沪教版八年级数学上册期中测试卷
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版八上数学期中综合测评一、填空题(共14小题;共70分)1. 求值:√9=.2. 化简:√(√3−2)2=.3. 如果二次根式√2−4x有意义,那么x的取值范围是.4. 请写出√x−6的一个有理化因式:.5. 计算:√8−√18=.6. 计算:√15÷2√5=.a−1和√2a−1是同类二次根式,则7. 如果最简二次根式√3+2bab=.8. 方程x2−3x=0的解是.9. 在实数范围内因式分解:2x2−3x−1=.10. 一元二次方程x2−2x+a=0有两个不相等的实数根,那么a的取值范围是.11. 当x=时,代数式x2−x的值为6.12. 不等式x−2<√2x的解集为.13. 某种药品,由原售价连续两次降价,每次下降的百分率相同.已知原售价是100元,降价两次后的售价是64元.设每次降价的百分率为x,可以列出方程.14. 设等腰三角形的三条边长分别为a,b,c,已知a=4,b,c是关于x的方程x2−6x+m=0的两个根,则m的值是.二、选择题(共4小题;共20分)15. 下列二次根式中,属于最简二次根式的是( )B. √0.5C. √5D. √50A. √1516. 下列方程是一元二次方程的是( )=0A. (x+3)(x−3)+4=0B. x2−1xC. 3x2−4y=0D. (x+1)(x−3)+4=x2+x17. 下列关于x的方程中,一定有实数解的是( )A. x2−x+1=0B. √2x2−2x+1=0C. x2−mx−1=0D. x2−x−m=018. 化简√nm2(m<0)的结果是( )A. √nm B. −√nmC. √−nmD. −√−nm三、解答题(共9小题;共63分)19. 计算:13√9x3−5x2√1x+6x√x4.20. 计算:√12−√3−1√3+1−√43.21. 解方程:2x2+1=2√6x.22. 用配方法解方程:2x2+8x−1=0.23. 解方程:3(x−7)2=2(x−7).24. 已知关于x的一元二次方程m4x2−(m+1)x+m=0有两个相等的实数根,求m的值,并求出此时方程的根.25. 某校计划种植一块面积为960平方米的长方形草坪,已知该长方形草坪的长比宽的2倍还多8米,问这个长方形草坪的长为多少米?26. 先化简,再求值:a 2−1a−1−√a2−2a+1a−a,其中a=2+√3.27. 阅读以下材料:关于x的一元二次方程ax2+bx+c=0(a≠0),我们知道当判别式Δ=b2−4ac≥0时,这个方程的两个实数根可以表示为x=−b±√b2−4ac2a(求根公式),根据求根公式我们容易发现,如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1和x2,那么x1+x2=−ba ,x1⋅x2=ca,这就是一元二次方程根与系数的关系定理(又称韦达定理).利用一元二次方程的根与系数的关系定理我们可以不解方程直接求出方程的两根之和与两根之积.例如,如果x1和x2是方程x2−3x−10=0的两个实数根,那么x1+x2=−ba =3,x1⋅x2=ca=−10.回答下列问题(直接写出结果):(1)已知x1和x2是方程2x2+4x−7=0的两个实数根,那么x1+ x2=,x1⋅x2=,x12+ x22=;(2)如果a和b是方程x2+2x−2012=0的两个实数根,那么代数式a2+ 3a+b的值为.答案第一部分 1. 3 2. 2−√3 3. x ≤12 4. √x −6 5. −√2 6. √32 7. 38. x 1=0,x 2=3 9. 2(x −3+√174)(x −3−√174)10. a <1 11. 3 或 −2 12. x >−2−2√2 13. 100(1−x )2=64 14. 8 或 9第二部分 15. C 16. A 17. C 18. B第三部分 19. −x √x . 20. 73√3−2. 21. x 1=√6+22,x 2=√6−22. 22. x 1=3√22−2,x 1=−3√22−2.23. x 1=7,x 2=233.24. m =−12,x 1=x 2=−2. 25. 48 米.26. 5.27. (1)−2;−7;112(2)2010。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版数学八上期中测试卷一、填空题(共14小题;共70分)1-当X _________________ 时,√xT5是二次根式. 2. 化简:V16ab i(α > 0) = ______________ .3. √=64 + √64=_______________ .4. 分母有理化:7J π= --------------------------------------- •5. 计算:(W+ 2)'(% —2)°= ______________ .6. 计算:(32 + 42)7=________________ .7. 方程X 2-2√3X + 3 = 0 中,根的判斷式△= ___________________________ . 8. 方程2X 2-3X -2 = 0 的根的情况是 ________________________ . 9. 方程x 2-3x-2Ar = O没有实数根,则k 的取值范囲是 _____________________ .10. 如果最简二次根式√3x -10和√5同类根式,那么X= ____________________________ . 11. 在实数范囲内分解因式X 2-3= ______________________ .12. 正比例函数y = kx 过点A (3, —2),则该函数解析式是 __________________________ . 13. 正比例函数y = (3a-2)x 的图象过第一、三象限,则a 的取值范围是 _________________ •14. 已知点Λ在函数y = -(k≠O) 上,过点Λ作两坐标轴的垂线,垂足分别为・\M 9 N 9且由四点 O, A 9 M 9 N 所囲成的四边形的而积是12 ,则k 的值 是 .二. 选择题(共4小题;共20分) 15. 下列说法正确的是(•.)18.如果二次三项式^X 2 + 3X + 4 在实数范围内能分解因式,则m 的取值范围是A.任何数的平方根都有两个B.负数没有平方根C.只有正数才有平方根 16. “\/-十可以化简为(..)A. — J_aB. Q_aD.正数的两个平方根互为倒数C. — y/uD ・ ∖fu17.下列各数中,不能使√(x -5)2 = 5-x成立的X 的取值是(. A. 6B. 5C. 4D. 3A W<4 且 w≠°B. /n 0 O9 D. O < /H ≤ —或 m < O10 三、解答题(共9小题;共63分) 计算题・(1) √0W6- √(-l)3+ √(≡2) + √3 × √5 ÷ .20.请回答:(1) √1.96×105∙√4×10-2 ;(2) (2√5)2 + l√32 + ^-l√5∂2Λ∕^- 3√^ + (√z ^) × √z5 +23. 解方程:√3 (x + √3) = √2 (x - √2)24. 如图,正比例函数y = k λx 的图象与反比例函数y =-的图象交于A 9 B 两・\点,点A 坐标为(√I2√J) •C. 91619.21. 22. (√5 + 2)(2 - √5) +1 ______ 3 3- √7 ^ √7 + 2(2)(1) 分别求出这两个函数的解析式;(2) 求点B的坐标•25. 已知y = y i + y2, y↑与X成正比例,2y = 一4 : X = 3时,7 = 6亍,求『与兀},2与X成反比例,且当X = -I时, 之间的函数关系式•26.已知X是√3-√2的相反数,y是√3-√2的倒数,求X I-Xy + y2的值.(2)若P 为射线OA 上的一点,则:① 设P 点横坐标为X, ΔOPB 的而积为S,写出S 关于 指出自变量X 的取值范围;② 当'POB 是直角三角形时,求P 点坐标•点B 坐标为(4.0).的函数解析式,答案第一部分1.2-52. 3. 4.4bVab 4√5-25.√5 + 26. 7.5 O8.有两个不相等的实数根f 99.k <——810.511.(X + (X —12.2丿=_亍X213. a > —3 14.±12第二部分15.B16.17.A A18.D第三部分19.(1) 3.04(2) - + 3√3"20.(1) 28√Tθ .(2) 20 + √2 .21.24∣-√5 ・O22.5 √7 2 " "F •23.% = -5√3-5√2 •24. (1) y = - 9 y = 2x .X Z(2) (-√3.-2√3).225. y = 2x + -・X26. X = —y/3 - 41 , y= √3 —χ∕2 , X I-Xy^r y1 =. 1127. (1) y = 2x .(2)① S = 4x(x>0).②PI (F ,尸2 (4.8).。
沪教版八年级期中试卷数学
考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列数中,是平方数的是()A. 5.25B. 2.25C. 1.25D. 0.252. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形3. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x4. 在△ABC中,∠A = 45°,∠B = 90°,则∠C的度数是()A. 45°B. 90°C. 135°D. 180°5. 下列方程中,无解的是()A. 2x + 3 = 7B. 5x - 2 = 3C. 3x + 4 = 0D. 2x - 5 = 56. 下列分数中,最小的是()A. 1/2B. 1/3C. 1/4D. 1/57. 下列数中,是质数的是()A. 16B. 15C. 14D. 138. 下列运算中,结果是正数的是()A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. 2 × 39. 下列图形中,是平行四边形的是()A. 正方形B. 等腰梯形C. 等边三角形D. 长方形10. 下列数中,是整数的是()A. 2.5B. 3.14C. 2.01D. 2二、填空题(每题3分,共30分)11. 0.2的平方根是______。
12. 3a - 5b = 7,若a = 3,则b = ______。
13. (x + 2)^2 = 16,则x = ______。
14. 下列图形中,是圆的是______。
15. 下列数中,是勾股数的是______。
16. 下列方程中,解为x = 2的是______。
17. 下列函数中,y随x增大而减小的函数是______。
18. 下列数中,是偶数的是______。
19. 下列图形中,是正方形的是______。
沪教版八年级上册数学期中测试(含答案)
沪教版八年级上册数学期中模拟测试姓名_______ 学号__________成绩_________一.选择题(每题3分,共15分)1.的最小值是是有理数,则已知42a 2+-a a ( )8 D.6 C.5 B .3A.2.关于x 的一元二次方程0m x 2x 2=-+有实数根,则m 的取值范围是( )A.m ≥-1B.m >-1C.m ≤-1D.m <13.方程02x 2-x x =-+)(的两个根为( )A.x=-1B. x=-2C.x 1=1,x 2=-2D.x 1=-1,x 2=24.下列等式中,计算正确的是( ) A.yx 1y 1x 1+=+ B.q p )q p -3532-=( C.ab b ·a = D.ab b a b a 2222++=+)( 5.下列各式中互为有理化因式的是( ) A.b a b a -+和 B.1x 1x ---和 C.25-25+-和 D.b y -a x b y a x 和+二.填空题(每空2分,共30分)6.计算:已知x 2+y 2-4x+6y+13=0,则x+y=_______7.若2<x<3,则______|3x |2x 2=-+-)(8.若b<0,化简式子:______ab b a 33=-9.马大姐要用13米长的篱笆围成一个面积为20米的长方形土地,其中一面靠墙,那么长、宽分别是______、 _______(写出一种答案即可)10. 多项式3kx 2+(6k -1)x+3k+1(k ≠0)在实数范围内可以分解因式时,实数k 的取值范围是________11. 分母有理化:______312=+ 12. 计算:______5415-54=÷)( 13.若方程0m 3x 1-m 2x 22=++)(两根互为相反数,则m=_________ 14.在方程2x 32x 32=+中,______ac 4-b 2的值为15.如果5m x )1m (2x 22+++-是一个完全平方式,则m=________16.把式子yx y x -+分母有理化的结果是__________ 17.若m<0,化简______n m n2= 18.小杰把1000元压岁钱按一年的定期存入银行,到期后取出200元用来购买书和文具,剩下的800元和应得的利息又全部按一年的定期存入银行,若存款年利率为x ,这样到期后可得本利和(本金加利息之和)共得892.5元,由题意列方程为_____________________19.已知6x x -96x x 9-=--,且x 为偶数,那么1-x 4x 5-x x 122++)(的值为___________ 三、计算题(20、21题每题5分,22、23题6分,23、24题8分,共30分) 20.3-2762+⨯ 21.π)(-3-322120++22. 解方程:(用公式法)a x x 22=-23.已知01x 3x2=+-,求2x 1x 22-+的值.24.03-x 1-22x 22-32=+)()(四、解答题(25,26题8分,27题9分,共计25分)25.有一块长为32米,宽为20米的长方形绿地,准备修筑同样宽的三条直路,把绿地分成六块,种植不同的花草,要使绿地面积为504㎡,求小道的宽度.26.某工厂生产某种产品,今年生产200件,计划通过技术改造,使今后两年的产量比前一年增长一个相同的百分数,这样三年的总产量达到1400件,求这个百分数.27. 已知关于x 的方程0)1k (kx 2x k 22=++++)(,(1)如果此方程有一个实数根,求k 的值;(2)如果此方程有两个实数根,求k 的取值范围;(3)如果此方程无实数根,求k 的取值范围.沪教版八年级上册数学期中模拟测试答案1.A2.A3.D4.C5.B6.17.18.ab a b )(-9. 2.5,8或4,5 10.k ≤241 11.1-3 12.34- 13.-1 14. 36 15. 2 16.y -x y x 22- 17.m n 2- 18.[1000(1+x )-200]·(1+x )=892.5 19. 6 20.分)(解:原式233362⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-+⨯=分)(23-3332⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(134⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=21. 分)()(解:原式21-3-2232⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(21-32-432⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=分)(13⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=22. 分)(10a x x 22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=--分)(2a 412⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=∆分)(22a 411x 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+±=.2a 411x 2+±=∴原方程的解为:…………………………(1分)23.分)(分)(分)分)(分)(152x 1x 17x 1x 1(92x 1x 1.3x 1x 2.x 31x ,01x 3x 22222222⋯⋯⋯⋯⋯⋯⋯⋯=-+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=++∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴⋯⋯⋯⋯⋯⋯⋯⋯=+∴=+-24.分)()()解:由原方程得:(203-x 1-22x 122-22⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++ 分)(141x )12(2]x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-+-分)(14]1x )12[(2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-21x 1-2±=+)开方得:(…………………………(1分) x 1=分)(13-23-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x 2=12+…………………………(1分).12x ,323x 21+=--=∴原方程的解为…………………………(1分) 25.分)(米答:所以路宽分)((舍去)分)(分)(分)(分)(分)()()(分)(米解:设路宽是12134x ,2x 1034)-x )(2x (1068x 36x 10136x 72-x 21504x 2x 32-x 406401504x 2-32·x -201.x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==⋯⋯⋯⋯=-⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=+⋯⋯⋯⋯⋯⋯=+-⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26.分)(答:这个百分数为分)((舍去)分)(或分)(分)(分)((:方程两边同时除分)()()(分)(解:设这个百分数是1%10014x ,1x 101-x 04x 10)1x )(4x (10)x 21)(x 31(106)x 1()x 17)x 1()x 1(120021400x 1200x 12002001x 21222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯==+∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+-++⋯⋯⋯⋯⋯⋯⋯⋯=-+++=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=++++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27.分)(解得:分)())(()即(分)(时,方程无实数根)当(分)(且解得:分)(且()(,需满足:)若方程有两个实数根(分)(时,当分)(,解得此时,,方程只有一个实数根)当方程是一次方程时(132k 101k k 24-k 210312k 32k 20k 20,1)k)(k 24-k 22104-k 22k 22k 0k 2122⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯->⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<++⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯<∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-≠-≤⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≥+≥++=∆⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯≠=-=⋯⋯⋯⋯⋯⋯⋯⋯-==+。
沪教版八年级(上)期中数学试卷(含解析)
