高中数学必修三:几何概型.
四川省昭觉中学人教高一数学必修三(课件)3.3几何概型(共27张PPT)
n何M型这是古典概型,它是这样定义的:(1)试验中所有可能出现的基本事件只有有限个;(2 )每个基本事件出现的可能性相等.其概率计算公式:A包含的基本事件的个数P(A)=基本事件的总数丿下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为lcm•现一人随机射箭,假设A 对应区域的面积试验全部结果构成区土鲂勺面积 每箭都能中靶,且射中靶面内任一点都是等可能的, 设“射中黄心”为事件A100500m 冰样中有一只草履虫*从中随机取 出2ml 水样放在显微镜下观察,问发现草履 虫的概率?设“在2ml 水样中发现草履虫”为事A 对应区域的体积 二2试验全部结果构成区域勺体积二亦不是古典概型!1 250某人在7: 00-8: 00任一时刻随机到达单位, 问此人在7: 00-7: 10到达单位的概率?设“某人在7:10-7:20到达单位”为事件APQ4)二 A 对应区域的长度1 _试验全部结果构成区土勒勺长度—6问此人在入50-8: 00到达单位的概率?探究 类比古典概型,这些实验有什么特点?概率如何计算?1比赛靶面直径为122cm,靶心直径为12.2cm,随机射箭, 假设每箭都能中靶,射中黄心的概率500ml水样放在显微镜下观察,发现草履虫的概率某人在7: 00-8: 00任一时刻随机到达单位,此人在7: 00-7:10到达单位的概率几何概型定义几何概型的特点:在几何概型中,事件A的概率的计算公式如下~'V-总长度3几何概型P = 2/3问题:(1) x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值大于2”的概(2) x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值大于2"的概率。
率。
1 2 3 4丿•问题3:有根绳子长为3米,拉直后任意剪成两段,每段不小于1米的概率是多少?P (A)=1/3思考:怎么把随机事件转化为线段?例2 (1) x和y取值都是区间口,4]中的整数,任取一个X的值和一个y的值,求"x-y>1 ”的概率。
高中数学必修三几何概型 (共25张PPT)
应用拓展:
例1: 某人午睡醒后,发现表停了,于是打开收 音机等候整点报时,那么等待时间不多于10分钟 的概率是多大?
讨论交流:
1)这是什么概型,为什么?
(几何概型)
2)借助什么样的几何图形来表示随 机事件与所有基本事件?
(线段或圆)
3)该如何建立数学模型?
解:设A={等待的时间不多于10分钟}.我们所 关心的事件A恰好是打开收音机的时刻位于 [50,60]时间段内,因此由几何概型的求概率 的公式得
试验一:
一个边长为2a的正方 形,阴影部分面积是 整个正方形面积的 0.25,向正方形内随 机地丢豆子,则豆子 落在阴影部分的概率 是多少? 问题3:如果“豆子落在阴影部分”记为事件A,事件A所 包含的基本事件是什么?这个试验的基本事件是什么?
问题 4:如何求事件 A的概率? 事件A 包含的基本事件是豆子落在阴影部分中任意一点;
2(1)x和y取值都是区间[1,4]中的整数,任
取一个x的值和一个y的值,求 “ x – y >1 ”
的概率。
y 4 3 2 1
作直线 x - y=1
古典概型
P=3/8
-1
1
2
3
4
x
(2)x和y取值都是区间[1,4]中的实数, 任取一个x的值和一个y的值, 求 “ x – y >1 ”的概率。
y 4 3 2 1
这个试验的基本事件是在 300ML 水中任意一点发现草履虫。 构成事件A 的区域体积 P A 试验的全部结果所构成的区域体积
几何概型概念: 如果每个事件发生的概率只与构成该事件区域 的长度(面积或体积)成比例,则称这样的概率模型 为几何概率模型,简称为几何概型. 问题7 这三个试验的共同特点是什么?
