 齿面疲劳点蚀
• 对于开式齿轮传动,因其齿 面磨损的速度较快,当齿面 还没有形成疲劳裂纹时,表 层材料已被磨掉,故通常见 不到点蚀现象。因此,齿面 点蚀一般发生在软齿面闭式 齿轮传动中。
3齿面磨损 齿面磨损
• 齿面磨损是开式齿 轮传动的主要失效 形式。 形式。
4 齿面胶合
• 齿面胶合通常出现在齿 面相对滑动速度较大的 齿顶和齿根部位。 齿顶和齿根部位。齿面 发生胶合后,也会使轮 齿失去正确的齿廓形状, 从而引起冲击、振动和 噪声并导致失效。
§ 9.6.2
齿轮材料
1.锻钢 锻钢 锻钢因具有强度高、韧性好、便于制造、便于热处理等 优点,大多数齿轮都用锻钢制造。 (1)软齿面齿轮:齿面硬度<350HBS,常用中碳钢和中碳 合金钢,如45钢.40Cr,35SiMn等材料,进行调质或正火 处理。这种齿轮适用于强度。精度要求不高的场合,轮坯 经过热处理后进行插齿或滚齿加工,生产便利、成本较低。 在确定大.小齿轮硬度时应注意使小齿轮的齿面硬度比 大齿轮的齿面硬度高30一50HBS,这是因为小齿轮受载荷 次敷比大齿轮多,且小齿轮齿根较薄.为使两齿轮的轮齿 接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。

齿轮传动

齿轮传动

设计式:
m
3
2 K F T1
d z12
YFaYsaY
[ F ]
(9-18)
注意:1)
F1
F2
,应按
F 较小者计算齿根弯曲强度。
YFaYSa
2)影响齿根弯曲强度的尺寸是: m 和 b 。
3)采用正变位、斜齿轮可提高齿轮的强度,参见图9-19。
4)动力传动,一般 m≥1.5~2mm。
直齿轮弯曲强度计算3
不均的系数。(见表9-9)
轮齿变形倾斜
T
1 主动
T
2
§9-5直齿轮接触强度计
算1§9-5 直齿圆柱齿轮传动的齿面接触疲劳强度计算
目的:防止“点蚀”。
一、计算公式
接触应力的计算点: 节点
强度条件:H ≤ H
详细说明
力学模型: 将一对轮齿的啮合简化为 两个圆柱体接触的模型。
基本公式: 赫兹公式, 式(9-9)。
式中: d1 --为小轮的分度圆直径(mm)。
T1 --为小轮的名义转矩(N·mm)。
主动轮 Ft 的方向与其转向相反;
从动轮 Ft 的方向与其转向相同。
径向力 Fr 的方向指向各自的轮心(外齿轮)。
圆柱齿轮的载荷计算2
练习
2. 斜齿圆柱齿轮 切向力:
将 Fn 分解
径向力: 轴向力:
Ft
2T1 d1
H ZE ZH Z Z
2 K H T1 bd12
u 1 u

H
d1 3
2 K H T1
d
u
u
1
Z
E
ZH
Z
H
Z
2
(9-24) (9-25)

机械原理第九章 轮系

机械原理第九章 轮系

1 10000
iH1 1/ i1H 10000
1H 3H
当系杆转10000转时,轮1才转1转, 二者转向相同。此例说明周转轮系可 获得很大的传动比。
周转轮系的传动比计算
例题2:z1=z2=48,z2’=18, z3=24,n1=250 r/min,
n3= 100 r/min,方向如图所示。求: nH 的大小和方向
§9.3 周转轮系的传动比计算
定轴轮系传动比计算公式
周转轮系传动比计算
?
反转法原理,将周转 轮系转化为定轴轮系
周转轮系的传动比计算
一、周转轮系传动比计算的基本思路
- H
系杆机架 周转轮系定轴轮系
周转轮系的 转化机构
可直接用定轴轮系传动比的计算公式。
周转轮系的传动比计算
将轮系按-ωH反转后,各构件的角速度的变化如下:
三环传动没有专门的输出 机构,因而具有结构简单、 紧凑的优点。
其他行星传动简介
二、摆线针轮传动
组成:1为针轮,2为摆线行星轮,H为系杆,3为输出机 构。
行星轮的齿廓曲线不是渐开线,而是外摆线;中心内齿 轮采用了针齿。
iHV
iH 2
nH n2
z2 z1 z2
z2
三、谐波传动
其他行星传动简介
组成:具有内齿的刚轮、具有外齿的柔轮和波发生器H。 通常将波发生器作为主动件,而刚轮和柔轮之一为从动件, 另一个为固定件。
广泛用于机床、计算装置、补偿调整装置中
运动分解
轮系的功用
汽车后桥减速器示意图
i143
n1 n3
n4 n4
z3 z1
1
2n4
1 2
(n1
n3 )
轮系的功用