八年级(上)期中数学试卷一、精心选一选(本大题共12小题;每小题3分,共36分;在每小题提供的四个选项中,只有一个是正确的)1.在平面直角坐标系中,点P (0,5)在( )A .第一象限B .第二象限C .x 轴D .y 轴2.在函数y =√2−x 中,自变量x 的取值范围是( )A .x ≠2B .x ≤2C .x >2D .x ≥23.已知点A (a +1,4),B (3,2a +2),若直线AB ∥x 轴,则a 的值为( )A .2B .1C .﹣4D .﹣34.如图,直角△ABC 中,∠A =45°,∠CBD =60°,则∠ACB 的度数等于( )A .10°B .15°C .30°D .45°5.若a 、b 、c 为△ABC 的三边长,且满足|a ﹣4|+√b −2=0,则c 的值可以为( )A .5B .6C .7D .86.一个正比例函数的图象经过点(4,﹣2),它的表达式为( )A .y =﹣2xB .y =2xC .y =−12xD .y =12x7.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是( )A .x >﹣4B .x >0C .x <﹣4D .x <08.下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线9.直线y =2x +2沿y 轴向下平移5个单位后得到的直线解析式为( )A .y =2x ﹣3B .y =2x +7C .y =2x +8D .y =2x +1210.关于函数y =﹣2x +1,下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当x >12时,y <0D .y 随x 的增大而增大11.已知等腰三角形的一边长是9cm ,另一边长是5cm ,那么这个等腰三角形的周长是( )A .19cmB .23cmC .16cmD .19cm 或23cm12.如图,△ABC 顶点坐标分别为A (1,0)、B (4,0)、C (1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )A .4B .8C .8√2D .16二、填空题(本大题共6小题,每小题3分,共18分.)13.已知一次函数y =﹣x +b 的图象过点P (2,4),则b = . 14.如图,已知函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得方程组{2x −y +b =0ax −y −3=0的解是 .16题图14题图15.已知:点A (x 1,y 1),B (x 2,y 2)是一次函数y =﹣2x +5图象上的两点,当x 1>x 2时,y 1 y 2.(填“>”、“=”或“<”)16.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .当∠A =70°时,则∠BPC 的度数为 .17.将命题“同角的补角相等”改写成“如果…那么…”形式为.18.在平面直角坐标系中,点A1(1,1),A2(3,4),A3(5,9),A4(7,16),…,用你发现的规律确定A10的坐标为.三、耐心解一解(本大题共6小题,满分46分)19.已知点A(3,0)、B(0,2)、C(﹣2,0)、D(0,﹣1)在同一坐标系中描出A、B、C、D各点,并求出四边形ABCD的面积.20.已知直线y=2x+3,求:(1)直线与x轴,y轴的交点坐标;(2)若点(a,1)在图象上,则a值是多少?21.在△ABC中,若∠A:∠B:∠C=2:3:4,求∠A,∠B和∠C的度数.22.如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.23.△ABC中,AD平分∠BAC,AE⊥BC,垂足为E.∠B=38°,∠C=70°.求∠DAE的度数.24.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A 城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.参考答案与试题解析一、精心选一选(本大题共12小题;每小题3分,共36分;在每小题提供的四个选项中,只有一个是正确的)1.在平面直角坐标系中,点P (0,5)在( )A .第一象限B .第二象限C .x 轴D .y 轴【解答】解:点P (0,5)在y 轴上,故选:D .2.在函数y =√2−x 中,自变量x 的取值范围是( )A .x ≠2B .x ≤2C .x >2D .x ≥2【解答】解:由函数y =√2−x 有意义,得2﹣x ≥0.解得x ≤2,故选:B .3.已知点A (a +1,4),B (3,2a +2),若直线AB ∥x 轴,则a 的值为( )A .2B .1C .﹣4D .﹣3【解答】解:∵直线AB ∥ox 轴,∴2a +2=4,解得a =1.故选:B .4.如图,直角△ABC 中,∠A =45°,∠CBD =60°,则∠ACB 的度数等于()A .10°B .15°C .30°D .45°【解答】解:∵∠CBD 是△ABC 的一个外角,∴∠ACB =∠CBD ﹣∠A =15°,故选:B .5.若a 、b 、c 为△ABC 的三边长,且满足|a ﹣4|+√b −2=0,则c 的值可以为() A .5 B .6 C .7 D .8【解答】解:∵|a ﹣4|+√b −2=0,∴a ﹣4=0,a =4;b ﹣2=0,b =2;则4﹣2<c <4+2,2<c <6,5符合条件;故选:A .6.一个正比例函数的图象经过点(4,﹣2),它的表达式为( )A .y =﹣2xB .y =2xC .y =−12xD .y =12x【解答】解:设该正比例函数的解析式为y =kx ,根据题意,得 4k =﹣2,k =−12.则这个正比例函数的表达式是y =−12x .故选:C . 7.如图,直线y =kx +b 与x 轴交于点(﹣4,0),则y >0时,x 的取值范围是()A .x >﹣4B .x >0C .x <﹣4D .x <0【解答】解:由函数图象可知x >﹣4时y >0.故选:A .8.下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线【解答】解:A 、是,因为可以判定这是个真命题;B 、是,因为可以判定其是真命题;C 、是,可以判定其是真命题;D 、不是,因为这是一个陈述句,无法判断其真假.故选:D .9.直线y =2x +2沿y 轴向下平移5个单位后得到的直线解析式为( )A .y =2x ﹣3B .y =2x +7C .y =2x +8D .y =2x +12【解答】解:∵向下平移5个单位,∴新函数的k =﹣2,b =2﹣5=﹣3,∴得到的直线所对应的函数解析式是:y =﹣2x ﹣3,故选:A .10.关于函数y =﹣2x +1,下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当x >12时,y <0D .y 随x 的增大而增大【解答】解:A 、当x =﹣2时,y =﹣2×(﹣2)+1=5≠1,故图象不经过点(﹣2,1),故此选项错误;B 、k =﹣2<0,b =1经过第一、二、四象限,故此选项错误;C 、由y =﹣2x +1可得x =−y−12,当x >12时,y <0,故此选项正确;D 、y 随x 的增大而减小,故此选项错误;故选:C .11.已知等腰三角形的一边长是9cm ,另一边长是5cm ,那么这个等腰三角形的周长是( )A .19cmB .23cmC .16cmD .19cm 或23cm【解答】解:①当腰是5cm 时,三角形的三边是:5cm ,5cm ,9cm ,能构成三角形,则等腰三角形的周长=5+5+9=19cm ;②当腰是9cm 时,三角形的三边是:5cm ,9cm ,9cm ,能构成三角形,则等腰三角形的周长=5+9+9=23cm ;因此这个等腰三角形的周长为19或23cm .故选:D .12.如图,△ABC 顶点坐标分别为A (1,0)、B (4,0)、C (1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )A .4B .8C .8√2D .16【解答】解:如图所示,当△ABC 向右平移到△DEF 位置时,四边形BCFE 为平行四边形,C 点与F 点重合,此时C 在直线y =2x ﹣6上,∵C (1,4),∴FD =CA =4,将y =4代入y =2x ﹣6中得:x =5,即OD =5,∵A (1,0),即OA =1,∴AD =CF =OD ﹣OA =5﹣1=4,则线段BC 扫过的面积S =S 平行四边形BCFE =CF •FD =16.故选:D .二、填空题(本大题共6小题,每小题3分,共18分.)13.已知一次函数y =﹣x +b 的图象过点P (2,4),则b = 6 .【解答】解:∵一次函数y =﹣x +b 的图象过点P (2,4),∴﹣2+b =4,解得b =6.故答案为:6.14.如图,已知函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),则根据图象可得方程组{2x −y +b =0ax −y −3=0的解是 {x =−2y =−5. 【解答】解:因为函数y =2x +b 和y =ax ﹣3的图象交于点P (﹣2,﹣5),所以方程组{2x −y +b =0ax −y −3=0的解为{x =−2y =−5. 故答案为{x =−2y =−5. 15.已知:点A (x 1,y 1),B (x 2,y 2)是一次函数y =﹣2x +5图象上的两点,当x 1>x 2时,y 1 < y 2.(填“>”、“=”或“<”)【解答】解:∵一次函数y =﹣2x +5中k =﹣2<0,∴该一次函数y 随x 的增大而减小,∵x 1>x 2,∴y 1<y 2.故答案为:<.16.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .当∠A =70°时,则∠BPC 的度数为 125° .【解答】解:∵△ABC 中,∠A =70°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣70°=110°,∴BP ,CP 分别为∠ABC 与∠ACP 的平分线,∴∠2+∠4=12(∠ABC +∠ACB )=12×110°=55°,∴∠P =180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.17.将命题“同角的补角相等”改写成“如果…那么…”形式为 如果两个角是同一个角的补角,那么这两个角相等 .【解答】解:“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.则将命题“同角的补角相等”改写成“如果…那么…”形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案是:如果两个角是同一个角的补角,那么这两个角相等.18.在平面直角坐标系中,点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,用你发现的规律确定A 10的坐标为 (19,100) .【解答】解:∵点A 1(1,1),A 2(3,4),A 3(5,9),A 4(7,16),…,∴点A 10的横坐标是2×10﹣1=19,纵坐标是102=100,∴A 10的坐标(19,100).故答案为:(19,100).三、耐心解一解(本大题共6小题,满分46分)19.已知点A (3,0)、B (0,2)、C (﹣2,0)、D (0,﹣1)在同一坐标系中描出A 、B 、C 、D 各点,并求出四边形ABCD 的面积.【解答】解:如图所示:S ABCD =S △AOB +S △BOC +S △COD +S △AOD =12(3×2+2×2+2×1+1×3)=152. 所以,四边形ABCD 的面积为152.20.已知直线y =2x +3,求:(1)直线与x 轴,y 轴的交点坐标;(2)若点(a ,1)在图象上,则a 值是多少?【解答】解:(1)令y =0,则2x +3=0,解得:x =﹣1.5;令x =0,则y =3.所以,直线与x 轴,y 轴的交点坐标坐标分别是(﹣1.5,0)、(0,3);(2)把(a ,1)代入y =2x +3,得到2a +3=1,即a =﹣1.答:(1)直线与x 轴,y 轴的交点坐标坐标分别是(﹣1.5,0)、(0,3);(2)若点(a ,1)在图象上,则a 值是﹣1.21.在△ABC 中,若∠A :∠B :∠C =2:3:4,求∠A ,∠B 和∠C 的度数.【解答】解:设∠A =2x °,则∠B =3x °,∠C =4x °.∴2x +3x +4x =180(三角形内角和定理)解方程,得x =20∴∠A =2×20°=40°∠B =3×20°=60°∠C =4×20°=80°.22.如图,直线l 1在平面直角坐标系中与y 轴交于点A ,点B (﹣3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.【解答】解:(1)由平移法则得:C 点坐标为(﹣3+1,3﹣2),即(﹣2,1).设直线l 1的解析式为y =kx +c ,则{3=−3k +c 1=−2k +c ,解得:{k =−2c =−3, ∴直线l 1的解析式为y =﹣2x ﹣3.(2)把B 点坐标代入y =x +b 得,3=﹣3+b ,解得:b =6,∴y =x +6.当x =0时,y =6,∴点E 的坐标为(0,6).当x =0时,y =﹣3,∴点A 坐标为(0,﹣3),∴AE =6+3=9,∴△ABE 的面积为12×9×|﹣3|=272. 23.△ABC 中,AD 平分∠BAC ,AE ⊥BC ,垂足为E .∠B =38°,∠C =70°.求∠DAE 的度数.【解答】解:∵∠B =38°,∠C =70°,∴∠BAC =180°﹣38°﹣70°=72°∵AD 平分∠BAC ,∴∠BAD =12∠BAC =36°∵AE ⊥BC ,∴∠BEA =90°.∵∠B =38°,∴∠BAE =180°﹣90°﹣38°=52°∴∠DAE =∠BAE ﹣∠BAD =52°﹣36°=16°.24.A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)当它们行驶了7小时时,两车相遇,求乙车的速度及乙车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;(3)当两车相距100千米时,求甲车行驶的时间.【解答】解:(1)设甲车行驶过程中y 与x 之间的函数解析式为y 甲=k 1x +b 1,当0≤x ≤6时,将点(0,0),(6,600)代入函数解析式得:{0=b 1600=6k 1+b 1,解得:{k 1=100b 1=0, ∴y 甲=100x ;当6≤x ≤14,将点(6,600),(14,0)代入函数解析式得:{600=6k 1+b 10=14k 1+b 1,解得:{k 1=−75b 1=1050, ∴y 甲=﹣75x +1050.综上得:y 甲={100x(0≤x ≤6)−75x +1050(6≤x ≤14). (2)当x =7时,y 甲=﹣75×7+1050=525,乙车的速度为:525÷7=75(千米/小时).∵乙车到达B 城的时间为:600÷75=8(小时),∴乙车行驶过程中y 乙与x 之间的函数解析式为:y 乙=75x (0≤x ≤8).(3)设两车之间的距离为W (千米),则W 与x 之间的函数关系式为:W =|y 甲﹣y 乙|={100x −75x =25x(0≤x ≤6)−75x +1050−75x =−150x +1050(6≤x ≤7)75x −(−75x +1050)=150x −1050(7≤x ≤8)600−(−75x +1050)=75x −450(8≤x ≤14), 当W =100时,有{25x =100(0≤x ≤6)−150x +1050=100(6≤x ≤7)150x −1050=100(7≤x ≤8)75x −450=100(8≤x ≤14), 解得:x 1=4,x 2=613,x 3=723. 答:当两车相距100千米时,甲车行驶的时间为4、613或723小时.。
沪教版八年级上数学期中试卷
沪教版八年级上数学期中试卷一、选择题共15小题,每题2分,共30分。
从每小题的四个选项中,选出一个能填入题干空白处的最佳答案。
1.设a、b为不等于0的实数,则a/b的倒数是()A. b/aB. -a/bC. 1/aD. 1/b2.分式(1/3) - (2/3)的值是() A. -1/3 B. 1/3 C. -1 D.13.化简2(3a - 4b) + 4(b - a)为() A. -2a B. 2a - 4b C.6a - 6b D. 6a - 8b4.解方程5x + 3 = 18的解是() A. x = 3 B. x = 5 C. x= 9 D. x = 155.数n在数轴上的坐标是3,它在原点的对称点是()A. 3B. 0C. -3D. -66.下面哪个图形是一个三角形? A. 正方形图形 B. 长方形图形 C. 圆形图形 D. 三角形图形7.在平行四边形ABCD中,若4∠A + 3∠B = 360°,则∠A + ∠C是() A. 60° B. 90° C. 120° D. 180°8.若一辆车经过一个长为200米的隧道时,车长占据了一半的长度,这辆车的长度是() A. 200米 B. 100米 C. 400米 D. 300米9.关于两个实数a、b的平方根性质,下列说法错误的是() A. 一个正数的平方根只有一个 B. 一个负数的平方根是负数 C. 一个负数的平方根是虚数 D. 一个正数的平方根可以为正数或负数10.下列关于比例的定义,错误的是() A. 两个比例中,等比例大小的两个值的比等于两个比例中其他值的比 B. 两个比例中,两个比例的比相等 C. 两个比例中,等比例对应的项成比例 D. 两个比例中,各项成比例的前提是这两个比例相等11.一个数与它的百分之40的和等于65,这个数是()A. 130B. 65C. 40D. 5012.Xiao Ming tells you that the price of a product has risen by 15%. You ask him what the new price is. He tells you the new price is the price before the increase plus 0.15 times the price before the increase. What relationship between the old price and the new price is he assuming? A.The new price is 1.15 times the old price. B. The new priceis 0.15 times the old price. C. The new price is 85% of theold price. D. The new price is 150% of the old price.13.For a given regular polygon, the ratio of the measure of an exterior angle to an interior angle is 2:7. What is the number of sides in the regular polygon? A. 7 B. 5 C. 9 D. 814.Sophie went to the store and spent 25% of her money. Then she went to the pharmacy and spent 30% of the money she had left. What percent of her original amount of money did she spend in total? A. 55% B. 15% C. 55.75% D. 50%15.If x:y = 8:3, y:z = 7:4 and z = 16, then x equals to ( ) A.32 B. 64 C. 72 D. 48二、填空题共5小题,每题2分,共10分。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版八上数学期中测试卷一、填空题(共15小题;共60分)1. 求值:√18=.2. 若最简二次根式√2a+5b+3与2√3是同类二次根式,则a+ b=.3. 不等式(1−√2)x<1的解集为.4. 如果f(x)=xx−1,那么f(3)=.5. 等式√x2−9=√x−3⋅√x+3成立的条件是.6. 实数a,b在数轴上的对应点如图所示,则∣a−b∣+√a2的结果为.7. 方程x2+2x=0的根是.8. 若关于x的一元二次方程(m−1)x2+x+m2+2m−3=0有一个根为零,则m的值为.9. 当k时,关于x的方程3x2−2x+k−1=0有两个实数根.10. 在实数范围内分解因式:x2−6x+2=.11. 函数y=√3x−2的定义域是.12. 已知y是x的正比例函数,且当x=2时,y=1,则y关于x的函数表达式为.13. 已知正比例函数y=(3k−1)x,若y随x的增大而增大,则k的取值范围是.14. 一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,则x=.15. 对于实数a,b,定义运算“∗”:a∗b={a2−ab,a≥bab−b2,a<b.例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−7x+12=0的两个根,则x1∗x2=.二、选择题(共5小题;共20分)16. 下列结论中正确的有( )(1)√6m(a2+b2)不是最简二次根式;是同类二次根式;(2)√8a与√12a(3)√a与√a互为有理化因式;(4)(x−1)(x+2)=x2是一元二次方程.A. 0个B. 1个C. 2个D. 3个17. 一元二次方程x2+2x+2=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 无实数根18. 点A(x1,y1),B(x2,y2)在直线y=−3x上,且x1<x2,则( )A. y1<y2B. y1=y2C. y1>y2D. 无法比较y1,y2的大小19. 在水管放水的过程中,放水的时间x(分钟)与流出的水量y(m3)是两个变量.已知水管每分钟流出的水量是0.2m3,放水的过程共持续10分钟,则y关于x的函数图象是( )A.B.C.D.20. 定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)为“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A. a=cB. a=bC. b=cD. a=b=c三、解答题(共9小题;共72分)21. 