《3.3 几何概型》(同步训练)高中数学必修3_人教A版_2024-2025学年
《3.3 几何概型》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在掷一枚公平的六面骰子的实验中,事件A为“掷出的点数为偶数”,事件B 为“掷出的点数大于3”。
那么事件A与事件B的关系是:A、互斥事件B、对立事件C、相互独立事件D、互不相交事件2、在掷一枚均匀的骰子两次的实验中,事件A:“至少掷出一个6点”与事件B:“两次掷出的点数相同”的概率分别为P(A)和P(B),则下列结论正确的是()A、P(A) > P(B)B、P(A) < P(B)C、P(A) = P(B)D、无法确定P(A)与P(B)的大小关系3、在区间[0,4]上随机取一个实数,则该数大于1的概率是())A.(14)B.(34)C.(12)D.(134、从装有5个红球、4个蓝球和3个黄球的袋子里,随机取出2个球,取出的两个球颜色相同的概率是:A. 5/21B. 8/21C. 12/21D. 15/215、在一个圆盘上随机投针,圆盘的半径为10cm,针的长度为6cm,恰好针完全落在圆盘内的概率是多少?A. 0.3B. 0.4C. 0.5D. 0.66、在下列四个事件中,属于古典概型的是()A、抛掷一枚硬币,它落地时是正面的概率B、从一副52张的扑克牌中,随机抽取一张,抽取到红桃的概率C、从0,1,2,3,4中任取两个不同的自然数,所取得的两个数的和为偶数的概率D、从10000个零件中随机抽取一个,它是合格品的概率7、在等边三角形ABC中,D为BC边上的中点,E为AD上的中点,F为CE的延长线与AB的交点,若AB=6,则AF与BF的比值是:A. 1:1B. 2:1C. 3:1D. 4:18、在一个正方形中,随机取一点,该点距离正方形中心的距离与正方形边长的比值是:A. 0.5B. 0.1C. 0.4D. 0.6二、多选题(本大题有3小题,每小题6分,共18分)1、在下列事件中,属于几何概型的是()A. 抛掷一枚均匀的硬币,出现正面的概率B. 从一副52张的扑克牌中随机抽取一张,抽到红桃的概率C. 从0到1之间随机取一个数,这个数小于0.5的概率D. 从5个不同的球中随机抽取3个,抽到3个特定颜色的概率2、设在长为2的线段上随机取两个点,将线段分为三段,若这三段可以构成三角形的概率为P,则P的值为:A、1/4B、1/2C、1/3D、1/63、在一个等边三角形ABC中,内角A的对边长度为8cm,现从顶点A向BC边引一高AD,并假设在BC边上有一点P使得AP与AD垂直。
数学必修三 几何概型 新课标人教B版 .ppt
定义:(1)试验中所有可能出现的基本事件
只有有限个; (2)每个基本事件出现的可能性相等. 我们将具有以上两个特点的概率模型称 为古典概率模型,简称古典概型.
概率计算公式: P(A)=
A包含的基本事件的个数 基本事件的总数
问题1.
取一根长度为3m的绳子,拉直后在任意位置剪 断,那么剪得两段的长度都不小于1m的概率有多 大?
2a, A 2a 2r
A 2a 2r a r P( A) 2a a
ar 所以,硬币不与任一条平行线相碰的概率为 。 a
思路三
解:记“硬币不与任一条平行线相碰”为事件A。 为了确定硬币的位置,过硬币中心O作两平行线间的垂线 段,其长度2a即是几何概型定义中Ω的几何度量。 当硬币不与平行线相碰时,硬币中心O可 移动长度2a-2r即是子区域A的几何度量。 这是一个几何概型问题。
基本事件:
从3m的绳子上的任意一点剪断.
问题2.
有一杯1升的水,其中含有1个细菌,用一个小 杯从这杯水中取出0.1升,求小杯水中含有这 个细菌的概率.
提出问题
思考:上述问题的概率是古典概型问题吗?
为什么?
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的。
那么对于有无限多个试验结果 (不可数)的情况相应的概率应 如何求呢?
(1)试验中所有可能出现的基本事件有无限多个; (2)每个基本事件出现的可能性相等.
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关。满足以上条件的试验称为几何概型。
3.几何概型的概率计算公式
高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3
高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。
难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。
三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。
(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。
这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。
2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。
3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。
说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。
(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。
高中数学必修三-几何概型
几何概型知识集结知识元几何概型知识讲解1.几何概型1.定义:若一个试验具有下列特征:(1)每次试验的结果有无限多个,且全体结果可用一个有度量的几何区域来表示;(2)每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.例题精讲几何概型例1.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<1的概率为()A.B.C.D.例2.一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为,则阴影部分图形的“周积率”为()A.2 B.3 C.4 D.5例3.'已知|x|≤2,|y|≤2,点P的坐标为(x,y),求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率.' 当堂练习单选题练习1.