机械设计第八版参考答案(全)

机械设计第八版参考答案(全)

习题答案第三章 机械零件的强度3-1某材料的对称循环弯曲疲劳极限MPa 1801=-ζ,取循环基数60105⨯=N ,9=m ,试求循环次数N 分别为7 000、25 000、620 000次时的有限寿命弯曲疲劳极限。

[解] MPa 6.373107105180936910111=⨯⨯⨯==--N N ζζN M P a 3.324105.2105180946920112=⨯⨯⨯==--N N ζζN M P a 0.227102.6105180956930113=⨯⨯⨯==--N N ζζN 3-2已知材料的力学性能为MPa 260=s ζ,MPa 1701=-ζ,2.0=ζΦ,试绘制此材料的简化的等寿命寿命曲线。

[解] )170,0('A )0,260(C 0012ζζζΦζ-=- ζΦζζ+=∴-121M P a33.2832.0117021210=+⨯=+=∴-ζΦζζ 得)233.283,233.283(D ',即)67.141,67.141(D '根据点)170,0('A ,)0,260(C ,)67.141,67.141(D '按比例绘制该材料的极限应力图如下图所示3-4 圆轴轴肩处的尺寸为:D =72mm ,d =62mm ,r =3mm 。

如用题3-2中的材料,设其强度极限σB =420MPa ,精车,弯曲,βq =1,试绘制此零件的简化等寿命疲劳曲线。

[解] 因2.14554==d D ,067.0453==d r ,查附表3-2,插值得88.1=αζ,查附图3-1得78.0≈ζq ,将所查值代入公式,即()()69.1188.178.0111k =-⨯+=-α+=ζζζq查附图3-2,得75.0=ζε;按精车加工工艺,查附图3-4,得91.0=ζβ,已知1=q β,则35.211191.0175.069.1111k =⨯⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=q ζζζζββεK ()()()35.267.141,67.141,0,260,35.2170,0D C A ∴根据()()()29.60,67.141,0,260,34.72,0D C A 按比例绘出该零件的极限应力线图如下图3-5 如题3-4中危险截面上的平均应力MPa 20m =ζ,应力幅MPa 20a =ζ,试分别按①C r =②C ζ=m ,求出该截面的计算安全系数ca S 。

齿轮啮合原理-第九章.

齿轮啮合原理-第九章.
这样的传动误差函数型式能使我们吸收有齿轮安装误差引起的传动 误差的线性函数,以及降低振动的等级
1 传动误差的概念和传动误差抛物线函数的预先设定 * 理想齿轮传动的传动函数是线性的,
并且表示为:
N1 1 N2 i 是齿轮的转角 式中 Ni 是齿轮的齿数,
2
由于有安装误差(相错角改变,在非渐 开线齿轮的情况下最短中心距的改变, 弧齿锥齿轮、准双曲面齿轮和蜗轮蜗杆 的轴向位移),传动函数变为逐段近于 线性的函数,所具有的周期为一对齿啮 合循环的周期。由于循环连接处角速度 的跳动,加速度值趋近于无限大,这样 将引起很大的振动
转换循环和啮合方程
为了恢复齿面的接触,我们假定两齿轮之一,比方说主动齿轮1是静 止的,而从动齿轮2绕其轴线转过一补偿角 d q 。当齿面接触恢复时,称这 个啮合循环为转换循环。在循环起点,∑1和∑2彼此在一条线接触;在循 环终点,∑1和∑2彼此在一个点接触。在转换循环以内,∑1和∑2彼此不 接触。 接触点沿∑1和∑2 的位移和与∑2一起运动的位移之间的关系式如下:
9.2
局部接触综合
局部接触综合的构想是在[Litvin 1968 的专著]中提出的,后来在[Lit vin和Gutman 1980的文章]中用来研究准双曲面齿轮,又在[Litvin和 Zhang1991(b)的专著]中用来研究弧齿圆锥齿轮。
齿轮的局部接触综合必须保证: (i)在中央选取的接触点M具有所需要的传动比 (ii)所希望的齿面上接触迹线切线的方向 (iii)所希望的点M处接触椭圆长轴的长度 (iv)预先设定的最大传动误差控制等级的抛物线函数
啮合和接触的计算机模拟
组员:樊毅啬 李 轩
张永清 彭昌琰
第九章 啮合和接触的计算机模拟
9.1 引言

