初中几何基本模型
初中几何48个模型作业帮
![初中几何48个模型作业帮](https://img.taocdn.com/s3/m/31becb103d1ec5da50e2524de518964bcf84d2aa.png)
初中几何是数学中的一个重要部分,它涉及到许多基本的几何概念和定理。
在学习初中几何时,了解和掌握一些常见的几何模型是非常有帮助的。
以下是48个初中几何模型:1. 等边三角形模型2. 等腰三角形模型3. 直角三角形模型4. 平行四边形模型5. 菱形模型6. 矩形模型7. 正方形模型8. 梯形模型9. 圆模型10. 扇形模型11. 弓形模型12. 切线模型13. 抛物线模型14. 双曲线模型15. 椭圆模型16. 角平分线定理模型17. 中线定理模型18. 弦长定理模型19. 勾股定理模型21. 外角和定理模型22. 线段比例定理模型23. 相似三角形判定定理模型24. 三角形内心定理模型25. 三角形外心定理模型26. 三角形重心定理模型27. 三角形垂心定理模型28. 四边形对角线性质定理模型29. 四边形面积公式模型30. 圆的周长公式模型31. 圆的面积公式模型32. 扇形面积公式模型33. 弓形面积公式模型34. 点到直线距离公式模型35. 两点间距离公式模型36. 角平分线性质定理模型37. 中位线定理模型38. 切线的性质定理模型39. 切线的判定定理模型40. 抛物线性质定理模型41. 双曲线性质定理模型43. 角的平分线性质定理的逆定理模型44. 三线合一的逆定理模型45. 线段垂直平分线的逆定理模型46. 余角、补角定理的逆定理模型47. 同位角、内错角、同旁内角定理的逆定理模型48. 正弦、余弦、正切的应用(三角函数的应用)这些几何模型可以帮助你更好地理解和掌握初中几何的知识点,并且能够让你更加熟练地解决各种几何问题。
希望这些信息对你有所帮助!。
初中几何48种数学模型系统讲解
![初中几何48种数学模型系统讲解](https://img.taocdn.com/s3/m/c623d1e6370cba1aa8114431b90d6c85ec3a88d7.png)
初中几何48种数学模型系统讲解初中几何是数学中非常重要的一个分支,涉及到许多基础知识和技能。
在初中几何学习中,数学模型是非常重要的一环,它能够帮助学生更好地理解和掌握几何知识,并提高解题的能力。
下面我们就来介绍一下初中几何中常见的48种数学模型系统。
1. 平面几何模型:平面几何模型是研究平面上的图形和变换的数学模型,例如平移、旋转、对称等。
2. 立体几何模型:立体几何模型是研究空间中的图形和变换的数学模型,例如立体的投影、旋转、平移等。
3. 直线模型:直线模型是用来表示直线的数学模型,例如在平面几何中,可以使用坐标系来表示一条直线。
4. 线段模型:线段模型是用来表示线段的数学模型,例如在平面几何中,可以使用坐标系来表示一条线段。
5. 角度模型:角度模型是用来表示角度的数学模型,例如在平面几何中,可以使用角度制和弧度制来表示角度。
6. 相交模型:相交模型是用来表示图形相交的数学模型,例如在平面几何中,可以使用交点来表示两条直线相交的情况。
7. 平行模型:平行模型是用来表示平行线的数学模型,例如在平面几何中,可以使用平行线的定义来表示两条直线平行的情况。
8. 垂直模型:垂直模型是用来表示垂直线的数学模型,例如在平面几何中,可以使用垂直线的定义来表示两条直线垂直的情况。
9. 对称模型:对称模型是用来表示对称图形的数学模型,例如在平面几何中,可以使用对称轴来表示对称图形的情况。
10. 相似模型:相似模型是用来表示相似图形的数学模型,例如在平面几何中,可以使用相似比例来表示两个相似图形之间的关系。
11. 等比模型:等比模型是用来表示等比数列的数学模型,例如在几何中,可以使用等比数列来表示一些几何问题。
12. 等分模型:等分模型是用来表示等分线段的数学模型,例如在几何中,可以使用等分线段来表示将一个线段分成若干等分的情况。
13. 圆模型:圆模型是用来表示圆形的数学模型,例如在平面几何中,可以使用圆心、半径来表示一个圆。
初中数学63个几何模型
![初中数学63个几何模型](https://img.taocdn.com/s3/m/beeb3fd9afaad1f34693daef5ef7ba0d4a736d3e.png)
初中数学63个几何模型不同的几何模型在我们日常生活和学习中都有着广泛的应用。
通过学习这些几何模型,我们可以更好地理解和应用数学知识。
下面介绍63个几何模型的相关知识和应用。
第一类几何模型是平面图形。
平面图形包括三角形、四边形、五边形、六边形等。
三角形是最简单的平面图形,也是许多几何定理的基础,比如直角三角形的勾股定理。
四边形是指四条线段构成的图形,其中包括正方形、长方形、菱形等。
五边形和六边形则分别称为五边形和六边形。
这些平面图形在建筑、绘画、地图测量等方面都有广泛的应用。
第二类几何模型是立体图形。
立体图形包括长方体、正方体、圆柱、圆锥、球体等。
长方体和正方体是最常见的立体图形,它们具有稳定的立体结构,广泛应用于建筑、包装、设备、器具等领域。