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其它民俗活动的民间艺术,蕴涵了极致的数学美和丰富的文化信息,现有一幅剪纸的设计图(如图),其中的4个小圆均过正方形的中心,且内切于正方形的邻边,若在该正方形内任取一点,则该点取自阴影部分的概率为()A.B.C.(3-2)(π-2)D.练习2.已知正数a,b均小于2,若a、b、2能作为三角形的三条边长,则它们能构成钝角三角形的三条边长的概率是()A.B.C.D.练习3.如图,在矩形OABC中的曲线分别是y=sin x,y=cos x的一部分,A(,0),C(0,1),在矩形OABC内随机取一点,若此点取自阴影部分的概率为P1,取自非阴影部分的概率为P2,则()A.P1<P2B.P1>P2C.P1=P2D.大小关系不能确定练习4.利用Excel产生两组[0,1]之间的均匀随机数:a=rand(),b=rand():若产生了2019个样本点(a,b),则落在曲线y=1、y=和x=0所围成的封闭图形内的样本点个数估计为()A.673 B.505 C.1346 D.1515练习5.将曲线x2+y2=|x|+|y|围成的区域记为Ⅰ,曲线x2+y2=1围成的区域记为Ⅱ,曲线x2+y2=1与坐标轴的交点分别为A、B、C、D,四边形ABCD围成的区域记为Ⅲ,在区域Ⅰ中随机取一点,此点取自Ⅱ,Ⅲ的概率分别记为p1,p2,则()A.p1+p2>1 B.p1+p2<1C.p1+p2=1 D.p1=p2填空题练习1.中国最早的一部数学著作《周髀算经》的开头就记载了利用赵爽弦图证明了勾股定理,赵爽弦图(如图所示)是由四个全等的直角三角形和两个正方形构成若在大正方形中随机取一点该点落在阴影部分的概率为,则直角三角形中较小角的正切值为__._练习2.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为α,现_向大正方形区域内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则cosα=__练习3.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴涵了极致的数学美和丰富的传统文化信息.现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为___.练习4.已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆_C相交”发生的概率为__解答题练习1.'已知两数f(x)=ax2-bx+1.(1)若a,b都是从集合{0,1,2,3}中任取的一个数,求函数f(x)没有零点的概率;(2)分别从集合P和Q中随机取一个数a和b得到数对(a,b),若P={x|1≤x≤3},Q={x|0≤x≤4},求函数y=f(x)在区间[1,+∞)上是增函数的概率.'练习2.'已知函数f(x)=ax+b∙2x-2,其中,0≤b≤4.(1)当a=1时,求函数f(x)≥0在x∈[0,1]上恒成立的概率;(2)当0≤a≤2时,求函数f(x)在区间x∈[0,1]上有且只有一个零点的概率.'练习3.'袋子中放有大小和形状相同而颜色互不相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个,从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.(1)记事件A表示“a+b=2”,求事件A的概率;(2)在区间[0,2]内任取2个实数x,y,记(a-b)2的最大值为M,求事件“x2+y2<M”的概率.'。
人教A版高中数学必修三几何概型PPT课件
0.01
(
构成事件 B的区域面积 全部结果的区域面积
)
1m
P( A) 1 3
1m 3m
(
构成事件 A的区域长度 全部结果的区域长度
)
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
P(C) 2 1 500 250
(
构成事件 c的区域体积 全部结果的区域体积
)
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
的概率.
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
(1)x和y取值都是区间[1,4]中的整数,
任取一个x的值和一个y的值,
求 “ x – y ≥1 ”的概率。
y
作直线 x - y=1
4
3
古典概型
2
P=3/8
1
-1
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
解: 以X表示送报人到达时间,以Y表示父亲离家时间,
(x,y)可以看成平面区域中的点,试验的全部结果所构
成的区域 {(x, y)6.5 x 7.5,7 y 8} ,这是一个正方形区域,
面积为 S 11 1 .事件A表示父亲在离开家前能得到 报纸,所构成的区域 A {(x, y) y x,6.5 x 7.5,7 y 8} ,面积为
S
A
1
1 2
1 2
1 2
7 8
p( A)
sA S
7 8
人教A版高中数学必修三 3.3.1 几何概型(共23张PPT)
人教版高中数学必修三几何概型课件PPT
解析:组成的点 P 共有 36 个,其中在直线 x+y=5 上的点有
(1,4),(2,3),(3,2),(4,1),共有 4 个,
则点 P 在直线 x+y=5
1
答案:
9
4
上的概率为
36
=
1
.
9
4.一海豚在水池中自由游弋,水池为长 30m,宽 20m 的长方形,求此刻
海豚嘴尖离岸边不超过 2m 的概率.
应落在矩形区域
A 表示的范围是
0, 2 .
2
所以由几何概型求概率的公式,得 P(A)= =
1
.
2
1 一只小蜜蜂在一个棱长为 30 的正方体玻璃容器内随意地飞行,
若蜜蜂在飞行过程中与正方体玻璃容器 6 个表面中至少有一个面的
距离不大于 10,则就有可能撞到玻璃上而不安全,若始终保持与正方
体玻璃容器 6 个表面的距离均大于 10,则飞行是安全的.假设蜜蜂在
时间为 5 秒,绿灯亮的时间为 45 秒.当你到达路口时,恰好看到黄灯亮
的概率是(
)
A.
1
12
3
8
B.
1
16
C.
5
6
D.
解析:设看到黄灯亮为事件 A,构成事件 A 的“长度”等于 5,试验
5
80
的全部结果所构成的区域长度是 30+5+45=80,所以 P(A)=
答案:C
=
1
.
16
2.均匀分布
当 Χ 为区间[a,b]上的任意实数,并且是等可能的,我们称 Χ 服从
.