计算:2a √4a+√1a−2a√1a3.22. 计算:2√6x7÷4√x33÷12√x2.23. 解方程:2x(x−2)=x2−3.24. 用配方法解方程2x2−4x−7=0.25. 先化简,再求值:x+1x ÷(x−1+x22x),其中x=√2+1.26. 已知a,b,c分别是△ABC的三边,其中a=1,c=4,且关于x的方程12x2−bx+3b−4=0有两个相等的实数根,试判断△ABC的形状.27. 已知:正比例函数y=kx(k≠0)过A(−2,3).(1)求比例系数k的值;(2)在x轴上找一点P,使S△PAO=6,并求点P的坐标.28. 如图,要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙垂直的一边要开一扇2米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库的宽和长分别为多少?29. 如图①所示,在平面直角坐标系中,点A的坐标为(−9,0),直线l的解析式为y=−2x,在直线l上有一点B使得△ABO的面积为27.(1)求点B的坐标;(2)如图②,当点B在第二象限时,四边形OABC为直角梯形,OA∥BC,求梯形OABC的面积;(3)在(2)的条件下是否存在直线m经过坐标原点O,且将直角梯形OABC 的面积分为1:5的两部分?若存在,请直接写出直线m的解析式;若不存在,请说明理由.答案第一部分1. 3√22. −23. x>−1−√24. 325. x≥36. b−2a7. x1=0,x2=−28. −39. ≤4310. (x−3−√7)(x−3+√7)11. x≥2312. y=12x13. k>1314. 20%15. 4或−4第二部分16. C17. D18. C19. C20. A第三部分21. 3a√a.22. 6x√x.23. x1=1,x2=3.24. x1=1+32√2,x2=1−32√2.25. 原式=2x−1=√2.26. △ABC 为等腰三角形.27. (1) k =−32.(2) P (4,0) 或 P (−4,0).28. 这个仓库的宽为 10 米,长为 14 米.29. (1) 点 B 的坐标为 (3,−6) 或 (−3,6).(2) 36.(3) y =−3x 和 y =−423x .。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版八上数学期中测试一、选择题(共6小题;共24分)1. 下列二次根式中是最简二次根式的是A. B. C. D.2. 在下列二次根式中,与是同类二次根式的是A. B. C. D.3. 若,则的取值范围是A. B. C. D. 一切实数4. 方程的根的情况是A. 有两个不相等实根B. 有两个相等实根C. 没有实数根D. 有实数根5. 已知函数的图象过点,图象上有两点,,如果,那么A. B. C. D.6. 如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为B. D.二、填空题(共13小题;共52分)7. 函数的定义域是.8. 化简得.9. 方程的根是.10. 不等式的解集是.11. 若关于的方程有两个实数根,则的取值范围是.12. 当时,代数式和的值互为相反数.13. 在实数范围内因式分解:.14. 如果正比例函数的图象经过第二、四象限,那么的取值范围是.15. 已知与成反比例,当时,,则关于的函数解析式为.16. 上海玩具厂月份生产玩具个,后来生产效率逐月提高,月份生产玩县个,设平均每月增长率为,则可列方程.17. 如图,大正方形被分成两个小正方形和两个长方形,如果两个小正方形的面积分别为和,那么这个大正方形的面积为.18. 若关于的一元二次方程的一个根是,则.19. 如图,反比例函数,点是它在第二象限内的图象上一点,垂直轴于点,如果的面积为,那么该函数的解析式为.三、解答题(共11小题;共77分)20. .21. 化简:.22. 用配方法解方程.23. 解方程.24. 已知,,求的值.25. 已知关于的一元二次方程有实数根,求的最大整数解.26. 如图,在平面直角坐标系中,点为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点,连接,,.(1)求反比例函数的解析式;(2)求的面积.27. 已知矩形的顶点在正比例函数的图象上,点在轴上,点在轴上,反比例函数的图象与边相交于点,与边交于,且,求反比例函数解析式及点的坐标.28. 将进货单价为元的商品按元售出时,能卖出件,已知这种商品每涨元,其销售量就减少件.如果希望能获得利润元,那么售价应定多少元?这时应进货多少件?29. 有一块长米,宽米的长方形绿地,其中有三条笔直的道路(图中阴影部分道路的一边与长方形绿地的一边平行,且道路的出入口,,,,,的长度相同),其余的部分种植绿化,已知道路的面积为平方米,求道路出入口的宽度.30. 已知,且与成正比例,与成反比例,又当,时,的值均为,求与的函数解析式.答案第一部分1. D2. C3. B4. A5. B6. A第二部分7. 且8.9. ,10.11. 且或13.14.15.16.17.19.第三部分.21. .22. ,.23. ,.24. 化简得,,所以.25. 因为,所以,所以的最大整数解是.26. (1)设点的坐标为,则点的坐标为,因为点为线段的中点,所以点的坐标为.又点,均在反比例函数的图象上,则解得所以反比例函数的解析式为.(2)过作,易证,所以.27. 将代入,得,解得,从而求得点的坐标为.又因为,所以,,从而求得点的坐标为,所以反比例函数的解析式为.设点的坐标为,将代入,解得,所以点的坐标为.28. 设每种商品涨元,原来每件利润元.由题意列方程得,解得,.当时,,;当时,,.答:当每件定价元时,应进货件;当每件定价元时,应进货件,都可以获得利润元.29. 设道路出入口宽度为,则解得30. 设,,所以,因为时,都是,所以解得所以,与的函数解析式为.。
沪科版八年级数学上册期中测试卷(含答案)
期中检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点(-7,-2m+1)在第三象限,则m的取值范围为A.m<12B.m>-12C.m<-12D.m>122.已知△ABC平移后得到△A1B1C1,且A1(-2,3),B1(-4,-1),C1(m,n),C(m+5,n+3),则A,B两点的坐标分别为A.(3,6),(1,2)B.(-7,0),(-9,-4)C.(1,8),(-1,4)D.(-7,-2),(0,-9)3.对于直线y=kx+b,若b减小一个单位,则直线将A.向左平移一个单位B.向右平移一个单位C.向上平移一个单位D.向下平移一个单位4.一次函数y=ax+b的图象过第一、二、四象限,则结论中正确的是A.a<0,b<0B.a<0,b>0C.a>0,b>0D.a>0,b<05.下列命题中是假命题的为A.如果|a|=a,那么a≥0B.如果a2=b2,那么a=b或a=-bC.如果ab>0,那么a>0,b>0D.如果a3<0,那么a是一个负数6.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于A.315°B.270°C.180°D.135°7.早上,小明以一个较快的速度匀速赶往学校,上午在教室里上课,中午以较慢的速度匀速回家,下列图象能大致反应这一过程的是8.在平面直角坐标系中,对于平面内任意一点(a ,b ),若规定以下三种变换:①△(a ,b )=(-a ,b );②O (a ,b )=(-a ,-b );③Ω(a ,b )=(a ,-b ).按照以上变换有:△(O (1,2))=(1,-2),那么O (Ω(3,4))等于 A .(3,4)B .(3,-4)C .(-3,4)D .(-3,-4)9.一个装有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示.则每分钟出水量及从某时刻开始的9分钟时容器内的水量分别是 A .154升,1054升 B .54升,1054升 C .154升,25升 D .54升,454升10.如图,在△ABC 中,∠BAC=90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法正确的是①S △ABE =S △BCE ;②∠AFG=∠AGF ;③∠FAG=2∠ACF ;④BH=CH.A.①②③④B.①②③C.②④D.①③二、填空题(本大题共4小题,每小题5分,满分20分) 11.函数y=√2-x 中自变量x 的取值范围是 .12.已知一个三角形的三边长为2,5,a ,且此三角形的周长为偶数,则a= .13.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分钟).y甲,y乙与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距千米.14.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+2)叫做点P的衍生点.已知点A1的衍生点为A2,点A2的衍生点为A3,点A3的衍生点为A4,…,这样依次得到点A1,A2,A3,…,A n.若点A1的坐标为(a,b),点A2019在第四象限,则a,b的取值范围分别为.三、(本大题共2小题,每小题8分,满分16分)15.如果|3x-13y+16|+|x+3y-2|=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在坐标平面内的什么位置?16.写出下列命题的逆命题,并判断原命题与逆命题的真假.(1)如果|a|=|b|,那么a=b;(2)如果a>0,那么a2>0;(3)同旁内角互补,两直线平行.四、(本大题共2小题,每小题8分,满分16分)17.△ABC和△A'B'C'在平面直角坐标系中的位置分别如图所示.(1)直接写出A,B,C三点的坐标;(2)△ABC由△A'B'C'经过怎样的平移得到?(3)求△ABC的面积.18.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的表达式;(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x-4>kx+b的解集.五、(本大题共2小题,每小题10分,满分20分)19.如图,∠DBC=2∠ABD,∠DCB=2∠ACD,若∠BDC=∠α+2∠A,求∠α的度数.320.如图,已知直线l1经过点A(-1,0)与点B(2,3),另一条直线l2经过点B,且与x轴相交于点P(m,0).(1)求直线l1的表达式;(2)若△APB的面积为3,求m的值.六、(本题满分12分)21.嘉淇同学大学毕业后借助低息贷款创业,他向银行贷款30000元,分12个月还清贷款,月利率是0.2%,银行规定的还款方式为“等额本金法”,即每月除归还等额的本金为30000÷12=2500元外,还需要归还本月还款前的本金的利息,下面是还款的部分明细.第1个月,由于本月还款前的本金是30000元,则本月应归还的利息为30000×0.2%=60元,本月应归还的本息和为2500+60=2560元;第2个月,由于本月还款前的本金是27500元,则本月应归还的利息为27500×0.2%=55元,本月应归还的本息和为2500+55=2555元.…根据上述信息:(1)在空格处直接填写结果:(2)设第x个月应归还的利息是y元,求y关于x的函数表达式,并写出x的取值范围.(3)嘉淇将创业获利的2515元用于还款,则恰好可以用于还清第几个月的本息和?七、(本题满分12分)22.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.八、(本题满分14分)23.(1)如图1,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于点D,AE平分∠BAC,求∠EAD的度数;(2)将上题中“∠B=40°,∠C=80°”改为“∠C>∠B”,其他条件不变,你能找到∠EAD与∠B,∠C 之间的数量关系吗?请直接写出它们之间的数量关系式;(3)如图2,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,这时∠EFM与∠B,∠C之间又有何数量关系?为什么?期中检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点(-7,-2m+1)在第三象限,则m的取值范围为A.m<12B.m>-12C.m<-12D.m>122.已知△ABC平移后得到△A1B1C1,且A1(-2,3),B1(-4,-1),C1(m,n),C(m+5,n+3),则A,B两点的坐标分别为A.(3,6),(1,2)B.(-7,0),(-9,-4)C.(1,8),(-1,4)D.(-7,-2),(0,-9)3.对于直线y=kx+b,若b减小一个单位,则直线将A.向左平移一个单位B.向右平移一个单位C.向上平移一个单位D.向下平移一个单位4.一次函数y=ax+b的图象过第一、二、四象限,则结论中正确的是A.a<0,b<0B.a<0,b>0C.a>0,b>0D.a>0,b<05.下列命题中是假命题的为A.如果|a|=a,那么a≥0B.如果a2=b2,那么a=b或a=-bC.如果ab>0,那么a>0,b>0D.如果a3<0,那么a是一个负数6.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于A.315°B.270°C.180°D.135°7.早上,小明以一个较快的速度匀速赶往学校,上午在教室里上课,中午以较慢的速度匀速回家,下列图象能大致反应这一过程的是8.在平面直角坐标系中,对于平面内任意一点(a ,b ),若规定以下三种变换:①△(a ,b )=(-a ,b );②O (a ,b )=(-a ,-b );③Ω(a ,b )=(a ,-b ).按照以上变换有:△(O (1,2))=(1,-2),那么O (Ω(3,4))等于 A .(3,4)B .(3,-4)C .(-3,4)D .(-3,-4)9.一个装有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示.则每分钟出水量及从某时刻开始的9分钟时容器内的水量分别是 A .154升,1054升 B .54升,1054升 C .154升,25升 D .54升,454升10.如图,在△ABC 中,∠BAC=90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法正确的是①S △ABE =S △BCE ;②∠AFG=∠AGF ;③∠FAG=2∠ACF ;④BH=CH.A.①②③④B.①②③C.②④D.①③二、填空题(本大题共4小题,每小题5分,满分20分) 11.函数y=√2-x 中自变量x 的取值范围是 x ≤2 .12.已知一个三角形的三边长为2,5,a ,且此三角形的周长为偶数,则a= 5 .13.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.电动车的速度始终不变.设甲与学校相距y 甲(千米),乙与学校相距y 乙(千米),甲离开学校的时间为x (分钟).y 甲,y 乙与x 之间的函数图象如图所示,则乙返回到学校时,甲与学校相距 20 千米. 14.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P'(-y+1,x+2)叫做点P 的衍生点.已知点A 1的衍生点为A 2,点A 2的衍生点为A 3,点A 3的衍生点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(a ,b ),点A 2019在第四象限,则a ,b 的取值范围分别为 a<-1,b>3 . 三、(本大题共2小题,每小题8分,满分16分)15.如果|3x-13y+16|+|x+3y-2|=0,那么点P (x ,y )在第几象限?点Q (x+1,y-1)在坐标平面内的什么位置?解:根据题意,得{3x -13y +16=0,x +3y -2=0,解得{x =-1,y =1.∴点P (-1,1)在第二象限,点Q (0,0)在坐标原点.16.写出下列命题的逆命题,并判断原命题与逆命题的真假. (1)如果|a|=|b|,那么a=b ; (2)如果a>0,那么a 2>0; (3)同旁内角互补,两直线平行. 解:(1)逆命题:如果a=b ,那么|a|=|b|. 原命题为假命题,逆命题为真命题. (2)逆命题:如果a 2>0,那么a>0. 原命题为真命题,逆命题为假命题. (3)逆命题:两直线平行,同旁内角互补. 原命题和逆命题都是真命题.四、(本大题共2小题,每小题8分,满分16分)17.△ABC 和△A'B'C'在平面直角坐标系中的位置分别如图所示. (1)直接写出A ,B ,C 三点的坐标;(2)△ABC 由△A'B'C'经过怎样的平移得到? (3)求△ABC 的面积.解:(1)A (1,3);B (2,0);C (3,1).(2)向右平移4个单位长度,再向上平移2个单位长度. (3)S △ABC =2.18.已知直线y=kx+b 经过点A (5,0),B (1,4). (1)求直线AB 的表达式;(2)若直线y=2x-4与直线AB 相交于点C ,求点C 的坐标; (3)根据图象,写出关于x 的不等式2x-4>kx+b 的解集. 解:(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴{5k +b =0,k +b =4,解得{k =-1,b =5,∴直线AB 的表达式为y=-x+5.(2)由已知得{y =-x +5,y =2x -4,解得{x =3,y =2.∴点C 的坐标为(3,2).(3)根据图象可得x>3.五、(本大题共2小题,每小题10分,满分20分)19.如图,∠DBC=2∠ABD ,∠DCB=2∠ACD ,若∠BDC=∠α+23∠A ,求∠α的度数.解:∵∠DBC=2∠ABD ,∠DCB=2∠ACD ,∴∠DBC=23∠ABC ,∠DCB=23∠ACB ,∵∠BDC=180°-(∠DBC+∠DCB )=180°-23(∠ABC+∠ACB )=180°-23(180°-∠A )=60°+23∠A ,∵∠BDC=∠α+23∠A ,∴∠α=60°.20.如图,已知直线l 1经过点A (-1,0)与点B (2,3),另一条直线l 2经过点B ,且与x 轴相交于点P (m ,0). (1)求直线l 1的表达式;(2)若△APB 的面积为3,求m 的值. 解:(1)y=x+1.(2)由已知可得S △APB =12×AP×3=32×|m+1|=3, 解得m=1或-3.六、(本题满分12分)21.嘉淇同学大学毕业后借助低息贷款创业,他向银行贷款30000元,分12个月还清贷款,月利率是0.2%,银行规定的还款方式为“等额本金法”,即每月除归还等额的本金为30000÷12=2500元外,还需要归还本月还款前的本金的利息,下面是还款的部分明细.第1个月,由于本月还款前的本金是30000元,则本月应归还的利息为30000×0.2%=60元,本月应归还的本息和为2500+60=2560元;第2个月,由于本月还款前的本金是27500元,则本月应归还的利息为27500×0.2%=55元,本月应归还的本息和为2500+55=2555元.…根据上述信息:(1)在空格处直接填写结果:(2)设第x个月应归还的利息是y元,求y关于x的函数表达式,并写出x的取值范围.(3)嘉淇将创业获利的2515元用于还款,则恰好可以用于还清第几个月的本息和?解:(2)由题意可得y=[30000-2500(x-1)]×0.2%=65-5x,即y关于x的函数表达式是y=65-5x(1≤x≤12,x取正整数).(3)当本息和恰好为2515时,利息为2515-2500=15,则15=65-5x,解得x=10,答:恰好可以用于还清第10个月的本息和.七、(本题满分12分)22.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.解:∵AE 平分∠CAB ,∠CAB=50°,∴∠CAE=12∠CAB=12×50°=25°. ∵AD ⊥BC 于点D ,∠C=60°,∴∠CAD=180°-90°-60°=30°,∴∠DAE=∠DAC-∠CAE=30°-25°=5°.∵BF 平分∠ABC ,∴∠OBA=12∠ABC=12×(180°-50°-60°)=35°,∴∠BOA=180°-(∠OBA+∠OAB )=180°-(35°+25°)=120°.∴∠DAE 和∠BOA 的度数分别为5°,120°.八、(本题满分14分)23.(1)如图1,在△ABC 中,∠B=40°,∠C=80°,AD ⊥BC 于点D ,AE 平分∠BAC ,求∠EAD 的度数;(2)将上题中“∠B=40°,∠C=80°”改为“∠C>∠B ”,其他条件不变,你能找到∠EAD 与∠B ,∠C 之间的数量关系吗?请直接写出它们之间的数量关系式;(3)如图2,AE 平分∠BAC ,F 为AE 上一点,FM ⊥BC 于点M ,这时∠EFM 与∠B ,∠C 之间又有何数量关系?为什么?解:(1)∵在△ABC 中,∠B=40°,∠C=80°,∠B+∠C+∠BAC=180°,∴∠BAC=180°-∠B-∠C=60°. 又∵AE 平分∠BAC ,∴∠EAC=∠BAC 2=30°. 又∵AD ⊥BC ,∴∠ADC=90°. ∴在△ACD 中,∠CAD=180°-∠ADC-∠C=10°.∴∠EAD=∠EAC-∠CAD=30°-10°=20°.(2)∠EAD=∠C-∠B.2(3)∠EFM=∠C-∠B,2理由:过点A作BC的垂线,与BC交于点N.∵∠ANB=∠FMB=90°,∴AN∥FM,∴∠EFM=∠EAN.由(2)得∠EAN=∠C-∠B,∴∠EFM=∠C-∠B.。
八年级上册数学期中测试卷(沪教版)