圆柱和圆锥也有着广泛的应用,例如烟囱、钢管、饮水机等。
球体则广泛应用于科学、艺术、体育竞技等方面,例如地球仪、篮球、高尔夫球等。
第三类几何模型是曲面图形。
曲面图形包括椭球、双曲面、抛物面等。
椭球广泛应用于天文、地理和工程学等领域,例如地球表面的形状、汽车、飞机等的外形设计。
双曲面和抛物面则具有独特的形状和结构,广泛应用于建筑、航空航天、汽车等领域。
第四类几何模型是向量。
向量是表示大小和方向的量,具有几何意义。
向量广泛应用于物理学、工程学、计算机科学等领域,例如机器人运动控制、人工智能、网络传输等。
第五类几何模型是二次曲线。
二次曲线是由二次方程所定义的曲线,包括椭圆、超椭圆、双曲线等。
二次曲线具有丰富的形状和特征,在计算机图形学、通信工程、密码学等领域有着广泛应用。
总之,学习这些几何模型不仅可以帮助我们更好地理解和应用数学知识,还可以拓展我们的思维方式和解决问题的能力。
对于初中数学学习者而言,掌握这些几何模型是非常重要的,可以为以后的学习和工作打下坚实的基础。
初中几何基础模型赏析——初中生必会的48个模型结论
![初中几何基础模型赏析——初中生必会的48个模型结论](https://img.taocdn.com/s3/m/1b3329040a4c2e3f5727a5e9856a561252d3210e.png)
初中几何基础模型赏析——初中生必会的48个模型结论几何学是一门需要大量练习的学科,而熟练掌握几何模型结论是初中生学好几何学的前提。
以下是初中生必会的48个几何模型结论,希望能够帮助同学们更好地掌握几何学知识。
1. 垂线段定理:垂直于一条直线的所有线段长度相等。
2. 同位角定理:同位角相等。
3. 对顶角定理:对顶角相等。
4. 外角定理:一个三角形的外角等于其余两个内角之和。
5. 内角和定理:一个n边形的内角和为(n-2)×180°。
6. 直角三角形勾股定理:直角三角形两直角边上的平方和等于其斜边上的平方。
7. 等腰三角形底角定理:等腰三角形底角相等。
8. 等腰三角形高角定理:等腰三角形高角相等。
9. 等边三角形角定理:等边三角形三个角都是60°。
10. 等角三角形定理:等角三角形三个角相等。
11. 同弧角定理:在同一圆周上的两个弧所对应的圆心角相等。
12. 弧度制与度数制的转换:1弧度=180°/π。
13. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
14. 余弦定理:在任意三角形ABC中,有a=b+c-2bc cosA。
15. 正切定理:在任意三角形ABC中,有tanA=a/b。
16. 相似三角形定理:相似三角形对应角度相等,对应边比例相等。
17. 切线定理:切线与半径垂直。
18. 弦切角定理:弦切角等于弦所对的圆心角的一半。
19. 弧切角定理:弧切角等于弧所对的圆心角的一半。
20. 环形角定理:在同心圆中,对于同一条弦所对的两个角,小弧所对的角比大弧所对的角小一半。
21. 正多边形的内角定理:正n边形的每个内角大小为(n-2)×180°/n。
22. 正多边形的外角定理:正n边形的每个外角大小为360°/n。
23. 中线定理:三角形三条中线交于一点,且此点到三角形三个顶点距离的平均值等于三角形三个顶点到中点距离的平均值。
初中数学九大几何模型
![初中数学九大几何模型](https://img.taocdn.com/s3/m/17a5070f84254b35effd348c.png)
【结论】:①△OAC^/XOB:):②ZAEB=60° : ®0E 平分NAED【结论】:①△OAC^/XOB:):②ZAEB=90° : ®OE 平分NAED初中数学九大几何模型【条件】:AOAB ^AOCD 均为等腰直角三角形:(3)顶角相等的两任意等腰三角形 【条件】:AOAB ^AOCD 均为等腰三角形; 且 ZCOD=ZAOB【结论】:①△OACq/XOB): ② ZAEB=ZAOB :®OE 平分 NAED模型二:手拉手模型——旋转型相似 (1) 一般情况【条件】:CD/7AB,将2X0CD 旋转至右图的位豈 将八。
旋转至右图的位【结论】:①右图中ZkOCDs△OABT t t AOAC^AOBD: ②延长AC 交BD 于点E,於有ZBEC=ZBQ/\ (2)特殊情况【条件】:CD/7AB, ZA03=90c 【结论】:①右图中ZkOCDs△OABT t t AOAC^AOBD : ② 延长AC 交BD 于点E,必有ZBEC=ZBOA : ③ BD = OD = OB =tanZ0C [):④BD 丄AC : AC OC OA =-ACxBD模型三、对角互补模型(1)全等型-90°【条件】:①ZA0B=ZDCE=90° :②0C 平分NAOB证明提示: ①作垂直,如图2,证明△ CDM^ACEN ②过点C 作CF 丄0C,如图3,证明△ ODC^ZXFEC 楽当ZDCE 的一边交A0的延长线于D 时(如图4)9 以上三个结论:©CD=CE: @0E-0D=j2 0C: S 4⑤连接 AD 、BC.必有AD?+BC2 = AB? +CD 2: 图3【结论】:®CD=CE:②OD+OE=JiOC:(1),皿 =S 场 + S* =三。