题型三
体积型的几何概型
【例题 3】有一杯 2 升的水,其中含有一个细菌,用一个小杯从这杯水
高中数学必修三《几何概型》教学设计
《几何概型》教学设计教学内容分析:本课时教材选自人教A版数学必修3第三章概率部分第3.3节的内容.几何概型是概率必修章节的收尾篇,共有两个课时,本节课为第一课时,它是继古典概型之后学习的另一类等可能概型;是教材新增加的内容,对它的要求仅限于初步体会几何概型的意义.几何概型的研究,是古典概型的拓广,将古典概型试验结果有限个拓广到无限个;课本介绍几何概型主要是为了更广泛地满足随机模拟的需要.概率教学的核心问题是让学生了解随机现象与概率的意义,运用数学方法去研究不确定现象的规律,让学生初步形成用随机的观念去观察、分析、研究客观世界的态度,并获取认识世界的初步知识和科学方法.一.学生学习情况分析:学生前面已经学习了随机事件的概率和古典概型,初步学会了用古典概型公式解决概率题,大多数学生对于概率的学习以及概率试验产生了浓厚的兴趣,逐渐会把一些问题模型化.但是学生在探究问题的能力,应用数学的意识等方面发展不够均衡,尚有待加强.二.设计思想:建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。
也就是以学生为主体,强调学生对知识的主动探索、主动发现以及学生对所学知识意义的主动建构.基于以上理论,本节课遵循引导发现、循序渐进的思路,采用问题探究式教学,让学生在观察分析、自主探索、合作交流的过程中建构几何概型的概念以及归纳出几何概型公式,运用实物、多媒体辅助,倡导“自主、合作、探究”的学习方式.具体流程如下:→→→三.教学过程设计:课题引入:你出行要坐公交车,如果公交车每15分钟一班,其中包括公交车在站台等待的时间3分钟,你到站台的任意时刻是等可能的,那么你刚到站台,就能坐上车,不用等待的概率是多少呢?(基本事件有无限多个,故不是古典概型)教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.导入新课问题情境[情景一]教师取一根长度为3米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于一米(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为无限个,发现不是古典概型,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A 发生,于是1()3P A 中间线段长度=整条线段长度[情景二]十一节期间,“XX 百货”超市为了扩大知名度,特意举行了大型的购物抽奖促销活动,有的顾客在购物后抽奖时,有点犯蒙了,原来聪明的商家为促销活动设计了三种方案:飞镖游戏:如图所示,规定顾客射中红色区域表示中奖 聪明的你能帮他们分析一下选择哪种方案中奖的概率大?五等分 圆心角之比为1:2:3 半径之比为1:2问题1:在三种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图中,顾客中奖的概率分别为51、61、41 问题2:上述每个红色区域对应的位置和形状都是不同的,从结论来看,顾客中奖的概率与红色区域的哪个因素有关?哪些因素无关?(与面积有关,与其位置和形状无关)[情景三]一只小蜜蜂在一棱长为6cm 的正方体笼子里飞,它距笼边大于1cm 的概率是多少?问题3同学们观察对比,找出三个情景的共同点与不同点?问题4同学们能否根据自己的理解说说什么是几何概型?【设计意图】三个情景设置让学生发现试验的结果有无限个,此发现它们不是古典概型, 无法用古典概型的方法求解,然后师生探索此问题怎样解决,最后教师点题:这就是我们今天要学习的几何概型. 情境一的设计是从长度方面考虑问题,是为了引入概念,情境二、三的设计从面积和体积方面考虑问题,是为了让学生全面了解几何概型的概念,并且渗透数形结合的数学思想方法.小组的讨论是为了培养学生的合作意识和团队精神.(二)概念形成在问题情景的铺垫下,教师引导学生用自己的语言描述几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.A 发生的概率的计算公式为:A ()P A =构成事件的区域长度(面积或体积)全部结果所构成的区域长度(面积或体积)【设计意图】通过用表格列出相同和不同点,既体现了数学中类比的思想又能让学生更好的了解几何概型,从而突出教学重点.通过递进式地设置问题,使学生将实际问题转化成数学概念,体验到了探寻数学规律的乐趣,加深了学生对概念的了解和对公式的探究,突出教学重点.(三)实际应用例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(此例师生共同探讨解决)解完此例题后归纳求解几何概型问题的步骤:记事件例2一海豚在水中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边超过2m 的概率.(此例先让学生独立思考,然后教师再画龙点睛的分析并求解)课堂训练:1.如图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.2、你出行要坐公交车,如果公交车每15分钟一班,其中包括公交车在站台等待的时间3分钟,那么你刚到站台,就能坐上车,不用等待的概率是多少呢?【设计意图】实际应用部分有问题,有例题,也有学生的训练,练习2的设计是为了让学生认识到数学源于生活,又应用于生活,生活中处处有数学;例题的设置让学生对几何概型的题目有了更深刻的理解,认识到几何概型主要是要把概率问题与几何问题完美的结合,几何度量中到底是长度、面积还是体积呢?我们要认真加以判断,要学会用数形结合的思想解决概率问题.(四)课堂小结教师引导学生反思:本节课我们学了什么?学会了什么?1.几何概型的定义、计算公式如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成 比 例,则称这样的概率模型为几何概率模型,简称为几何概型积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P )( 2.注意理解几何概型与古典概型的区别。
高中数学人教版必修3课件:3.3几何概型(共26张PPT)
的长度(面积或体积)成比例,则称这样的概率模型为 几何概率模型,简称为几何概型.