第九章 圆柱齿轮精度设计

第九章 圆柱齿轮精度设计


齿距累积总偏差(ΔFp)及 齿距累积偏差(ΔFpk)
规定ΔFpk是为了限制齿距累积误差集中在局部圆周上 。 齿距累积误差反映了一转内任意个齿距的最大变化,它 直接反映齿轮的转角误差,是几何偏心和运动偏心的综 合结果。因而可以较为全面地反映齿轮的传递运动准确 性,是一项综合性的评定项目。 对于一般齿轮传动,不需要评定ΔFpk,但对于齿数较多 且精度要求很高的齿轮、非圆整齿轮或高速齿轮要评定 ΔFpk。 测量一个齿轮的ΔFp和ΔFpk时,合格条件是:
不同圆柱齿轮的传动精度要求
上述4项要求,对于不同用途、不同工作条件的齿轮其 侧重点也应有所不同。 如:对于分度机构,仪器仪表中读数机构的齿轮,齿轮 一转中的转角误差不超过1′~2′,甚至是几秒,此时, 传递运动准确性是主要的; 对于高速、大功率传动装置中用的齿轮,如汽轮机减速 器上的齿轮,圆周速度高,传递功率大,其运动精度、 工作平稳性精度及接触精度要求都很高,特别是瞬时传 动比的变化要求小,以减少振动和噪声; 对于轧钢机、起重机、运输机、透平机等低速重载机械, 传递动力大,但圆周速度不高,故齿轮接触精度要求较 高,齿侧间隙也应足够大,而对其运动精度则要求不高。 HOME
切向综合总偏差(ΔF i′):是指被测齿轮与 测量齿轮单面啮合检测时,在被测齿轮一转内, 被测齿轮分度圆上实际圆周位移与理论圆周位移 的最大差值。 ΔFi′是指在齿轮单面啮合情况下测得的齿轮一 转内转角误差的总幅度值,该误差是几何偏心、 运动偏心加工误差的综合反映,因而是评定齿轮 传递运动准确性的最佳综合评定指标。
一、影响齿轮传递运动准确性的主要误差
影响齿轮传递运动准确性的误差:是齿轮齿 距分布不均匀而产生的以齿轮一转为周期的 误差,主要来源于齿轮的几何偏心和运动偏 心。 以滚切直齿圆柱齿轮为例,分析在切齿过程 中所产生的主要加工误差 。