芒 ③膈(2)全等型-120°【条件】:®ZA0B=2ZDCE=120° :②OC 平分NA0B【结论】:©CD=CE:②0D+0E=0C:③S.好Sg +证明提示:①可参考“全等型-90° "证法一:②如右下图:在0B上取一点F,使0F=0C,证明ZX0CF为等边三角形。
初中数学九大几何模型
![初中数学九大几何模型](https://img.taocdn.com/s3/m/bb7123b5dd3383c4bb4cd22a.png)
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中几何60个模型总结
![初中几何60个模型总结](https://img.taocdn.com/s3/m/26b00a5015791711cc7931b765ce0508763275b9.png)
初中几何60个模型总结引言初中几何是数学学科中的核心内容之一,涵盖了平面几何和立体几何两个方面。
初中阶段的几何学习主要围绕几何图形的性质、变换以及模型的应用展开。
为了帮助初中生系统地掌握几何知识,本文总结了60个常见的初中几何模型,涵盖了平面几何和立体几何的相关内容。
平面几何模型1. 点•概念:点是几何图形中最基本的元素,没有长度、面积和体积。
•性质:点用大写字母表示,点之间的距离为0。
2. 线段•概念:两个不同点A和B之间的有限点的集合形成线段AB。
•性质:线段的长度可以测量。
3. 射线•概念:以一个端点A和通过A的一条射线确定一个射线。
•性质:射线上的点都在同一边。
4. 直线•概念:两个不同点之间的所有点的集合形成直线。
•性质:直线上的任意两点可以确定一条直线。
5. 角•概念:由两条射线共享一个公共端点形成的几何图形。
•性质:角以大写字母表示,可以通过度数来度量。
6. 三角形•概念:由三条线段连接形成的几何图形。
•性质:三角形的内角和为180度,包括等边三角形、等腰三角形等特殊类型。
7. 平行线•概念:在同一个平面上,不相交且不共面的两条直线。
•性质:平行线具有相同的斜率。
8. 直角•概念:两条互相垂直的直线或线段形成的角。
•性质:直角的度数为90度。
9. 平行四边形•概念:具有两对平行边的四边形。
•性质:平行四边形的对角线相互平分。
10. 梯形•概念:至少有一对平行边的四边形。
•性质:梯形的对角线不相等。
11. 正方形•概念:四条边相等且四个角为直角的四边形。
•性质:正方形的对角线相等且互相垂直。
12. 长方形•概念:四个角均为直角的四边形。
•性质:长方形的对角线相等但不垂直。
13. 菱形•概念:四条边相等且对角线相互垂直的四边形。
•性质:菱形的对角线互相平分。
14. 圆•概念:平面上所有到圆心距离相等的点的集合。
•性质:圆的半径为定值。
15. 扇形•概念:由圆心、圆上任意一点和该点到圆心的连线形成的图形。
初中几何46种模型大全
![初中几何46种模型大全](https://img.taocdn.com/s3/m/6667bdefcf2f0066f5335a8102d276a2002960cd.png)
初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
初中数学30种模型汇总(最全几何知识点)
![初中数学30种模型汇总(最全几何知识点)](https://img.taocdn.com/s3/m/2742e0a2ed3a87c24028915f804d2b160b4e8626.png)
10.等面积模型:D是BC的中点
20.平移构造全等
30.二次函数中平行四边形存在性模型
01.三线八角
同位角:找F型
内错角:找Z型
同旁内角:找U型
02.拐角模型
一.锯齿型
1
1
3
2
2
3
4
∠1+∠3=∠2
∠1+∠2=∠3 +∠4
左和=右和
二.鹰嘴型
1
1
2
3
3
2
∠1+∠3=∠2
∠1+∠3=∠2
鹰嘴+小=大
一.大小等边三角形
虚线相等,且夹角为60°
(全等,八字形)
四.大小等腰三角形(顶角为α)
结论:虚线相等,且夹角为α
(全等,八字形)
三. 大小等腰直角三角形
结论:虚线相等,且夹角为90°
(全等,八字形)
二.大小正方形
结论:虚线相等,且夹角为90°
(全等,八字形)
15.半角模型
条件:正方形ABCD
∠EDF=45°
证:EF=AE+CF
条件:CD=AD,∠ADC=90°
∠EDF=45°
∠A+∠C=180°
证明:EF=AE+CF
条件:AB=AD
∠B+∠D=180°
∠EAF=1 ∠BAD
2
证明:EF=BE+DF
条件:AB=AC,∠BAC=90°
∠DAE=45°
证明:DE2=BD2+CE2
△CEF为直角三角形
初中数学30种模型汇总
(最全几何知识点)
01.三线八角
02.拐角模型
03.等积变换模型
初中数学必学48个几何模型
![初中数学必学48个几何模型](https://img.taocdn.com/s3/m/f13dc110dc36a32d7375a417866fb84ae45cc3e2.png)