问题5 几何概型有哪些特点 ?
问题6 古典概型与几何概型有何异同?
异 古典概型的特征
几何概型的特征
(1)试验中所有可 (1)试验中所有可
能出现的基本事件 能出现的基本事件
有有限个;
有无限个;
同
(2)每个基本事件出 (2)每个基本事件出 现的可能性相等. 现的可能性相等.
解1
解2
变式 解
A 20m
2m
30m
解题步骤
记事件
构造几何图形
计算几何度量
下结论
求概率
如图,在正方形中随机撒一把豆子,用随机摸拟
的方法估计圆周率的值. 解
知识点3 与体积有关的几何概型 解
变式 解
作业
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就
人教版高中数学【必修三】[知识点整理及重点题型梳理]_几何概型_基础
人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习几何概型【学习目标】1.了解几何概型的概念及基本特点;2.熟练掌握几何概型中概率的计算公式;3.会进行简单的几何概率计算;4.能运用模拟的方法估计概率,掌握模拟估计面积的思想.【要点梳理】要点一:几何概型1.几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.2.几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等.3.几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()d P A D 的测度的测度. 说明:(1)D 的测度不为0;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积.(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关.要点诠释:几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点,若落在线段l 上的点数与线段l 的长度成正比,而与线段l 在线段L 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点,若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域V 上的相对位置无关,则点落在区域v 上的概率为:P=v 的体积/V 的体积要点二:均匀随机数的产生1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.它可以帮助我们模拟随机试验,特别是一些成本高、时间长的试验,用随机模拟的方法可以起到降低成本,缩短时间的作用.2.随机数的产生方法(1)实例法.包括掷骰子、掷硬币、抽签、转盘等.(2)计算器模拟法.现在大部分计算器的RAND 函数都能产生0~1之间的均匀随机数.(3)计算机软件法.几乎所有的高级编程语言都有随机函数,借用随机函数可以产生一定范围的随机数. 要点诠释:1.在区间[a ,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.3.用随机模拟试验不规则图形的面积的基本思想是:构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.4.利用计算机和线性变换Y=X*(b-a)+a ,可以产生任意区间[a ,b]上的均匀随机数.【典型例题】类型一:与长度有关的几何概型问题例1.取1根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段长都不小于1 m 的概率有多大?【思路点拨】从每一个位置剪断绳子,都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,基本事件有有限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与剪断位置所处的绳子的长度有关,符合几何概型的条件。
高中数学必修3课件:3.3.1 几何概型
精彩推荐典例展示
第三章 概率
规范解答 几何概型与其他知识的综合应用
例4 (本题满分12分)已知圆C:x2+y2=12,直线l:4x+3y
=25.
(1)求圆C的圆心到直线l的距离;
(2)求圆C上任意一点A到直线l的距离小于2的概率.
【解】 (1)由点到直线 l 的距离公式可得
d= 422+5 32=5 1 .
栏目 导引
第三章 概率
题型二 与面积有关的几何概型 例2 有四个游戏盘,将它们水平放稳后,在上面扔一颗
小玻璃球,若小球落在阴影部分,则可中奖.小明要想增加 中奖机会,应选择的游戏盘是( )
【解析】 各选项中奖的概率依次为38,14,31,13,故选 A.
栏目 导引
第三章 概率
【答案】 A 【名师点评】 找出或构造出随机事件对应的几何图形,利 用图形的几何特征计算相关的面积,套用公式从而求得随机 事件的概率.
B.25
C.35
D.54
栏目 导引
第三章 概率
解析:选 A.所有的基本事件构成的区间长度为 3-(-2)=5, ∵直线在 y 轴上的截距 b 大于 1, ∴直线横截距小于-1, ∴“直线在 y 轴上的截距 b 大于 1”包含的基本事件构成的 区间长度为-1-(-2)=1,由几何概型概率公式得直线在 y 轴上的截距 b 大于 1 的概率为 P=51,故选 A.
栏目 导引
第三章 概率
【名师点评】 本题相当于把正方体分割为27个棱长为1的小 正方体,蜜蜂位于正中间的一个正方体内.
栏目 导引
第三章 概率
跟踪训练
3.已知正方体ABCDA1B1C1D1内有一个内切球O,则在正方 体 ABCDA1B1C1D1 内 任 取 点 M , 点 M 在 球 O 内 的 概 率 是 ________.