八年级上册数学期中考试试卷(沪教版)得分:_________温馨提示:﹡你现在拿到的这份试卷满分为150分。
你将有120分钟的答题时间。
﹡这份试卷共有试题卷4页。
请你用钢笔或中性笔将答案填写在试卷上。
﹡请独立思考,诚信答题,你一定能考出好成绩!一、选择题(每小题4分,共40分)1、点(1,2)在下列哪个函数图象上 ( )A 、y=x-3B 、y=2x+2C 、y=x +1D 、y=x 2+22、下列函数y=πx , y=3-2x , y=x , y=x 2-2 ,其中一次函数共有 ( ) A.、1个 B 、2个 C 、3个 D 、4个 3、下列图象中,表示直线y=x-1的是( ).4、在△ABC 中,若∠A=54°,∠B=36°,则△ABC 是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形 5、“命题都有逆命题,因此定理的逆命题都是正确的。
”这句话( ) A 、正确 B 、不正确 C 、无法判断 D 、以上答案都不对 6、三角形的两边长分别是3和5,第三边a 的取值范围是( )A 、2≤a <8B 、2<a ≤8C 、2<a <8D 、2≤a ≤84 7、直线y=kx +b 不经过第三象限,则k 、b 应满足 ( )A 、k>0, b<0B 、k <0, b>0C 、k<0 b<0D 、k<0, b ≥0 8、下图能说明∠1>∠2的是( )9、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米 关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C DA .B .C .D . 10.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点,则ba的值是 ( ) A 、4 B 、-2 C 、 12 D 、 - 12二、填空(每题5分,共25分)11、在公式s =50t 中常量是_______,变量是________。
2022-2023学年沪科版八年级数学上册期中测试卷含答案
八年级上册数学期中试卷一、单选题(共10题;共40分)1.在平面直角坐标系坐标中,第二象限内的点A 到x 轴的距离是3,到y 轴的距离是2,则A 点坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)2.在平面直角坐标系中,点B 的坐标是 (4,−1) ,点A 与点B 关于y 轴对称,则点A 的坐标是( )A .(4,1)B .(−1,4)C .(−4,−1)D .(−1,−4)3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .4.把直线y =3x 向下平移2个单位,得到的直线是( )A .y =3x ﹣2B .y =3(x ﹣2)C .y =3x+2D .y =3(x+2)5.在同一直角坐标系中,若直线y =kx +3与直线y =−2x +b 平行,则( )A .k =−2,b ≠3B .k =−2,b =3C .k ≠−2,b ≠3D .k ≠−2,b =36.函数y =ax +b 与函数y =cx +d 的图象是两条相交直线,则二元一次方程组{y =ax +b y =cx +d 有( )解.A .0个B .1个C .2个D .3个7.如图中三角形的个数是( )A .1B .2C .3D .48.下列各组线段能构成三角形的是( )A .2cm ,2cm ,4cmB .2cm ,3cm ,4cmC .2cm ,2cm ,5cmD .2cm ,3cm ,6cm9.如图,直线 y =ax +b 与 x 轴交于点 A(4,0) ,与直线 y =mx 交于点 B(2,n) ,则关于 x 的不等式组 0<ax −b <mx 的解为( )A .−4<x <−2B .x <−2C .x >4D .2<x <410.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且△ABC 的面积是32,则图中阴影部分面积等于 ( )A .16B .8C .4D .2二、填空题(共4题;共20分)11.在△ABC 中,△A =35°,△B =65°,则△C = °.12.“同一平面内,若a△b ,c△b ,则a△c”这个命题的条件是 ,结论是 ,这个命题是 命题.13.已知关于x 的方程ax −5=7的解为x =1,则一次函数y =ax −12与x 轴交点的坐标为 . 14.已知 y 是关于x 的一次函数,下表列出了部分对应值,则a的值为.x 1 2 3 y3a5三、解答题(共9题;共90分)15.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.16.已知直线y =kx +b 经过点(0,2),(−1,3)两点,求这条直线的表达式.17.已知y =y 1+y 2,并且y 1与x 成正比例,y 2与x −2成反比例.当x =3时,y =7;当x =1时,y =1,求:y 关于x 的函数解析式.18.如图所示,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并说明理由.解: ▲ .证明:∵∠1+∠2=180°( ▲ ) ∠1=∠DFH ( ▲ )∴( ▲ ) ∴EH ∥AB ( ▲ ) ∴∠3=∠ADE ( ▲ ) ∵∠3=∠B∴∠B =∠ADE ( ▲ ). ∴DE ∥BC∴∠AED =∠C ( ▲ )19.如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围.20.如图,直线 l 1 , l 2 相交于点 P ,直线 l 1 的函数表达式为 y =3x +7 ,点 P 的横坐标为 −2 ,且直线 l 2 与 y 轴交于点 A(0,−2) ,求直线 l 2 的函数表达式.21.如图,在△ABC 中,△B =2△C ,AE 平分△BAC 交BC 于E .(1)若AD△BC 于D ,△C =40°,求△DAE 的度数;(2)若EF△AE交AC于F,求证:△C=2△FEC.22.已知经过点A(4,−1)的直线y=kx+b与直线y=−x相交于点B(2,a),求两直线与x轴所围成的三角形的面积.23.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离y1千米,轿车离甲地的距离y2千米,y1、y2关于x的函数图象如图所示:①根据图象直接写出y1、y2关于x的函数关系式;②当两车相遇时,求此时客车行驶的时间.③相遇后,两车相距200千米时,求客车又行驶的时间.答案解析部分1.【答案】B【解析】【解答】解:∵第二象限的点A到x轴的距离是3,到y轴的距离是2,∴点A的横坐标是-2 ,纵坐标是3,∴点A的坐标为(−2,3).故答案为:B.【分析】根据点A到x轴的距离等于其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值以及第二项象限点的横坐标为负,纵坐标为正,可得点A的坐标.2.【答案】C【解析】【解答】解:∵点A与点B关于y轴对称∴ A (-4,-1)故答案为:C.【分析】利用关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变,可得到点A的坐标.3.【答案】C【解析】【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故答案为:C.【分析】在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,据此判断.4.【答案】A【解析】【解答】解:把直线y=3x向下平移2个单位,可得y=3x﹣2.故答案为:A.【分析】将一次函数y=kx+b向下平移m个单位,可得y=kx+b-m,据此解答.5.【答案】A【解析】【解答】解:∵直线y=kx+3与直线y=−2x+b平行,∴k=−2,b≠3.故答案为:A.【分析】直线y=kx+b与直线y=mx+n平行的条件为k=m且b≠n,据此解答.6.【答案】B【解析】【解答】解:函数y=ax+b与函数y=cx+d的图象是两条相交直线,∴只有一个交点,∴二元一次方程组{y=ax+by=cx+d有唯一解,即1个解,故答案为:B.【分析】根据一次函数的图象与二元一次方程组的关系求解即可。
沪教版数学八年级试卷期中
一、选择题(每题3分,共30分)1. 下列数中,哪个是负数?A. -3B. 0C. 2D. -2.52. 下列哪个不是有理数?A. $\frac{1}{3}$B. -$\frac{5}{7}$C. $\sqrt{2}$D. 33. 已知 a > b,则下列不等式中错误的是:A. a + 1 > b + 1B. a - 2 < b - 2C. 2a > 2bD. a - b < 04. 下列哪个是二次根式?A. $\sqrt{9}$B. $\sqrt{16}$C. $\sqrt{25}$D. $\sqrt{27}$5. 若 $a^2 = 4$,则 a 的值为:A. 2B. -2C. ±2D. ±46. 下列哪个方程的解为 x = 1?A. 2x + 3 = 5B. 3x - 4 = 1C. 4x + 5 = 9D. 5x - 6 = 77. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 菱形D. 以上都是8. 已知一个三角形的两边长分别为 3cm 和 4cm,则第三边长的取值范围是:A. 1cm 到 7cmB. 2cm 到 7cmC. 3cm 到 7cmD. 4cm 到 7cm9. 下列哪个是函数的定义域?A. 所有实数B. 所有正实数C. 所有负实数D. 所有非零实数10. 下列哪个是函数的值域?A. 所有实数B. 所有正实数C. 所有负实数D. 所有非零实数二、填空题(每题3分,共30分)1. $\sqrt{16}$ 的值为 ________。
2. 若 a = -2,则 $a^2 - 3a + 2$ 的值为 ________。
3. 下列方程的解为 x = ________:$2x - 5 = 3$。
4. 下列不等式的解集为 x > ________:$x - 3 > 2$。
5. 下列函数的解析式为 y = 2x + 1,其斜率为 ________。
2024-2025学年八年级数学上学期期中模拟卷(沪教版八上第16章~18.2)(全解全析)
2024-2025学年八年级数学上学期期中模拟卷(沪教版)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版第16章二次根式+第17章一元二次方程+18.2正比例函数。
5.难度系数:0.7。
第一部分(选择题共12分)一、选择题(本大题共6小题,每小题2分,满分12分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列各式中属于最简二次根式的是().A B C D【答案】A属于最简二次根式,故正确;==故选:A.2x的值可以是()A.3-B.2C.1D.0.5【答案】A【详解】解:由题意得02xx -≥,∴020x x ³ìí->î或020x x £ìí-<î,∴2x >或0x £,故选A .3.如果2a b ==,那么a 与b 的关系是( )A .a >b 且互为倒数 B .a >b 且互为相反数C .ab =-1D .ab =1【答案】B【详解】解:∵b ==(2-0<,20a =>,a b =-,∴a >b 且互为相反数.故选B .4.下列方程中是关于x 的一元二次方程的是( )A .()()130x x -+=B .20ax bx c ++=(其中a 、b 、c 是常数)C .2211x x-=D .()()2321x x x --=-【答案】A【详解】解:A .()()130x x -+=,整理,得2230x x +-=,是一元二次方程,故符合题意;B .当a=0时,20ax bx c ++=(其中a 、b 、c 是常数)不是一元二次方程,故不符合题意;C .2211x x-=不是整式方程,所以不是一元二次方程,故不符合题意;D .()()2321x x x --=-,整理,得570x -=,不是一元二次方程,故不符合题意.故选A .5.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A .100×80﹣100x ﹣80x =7644B .(100﹣x )(80﹣x )+x 2=7644C .(100﹣x )(80﹣x )=7644D .100x +80x =356【答案】C【详解】设道路的宽应为x 米,由题意有(100-x )(80-x )=7644,故选:C .6.如图,在同一直角坐标系中,正比例函数1y k x =,2y k x =,3y k x =,4y k x =的图象分别为1l ,2l ,3l ,4l ,则下列关系中正确的是( )A .1234k k k k <<<B .2143k k k k <<<C .1243k k k k <<<D .2134k k k k <<<【答案】B【详解】解:根据直线经过的象限,知20k <,10k <,40k >,30k >,根据直线越陡k 越大,知21k k >,43k k <,所以2143k k k k <<<.故选B .第二部分(非选择题 共88分)二、填空题(本大题共12小题,每小题3分,满分36分)7-= .【详解】解:原式﹣.8m = .【答案】3【详解】解:=又∵可以合并,∴215m -=解得:3m =.故答案为:3.9.函数 ()36f x x =-,则 14f æö=ç÷èø【答案】32【详解】解:∵()36f x x =-,∴11333634422f æö=-´=-=ç÷èø;故答案为:32.10.解不等式:x <的解集是 .【答案】x >【详解】x <,移项,得:x <合并同类项,得:(1x <系数化为1,得:x >即x >.11.当x =3420252022x x --的值为 【答案】1-【详解】解:∵x =∴()2212022x -=,∴24420210x x --=,∴()()3224202520224420214412023x x x x x x x --=--+-+-()2212023x =--20222023=-1=-.故答案为:1-.12.若()22230m m x ---=是关于x 的一元二次方程,则m 的值是.【答案】2-【详解】解:∵()22230m m x ---=是关于x 的一元二次方程,∴222m -=且20m -¹,解得:2m =-.故答案为:2-13.方程 ()22x x x +=+ 的解是 .【答案】11x =,22x =-【详解】解:()22x x x +=+,∴()()220x x x +-+=,∴()()120x x -+=,∴10x -=,20x +=,解得:11x =,22x =-;故答案为:11x =,22x =-14.方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,则正整数a 的值为 .【答案】2或3【详解】解:方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,所以:a -1≠0,故当a ≠1时,原方程为一元二次方程,∵(a -1)x 2+2(a +1)x +a +5=0有两个实根,∴△=[2(a +1)]2-4(a -1) (a +5)≥0,解得:a ≤3∴此时a ≤3且a ≠1故正整数a 的值为:a =2或者3故答案为:2或3.15.一元二次方程29200x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 【答案】13或14【详解】解:29200x x -+=,(4)(5)0x x --=,所以4x =或5x =,当4为腰,5为底时,周长=4+4+5=13,当5为腰,4为底时,周长=5+5+4=14,故答案为13或14.16.在实数范围内因式分解:222x x --= .【答案】(11x x --【详解】解:对于方程2220x x --=,24212´-△()=,1x ==所以,222x x --=(11x x =--+.故答案为:(11x x --+ .17.已知函数23(1)m y m x -=+是正比例函数,且y 随x 的增大而减小,则m = .【答案】-2【详解】解:由题意得:m 2-3=1,且m +1<0,解得:m =-2,故答案为:-2.18.如图,已知直线:a y x =,直线1:2b y x =-和点(1,0)P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4,P L ,按此作法进行下去,则点2024P 的横坐标为.【答案】10122【详解】解:Q 点(1,0)P ,1P 在直线y x =上,1(1,1)P \,12PP x Q P 轴,2P \的纵坐标1P =的纵坐标1=,2Q P 在直线12y x =-上,112x \=-,2x \=-,2(2,1)P \-,即2P 的横坐标为122-=-,同理,3P 的横坐标为122-=-,4P 的横坐标为242=,252P =,362P =-,372P =-,482P =¼,242n n P \=,2020P \的横坐标为2505101022´=,2021P \的横坐标为10102,2022P \的横坐标为10112-,2023P \的横坐标为10112-,∴点2024P 的横坐标为2506101222´=故答案为:10122三、解答题(本大题共9小题,满分52分.解答应写出文字说明,证明过程或演算步骤)19.(5分)【详解】解:原式=+..................................2分=..................................5分20.(5分)计算:æ÷çè【详解】æ÷çè(=................................2分(=÷=-................................5分21.(5分)解方程:()2326x x +=+.【详解】解:∵()2326x x +=+,∴()()2323x x +=+,∴()()23230x x +-+=,∴()()3230x x +-+=,................................2分∴320x +-=或30x +=,解得1231x ,x =-=-.................................5分22.(5分)用配方法解方程24720-+=x x ;【详解】解:∵24720-+=x x ,∴2472x x -=-∴27424x x æö-=-ç÷èø,................................1分∴22277742488x x ⎡⎤æöæö-+-=-⎢⎥ç÷ç÷èøèø⎢⎥⎣⎦,∴274942816x æö--=-ç÷èø∴2717864x æö-=ç÷èø................................3分∴78x -=,∴127788x x =+=................................5分23.(5分)先化简,再求值:222444+2x x x x x x x æö-+÷ç÷-èø,其中11=12x -æö---ç÷èø.【详解】解:222444+2x x x x x x x æö-+÷ç÷-èø()()()222442x x x x x x x +-æö++=÷ç÷-èø()222x x x x +=×+12x =+, ................................2分当)11=1212112x -æö---=--+=-+=ç÷èø时,原式12x =+1====.................................5分24.(5分)已知3y -与2x -成正比例,且当1x =时,6y =,求y 与x 之间的函数解析式.【详解】解:Q 3y -与2x -成正比例,\设()32y k x -=-,................................1分Q 当1x =时,6y =,()6321k \-=-,解得:3k =, ................................2分()332y x -=-\,整理得:39y x =-+,\y 与x 之间的函数关系式为:39y x =-+.................................5分25.(7分)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为s (km )与甲行驶的时间为t (h )之间的关系如图所示.(1)结合图象,在点M、N、P三个点中,点_____代表的实际意义是乙到达终点.(2)求甲、乙各自的速度;(3)当乙到达终点时,求甲、乙两人的距离;(4)甲出发多少小时后,甲、乙两人相距180千米.【详解】(1)解:由图象可得,在点M时,0s=,此时两人相遇,点N之后,两人的距离增加速度减少,此时乙先到达终点,点P表示两人距离为240s=,此时甲到达终点;故答案为:N;................................1分(2)解:由图象可得,A、B两地相距240千米,甲走完全程需要6小时,∴甲的速度为240640÷=(千米/时)................................2分∵当2t=时,两人相遇,∴两人的速度之和为2402120÷=/时)∴乙的速度为1204080-=(千米/时)................................3分(3)解:当乙到达终点A地时,甲离开出发地A地有403120´=(千米),∴当乙到达终点时,求甲乙两人的距离是120千米;................................5分(4)解:相遇前,甲乙两人相距180千米,则()12401801202-÷=(小时),相遇后,甲乙两人相距180千米,则∵当乙到达终点时,求甲乙两人的距离是120千米,之后两人距离逐渐增大,∴()93180120402+-÷=(小时),综上所述,甲出发12小时或92小时时,甲、乙两人相距180千米.................................7分26.