初中数学必学48个几何模型
1. 直线和线段
2. 射线
3. 角
4. 直角
5. 锐角和钝角
6. 平行线
7. 等腰三角形
8. 等边三角形
9. 直角三角形
10. 直角坐标系
11. 等比例线段
12. 外接圆和内切圆
13. 弧和扇形
14. 正方形
15. 长方形
16. 平行四边形
17. 梯形
18. 圆
19. 半圆
20. 圆周角
21. 正多边形
22. 立方体
23. 长方体
24. 正方体
25. 球体
26. 圆锥
27. 圆柱
28. 右锥和右圆锥
29. 高锥和高圆锥
30. 正棱柱
31. 正棱锥
32. 正六面体
33. 正八面体
34. 正十二面体
35. 菱形
36. 菱形组合
37. 等角三角形
38. 曲线
39. 等腰梯形
40. 对称图形
41. 平行四边形法则
42. 夹角
43. 三角形中位线定理
44. 三角形中心
45. 三角形外角和
46. 面积公式
47. 三分点
48. 垂线定理。
初中几何模型总结
![初中几何模型总结](https://img.taocdn.com/s3/m/e62d138948649b6648d7c1c708a1284ac9500550.png)
DAE C B AF E D C BAF ED C B A FE DCB初中几何模型总结一、三垂直模型1、如图,D 为等腰Rt △ABC 直角边AC 的中点,AE ⊥BD 交BC 于点E ,连结DE.求证:①∠ADB=∠CDE ;②AE+DE=BD ;2、如图,A (–2,0),B (0,3),C (3,3),△ABD 是等腰直角三角形,∠ABD=90º,CD 交y 轴于点E ,过点F 作CD 的垂线,交CD 于点F ,交OA 于点G.(1)求点E 的坐标;(2)求证:AG=OG.3、如图,等腰Rt △ABC 中,AB=AC ,∠BAC=90°,D 为AC 上的任意一点,AE ⊥BD 于点E ,CF ⊥BD 于点F.(1)求证:①AE=EF ;②EF+CF=BE ;(2)如图,若D 为AC 延长线(或反向延长线)上的任意一点,其它条件不变,线段EF 、CF 与线段BE 是否存在某种确定的数量关系?写出你的结论并证明;图3图1图2E AD C BE AF DCB 4、如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点;(3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则ADCD=二、手拉手模型1、如图,已知,AB=AC ,AD=AE ,∠BAC=∠DAE.(1)求证:BD=CE ;(2)若∠BAC=∠DAE=α,延长BD 交CE 于点P ,则∠BPC 的度数为 .(用含α的式子表示)2、已知:如图,AB ⊥AD ,AC ⊥AE ,AB=AC ,AD=AE ,求证:(1)BD=CE ;(2)AF 平分∠BFE.3、如图,在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,AB、DC的延长线交于点E,AF//BD 交CB的延长线于点F,若AF=AE,求∠BCD的度数。
(完整版)初中数学九大几何模型
![(完整版)初中数学九大几何模型](https://img.taocdn.com/s3/m/92b09ba0e2bd960590c677ef.png)
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学48个几何模型及题型
![初中数学48个几何模型及题型](https://img.taocdn.com/s3/m/654bc758c381e53a580216fc700abb68a982ad31.png)
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
初中数学九大几何模型-初中几何九大模型-初中九大几何模型
![初中数学九大几何模型-初中几何九大模型-初中九大几何模型](https://img.taocdn.com/s3/m/23d9693c8bd63186bdebbc10.png)
初中数学九大几何模型一、手拉手模型—---旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OAB C DE图 1OABCD E图 2OABCDE图 1OABCDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COABCDEOB CDEOA CD③===OAOBOC OD AC BD tan ∠OCD;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE;②OE-OD=2OC ;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型—90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形.(3)全等型—任意角ɑ【条件】:①∠AOB=2ɑ,∠DCE=180—2ɑ;②CD=CE;【结论】:①OC 平分∠AOB ;②OD+OE=2OC ·cos ɑ; ③αcos αsin OC S S S 2△OCE △OCD △DCE ⋅⋅=+=※当∠DCE 的一边交AO 的延长线于D 时(如右下图):原结论变成:① ; ② ; ③ 。