人教A版高中数学必修3:几何概型
1.某路公共汽车每5分钟发车一次,某乘客到乘车点的时 刻是随机的,则他候车时间不超过2分钟的概率是( C )
A 3B 4C 2D 1
5
5
5
5
解:试验的全部结果构成的区域长度为5,所求事件的区
域长度为2,故所求概率为 P 2 . 5
分析:
0
50
60
解:设A={等待的时间不多于10分钟},事件A恰好是打开
收音机的时刻位于[50,60]时间段内,因此由几何概型
的求概率的公式得
P( A) 60 50 1 . 60 6
即“等待报时的时间不超过10分钟”的概率为 1 .
6
(2012·东城模拟)某人向一个半径为6的圆形标靶射击,假
.
下面我们来求解“引入新课”中的问题;
解:设“飞船在主着陆场内着陆”为事件A,
1202 9
P( A)
2002
. 25
P(A)
构成事件A的区域面积 试验的全部结果所构成的区域面积
.
在1L高产小麦种子中混入了一粒带麦锈病的种子,从中随 机取出10 mL,含有麦锈病种子的概率是多少? 解:设取出10 mL麦种,其中“含有麦锈病种子”这一事件为 A,
2.下图是卧室和书房地板的示意图,图中所有方砖除颜色外 完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并 随意停留在某块方砖上,问在哪个房间里,甲壳虫停留在黑 砖上的概率大?
卧室
书房
在卧室里,甲壳虫停留在黑砖上的概率大.
事实上,甲壳虫停留在黑砖上的概率与 黑砖的总面积有关.
3.用大小两个玻璃盆分别去捞鱼缸中红白相间的金鱼, 哪个捞到金鱼的概率大?
P( A) 10 1 . 1 000 100
人教版高一数学必修三第三章几何概型
3.3几何概型3.3.1几何概型考点学习目标核心素养区分古典概型和几何概型通过实例体会几何概型的含义,会区分古典概型和几何概型数学抽象、直观想象几何概型的概率计算公式掌握几何概型的概率计算公式,会求一些事件的概率逻辑推理、数学运算问题导学(1)当试验的所有可能结果是无穷多的情况,还能用古典概型来计算事件发生的概率吗?(2)什么叫几何概率模型?其求解方法是什么?(3)几何概型有几种模型?1.几何概型的定义与特点(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等.2.几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.几何概型的常见类型(1)长度型.(2)角度型.(3)面积型.(4)体积型.4.求解几何概型的一般步骤(1)选择适当的观察角度(一定要注意选择的观察角度要保证基本事件的无限性及等可能性).(2)把所有的基本事件转化为与之相对应的区域D.(3)把所求的随机事件A转化为与之相对应的区域d.(4)利用几何概型的概率计算公式求解.■名师点拨辨析古典概型与几何概型(1)相同点古典概型与几何概型中每一个基本事件发生的可能性都是相等的.(2)不同点①古典概型要求随机试验的基本事件的个数必须是有限的;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关;②在古典概型中,概率为0的事件是不可能事件,概率为1的事件是必然事件,而在几何概型中,概率为0的事件可能发生,概率为1的事件也可能不发生.例如在一个圆面内任取一点,取到圆心的概率等于0,但我们仍有可能在圆内取到圆心.也就是说,“单点事件”是不影响几何概型概率的计算的,因而在计算几何概型的概率时,线段的端点、区域的边界是否包含在所求事件之内,都不会影响最终的计算结果.判断正误(对的打“√”,错的打“×”)(1)几何概型中基本事件有有限个,而古典概型中基本事件有无限个.()(2)几何概型中基本事件有无限个,而古典概型中基本事件有有限个.()(3)几何概型中每个基本事件出现的可能性不相等,而古典概型中每个基本事件出现的可能性相等.()(4)几何概型中每个基本事件出现的可能性相等,而古典概型中每个基本事件出现的可能性不相等.()(5)几何概型的概率计算与构成事件的区域形状有关.()答案:(1)×(2)√(3)×(4)×(5)×下列概率模型中,几何概型的个数为()①从区间[-10,10]上任取一个数,求取到的数在[0,1]内的概率;②从区间[-10,10]上任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]上任取一个整数,求取到大于1而小于3的数的概率;④向一个边长为4 cm的正方形内投一点,求点离中心不超过1 cm的概率.A.1B.2C.3 D.4解析:选C.①②中的概率模型是几何概型,因为区间[-10,10]上有无数个数,且每个数被取到的机会相等;③中的概率模型不是几何概型,因为区间[-10,10]上的整数只有21个,是有限的;④中的概率模型是几何概型,因为在边长为4 cm的正方形内有无数个点,且该区域内的任何一个点被投到的可能性相同.用力将一个长为三米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为( )A.23B.13C.16D.14解析:选B.由几何概型得,米尺的断裂处恰在米尺的1米到2米刻度处的概率为 P =2-13=13. (2019·湖北省华中师范大学第一附属中学期末考试)向正方形内随机撒一些豆子,经查数,落在正方形内的豆子的总数为1 000,其中有780粒豆子落在该正方形的内切圆内,以此估计圆周率π的值(用分数表示)为________.解析:令正方形内切圆的半径为r ,则正方形边长为2r ,则由题意中“落在正方形内的豆子的总数为1 000,其中有780粒豆子落在该正方形的内切圆内”可得7801 000=πr24r 2,化简得π=7825.答案:7825与长度有关的几何概型(1)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13 B.12 C.23D.34(2)(2019·湖北省宜昌市葛洲坝中学期末考试)在区间[-1,2]内任取一个数a ,则点(5,a )位于x 轴下方的概率为( )A.23B.12C.13D.16【解析】 (1)由题意得图:由图得等车时间不超过10分钟的概率为12.(2)在区间[-1,2]内任取一个数a ,则点(5,a )位于x 轴下方,可得a ∈[-1,0). 