(7分)商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由.【详解】(1)解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套,每套拖把盈利()1208040x x --=-元.故答案为:()40x -,()202x +;................................2分(2)解:设每套拖把降价x 元,则每套的销售利润为()40x -元,平均每天的销售量为()202x +套,依题意得:()()402021242x x -+=,整理得:2302210x x -+=,解得:121317x x ==,.又∵需要尽快减少库存,∴17x =.................................5分答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元;(3)解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y --元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y --+=,整理得:2303000y y -+=.∵()22Δ43041300300<0b ac =-=--´´=-,∴此方程无实数解,即不可能每天盈利1400元.................................7分27.(8分)已知正比例函数y kx =经过点A ,点A 在第四象限,过点A 作AH x ^轴,垂足为点H ,点A 的横坐标为3,且AOH △的面积为3.(1)求正比例函数的解析式;(2)在x 轴上能否找到一点P ,使AOP V 的面积为5.若存在,求点P 的坐标;若不存在,请说明理由(3)在(2)的条件下,是否在正比例函数y kx =上存在一点M ,且M 在第四象限,使得2.3APM OPM S S D D =若存在,请求出点M 的坐标;若不存在,请说明理由【详解】(1)解:∵点A 的横坐标为3,且AOH △的面积为3∴1332AH ´´=,解得,2AH =,∴点A 的坐标为()3,2-,∵正比例函数y kx =经过点A ,∴32k =-,解得23k =-,∴正比例函数的解析式是23y x =-;................................2分(2)解:存在.设(),0P t ,∵AOP V 的面积为5,点A 的坐标为()3,2-,∴1252t ´´=,∴5t =或5t =-,∴P 点坐标为()5,0或()5,0-.................................4分(3)解:设2,3M x x æö-ç÷èø,如图,①点M 在OA 上时,当()5,0P 时,5OP =,又()3,2A -,若23APM OPM S S D D =时,11212232A M M OP y OP y OP y ´´-´´=´´´,∴1122125255223323x x ´´-´´=´´´,解得,95x =,∴296355y =-´=-,∴M 点的坐标为96,55æö-ç÷èø;同理,当点()5,0P -时,也可求出M 点的坐标也为96,55æö-ç÷èø;................................6分②点M 在OA 的延长线上时,当()5,0P 时,5OP =,若23APM OPM S S D D =时,11212232M A M OP y OP y OP y ´´-´´=´´´,∴1212125525232323x x ´´-´´=´´´,解得,9x =,∴2963y =-´=-,∴M 点的坐标为()9,6-;当点()5,0P -时,5OP =,若23APM OPM S S D D =时,同理可得,M 点的坐标为()9,6-;综上,点M 的坐标为96,55æö-ç÷èø或()9,6-.................................8分。
2022-2023学年沪教版上海八年级上数学期中复习试卷含答案解析
2022-2023学年沪教新版八年级上册数学期中复习试卷一.选择题(共6小题,满分18分,每小题3分)1.下列二次根式中,最简二次根式的是()A.B.C.D.2.下列方程中有相等的实数根的是()A.x2+x+1=0B.x2+8x+1=0C.x2+x+2=0D.x2﹣x+=03.用配方法解下列方程,其中应在左右两边同时加上4的是()A.x2﹣2x=5B.x2﹣4x=5C.x2+8x=5D.x2+2x=54.若方程是关于x的一元二次方程,则m的取值范围是()A.m≠±1B.m≥﹣1且m≠1C.m≥﹣1D.m>﹣1且m≠15.已知(4﹣)•a=b,若b是整数,则a的值可能是()A.B.8+2C.4﹣D.2+6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B=∠C,③DB =DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个二.填空题(共12小题,满分24分,每小题2分)7.=(a≥0,b≥0).8.如果x2+4(m﹣2)x+64是个完全平方式,那么m的值是.9.若两个最简二次根式与可以合并,则x=.10.计算:=.11.化简:=.(结果保留根号)12.一元二次方程2x2﹣3x+1=0的解为.13.在实数范围内分解因式:2x2﹣3x﹣1=.14.一副三角板如图所示叠放在一起,则图中∠α是°.15.等腰三角形的一边长为9cm,另一边长为4cm,则它的第三边长为cm.16.长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为.17.=.18.对于实数a,b,定义运算“*”:a*b=.例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣4x﹣5=0的两个根,则x1*x2=.三.解答题(共5小题,满分25分,每小题5分)19.计算(1)(2)20.计算:﹣.21.用配方法解下列方程:(1)3x2﹣6x+2=0;(2)(x﹣2)(x+3)=1﹣5x.22.3x2﹣(x﹣2)2=5.23.解下列方程.(1)(x﹣2)(x﹣5)=﹣2;(2)4(x﹣3)2=9(2x+1)2.四.解答题(共4小题,满分33分)24.(7分)关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根.(1)求m的取值范围;(2)当m为正整数时,取一个合适的值代入求出方程的解.25.(7分)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.26.(7分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC ≌△BED.27.(12分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF =120°.(1)直接写出DE与DF的数量关系;(2)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由;(3)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数.(要求:写出思路,画出图形,写出证明过程)参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:A.=2,被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;B.是最简二次根式,故本选项符合题意;C.=,被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D.=,不是最简二次根式,故本选项不符合题意;故选:B.2.解:A、在方程x2+x+1=0中,Δ=12﹣4×1×1=﹣3<0,∴该方程没有实数根;B、在方程x2+8x+1=0中,Δ=82﹣4×1×1=60>0,∴该方程有两个不相等的实数根;C、在方程x2+x+2=0中,Δ=12﹣4×1×2=﹣7<0,∴该方程没有实数根;D、在方程x2﹣x+=0中,Δ=(﹣1)2﹣4×1×=0,∴该方程有两个相等的实数根.故选:D.3.解:A、∵x2﹣2x=5∴x2﹣2x+1=5+1;B、∵x2﹣4x=5∴x2﹣4x+4=5+4;C、∵x2+8x=5∴x2+8x+16=5+16;D、∵x2+2x=5∴x2+2x+1=5+1;故选:B.4.解:根据题意得,解得m>﹣1且m≠1.故选:D.5.解:(A)当a=时,∴原式=4﹣7,故选项A不符合题意;(B)当a=8+2时,原式=(4﹣)(8+2)=2×(16﹣7)=18,故选项B符合题意;(C)当a=4﹣时,∴原式=(4﹣)2=16﹣8+7=23﹣8,故选项C不符合题意;(D)当a=2+时,∴原式=(4﹣)(2+)=1﹣6,故选项D不符合题意,故选:B.6.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.二.填空题(共12小题,满分24分,每小题2分)7.解:=.故答案为:.8.解:∵x2+4(m﹣2)x+64=x2+4(m﹣2)x+82,x2+4(m﹣2)x+64是个完全平方式,∴4(m﹣2)x=±2•x•8,∴m﹣2=4或m﹣2=﹣4,解得m=6或m=﹣2.即m的值是﹣2或6.故答案为:﹣2或6.9.解:由题意,得:x2+3x=x+15,整理,得:x2+2x﹣15=0,解得x1=﹣5,x2=3;当x=3时,==3,不是最简二次根式,因此x=3不合题意,舍去;故x=﹣5.故答案为:﹣5.10.解:原式=,=+1,故答案为+1.11.解:原式=××=5.故答案为:5.12.解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1.13.解:解方程2x2﹣3x﹣1=0得,x1=,x2=,则2x2﹣3x﹣1=2(x﹣)(x﹣)=2(x﹣﹣)(x﹣+).14.解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75.15.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故答案为:9.16.解:设铁片的宽为xcm,则长为2xcm,由题意得:(x﹣10)(2x﹣10)×5=1500解得:x1=20,x2=﹣5(舍去)则铁片的宽为20cm,长为40cm故答案为:40cm,20cm.17.解:原式==.故答案为:.18.解:∵(x+1))(x﹣5)=0,∴x+1=0或x﹣5=0,解得:x=﹣1或x=5,若x1=﹣1,x2=5时,x1*x2=(﹣1)×5﹣(﹣1)2=﹣6;若x1=5,x2=﹣1时,x1*x2=52﹣(﹣1)×5=30,故答案为:30或﹣6.三.解答题(共5小题,满分25分,每小题5分)19.解:(1)=3;(2)3﹣(+)=3﹣2﹣=.20.解:原式=﹣=﹣3﹣=﹣4.21.解:(1)移项,二次项系数话化1得:x2﹣2x=﹣,两边都加上1得:x2﹣2x+1=﹣+1,即:(x﹣1)2=,两边开平方得:x﹣1=±,∴x1=1+,x2=1﹣;(2)方程整理得:x2+6x=7,两边都加上9得:x2+6x+9=7+9,即:(x+3)2=16,两边开平方得:x+3=±4,∴x1=1,x2=﹣7.22.解:3x2﹣x2+4x﹣4﹣5=02x2+4x﹣9=0∵a=2,b=4,c=﹣9,△=16+72=88>0,∴x=∴x1=,x2=.23.解:(1)(x﹣2)(x﹣5)=﹣2x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得:x1=3,x2=4;(2)4(x﹣3)2=9(2x+1)2.[2(x﹣3)]2﹣[3(2x+1)]2=0,[2(x﹣3)﹣3(2x+1)][2(x﹣3)+3(2x+1)]=0,∴(﹣4x﹣9)(8x﹣3)=0,解得:x1=﹣,x2=.四.解答题(共4小题,满分33分)24.解:(1)∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实数根,∴Δ=(﹣2)2﹣4(m﹣2)=4﹣4m+8=12﹣4m.∵12﹣4m≥0,∴m≤3,m≠2.(2)∵m≤3且m≠2,∴m=1或3,∴当m=1时,原方程为﹣x2﹣2x+1=0.x1=﹣1﹣,x2=﹣1+.当m=3时,原方程为x2﹣2x+1=0.x1=x2=1.25.解:(1)设该厂第一季度加工量的月平均增长率为x,由题意得:a(1+x)2=(1+44%)a∴(1+x)2=1.44∴x1=0.2=20%,x2=﹣2.2(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:a+a(1+x)+a(1+x)2=182将x=20%代入得:a+a(1+20%)+a(1+20%)2=182解得a=50答:该厂一月份的加工量a的值为50.(3)由题意可知,三月份加工量为:50(1+20%)2=72六月份加工量为:50×2.1=105(吨)五月份加工量为:105﹣46.68=58.32(吨)设四、五两个月的加工量下降的百分率为y,由题意得:72(1﹣y)2=58.32解得:y1=0.1=10%,y2=1.9(舍)∴四、五两个月的加工量下降的百分率为10%∴72×(1﹣10%)+58.32+105=228.12(吨)答:该厂第二季度的总加工量为228.12吨.26.证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).27.解:(1)结论:DE=DF.如图1中,连接AD,作DN⊥AB,DM⊥AC垂足分别为N、M.∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵BD=DC,∴∠BAD=∠CAD,∴DN=DM,∵∠EDF=120°,∴∠EDF+∠BAC=180°,∠AED+∠AFD=180°,∵∠AED+∠DEN=180°,∴∠DFM=∠DEN,在△DNE和△DMF中,,∴△DNE≌△DMF(AAS),∴DE=DF;(2)AE+AF=是定值,如图1中,在△ADN和△ADM中,,∴Rt△ADN≌Rt△ADM(HL),∴AN=AM,∴AE+AF=AN﹣EN+AM+MF,由(1)可知EN=MF.∴AE+AF=2AN,∵BD=DC=,∠BDN=30°,∴BN=BD=,∴AN=AB﹣BN=,∴AE+AF=;(3)能围成三角形,最大内角为120°.如图2中,延长FD到M使得DF=DM,连接BM,EM.在△DFC和△DMB中,,∴△DFC≌△DMB(SAS),∴∠C=∠MBD=60°,BM=CF,∵DE=DF=DM,∠EDM=180°﹣∠EDF=60°,∴△EDM是等边三角形,∴EM=DE,∴EB、ED、CF能围成△EBM,最大内角∠EBM=∠EBC+∠DBM=60°+60°=120°.。
期中真题几何证明40题专练—2023-2024学年八年级数学上册(沪教版)(解析版)
期中真题几何证明40题专练一.解答题(共40小题)1.(2022秋•宝山区校级期中)五边形ABCDE中,AB=AE,AD平分∠CDE,∠B+∠E=180°,求证:BC+DE=CD.【分析】在DC上截取DF=DE,连接AF,先证△ADF≌△ADE,再证△ACF≌△ACB,即可得证结果.【解答】证明:如图,在DC上截取DF=DE,连接AF,∵AD平分∠CDE,∴∠ADF=∠ADE,在△ADF和△ADE中,,∴△ADF≌△ADE(SAS),∴AF=AE,∠FAD=∠EAD,∵AB=AE,∠BAE=∠CAD,∴AB=AF,∠BAC=∠FAC,在△ACF和△ACB中,,∴△ACF≌△ACB(SAS)∴BC=CF,∵CD=CF+DF,∴CD=BC+DE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解题的关键是准确作出辅助线构造全等三角形.2.(2022秋•虹口区校级期中)如图,△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,且ED ⊥AB于点F,且AB=DE.(1)求证:BD=2EC;(2)若BD=10cm,求AC的长.【分析】(1)根据AAS证明△ABC≌△EDB得BD=BC,再根据E是BC的中点,即可得出结论;(2)根据(1)的结论,结合BD=10,即可求出AC的长.【解答】(1)证明:∵ED⊥AB,∠ACB=∠DBC=90°,∴∠BFE=∠DBC=90°,∴∠BEF+∠ABC=∠BDE+∠BEF=90°,∴∠ABC=∠BDE,在△ABC和△EDB中,,∴△ABC≌△EDB(AAS),∴BD=BC,∵E是BC的中点,∴BC=2CE,∴BD=2EC;(2)解:由(1)知,△ABC≌△EDB,∴BE=AC,∵BD=2CE,即BD=2BE,∵BD=10,∴AC=BE=5cm.【点评】本题考查了全等三角形的判定与性质,证明△ABC≌△EDB是解题的关键.3.(2022秋•静安区校级期中)如图,AD是△ABC的高,∠B=2∠C,BD=5,BC=25,求AB的长.【分析】在线段DC上截取DE=BD,连接AE,根据线段垂直平分线的性质得到AB=AE,求得∠B=∠AEB,根据三角形外角的性质得到∠AEB=∠CAE+∠C,求得AE=CE,于是得到结论.【解答】解:如图:在线段DC上截取DE=BD,连接AE,∵AD⊥BC,∴AB=AE,∴∠B=∠AEB,∵∠B=2∠C,∴∠AEB=2∠C,∵∠AEB=∠CAE+∠C,∴∠C=∠CAE,∴AE=CE,∵BD=5,BC=25,∴DE=BD=5,∴AB=AE=CE=BC﹣BD﹣DE=15.【点评】此题主要考查的是等腰三角形的判定和性质,作出辅助线正确构建出等腰三角形是解答此题的关键.4.(2020秋•杨浦区校级期中)如图,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过B作BE⊥CD,分别交AC于点E、交CD于点F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和CD的数量关系,并证明你的猜想.【分析】(1)证得∠EBC=∠ACD,∠A=∠ACD,则结论可得出;(2)过点D作DG⊥AC于点G,根据ASA证明△DCG≌△EBC,可得出结论.【解答】(1)证明:∵BE⊥CD,∴∠BFC=90°,∴∠EBC+∠BCF=180°﹣∠BFC=90°,∵∠ACB=∠BCF+∠ACD=90°,∴∠EBC=∠ACD,∵AD=CD,∴∠A=∠ACD,∴∠A=∠EBC;(2)解:CD=BE.过点D作DG⊥AC于点G,∵DA=DC,DG⊥AC,∴AC=2CG,∵AC=2BC,∴CG=BC,∵∠DGC=90°,∠ECB=90°,∴∠DGC=∠ECB,在△DGC和△ECB中,,∴△DCG≌△EBC(ASA),∴CD=BE.【点评】此题主要考查了全等三角形的判定与性质,等腰三角形的性质,关键是掌握全等三角形的判定定理.5.(2020秋•徐汇区校级期中)如图,AD∥BC,点E是AB的中点,联结DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:AD=BF;(2)当点G是FC的中点时,判断△FDC的形状.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E 为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE,根据全等三角形的性质即可得解;(2)连接EG,根据题意,结合全等三角形的性质得到GE⊥DF,GE是△FDC的中位线,根据三角形中位线的性质即可得出△FDC是直角三角形.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF;(2)解:△FDC是直角三角形,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE⊥DF,∵点G是FC的中点,DE=FE,∴GE∥CD,∴CD⊥DF,∴△FDC是直角三角形.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,利用AAS证明△ADE≌△BFE是解本题的关键.6.(2022秋•静安区校级期中)如图,AB=AC,AD=AE,∠BAD=∠CAE,BE与CD相交于点F.求证:(1)∠ADC=∠AEB;(2)FD=FE.【分析】(1)利用AAS证明△ABD≌△ACE即可;(2)连接DE,利用等腰三角形的性质和判定即可证明结论.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠EAD=∠CAE+∠DAE,∴∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠ADC=∠AEB;(2)连接DE,∵AD=AE,∴∠ADE=∠AED,∵∠ADC=∠AEB,∴∠ADC﹣∠ADE=∠AEB﹣∠AED,∴∠FDE=∠FED,∴FD=FE.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握等腰三角形的性质和判定是解题的关键.7.(2022秋•杨浦区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:FM⊥EH.【分析】根据等腰三角形的性质可求∠B=∠C,根据ASA可证△BEF≌△CFH,根据全等三角形的性质可求EF=FH,再根据等腰三角形的性质可证FM⊥EH.