初中数学八大几何模型归纳
![初中数学八大几何模型归纳](https://img.taocdn.com/s3/m/064f61734b73f242336c5f88.png)
初中数学几何模型总结归纳1.中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =HBEGCFAD(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。
,且GE ⊥GCF(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DC BAE H GF EDCBA【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示:JA BCDE F GH2.角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH3.手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOEDDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG . GFE DCBAABC【答案】45°【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAFABE G【答案】4.邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________. OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________. GFEABCDEC【答案】45.半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N . 【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1:可得到△ANM 和△AEF 相似比为1)⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】346.一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G7.弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBABC【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证8.最短路径模型【两点之间线段最短】 1、将军饮马Q2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.【解答】3500600 ,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE =2EC ,AB =13,求AD 的长;(2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】(1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线解得43173-=+'=MN N G GMEH【练习1】如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3、5,求三角形OBE的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN21∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD延长线,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎么样的关量关系?写出你的猜想,并给予证明。
史上最全初中几何模型汇总
![史上最全初中几何模型汇总](https://img.taocdn.com/s3/m/685823f6dd36a32d727581ba.png)
史上最全初中几何模型全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型角分线模型说明:以角平分线为轴在角两边逬行截长补短或者作边的垂线■形成对称全等。
两边进行边或者角的等呈代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45= 30。
、22.5\ 15。
及有一个角是30。