由几何概型可得P =0-(-1)2-(-1)=13.故选C.【答案】 (1)B (2)C求解与长度有关的几何概型的步骤(1)找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段.(2)找到事件A 发生对应的区域d ,在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.(3)利用几何概型概率的计算公式P =dD计算.某人从甲地去乙地共走了500米,途经一条宽为x 米的河流,他不小心把一件物品丢到途中,若物品掉到河里就找不到,若物品不掉到河里,则能找到,已知该物品被找到的概率是45,则河宽为( )A .80米B .100米C .40米D .50米解析:选B.该物品能够被找到的路径长为500-x 米,由几何概型知,45=500-x500,解得x =100米,故选B.与面积有关的几何概型已知点P ,Q 为圆O :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 的中点组成的区域为M ,在圆O 内任取一点,则该点落在区域M 上的概率为( )A.35B.925C.1625D.25【解析】 PQ 的中点组成的区域M 如图阴影部分所示,那么在圆O 内部任取一点落在M 内的概率为25π-16π25π=925.【答案】 B与面积有关的几何概型的求解思路解决此类几何概型问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式P(A)=构成事件A的区域面积,从而求得随机事件的概率.试验的全部结果所构成的区域面积(2018·高考全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3解析:选A.法一:设直角三角形ABC的内角A,B,C所对的边分别为a,b,c,则区域Ⅰ的面积即△ABC的面积,为S1=12bc,区域Ⅱ的面积S2=12π×⎝⎛⎭⎫c22+12π×⎝⎛⎭⎫b22-⎣⎢⎢⎡⎦⎥⎥⎤π×⎝⎛⎭⎫a222-12bc=18π(c2+b2-a2)+12bc=12bc,所以S1=S2,由几何概型的知识知p1=p2,故选A.法二:不妨设△ABC为等腰直角三角形,AB=AC=2,则BC=22,所以区域Ⅰ的面积即△ABC的面积,为S1=12×2×2=2,区域Ⅱ的面积S2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2,区域Ⅲ的面积S3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p1=p2=2π+2,p3=π-2π+2,所以p1≠p3,p2≠p3,p1≠p2+p3,故选A.与体积有关的几何概型一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.4π81 B.81-4π81C.127 D.827【解析】满足题意的点所在区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P=1333=127.【答案】 C若本例条件不变,求这个蜜蜂飞到与正方体某一顶点A的距离小于13的概率.解:到点A的距离小于13的点,在以A为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的点的区域体积为43π×⎝⎛⎭⎫133×18.所以P=43π×⎝⎛⎭⎫133×1833=π2×37.与体积有关的几何概型的求解思路用体积计算概率时,要注意所求概率与所求事件构成的区域的体积的关系,准确计算出所求事件构成的区域的体积,并确定出所有基本事件构成的区域的体积,利用公式P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积求解即可. (2019·江西省临川第一中学期末考试)已知三棱锥S -ABC ,在该三棱锥内取一点P ,使V P -ABC≤13V S ABC的概率为( ) A.23 B.49 C.827D.1927解析:选D.作出S 在底面△ABC 的射影为O ,若V P ABC =13V S ABC ,则高OP =13SO ,即此时P 在三棱锥V S ABC 的面DEF 上,则V P ABC <13V S ABC 的点P 位于在三棱锥V S ABC 的面DEF 以下的棱台内,则对应的概率P =1-⎝⎛⎭⎫233=1927.故选D.与角度有关的几何概型如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在∠DAB 内任作射线AP ,求射线AP 与线段BC 有公共点的概率.【解】 因为在∠DAB 内任作射线AP ,所以它的所有等可能基本事件对应的区域是∠DAB ,当射线AP 与线段BC 有公共点时,射线AP 落在∠CAB 内,对应区域为∠CAB ,所以射线AP 与线段BC 有公共点的概率P =∠CAB∠DAB =30°90°=13.与角度有关的几何概型的求解思路当涉及射线的运动,扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,其概率的计算公式为P (A )=构成事件A 的区域角度试验的全部结果所构成的区域角度.切不可用线段长度代替角度作为区域度量.在圆心角为90°的扇形OAB 中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为________.解析:作射线OD 和OE ,使得∠AOD 和∠BOE 都等于30°.要使得∠AOC 和∠BOC 都不小于30°,则射线OC 位于射线OD 和OE 之间,故所求概率为P =90°-30°-30°90°=13.答案:131.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为( ) A.13 B.12 C.14D.23解析:选D.由|x |≤1, 得-1≤x ≤1,所以|x |≤1的概率为P (|x |≤1)=23.2.