【解答】证明:∵AB=AC,∴∠B=∠C,在△BEF与△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴FM⊥EH.ASA证明△BEF≌△CFH.8.(2021秋•浦东新区期中)如图,在△ABC中,BD平分∠ABC,∠A=2∠C,求证:BC=AB+AD.【分析】在BC上截取BE=BA,由“SAS”可证△ABD≌△EBD,可得∠BED=∠A,AB=BE,AD=DE,由外角的性质可得∠C=∠EDC,可证EC=ED,即可得结论.【解答】证明:如图,在BC上截取BE=BA,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴∠BED=∠A,AB=BE,AD=DE,∵∠A=2∠C,∴∠BED=2∠C,∵∠BED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴BC=BE+EC=AB+AD.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2021秋•徐汇区校级期中)已知在△ABC中,AB=AC,在边AC上取一点D,以D为顶点,DB为一条边作∠BDF=∠A,点E在AC的延长线上,∠ECF=∠ACB.求证:(1)∠FDC=∠ABD;(2)DB=DF;(3)当点D在AC延长线上时,DB=DF是否依然成立?在备用图中画出图形,并说明理由.【分析】(1)根据角的和差即可得到结论;(2)过D作DG∥BC交AB于G,根据等腰三角形的性质和全等三角形的判定和性质定理即可得到结论;(3)过D作DG∥BC交AB于G,根据平行线的性质得到∠ADG=∠ACB,∠AGD=∠ABC,根据等腰三角形的性质得到∠ABC=∠ACB,根据全等三角形的判定和性质即可得到结论.【解答】(1)证明:∵∠BDC=∠A+∠ABD,即∠BDF+∠FDC=∠A+∠ABD,∵∠BDF=∠A,∴∠FDC=∠ABD;(2)过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AB﹣AG=AC﹣AD,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF;(3)仍然成立,如图2,过D作DG∥BC交AB于G,∴∠ADG=∠ACB,∠AGD=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∴∠AGD=∠ADG,∴AD=AG,∴AG﹣AB=AD﹣AC,即BG=DC,∵∠ECF=∠ACB=∠AGD,∴∠DGB=∠FCD,∵∠ACB+∠BCF+∠FCD=180°,∴∠ACB+∠BCF+∠DGB=180°,∵∠DGB=∠ABC.∴∠ACB+∠BCF∠ABC=180°,∵∠A+∠ABC+∠ACB=180°,∴∠A=∠BCF,∵∠BDF=∠A,∴∠BCF=∠BDF,∴∠CBD=∠CFD,∵∠GBD=180°﹣∠ABC﹣∠CBD=180°﹣∠FCD﹣∠CFD=∠FDC,∴∠GBD=∠FDC,在△GDB与△CFD中,,∴△GDB≌△CFD(ASA),∴DB=DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的性质,正确的作出辅助线是解题的关键.10.(2022秋•浦东新区期中)如图,已知在△ABC中,AB=AC,点D、E分别在AC、AB上,且AD=AE,点F在BC的延长线上,DB=DF.(1)求证:∠ABD=∠ACE.(2)求证:CE∥DF.【分析】(1)由“SAS”可证△ADB≌△AEC,可得∠ABD=∠ACE;(2)由等腰三角形的性质可得∠=∠F,由外角的性质可得∠ACE=∠CDF,可得结论.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE;(2)∵DB=DF,∴∠DBF=∠F,∵∠ABC=∠ABD+∠DBC,∠ACB=∠F+∠CDF,∴∠ABD=∠CDF,∴∠ACE=∠CDF,∴CE∥DF.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,等边三角形的性质,掌握全等三角形的判定方法是本题的关键.11.(2020秋•浦东新区校级期中)已知:如图,点B、F、C、E在同一条直线上,AC∥DF,AC=DF,BF =CE.求证:AB∥DE.【分析】根据线段的和差求出BC=EF,由平行线的性质证得∠ACB=∠DFE,根据SAS定理推出△BAC≌△EDF,根据全等三角形的性质得出∠B=∠E,根据平行线的判定即可证得AB∥DE.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS),∴∠B=∠E,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,能推出△BAC和△EDF全等是解此题的关键.12.(2022秋•长宁区校级期中)已知:如图,△ABC中,AD平分∠BAC交BC于点D,CF∥AB且CD平分∠FCA,联结FD并延长交边AB于点E,说明CF=AC﹣AE的理由.【分析】由CF∥AB得∠FCB=∠ABC,由CD平分∠FCA得∠FCB=∠ACB,可得∠ACB=∠ABC,从而得AB =AC,由AD平分∠BAC可得CD=BD,再根据ASA证明△FCD≌△EBD,可得FC=BE,从而可得结论.【解答】解:∵CF∥AB,∴∠FCB=∠ABC,∵CD平分∠FCA,∴∠FCB=∠ACB,∴∠ACB=∠ABC,∴AB=AC,∵AD平分∠BAC,∴CD=BD,在△FCD和△EBD中,,∴△FCD≌△EBD(ASA),∴FC=BE,∵AC=AB=AE+EB=AE+CF,∴CF=AC﹣AE.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,角平分线的意义等知识,运用ASA证明△FCD≌△EBD是解答本题的关键.13.(2022秋•杨浦区期中)如图1所示,已知点E在直线AB上,点F,G在直线CD上且∠EFG=∠FEG,EF平分∠AEG,如图2所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG=β,(1)若∠HEG=40°,∠QGH=20°,求∠Q的度数;(2)判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.【分析】(1)先证明,再依据∠HEG=40°,即可得到∠FEG=70°,依据QG平分∠EGH,即可得到∠QGH=∠QGE=20°,根据∠Q=∠FEG﹣∠EGQ进行计算即可;(2)根据∠FEG是△EGQ的外角,∠AEG是△EGH的外角,即可得到∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG ﹣∠EGH,再根据FE平分∠AEG,GQ平分∠EGH,即可得出,,最后依据∠Q=∠FEG﹣∠EGQ进行计算,即可得到.【解答】解:(1)∵EF平分∠AEG,∴∠AEF=∠GEF,∵∠EFG=∠FEG,∴∠AEF=∠GFE,∴AB∥CD,∵∠HEG=40°,∴,∵QG平分∠EGH,∴∠QGH=∠QGE=20°,∴∠Q=∠FEG﹣∠EGQ=70°﹣20°=50°;(2)点H在运动过程中,α和β的数量关系不发生变化,∵∠FEG是△EGQ的外角,∠AEG是△EGH的外角,∴∠Q=∠FEG﹣∠EGQ,∠EHG=∠AEG﹣∠EGH,又∵FE平分∠AEG,GQ平分∠EGH,∴,,∴∠Q=∠FEG﹣∠EGQ==,即.【点评】本题主要考查了平行线的判定与性质,三角形外角性质的运用,解题的关键是利用三角形的外角性质:三角形的外角等于与它不相邻的两个内角的和.14.(2022秋•宝山区校级期中)如图,在五边形ABCDE中,(1)已知AB=AE,BC=ED,∠B=∠E,F是CD中点,求证:AF⊥CD.(2)已知AB=AE,BC=ED,∠C=∠D,F是CD中点,求证:AF⊥CD.(3)已知∠B=∠E,BC=ED,∠C=∠D,F是CD中点,求证;AF⊥CD.【分析】(1)连接AC,AD,根据全等三角形的判定和性质得出△ABC≌△AED,AC=AD,再由等腰三角形三线合一即可证明;(2)连接BF,EF,BCF≌△EDF,△ABF≌△AEF,∠CFB=∠DFE,∠AFB =∠AFE,结合图形得出∠AFC=∠AFD,即可证明;(3)连接BD,CE交于点G,根据全等三角形的判定和性质得出△BCD≌△EDC,△CGF≌△DGF,∠AFC=∠AFD,结合图形即可证明.【解答】解:(1)如图所示,连接AC,AD,在△ABC与△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵F是CD中点,∴AF⊥CD;(2)如图所示,连接BF,EF,∵F是CD中点,∴CF=FD,在△BCF与△EDF中,,∴△BCF≌△EDF(SAS),∴BF=EF,∠CFB=∠DFE在△ABF与△AEF中,,∴△ABF≌△AEF(SSS),∴∠AFB=∠AFE,∴∠AFB+∠CFB=∠DFE+∠AFE,即∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD;(3)如图所示,连接BD,CE交于点G,∵F是CD中点,∴CF=FD,在△BCD与△EDC中,,∴△BCD≌△EDC(SAS),∴∠CDB=∠DCE,∴CG=DG,在△CGF与△DGF中,,∴△CGF≌△DGF(SAS),∴∠AFC=∠AFD,∵∠AFC+∠AFD=180°,∴∠AFD=90°,∴AF⊥CD.【点评】题目主要考查全等三角形的判定和性质,线段中点的性质及等腰三角形的判定和性质等,理解题15.(2022秋•宝山区校级期中)如图,△ABC和△ABD,AB=AD,点E、F在边BC上,点A、F、D共线,∠BAC=∠AFC,∠EAC=∠FCD,求证:AE=CD.【分析】根据三角形内角和定理得出∠CAD=∠ABC,再由三角形外角的性质及全等三角形的判定和性质即可证明.【解答】证明:∵∠BAC=∠AFC,∴180°﹣∠BAC﹣∠ACB=180°﹣∠AFC﹣∠ACB,即∠CAD=∠ABC,∵∠EAC=∠FCD,∴∠EAC+∠ACB=∠FCD+∠ACB,即∠AEB=∠ACD,在△AEB与△DCA中,,∴△AEB≌△DCA(AAS),∴AE=CD.【点评】题目主要考查全等三角形的判定和性质,三角形内角和定理及外角的性质,熟练掌握全等三角形的判定和性质是解题关键.16.(2022秋•虹口区校级期中)如图,△ABC和△BDE都是等边三角形,且点A、D、E在同一直线上,证明AE=BE+CE.【分析】根据等边三角形的性质,得出∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,再根据角之间的数量关系,得出∠ABD=∠CBE,再根据“边角边”,得出△ABD≌△CBE,再根据全等三角形的性质,得出AD=CE,再根据等量代换,即可得出结论.【解答】证明:∵△ABC和△BDE都是等边三角形,∴∠ABC=∠DBE=60°,AB=CB,BD=BE=DE,∴∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+∠CBE,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,∴AE=DE+AD=BE+CE.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理.17.(2022秋•普陀区校级期中)如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD 交AD的延长线于H,交AB于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【分析】(1)由FG⊥AD交AD的延长线于H,∠AHF=∠AHG=90°,可根据全等三角形的判定定理“ASA”证明△AHF≌△AHG,得AF=AG;(2)作CL∥AB交FG于点L,则∠AFG=∠CLG,由AF=AG,得∠AFG=∠G,则∠CLG=∠G,得CL=CG,再证明△BEF≌△CEL,得BF=CL,所以BF=CG.【解答】证明:(1)∵AD平分∠BAC,∴∠FAH=∠GAH,∵FG⊥AD交AD的延长线于H,∴∠AHF=∠AHG=90°,在△AHF和△AHG中,,∴△AHF≌△AHG(ASA),∴AF=AG.(2)作CL∥AB交FG于点L,则∠B=∠ECL,∠AFG=∠CLG,∵AF=AG,∴∠AFG=∠G,∴∠CLG=∠G,∴CL=CG,∵E是BC的中点,∴BE=CE,在△BEF和△CEL中,,∴△BEF≌△CEL(ASA),∴BF=CL,∴BF=CG.【点评】此题重点考查全等三角形的判定与性质、等腰三角形的判定与性质、平行线的性质等知识,正确地作出所需要的辅助线构造全等三角形是解题的关键.18.(2022秋•浦东新区期中)如图,已知AB=AC,∠BEF=∠CFH,BE=CF,M是EH的中点.求证:∠EFM=∠HFM.【分析】证明△BEF≌△CFH(ASA),△EFM≌△HFM(SSS)即可求解.【解答】证明:∵AB=AC,∠BEF=∠CFH,BE=CF,∴∠B=∠C,在△BEF和△CFH中,,∴△BEF≌△CFH(ASA),∴EF=FH,∵M是EH的中点,∴EM=HM,FM为公共边,∴△EFM≌△HFM(SSS),∴∠EFM=∠HFM.【点评】本题主要考查全等三角形的判定和性质,掌握三角形全等的判定方法和性质是解题的关键.19.(2017秋•上海期中)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B即可得出结论,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中,,∴△BDE≌△CEF(SAS).∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B∵AB=AC,∠A=40°∴∠DEF=∠B=70°.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟知等腰三角形的两个底角相等是解答此题的关键.20.(2022秋•静安区校级期中)已知:如图,AD∥CF,∠A=∠C=90°,DB平分∠ADF,AD+CF=DF.求证:FB平分∠CFD.【分析】在DF上取一点E,使DE=AD,进而利用SAS证明△ADB与△EDB全等,进而证明△FCB与△FEB 全等,进而解答即可.【解答】证明:在DF上取一点E,使DE=AD,∵DB平分∠ADF,∴∠ADB=∠EDB,在△ADB与△EDB中,,∴△ADB≌△EDB(SAS),∴AB=BE,∠BAD=∠BED,AD=DE,∴∠BAD=∠BED=90°,∵AD∥CF,∴∠C=∠A=90°,∵DF=AD+CF,∴EF=DF﹣DE=DF﹣AD=CF,在Rt△BEF与Rt△BCF中,,∴Rt△BEF≌Rt△BCF(HL),∴∠EFB=∠CFB,即FB平分∠CFD.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21.(2022秋•静安区校级期中)已知如图,AB=AC,AD=AE,∠BAE=∠CAD,BD与CE相交于点F,求证:FB=FC.【分析】由已知条件证得△ABD≌△ACE,连接BC,要证FB=FC,可利用等式性质来证得.【解答】证明:∵∠BAE=∠CAD(已知),∴∠BAE+∠EAD=∠CAD+∠DAE(等式性质),即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS).∴∠ABD=∠ACE(全等三角形对应角相等),连接BC.∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵∠ABD=∠ACE(已证),∴∠ABC﹣∠ABD=∠ACB﹣∠ACE(等式性质),即∠FBC=∠FCB.∴FB=FC(等角对等边).【点评】本题主要考查了两个三角形的判定和性质,关键是根据SAS证得△ABD≌△ACE.22.(2022秋•闵行区校级期中)如图,已知点A、F、C、D在同一直线上,AB∥DE,AB=DE,AF=CD,求证:BC∥EF.【分析】证△ABC≌△DEF(SAS),得∠BCA=∠EFD,再由平行线的判定即可得出结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+CF=CD+CF,即AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠BCA=∠EFD,∴BC∥EF.【点评】考查了全等三角形的判定与性质、平行线的判定与性质等知识,熟练掌握平行线的判定与性质,证明三角形全等是解题的关键.23.(2022秋•杨浦区期中)如图,已知△ABC和△CDE都是等边三角形,点D、A、C在同一直线上,延长BA交边DE于点F,联结AE、BD.(1)试说明△ADB≌△F AE的理由;(2)延长EA交BD于点H,求∠DHE的度数.【分析】(1)证△ADF是等边三角形,得AD=FA=DF,∠DFA=60°,再证CD=BF,则AB=FE,然后证∠BAD=∠EFA,进而证△ADB≌△FAE(SAS);(2)由全等三角形的性质得∠ABD=∠FEA,再证∠DHE=∠FEA+∠FAE,即可得出结论.【解答】(1)证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,∠DAF=∠BAC=60CDE=60°,CD=DE,∴△ADF是等边三角形,∴AD=FA=DF,∠DFA=60°,∴AC+AD=AB+FA,即CD=BF,∴BF﹣FA=DE﹣DF,即AB=FE,∵∠BAD=180°﹣∠DAF=180°﹣60°=120°,∠EFA=180°﹣∠DFA=180°﹣60°=120°,∴∠BAD=∠EFA,在△ADB和△FAE中,,∴△ADB≌△FAE(SAS);(2)解:由(1)得:△ADB≌△FAE,∴∠ABD=∠FEA,∵∠DHE=∠ABD+∠BAH,∠FAE=∠BAH,∴∠DHE=∠FEA+∠FAE,∵∠DFA=∠FEA+∠FAE,∴∠DHE=∠DFA=60°.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.24.(2022秋•闵行区期中)如图,点D,E在△ABC的边BC上,AD=AE,BD=CE,求证:∠B=∠C.【分析】方法一:利用全等三角形的性质证明即可.方法二:作AM⊥BC于M.证明AN垂直平分线段BC 即可;【解答】证明方法一:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=∠AED+∠AEC=°,∴∠ADB=∠AEC,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠C.证明方法二:作AM⊥BC于M.∵AD=AE,∴DM=EM,∵BD=CE,∴DM+BD=EM+CE,即:BM=CM,又∵AM⊥BC,即AM为BC的垂直平分线,∴AB=AC,∴∠B=∠C.【点评】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(2022秋•普陀区期中)已知:如图,在四边形ABCD中,BC=DC,点E在边AB上,∠EBC=∠EDC.(1)求证:EB=ED.(2)当∠A=90°,求证:∠BED=2∠BDA.【分析】(1)由BC=DC,得出∠CBD=∠CDB,再由∠EBC=∠EDC,推出∠EBD=∠EDB,即可得出结论;(2)由三角形内角和定理得出∠BDA+∠ABD=90°=∠A,再由(1)得∠EBD=∠EDB,则∠BDA+∠EDB=∠A,然后由三角形的外角性质即可得出结论.【解答】证明:(1)∵BC=DC,∴∠CBD=∠CDB,∵∠EBC=∠EDC,∴∠EBC﹣∠CBD=∠EDC﹣∠CDB,即∠EBD=∠EDB,∴EB=ED;(2)∵∠A=90°,∴∠BDA+∠ABD=90°=∠A,由(1)得:∠EBD=∠EDB,∴∠BDA+∠ABD=∠BDA+∠EDB=∠A,∴∠BED=∠A+∠ADE=∠BDA+∠EDB+∠ADE=∠BDA+∠BDA=2∠BDA.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理、三角形外角的性质等知识,熟练掌握等腰三角形的判定与性质是解题的关键.26.(2021秋•奉贤区校级期中)在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为腰右侧作等腰三角形△ADE,且AD=AE,∠BAC=∠DAE,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)设∠BAC=α,∠BCE=β.①点D是在线段BC上移动时,如图2,则α、β之间有怎样的数量关系?试说明理由.②点D是在射线CB上移动时,则α、β之间有怎样的数量关系?试直接写出结论.【分析】(1)证明△BAD≌△CAE,得∠B=∠ACE,即可证明;(2)①与(1)同理证明△BAD≌△CAE,得∠ABD=∠ACE,则∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°;②同理证明△ADB≌△AEC,得∠ABD=∠ACE,由∠ABD=∠BAC+∠ACB,则∠BAC=∠BCE.【解答】解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∴∠BCE=∠ACB+∠ACE=90°,故答案为:90;(2)①α+β=180°,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;②α=β,理由如下:∵∠DAE=∠BAC,∴∠DAB=∠EAC,在△ADB与△AEC中,,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∴∠BAC=∠BCE,∴α=β.