互换性第9章齿轮83页PPT

互换性第9章齿轮83页PPT

[二、齿轮误差分类
齿轮误差主要来源于工艺系统误差及制造 时的安装调整误差。由于齿轮参数多,误差复 杂,为便于研究:
1、按误差相对于齿轮轴线的分布方向,可分为 径向误差、切向误差和轴向误差;
2、按误差出现的周期分:长周期误差,短周期 误差(前者:以齿轮一转为周期;后者:误差 在齿轮一转内多次重复出现);
5、径向综合误差△Fi〞 (公差代号: Fi〞 )
被测齿轮与理想精确的测量齿轮双面啮合 时,在被测齿轮一转内,双啮中心距的最大变 动量。
[由于测量△Fi〞所用测量齿轮相当于测量△Fr 时所用的测头,所以实质上, △Fi〞相当于 △Fr(前者连续测量,后者逐齿测量)且测量简 单,故常用△Fi〞代替△Fr与△Fw组合,评价 传动精确性。]
二、影响传动平稳性的误差
1、一齿切向综合误差Δf i′(公差代号f i′ ) 实测齿轮与理想精确的测量齿轮单面啮
合时,在被测齿轮一齿距角内,实际转角与 公称转角之差的最大幅度值 ,以分度圆弧长 计值(单位:μm) 。
Δf i′是由单啮仪在测量ΔF i′时同时测出,它在齿
轮一转中多次重复出现,影响传动平稳性。
轮齿 轮缘 辐板
轮榖
齿轮的结构
键槽 轴孔
返回
2、传动平稳性—工作平稳性精度(第Ⅱ公差
组) .
同上,要求从动轮在转一齿范围内,
其最大转角误差(△φ)应限制在一定范围内,
即控制瞬时传动比的变化,以避免产生冲击、
振动和噪声。
3、载荷分布均匀性—接触精度(第Ⅲ公差组)
要求齿轮啮合时齿面接触良好,以提高承 载能力,保证使用寿命。(见下页图)
影响接触线长度的是:齿向误差ΔFβ, 影响接触线高度的是:齿形误差ΔFα。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直齿
斜齿 人字齿轮
外啮合 内啮合
齿轮齿条 直齿
两轴相交 圆锥齿轮传动 斜齿
空间齿轮传动 (两轴不平形)
两轴交错
蜗杆传动
曲齿
交错轴斜齿轮传动
三、齿轮结构
• 齿轮轴:齿轮与轴做成一体,一般用于直 径很小的齿轮。
• 制造工艺复杂,同时制造,同时报废。
• 实心式齿轮:齿顶圆直径da≤160mm • 齿轮与轴分开制造
当基圆半径趋 于无穷大时,渐开 线成为斜直线。它 就是渐开线齿条的 齿廓。
C3
C2
C1
K
N1 N2
ri
rb2
O2
O
3
8
推论
➢ 同一基圆上渐开线形状相同
➢ 同一基圆所生成的同向渐开
线为法向等距曲线
A2
A1
➢ 两反向渐开线公法线处处相
等(等于两渐开线间的基圆
弧长)
➢ 同一基圆上任意两条渐开 线的公法线处处相等
C1
N1 N2
C3
N1 K1
N2
N
K2
O
4、 基圆以内无渐开线。
弧长等于发生线, 基圆切线是法线, 曲线形状随基圆, 基圆内无渐开线。
5、渐开线上点K的压力角
在不考虑摩擦力、重力和惯性力
的条件下,一对齿廓相互啮合时,齿
轮上接触点K所受到的法线与受力点
速度方向之间所夹的锐角,称为齿轮
齿廓在该点的压力角。
2、承载能力大 即要求齿轮传动能传递较大的动力,且体积
小、重量轻、寿命长。
为了满足基本要求,需要对齿轮齿廓曲线、啮 合原理和齿轮强度等问题进行研究。
第二节 齿廓啮合的基本定律
齿轮传动的基本要求之一就是要保证传动平 稳。所谓平稳,是指啮合过程中瞬时传动比:
i=1/2保持恒定。
啮合:一对轮齿相互接触并进行相对运动的状态。 传动比:两轮角速度之比。
对齿廓曲线的要求: • 直观上—— 不卡不离 • 几何学上—— 处处相切接触 • 运动学上—— 法线上没有相对运动
一、齿廓啮合的基本定律
如右图所示:
➢齿廓E1和E2在K点啮合
➢ 过K点作两齿廓的公法线 n-n,它与连心线O1O2的交 点C称为节点。
➢ 以点O1为圆心、r1′=O1C为 半径的圆和以点O2为圆心、 r2′=O2C为半径的圆称为节 圆。
o1
节圆
C 节点
n
节圆
o2
ω1
n k
E1 E2
ω2
主动齿轮1的齿廓 C 1 与从动
齿轮2的齿廓 C 2在K 点啮合,要