(2019·湖北省荆州中学期末考试)ABCD 为长方形,AB =3,BC =2,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.解析:由题意,如图所示,可得长方形的面积为S =3×2=6,以O 点为圆心,半径为1作圆,此时圆在长方形内部的部分的面积为S 1=12πr 2=π2,所以取到的点到O 的距离大于1表示圆的外部在矩形内部的部分,所以概率为P =S -S 1S =6-π26=1-π12.答案:1-π123.在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,则AM <AC 的概率为________.解析:如图,在AB 上取AC ′=AC ,连接CC ′,则∠ACC ′=180°-45°2=67.5°.设E ={在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC },则所有可能结果的区域角度为90°,事件E 的区域角度为67.5°,所以P (E )=67.5°90°=34.答案:344.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取一点M ,则使四棱锥M -ABCD 的体积不超过16(事件A )的概率为________.解析:设M 到平面ABCD 的距离为h ,则 V M ABCD =13S 底面ABCD ·h ≤16.又S 底面ABCD =1, 所以只要h ≤12即可.所有满足h ≤12的点组成以正方形ABCD 为底面,12为高的长方体,其体积为12. 又正方体的体积为1,所以使四棱锥M -ABCD 的体积不超过16(事件A )的概率为P (A )=121=12.答案:12[A 基础达标]1.已知集合A ={x |-1<x <5},B ={x |2<x <3},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率为( )A.16 B.13 C.23D.45解析:选A.A ∩B ={x |2<x <3},因为集合A 表示的区间长度为5-(-1)=6,集合A ∩B 表示的区间长度为3-2=1, 所以事件“x ∈A ∩B ”的概率为16,故选A.2.(2019·湖南省张家界市期末联考)如图是一个中心对称的几何图形,已知大圆半径为2,以半径为直径画出两个半圆,在大圆内随机取一点,则此点取自阴影部分的概率为( )A.π8B.18C.12D.14解析:选D.由题意知,大圆的面积为S =π·22=4π;阴影部分的面积为S ′=12π·22-π·12=π,则所求的概率为P =S ′S =π4π=14.故选D.3.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.13B.23C.12D.34解析:选B.先求点P 到点O 的距离小于或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于或等于1的概率为23π2π=13,故点P 到点O 的距离大于1的概率为1-13=23.4.(2017·高考江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 答案:595.(2019·福建省三明市质量检测)如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,它是由正方形ABCD 中四个全等的直角三角形和一个小正方形EFGH 构成.现设直角三角形的两条直角边长为3和4,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为________.解析:因为直角三角形的两条直角边长为3和4,所以正方形ABCD 的边长为a =32+42=5,所以S 正方形ABCD =a 2=25,所以S 正方形EFGH =S 正方形ABCD -4S △ABF =25-4×12×3×4=1,因此,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为P =S 正方形EFGH S 正方形ABCD =125.答案:1256.在一个大型商场的门口,有一种游戏是向一个画满边长为5 cm 的均匀方格的大桌子上掷直径为2 cm 的硬币,如果硬币完全落入某个方格中,则掷硬币者赢得一瓶洗发水,请问随机掷一个硬币正好完全落入方格的概率有多大?解:如图,边长为5 cm 的正方形形成的区域表示试验的所有基本事件构成的区域,当硬币的中心落入图中以3 cm 为边长的正方形区域时,则试验成功,所以,随机地投一个硬币正好完全落入方格的概率为P =3252=925.[B 能力提升]7.(2019·河北省沧州市期末考试)如图,边长为23的正三角形ABC 内接于圆O ,点P 为弧AC 上任意一点,则△PBC 的面积大于3的概率为________.解析:因为△ABC 的边长为23,所以△ABC 的高为3,设外接圆O 的半径为r ,则2r =23sin π3=4,所以r =2,所以O 点到BC 的距离为1,过点O 作直线与BC 平行交弧AC 于点D ,△DBC 的面积恰好为3,所以点P 由D 点向A 点移动的过程中,△PBC 的面积越来越大;点P 由D 点向C 点移动的过程中,△PBC 的面积越来越小,因此,为使△PBC 的面积大于3,只需点P 由D 点向A 点移动,所以由几何概型可知,△PBC 的面积大于3的概率等于∠AOD 与角∠AOC 大小之比.因为∠AOD =π2,∠AOC =2π3,所以△PBC 的面积大于3的概率为P =π22π3=34.答案:348.(选做题)如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个等分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,ON ,OM ,OP ,取线段MP 的中点D ,则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分(不在MP 上)时,△SAB 的面积才能大于82,而S 阴影=S扇形MOP -S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π.。