【点评】本题主要考查了等腰三角形的性质,全等三角形的判定与性质,三角形外角的性质等知识,证明△ADB≌△AEC是解题的关键.27.(2021秋•浦东新区期中)如图,在△ABC中,AD平分∠BAC,DE∥AC,过点E作EF⊥AD于点O,交BC的延长线于F,连接AF,求证:AF=DF.【分析】根据平行线的性质和等腰三角形的判定和性质解答即可.【解答】证明:∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA,∴AE=DE,∵EF⊥AD,∴EF垂直且平分AD,∴F在AD的垂直平分线上,∴AF=DF.【点评】此题考查等腰三角形的判定和性质,关键是根据平行线的性质和等腰三角形的判定和性质解答.28.(2020秋•浦东新区期中)如图,已知在△ABC中,AB=AC,D是AB上一点,延长AC至点E,使CE =BD.联结DE交BC于点F,求证:DF=EF.【分析】过点D作DG∥AC交BC于点G,由“AAS”可证△DFG≌△ECF,可得DF=EF.【解答】证明:如图,过点D作DG∥AC交BC于点G,∵AB=AC,∵DG∥AC,∴∠ACB=∠DGB,∠DGF=∠ECF,∴∠ACB=∠DGB=∠B,∴DG=DB,∵CE=BD,∴DG=CE,在△DFG和△EFC中,,∴△DFG≌△EFC(AAS)∴DF=EF.【点评】本题考查了全等三角形的判定和性质、等腰三角形的判定与性质等知识,添加恰当辅助线构造全等三角形是解题的关键.29.(2022秋•奉贤区校级期中)如图,点A、B、C、D在同一直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,在△ABE和△FDC中,,∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.30.(2020秋•普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF ⊥AC交AC的延长线于点F,垂足分别为点E、F.(1)求证:∠DBE=∠DCF.(2)求证:BE=CF.【分析】(1)连接AD,证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;(2)证△BDE≌△CDF(AAS),即可得出结论.【解答】证明:(1)连接AD,如图:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠ABD=∠ACD,∴∠DBE=∠DCF.(2)∵DE⊥AB,DF⊥AC,∴∠E=∠F=90°,由(1)得:∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.31.(2017秋•静安区期中)如图,在△ABC中,D为AB的中点,F为BC上一点,DF∥AC,延长FD至E,且DE=DF,联结AE、AF.(1)求证:∠E=∠C;(2)如果DF平分∠AFB,求证:AC⊥AB.【分析】(1)根据SAS证明△AED与△BFD全等,再利用等量代换证明即可;(2)根据角平分线的定义和等腰三角形的性质进行证明即可.【解答】证明:(1)∵D为AB的中点,∴BD=AD,在△AED与△BFD中,,∴△AED≌△BFD(SAS),∴∠E=∠DFB,∵DF∥AC,∴∠C=∠DFB,∴∠C=∠E;(2)∵DF平分∠AFB,∴∠AFD=∠DFB,∵∠E=∠DFB,∴∠AFD=∠AED,∵ED=DF,∴∠DAF+∠AFD=90°,∵EF∥AC,∴∠AFD=∠FAC,∴∠DAF+∠FAC=90°,∴AC⊥AB.【点评】本题考查了全等三角形的判定与性质,关键是根据平行线的性质、全等三角形的判定与性质等知识进行解答.32.(2021秋•浦东新区期中)如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE=AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.33.(2022秋•奉贤区校级期中)(1)已知:如图①,△ABC是等边三角形,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:线段EF、DF之间有怎样的数量关系?并证明你的猜想.(2)已知:如图②,在△ABC中,∠B=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点F,猜想:上述(1【分析】(1)证明△EAC≌△DCA(ASA),可得EC=DA,然后根据线段的和差即可得结论;(2)在CA上截取CG=CD,证明△CDF≌△CGF(SAS),可得DF=GF,∠DFC=∠GFC,再证明△AEF≌△AGF(ASA),可得EF=GF,进而可得结论.【解答】解:(1)EF=DF,证明:∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,∵AD、CE分别平分∠BAC、∠ACB,∴∠FAC=BAC,∠FCA=BCA,∴∠FAC=∠FCA,∴FA=FC,在△EAC和△DCA中,,∴△EAC≌△DCA(ASA),∴EC=DA,∵FA=FC,∴EF=DF;(2)EF=DF仍成立,理由如下:如图,在CA上截取CG=CD,在△CDF和△CGF中,,∴△CDF≌△CGF(SAS),∴DF=GF,∠DFC=∠GFC,∵∠DFC=∠FAC+∠FCA=BAC+BCA=60°,∴∠GFC=60°,∠AFE=60°,∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣(BAC+BCA)=180°﹣60°=120°,∴∠AFG=120°﹣60°=60°,∴∠AFE=∠AFG,在△AEF和△AGF中,,∴△AEF≌△AGF(ASA),∴EF=GF,∴EF=DF.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,三角形的内角和定理,遇到角平分线,作角平分线上的点到两边的距离构造出全等三角形是解题的关键.34.(2021秋•台江区期中)如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【分析】(1)利用SAS ABC≌△AED;(2)根据全等三角形的性质得到∠ABC=∠AED,根据等腰三角形的性质得到∠ABE=∠AEB,得到∠OBE=∠OEB,根据等腰三角形的判定定理证明.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD,在△BAC和△EAD中,,∴△BAC和≌EAD;(2)∵△BAC≌△EAD,∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠OBE=∠OEB,∴OB=OE.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.35.(2022秋•宝山区校级期中)如图,已知在△ABC中,AB=AC,点D、E分别在边AB、AC上,且AD =AE.(1)求证:DE∥BC;(2)如果F是BC延长线上一点,且∠EBC=∠EFC,求证:DE=CF.【分析】(1)根据等腰三角形的性质和三角形内角和证明即可;(2)根据AAS证明△BDE与△EFC全等即可.【解答】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵AD=AE,∴∠ADE=∠AED,∵∠A=∠A,∴∠ADE=∠ABC,∴DE∥BC;(2)∵∠EBC=∠EFC,∠ABC=∠ACB,∴∠DBE+∠EBC=∠CEF+∠EFC,∴∠DBE=∠CEF,∠DEB=∠EFC,在△BDE与△EFC中,,∴△BDE≌△EFC(AAS),∴DE=CF.【点评】本题考查了等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定语言性质的运用,解答时证明三角形全等是关键.36.(2022秋•浦东新区期中)已知:如图,AB=DC,AC=BD.求证:∠B=∠C.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【解答】解:如图,连接AD,在△ABD和△DCA中,,∴△ABD≌△DCA(SSS),∴∠B=∠C.【点评】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.37.(2022秋•徐汇区校级期中)已知:如图,在△ABC中,∠ACB=90°,AD为△ABC的外角平分线,交BC的延长线于点D,且∠B=2∠D.求证:AB+AC=CD.【分析】过点D作DE⊥AB,垂足为点E,由“在角的平分线上的点到这个角的两边的距离相等”可知DE=DC,再证明Rt△ACD≌Rt△AED,由此可得AC=AE,在证明BE=DE即可.【解答】证明:过点D作DE⊥AB,垂足为点E,又∵∠ACB=90°(已知),∴DE=DC(在角的平分线上的点到这个角的两边的距离相等).在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(H.L).∴AC=AE,∠CDA=∠EDA.∵∠B=2∠D(已知),∴∠B=∠BDE.∴BE=DE.又∵AB+AE=BE,∴AB+AC=CD.【点评】本题考查了全等三角形的判定与性质,关键是作辅助线使得AB与AC在同一条直线上才好证AB+AC =CD.38.(2021秋•徐汇区校级期中)如图,AB⊥BC,DC⊥BC,垂足分别是点B、C,点E是线段BC上一点,且AE⊥DE,AE=ED,如果BE=3,AB+BC=11,求AB的长.【分析】求出∠A=∠DEC,∠B=∠C=90°,根据AAS证△ABE≌△ECD,推出AB=CE,求出AB+BC=2AB+BE =11,把BE=3代入求出AB即可.【解答】解:∵AB⊥BC,DC⊥BC,垂足分别是点B、C,∴∠B=∠C=90°.∴∠A+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∵∠AEB+∠AED+∠DEC=180°,∴∠AEB+∠DEC=90°,∴∠A=∠DEC,∵在△ABE和△ECD中,,∴△ABE≌△ECD(AAS),∴AB=CE,∵BC=BE+CE=BE+AB,∴AB+BC=2AB+BE=11,∵BE=3,∴AB=4.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,注意:全等三角形的对应边相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.39.(2022秋•奉贤区校级期中)△ABC为等边三角形,D为AB边上的任意一点.连接CD.(1)在BD的左侧,以BD为一边作等边三角形BDE(尺规作图,保留作图痕迹,不写作法);(2)连接AE,试说明:CD=AE.【分析】(1)可以分别以B、D为圆心,以BD为半径作弧,相交于E;(2)由已知条件,证明△BCD≌△EAB即可.【解答】(1)解:如图:(2)证明:连接AE,如图,∵在△BCD与△BAE中,,∴△BCD≌△BAE(SAS)∴CD=AE.【点评】此题主要考查等边三角形的作法以及性质的运用,还涉及到全等三角形的判定,综合性强.求得三角形全等是正确解答本题的关键.40.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;。
沪教版八年级数学上册期中测试卷-带参考答案
沪教版八年级数学上册期中测试卷-带参考答案一.选择题(共6小题,满分18分,每小题3分)1.在根式、与、和中,可以与进行合并的有()A.1个B.2个C.3个D.4个2.的一个有理化因式是()A.B.C.D.3.已知x=﹣1是一元二次方程x2﹣k2x+k﹣3=0的一个解,则k的值是()A.﹣2或1B.0C.0或1D.0或﹣14.下列计算结果正确的是()A.B.C.D.5.下列命题中,假命题的是()A.若a≥b,则ac2≥bc2B.到一条线段两个端点距离相等的点一定在这条线段的垂直平分线上C.斜边和一锐角分别对应相等的两个直角三角形一定全等D.若∠A:∠B:∠C=3:4:5,则△ABC为直角三角形6.关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根,则m的值可能是()A.3B.4C.5D.6二.填空题(共12小题,满分24分,每小题2分)7.计算:=;=.8.已知非零实数0 a,b满足|5﹣3a|+|b+3|++5=3a,则a+b=.9.若|2020﹣m|+=m,则m﹣20202=.10.在﹣,与,1四个实数中,最大的实数是.11.关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程,那么m的取值范围是.12.关于x的不等式:2x﹣5>x的解集为.13.直接写出解:y2﹣2y+1=0.14.某玩具厂2022年1月份生产玩具5000个,后来生产效率逐月提高,第一季度生产玩具10000个,设2、3月份每月平均增长率为x,列方程为.15.实数范围内分解因式a4﹣6a2+9=.16.已知x1,x2是一元二次方程x2﹣2x﹣2022=0的两根,则代数式的值.17.如图,已知∠NBC=∠MEF,NB=ME,若以“SAS”为依据判定△NBC≌△MEF,还要添加的条件为.18.如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是5cm2和9cm2,则△CDE的面积为.三.解答题(共7小题,满分78分)19.计算:(1);(2);(3).20.解方程:(1)x2﹣4x+2=0;(2)x(x﹣5)+x﹣5=0.21.先化简,再求值:已知,求的值.22.已知x=1和x=﹣2是方程ax2+bx+c=0(a≠0)的解,试求方程ax2﹣bx+c=0(a≠0)的解.23.已知:如图,若AB∥CD,AB=CD且BE=CF.求证:AE=DF.24.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长36米.若墙长为18米,要围成鸡场的面积为180平方米,则鸡场的长和宽各为多少米?25.【问题背景】(1)如图1,在△ABC中,AD平分∠BAC,AD⊥BC,垂足为D,求证:AB=AC,BD=CD;【变式迁移】(2)如图2,在△ABC中,∠ACB=90°,AD平分∠CAB,AD⊥DB,CE ⊥AD,垂足为E,M为BC的中点,连接ME,MD.求证:ME=MD.参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.解:,和∴在根式中,可以与进行合并的有共2个.故选:B.2.解:A根据二次根式的乘法法则,不是的一个有理化因式,故A不符合题意;B•=2•=2(x﹣y),是的一个有理化因式,故B 符合题意;C根据二次根式的乘法法则,+不是的一个有理化因式,故B不符合题意;D根据二次根式的乘法法则,﹣不是的一个有理化因式,故B不符合题意.故选:B.3.解:把x=﹣1代入方程x2﹣k2x+k﹣3=0中得:1+k2+k﹣3=0整理得:k2+k﹣2=0(k+2)(k﹣1)=0解得:k=﹣2或k=1故选:A.4.解:3+4不能合并,故选项A错误,不符合题意;=2﹣=,故选项B错误,不符合题意;=,故选项C错误,不符合题意;==3,故选项D正确,符合题意;故选:D.5.解:A若a≥b,则ac2≥bc2,正确,是真命题,不符合题意;B到一条线段两个端点距离相等的点一定在这条线段的垂直平分线上,正确,是真命题,不符合题意;C斜边和一锐角分别对应相等的两个直角三角形一定全等,正确,是真命题,不符合题意;D若∠A:∠B:∠C=3:4:5,则△ABC为直角三角形,错误,是假命题,符合题意.故选:D.6.解:∵关于x的一元二次方程x2﹣4x+m=0有两个不相等的实数根∴Δ=(﹣4)2﹣4m>0解得m<4.m的值可以是3故选:A.二.填空题(共12小题,满分24分,每小题2分)7.解:原式=×==3;原式==+.8.解:∵∴a﹣2≥0∴a≥2∴5﹣3a<0∴|5﹣3a|=3a﹣5.∵|5﹣3a|+|b+3|++5=3a∴3a﹣5+|b+3|++5﹣3a=0∴|b+3|+=0∴b+3=0,a﹣2=0.∴b=﹣3,a=2.∴a+b=﹣3+2=﹣1.故答案为:﹣1.9.解:由题意得:m﹣2021≥0解得:m≥2021∵|2020﹣m|+=m∴m﹣2020+=m∴=2020∴m﹣2021=20202则m﹣20202=2021故答案为:2021.10.解:∵﹣≈﹣1.732,≈1.414,=1.5∴1.5>1.414>1>﹣1.732∴>>1>﹣故答案为:.11.解:由关于x的方程(m+5)x2﹣2mx﹣4=0是一个一元二次方程得m+5≠0解得m≠﹣5.故答案为:m≠﹣5.12.解:2x﹣5>x2x﹣x>5(2﹣)x>5x<x<﹣10﹣5故答案为:x<﹣10﹣5.13.解:由原方程,得(y﹣1)2=0则y1=y2=1.故答案为:y1=y2=1.14.解:∵某玩具厂2022年1月份生产玩具5000个,2 3月份月产量的平均增长率为x∴该玩具厂2022年2月份生产玩具5000(1+x)个,3月份生产玩具5000(1+x)2个.又∵该玩具厂第一季度生产玩具10000个∴可列方程为5000+5000(1+x)+5000(1+x)2=10000.故答案为:5000+5000(1+x)+5000(1+x)2=10000.15.解:a4﹣6a2+9=(a2﹣3)2=[(a+)(a﹣)]2=(a+)2(a﹣)2.故答案为:(a+)2(a﹣)2.16.解:∵x1,x2是一元二次方程x2﹣2x﹣2022=0的两根∴x12﹣2x1=2022,x1x2=﹣2022∴x12﹣2x1+x1x2=2022﹣2022=0.故答案为:0.17.解:由题意∠NBC=∠MEF,NB=ME∵“SAS”为依据判定△NBC≌△MEF∴需要添加BC=EF.故答案为:BC=EF.18.解:过E作EH⊥CD于点H.∵∠ADG+∠GDH=∠EDH+∠GDH∴∠ADG=∠EDH.在△ADG和△HDE中∴△ADG≌△HDE(AAS).∴HE=AG.∵四边形ABCD和四边形DEFG都是正方形,面积分别是5cm2和9cm2.即AD2=5,DG2=9.∴在直角△ADG中,AG===2.∴EH=AG=2.∴△CDE的面积为CD•EH=××2=(cm2).故答案为:cm2.三.解答题(共7小题,满分78分)19.解:(1)==;(2)===10;(3)===.20.解:(1)∵x2﹣4x+2=0∴x2﹣4x=﹣2∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2∴x﹣2=±∴x1=2+,x2=2﹣;(2)∵x(x﹣5)+x﹣5=0∴(x﹣5)(x+1)=0则x﹣5=0或x+1=0解得x1=5,x2=﹣1.21.解:∵∴∴.22.解:∵x=1和x=﹣2是方程ax2+bx+c=0(a≠0)的解∴a+b+c=0,4a﹣2b+c=0由a+b+c=0可得a•(﹣1)2﹣b•(﹣1)+c=0,即当x=﹣1时,方程ax2﹣bx+c=0左右两边相等∴x=﹣1是方程ax2﹣bx+c=0的解;由4a﹣2b+c=0知a•22﹣2b+c=0,即当x=2时,方程ax2﹣bx+c=0左右两边相等∴x=2是方程ax2﹣bx+c=0的解.∴方程ax2﹣bx+c=0的解为x=﹣1和x=2.23.证明:∵AB∥CD∴∠B=∠C在△ABE与△DCF中∴△ABE≌△DCF(SAS)∴AE=DF.24.解:设养鸡场的宽为x米,根据题意得:x(36﹣2x+2)=180解得:x1=10,x2=9当x=10时,36﹣2x+2=18当x=9时,36﹣2x+2=20>18,(舍去)则养鸡场的宽是10米,长为18米.25.证明:【问题背景】∵AD平分∠BAC∴∠BAD=∠CAD∵AD⊥BC∴∠ADB=∠ADC=90°在△ADB与△ADC中∴△ADB≌△ADC(ASA)∴AB=AC,BD=CD;【变式迁移】延长DM交CE于N∵BD⊥AD,CE⊥AD∴CN∥BD∴∠NCM=∠MBD在△DBM与△NCM中∴△DBM≌△NCM(ASA)∴DM=MN∵M是DN的中点∵∠DEN=90°∴DM=EM=MN=DN∴ME=MD.。
沪科版八年级上册数学期中考试试卷附答案