保证两齿轮齿廓高副接触,它
们在 K 点的速度沿公法线 N1N 2
方向的分量应相等。即
vK 1coK 1s vK 2coK 2s
由于 vK1 1O1K,vK2 2O2K
那么 1 O2Kcos K2 2 O1Kcos K1
第9章_齿轮传动
机器人关节
一、齿轮传动机构的特点
优点: 1)适用的圆周速度和功率范围广; 2)传动效率高; 3)传动比稳定; 4)寿命较长; 5)工作可靠性较高; 6)可实现平行轴、任意角相交轴和任意角交错轴之
间的传动; 7)结构紧凑。 缺点:1)要求较高的制造和安装精度,成本较高。
2)不适宜于远距离两轴之间的传动。
外啮合 内啮合
齿轮齿条
蜗杆传动
二轴交错,通常交90º
交错轴斜齿轮 (旧称螺旋齿轮)
直齿圆柱齿轮机构
• 外啮合传动 • 内啮合传动 • 齿轮齿条传动
外啮合传动 二轮转向相反
外齿轮
内齿轮
齿条
内啮合传动 齿轮齿条传动 二轮转向相同 转动移动
外齿轮 外齿轮
分类
平面齿轮传动 (两轴平形)
圆柱齿轮传动
N
Vk
K
k
r Pk K
A
二、渐开线的特性
1、NK = AN
发生线沿 基圆滚过的长 度等于基圆上 被滚过的圆弧 长度。
N
rb
K A
O
2、渐开线上任一点的法线
K
必与基圆相切。渐开线上
某点的曲率中心是该点法
线与基圆的切点。
N
A
O
➢ NK为渐开线在K点的法线 ➢ N点为渐开线上K点的曲率中心 ➢ 线段NK长度为曲率半径
3、渐开线的形状取决 于基圆的大小。
或者说要使齿轮传动得到定传动 比,不论齿廓在任何位置接触, 过接触点所作的齿廓公法线都必 须与连心线交于一定点。
o1 ω1
Vk2
a
Vk1
n k
E1
bC
E2
n
o2
ω2
两轮齿廓在节点啮合时,相 对速度为零,即一对齿轮的 啮合传动相当于它们的节圆 作纯滚动。
n
o1 ω1
n
k
C
E1
E2
o2
ω2
i 1 / 2
O2C / O1C r2 / r1
齿轮传动比等于两节 圆半径的反比。
一对外啮合齿轮的中 心距恒等于其节圆半 径之和。
o1
r1'
C
n
r2'
o2
ω1
n k
E1 a
中心距
E2
ω2
二、共轭齿廓
➢ 凡能满足齿廓啮合基本定律的一对齿 廓称为共轭齿廓。
➢ 理论上有无穷多对共轭齿廓。
三、齿廓曲线的选择
1.满足定传动比的要求; 2.考虑设计、制造、安装和强度等方面要求。
故两轮的瞬时传动比为:
i1
2
1O 2KcoK s2O 2N 2O 2C 2 O 1KcoK s1 O 1N 1 O 1C
齿廓啮合基本定律
上式表明: 1、 一对传动齿轮的瞬时角速度 与其连心线O1O2被齿廓接触点 公法线所分割的两线段长度成反 比。
2、显然要使两齿轮瞬时角速度 比恒定不变,必须使C点为连心 线上的固定点。
• 腹板式齿轮:齿顶圆直径da≤500mm
• 轮辐式齿轮:齿顶圆直径da>500mm
• 对于单件或小批量生产的齿轮,可做成焊接齿轮结构, 对于尺寸较大的圆柱齿轮,为了节约贵重金属,可做 成组装齿圈式结构。
四、基本要求
机械系统对齿轮传动的基本要求归纳起来有两项: 1、传动要准确平稳
即要求齿轮传动在工作过程中,瞬时传动比 要恒定,且振动、冲击要小。
在机械中,常用的齿廓有渐开线齿廓、摆线 齿廓、圆弧齿廓。
由于渐开线齿廓容易制造;也便于安装,互 换性也好,因此应用最广。
第三节 渐开线齿廓
一、渐开线的形成
一直线在一个圆周上做纯滚动时,直线 上任意一点K的轨迹称为该圆渐开线。
渐开线
F
vK
压力角 aK
发生线
N
aK
rb
K
rK 向径rK
A
qK 展角
基圆 基圆半径 rb
二、齿轮传动机构的类型
按传动时两轮轴的相对位置分: • 平面齿轮机构:(平行轴间传动)
–直齿轮、斜齿轮、人字齿 –外啮合、内啮合、齿轮与齿条传动
• 空间齿轮传动:
–(相交轴间传动):圆锥齿轮、 –(交错轴间传动):交错轴斜齿轮机构、蜗杆传动
按齿轮传动的工作情况分: • 开式齿轮传动——低速、易磨损 • 闭式齿轮传动——重要的传动、食品工业常用
相关文档
最新文档