直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过"8"字模型可以证明。
模型变形。
旺唳s z t如H IP当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明「两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明列外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
中点模型连中点鮭中位贱fStL血肉造中碎梅谕三歸一几何最值模型对称最值(两点间线段最短)轴对称模型对称最值(点到直线垂线段最短)说明:通过对称逬行等呈代换,转换成两点间距离及点到直线距离。
初中数学几何48个解题模型
![初中数学几何48个解题模型](https://img.taocdn.com/s3/m/d8cfbb633069a45177232f60ddccda38376be188.png)
以下是初中数学几何的一些解题模型,总共列出了48个:平面几何:
直线的性质
角的性质
三角形的性质
四边形的性质
平行线与角的关系
垂直线与角的关系
三角形的分类
三角形中的线段比例问题
三角形的相似性质
相似三角形中的线段比例问题
圆的性质
圆的切线与弦的关系
直角三角形的性质
等腰三角形的性质
正方形的性质
空间几何
空间几何体的性质(长方体、正方体、圆柱体、球体等)空间几何体的表面积和体积计算
平行面与角的关系
垂直面与角的关系
对称性质和投影性质
空间图形的相似性质
空间中的立体角
空间中的直线与平面的位置关系切线与切平面的关系
空间中的平行与垂直关系
空间中的正交、斜交关系
平行四边形的性质
空间中的平行四边形
坐标几何:
直线的方程与性质
两点间的距离公式
点到直线的距离公式
点关于坐标轴对称的性质
点关于另一个点对称的性质
点关于一条直线对称的性质
直线的斜率与倾斜角
平行线与垂直线的斜率关系
直线的截距方程
线段的中点公式
.二次函数的图像与性质
圆的方程与性质
双曲线的方程与性质
抛物线的方程与性质
椭圆的方程与性质
对数函数的图像与性质
指数函数的图像与性质
函数的复合与逆函数的性质
函数的最值与极值
平面几何与坐标几何的联系
这些模型覆盖了初中数学几何的基本知识点,可以帮助学生更好地理解和应用几何知识进行解题。
当然,具体应用哪些模型还需要根据具体题目的要求和条件来判断。
初中几何76个模型
![初中几何76个模型](https://img.taocdn.com/s3/m/79b9db56c381e53a580216fc700abb68a882ad65.png)
初中几何76个模型全文共四篇示例,供读者参考第一篇示例:初中几何是数学学科中的重要组成部分,是帮助学生理解空间、形状和结构的学科。
在初中几何课程中,学生将学习到各种关于几何形状、角度、比例和相似性等方面的知识。
为了帮助学生更好地理解这些知识,教师们通常会使用一些模型来进行教学。
今天我们就来介绍一些初中几何中常用的76个模型。
1. 点:点是空间中最基本的概念,通常用一个小圆点来表示。
2. 直线:直线是由无数个点连成的图形,没有宽度和高度,延伸无穷远。
3. 射线:射线是由一个起点和一个方向延伸出去的线段。
4. 线段:线段是由两个端点连接而成的线段,有一定的长度。
5. 线段的中点:线段的中点是指线段上距离两个端点相等的一点。
6. 射线的起点和方向:射线的起点是指射线的起始位置,方向是指射线延伸的方向。
8. 角:角是由两条射线共享一个端点而组成的几何图形。
9. 角的度量:角的度量是指角的大小,通常用数字来表示。
10. 角的种类:根据角的大小,可以分为锐角、直角、钝角等种类。
11. 顶点:角的两条射线的端点称为角的顶点。
14. 直角:直角是指角的度量为90度的角。
16. 同位角:同位角是指两条平行线被一条穿过的直线所形成的对应角相等的角。
17. 内错角:内错角是指不同位的两个角之和等于180度的角。
20. 全等:两个图形的形状和大小完全相同,即为全等。
22. 直角三角形:一个角为直角的三角形。
23. 等腰三角形:两条边相等的三角形。
28. 长方形:拥有对边相等且直角的四边形。
30. 梯形:有两性腰和两底边的四边形。
32. 几何平移:在平面上把一个图形移动到另一个位置,但大小和形状不变。
33. 几何旋转:在平面上围绕一个点将一个图形旋转一定角度。
35. 几何对称:将一个图形围绕中心对称轴对称。
36. 平行线:在同一个平面上不相交的两条直线。
37. 平行线性质:同位角相等、内错角相等、交错内角相等。
39. 垂直线性质:相邻角相加等于180度。
(完整版)初中数学——最全:初中数学几何模型
![(完整版)初中数学——最全:初中数学几何模型](https://img.taocdn.com/s3/m/10ff3c4379563c1ec5da718b.png)
最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。