沪科版八年级上册数学期中考试试题一、单选题1.已知点A(x+2,x﹣3)在y轴上,则x的值为()A.﹣2 B.3 C.0 D.﹣32.已知△ABC△△A1B1C1,若△A=△A1=60°,△B=50°,则△C的度数为()A.50° B.60° C.70° D.80°3.函数y=2211xx-+的自变量x的取值范围是()A.x ≠0 B.x ≠1 C.x ≠±1 D.全体实数4.如图,在△ABC和△BAD中,AC=BD,要使△ABC△△BAD,则需要添加的条件是A.△BAD=△ABC B.△BAC=△ABD C.△DAC=△CBD D.△C=△D 5.已知4个正比例函数y=k1x,y=k2x,y=k3x,y=k4x的图像如图,则下列结论成立的是()A.k1>k2>k3>k4B.k1>k2>k4>k3C.k2>k1>k3>k4D.k4>k3>k2>k16.下列命题中,假命题是()A.如果a,b都是正数,那么ab>0 B.如果a2=b2,那么a+b=0C.如果一个三角形是直角三角形,那么它的两个锐角互余D.同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行7.已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四8.如图,△ABC△△ADE,△DAC=70°,△BAE=100°,BC、DE相交于点F,则△DFB度数是()A.15° B.20° C.25° D.30°9.甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.10.下列命题中,是真命题的是()A.若|a|=|b|,那么a=b B.如果ab>0,那么a,b都是正数C.两条平行线被第三条直线所截,同旁内角互补D.两条直线与第三条直线相交,同位角相等11.在数学探究活动中,小明进行了如下操作:将一张四边形纸片ABCD沿BD折叠,点A 恰巧落在BC上,已知△C=90°,AB=6dm,BC=9dm,CD=4dm,则四边形ABCD的面积是()A.24dm2B.30dm2C.36dm2D.42dm²12.下列图象中,表示y不是x的函数的是()A.B.C.D.二、填空题13.“等腰三角形的两个底角相等.”请写出它的逆命题:_________________.14.一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是_____.15.如图,已知P(3,3),点B、A分别在x轴正半轴和y轴正半轴上,△APB=90°,则OA +OB=________.16.在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为_____.(2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为_____.三、解答题17.在平面直角坐标系中,若点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,求a的值.18.如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且△ACB=90°.(1)图中与△ABC相等的角是;(2)若AC=3,BC=4,AB=5,求点C的坐标.19.如图,已知AB∥CD,AB=CD,BE=CF.求证:AF∥DE.20.如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上,线段DE的端点也均在格点上,且AB=DE.(1)将△ABC向上平移4个单位,再向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)以DE为一边画△DEF,使得△DEF与△ABC全等.21.如图,已知A,B,C三点在同一条直线上,△ACD=△BCE,AC=CD,BC=CE,AE,BD相交于F.求证:(1)AE=BD;(2)△ACD=△BFE.22.如图,已知两个一次函数y1=32x﹣6和y2=﹣32x的图象交于A点.(1)求A点的坐标;(2)观察图象:当1<x<3时,比较y1,y2的大小.23.我国古代数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.如图,在△ABC中,△C=90°,四边形CDEF为正方形,△ADE△△AGE,△BGE△△BFE.(1)求△AEB的度数;(2)设BC=a,AC=b,AB=c,求正方形CDEF的边长.(用含a,b,c的式子表示)24.某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.25.如图1,AM为△ABC的BC边的中线,点P为AM上一点,连接PB.(1)若P为线段AM的中点.△设△ABP的面积为S1,△ABC的面积为S,求1S的值;S△已知AB=5,AC=3,设AP=x,求x的取值范围.(2)如图2,若AC=BP,求证:△BPM=△CAM.参考答案1.A【解析】【分析】根据y 轴上点的横坐标为0列方程求解即可.【详解】解:△点A (x+2,x ﹣3)在y 轴上,△x+2=0,解得x=-2.故选:A .【点睛】本题考查了点的坐标,熟记y 轴上点的横坐标为0是解题的关键.2.C【解析】【分析】根据三角形的内角和定义即可求解.【详解】解:△△A =60°,△B =50°,则△C=180°-△A -△B =70°故选C .【点睛】此题主要考查三角形内角和定理,解题的关键是熟知三角形的内角和为180°.3.D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得220,110x x ≥+≥≠,所以自变量x 的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.4.B【解析】【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:△AC=BD,而AB为公共边,A、当△BAD=△ABC时,“边边角”不能判断△ABC△△BAD,该选项不符合题意;B、当△BAC=△ABD时,根据“SAS”可判断△ABC△△BAD,该选项符合题意;C、当△DAC=△CBD时,由三角形内角和定理可推出△D=△C,“边边角”不能判断△ABC△△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC△△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.A【解析】【分析】首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.【详解】解:首先根据直线经过的象限,知:k3<0,k4<0,k1>0,k2>0,再根据直线越陡,|k|越大,知:|k1|>|k2|,|k4|>|k3|.则k1>k2>k3>k4,故选:A.【点睛】本题主要考查了正比例函数图像的性质,首先根据直线经过的象限判断k的符号,再进一步根据直线的平缓趋势判断k的绝对值的大小,最后判断四个数的大小.6.B【解析】【分析】根据有理数的运算、乘方的性质、直角三角形的性质及平行线的判定定理即可依次判断.【详解】A.如果a,b都是正数,那么ab>0,正确;B.如果a2=b2,那么a=±b,△a+b=0或a=b,故错误;C.如果一个三角形是直角三角形,那么它的两个锐角互余,正确;D.同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,正确故选B.【点睛】此题主要考查命题的真假,解题的关键是熟知有理数的运算、乘方的性质、直角三角形的性质及平行线的判定定理.7.D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,△一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,△该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.8.A【解析】【分析】先根据全等三角形对应角相等求出△B=△D,△BAC=△DAE,所以△BAD=△CAE,然后求出△BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以△DFB=△BAD.【详解】解:△△ABC△△ADE,△△B=△D,△BAC=△DAE,又△BAD=△BAC-△CAD,△CAE=△DAE-△CAD,△△BAD=△CAE,△△DAC=70°,△BAE=100°,△△BAD=12(△BAE-△DAC)=12(100°-70°)=15°,在△ABG和△FDG中,△△B=△D,△AGB=△FGD,△△DFB=△BAD=15°.故选:A.【点睛】本题主要利用全等三角形对应角相等的性质.需注意:全等三角形的对应边相等,对应角相等.9.C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,△当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.10.C【解析】【分析】分别根据绝对值、有理数乘法符号规律以及平行线性质分析得出即可.【详解】解:A、若|a|=|b|,那么a=b,或a=-b,故此选项A错误;B、如果ab>0,那么a,b都是同号,此选项B错误;C.两条平行线被第三条直线所截,同旁内角互补,故此选项C正确;D、两平行直线被第三条直线所截,同位角相等.选项中未指明两直线是否平行,故此选项D 错误;故选C.【点睛】此题主要考查了命题与定理,正确灵活的掌握相关性质和定理是解题关键.11.B【解析】【分析】由折叠的性质得到BE=BA=6,△ABD=△EBD,利用角平分线的性质以及三角形公式即可求解.【详解】解:根据题意,将一张四边形纸片ABCD沿BD折叠,点A恰巧落在BC上的E处,连接DE,过点D作DF△BA并交BA的延长线于点F,如图:△BE=BA=6,△ABD=△EBD,△△C=90°,DF△BA,△DF=DC=4,△四边形ABCD的面积=12BC⨯CD+12AB⨯DF=12⨯9⨯4+12⨯6⨯4=30(dm2) .故选:B.【点睛】本题考查了折叠的性质,角平分线的性质,熟记各图形的性质并准确识图是解题的关键.12.B【解析】【分析】依据函数的定义即可判断.【详解】选项B中,当x>0时对每个x值都有两个y值与之对应,不满足函数定义中的“唯一性”,而选项A、C、D对每个x值都有唯一y值与之对应.故选B.【点睛】本题考查了函数的定义.判定依据是看是否满足定义中的“任意性”、“唯一性”.13.有两个角相等三角形是等腰三角形【解析】【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【详解】解:逆命题为:有两个角相等三角形是等腰三角形,故答案为:有两个角相等三角形是等腰三角形.【点睛】此题主要考查了命题与定理,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.14.30°##30度【解析】【分析】设三角形的三个内角分别为x ,2x ,3x ,再根据三角形内角和定理求出x 的值,进而可得出结论.【详解】解:△三角形三个内角的比为1:2:3,△设三角形的三个内角分别为x ,2x ,3x ,△x+2x+3x=180°,解得x=30°.△这个三角形最小的内角的度数是30°.故答案为:30°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键. 15.6【解析】【详解】过P 作PM△y 轴于M ,PN△x 轴于N ,△P (3,3),△PN=PM=3,△90MON PNO PMO ∠=∠=∠=︒,△△MPN=360°-90°-90°-90°=90°,则四边形MONP 是正方形,△3OM ON PN PM ==== ,△△APB=90°,△△APB=△MON ,△9090MPA APN BPN APN ∠=︒-∠∠=︒-∠, ,△△APM=△BPN ,在△APM 和△BPN 中APM BPN PM PNPMA PNB ∠∠⎧⎪⎨⎪∠∠⎩=== , △△APM△△BPN (ASA ),△OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=3+3=6故答案是:6.16. 4.553(或者213) 【解析】【分析】 (1)把P (1,3)分别代入直线l 1、 l 2,求出直线,再求出两直线与x 轴的交点,即可求解;(2)分别表示出C ,D 的坐标,根据线段CD 长为2,得到关于a 的方程,故可求解.【详解】解:(1)把P (1,3)代入l 1:y =2x+m 得3=2+m解得m=1△l 1:y =2x+1令y=0,△2x+1=0解得x=-12, △A (-12,0) 把P (1,3)代入l 2:y =﹣x+n 得3=-1+n解得n=4△l 1:y =﹣x+4令y=0,△﹣x+4=0解得x=4,△B (4,0)△AB=4-(-12)=4.5; 故答案为:4.5;(2)△已知直线x =a (a >1)分别与l 1、l 2相交于C ,D 两点,设C 点坐标为(a ,y 1),D 点坐标为(a ,y 2),△y 1=2a+1,y 2=﹣a+4△CD=2△()()4221a a --+=+解得a=13或a=53 △a >1 △a=53. 故答案为:53. 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.17.a 的值为13. 【解析】【分析】设直线的解析式为y=kx ,把A 点的坐标代入求得k 值,再把B 点的坐标代入即可求出a 的值.【详解】解:设直线OA的解析式为:y=kx,把A(﹣1,6)代入得:6=-k,△k=-6,△直线OA的解析式为:y=-6x,△点O(0,0),A(﹣1,6),B(a,﹣2)在同一条直线上,即B点在直线OA上,把B(a,﹣2)代入y=-6x得:-2=-6a,△a=13,△a的值为13.18.(1)△ACO;(2)点C的坐标为(0,125).【分析】(1)由同角的余角相等,可得到△ABC=△ACO;(2)利用面积法可求得CO的长,进而得到点C的坐标.【详解】解:(1)△OC△AB,△ACB=90°.△△ABC+△BCO=△ACO+△BCO=90°,△△ABC=△ACO;故答案为:△ACO;(2)△AC=3,BC=4,AB=5,△三角形ABC是直角三角形,△ACB=90°1 2AB⨯CO=12AC⨯BC,即CO=345⨯=125,△点C的坐标为(0,125).19.见解析【分析】先由平行线的性质得△B=△C,从而利用SAS判定△ABF△△DCE;再根据全等三角形的性质得△AFB=△DEC,由平行线的判定可得结论.【详解】证明:△AB△CD,△△B=△C,△BE=CF ,△BE+EF=CF+EF ,即BF=CE ,在△ABF 和△DCE 中,AB DCB C BF CE=⎧⎪∠=∠⎨⎪=⎩,△△ABF△△DCE (SAS ),△△AFE=△DEF ,△AF△DE .20.(1)见详解;(2)见详解.【分析】(1)由题意先平移A 、B 、C 到A 1、B 1、C 1进而再连接A 1B 1、B 1C 1、 A 1C 1即可;(2)根据题意通过全等三角形的判定条件SSS 进行分析作图.【详解】解:(1)如图,△A 1B 1C 1即为所得,(2)如图,△DEF 与△ABC 全等,△AB DE BC EF ======AC DF ==△△DEF ≅△ABC(SSS).【点睛】本题考查作图-平移变换以及勾股定理等知识,解题的关键是掌握平移变换的性质以及全等三角形的判定条件.21.(1)见解析;(2)见解析【解析】【分析】(1)根据已知得出△ACE=△DCB,根据SAS证出两三角形全等,利用全等三角形的性质易得结论;(2)根据全等三角形性质得出△AEC=△DBC,由三角形内角和定理推出△BFE=△BCE,即可得到结论.【详解】(1)证明:△△ACD=△BCE,△△ACD+△DCE=△BCE+△DCE,△△ACE=△DCB,在△ACE和△DCB中△AC CDACE DCBCE CB=⎧⎪∠=∠⎨⎪=⎩,△△ACE△△DCB(SAS),△AE=BD;(2)解:△△ACE△△DCB,△△AEC=△DBC,△ACD=△BCE,△△BGC=△EGF,△△BGC+△GCB+△GBC=△EGF+△GFE+△GEF,△△BFE=△BCE,△△ACD=△BFE .【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,解此题的关键是找出已知量和未知量之间的关系.22.(1)A (2,-3)(2)当1<x <2时,y 2>y 1;当x=2时,y 1=y 2;当2<x <3时,y 1>y 2.【解析】【分析】(1)联立两函数即可求解;(2)根据交点,分情况讨论即可求解.【详解】解:(1)联立两函数得36232y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得23x y =⎧⎨=-⎩ △A (2,-3)(2)△两函数交于A 点,由图可得:当1<x <2时,y 2>y 1;当x=2时,y 1=y 2;当2<x <3时,y 1>y 2.【点睛】此题主要考查一次函数的图像与性质,解题的关键是根据题意联立两函数求出交点. 23.(1)△AEB=135°;(2)正方形CDEF 的边长为2a b c +-. 【解析】【分析】(1)根据三角形内角和定理以及全等三角形的性质推出△GBE+△GAE=45°,再利用三角形内角和定理即可求解;(2)设正方形CDEF 的边长为x ,利用全等三角形的性质推出AD=AG=b -x ,BF=BG=a -x ,再由AG+ BG=c ,即可求解.【详解】解:(1)△△ADE△△AGE ,△BGE△△BFE ,△△GBE=△FBE ,△GAE=△DAE ,△△C=90°,△△CBA+△CAB=90°,即△GBE+△GAE=45°,△△AEB=180°-(△GBE+△GAE)=135°;(2)△△ADE△△AGE ,△BGE△△BFE ,△BF=BG ,AD=AG ,设正方形CDEF 的边长为x ,△AD=AG=b -x ,BF=BG=a -x ,△AG+ BG=c ,△b -x+ a -x=c , △x=2a b c +-, 即正方形CDEF 的边长为2a b c +-. 【点睛】本题考查了全等三角形的性质,三角形内角和定理,解题的关键是学会利用参数构建方程解决问题.24.(1)y=-2x+60;(2)公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【解析】【分析】(1)设销售A 种品牌设备x 台,B 种品牌设备(20-x )台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A 种型号设备x 台,则销售B 种型号设备(20-x )台,依题意得:y=(4-3)x+(8-5)×(20-x ),即y=-2x+60;(2)3x+5×(20-x )≤80,解得x≥10.△-2<0,△当x=10时,y 最大=40万元.故公司生产A ,B 两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.25.(1)△14,△14x ≤≤;(2)证明见解析 【分析】(1)△由中线定义即可得14ABP ABC S S =,故114S S = △过C 点作AB 平行线,过B 点作AC 平行线,相交于点N ,连接ME ,可得ABM CME ≅△△,AB=CE ,则在AEC △中,有两边之和大于第三边,两边之和小于第三边,即可求出AE 的取值范围,即28AE ≤≤,又因为P 为线段AM ,故14AP ≤≤.(2)延长PM 到点D 使PM=DM ,连接DC ,由边角边可证明BMP CMD ≅△△,则对应边BP=CD 相等,由等角对等边即可求得 △BPM=△CDM ,同理可得△CAM=△CDM ,所以△BPM =△CAM .【详解】(1)△由AM 为△ABC 的BC 边的中线可知12ABM ACM ABC S S S ==△△△ 由P 为线段AM 的中点可知12ABP BPM AMB S S S ==△△△ 则14ABP ABC S S =,故114S S = △过C 点作AB 平行线,过B 点作AC 平行线,相交于点N ,连接ME△AB//CE△△ABC=△BCE ,△BAE=△AEC ,BM=MC△ABM CME ≅△△(AAS )△AB=CE在AEC △中有CE AC AE CE AC -≤≤+即AB AC AE AB AC -≤≤+得28AE ≤≤即28AM ≤≤△P 为线段AM 的中点△AM=2AP ,△14AP ≤≤即14x ≤≤.(2)延长PM 到点D 使PM=DM ,连接DC , △PM=DM ,△BMP=△CMD ,BM=CM △BMP CMD ≅△△(SAS )△BP=CD , △BPM=△CDM又△AC =BP△AC =CD△△CAM=△CDM△△BPM =△CAM。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第一学期八年级期中考试
数学试卷
一、选择题:(本大题共6题,每题3分,满分18分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并写在答题纸的相应位置上】
1. 二次根式1
53-+x x 中字母x 的取值范围是( ) A.x<1 B.x ≤1 C.x >1 D.x ≥1
2. 下列二次根式中,属于最简根式的是( )
A.2
19 B.79 C.20 D.5.0 3. 下列一元二次方程有实数根的是( ) (利用判别式)
A.x 2+1=0
B.x 2-x-1
C.x 2-x+1=0
D.x 2+x+1=0
4. 一元二次方程x2-2x+m 有实数根,那么实数m 的取值范围是( )(利用判别式)
A.m >1
B.m =1
C.m <1
D.m ≤1
5. 下列各组二次根式中,是同类二次根式的是( ) A.85.0与 B.15,45 C.12,18 D.3
232, 6. 过正比例函数y=kx 的图像上一点A (3,m )作x 轴的垂线,垂足为B ,如果S △AOB =7,则k 的值为( )
A.±37
B.±314
C.±914
D.±9
7 二、填空题:(本大题共12题,每题2分,满分24分)
7.比较大小:56.
8.已知xy=21,那么y
x y x y x += . 9.二次根式
b a +21的有理化因式是 . 10.不等式02210<-x 的解集为 .
11.计算:3·26= .
12.已知正比例函数y=(3-k )x (k 为常数,k ≠3),点()
23-2,在这个函数的图像上,那么y 的值随x 的增大而 . (选填“增大”或“减小”) 13.如果正比例函数y=kx ,当x 增加的值为,则的值增加时,k y 2-323+ .
14.一元二次方程的求根公式为 .
15.已知a
b b a ab b a +=-=+则,8,24= . 16.某校进行篮球比赛,第一轮每个班级都要和其他班级进行一场比赛,结果一共进行了28场比赛,设这个年级有x 个班级,则可列出方程 .
17.利用配方法可将方程999162--x x 配为( )2= .
18.已知a 为实数,且62162-+a a ,均为整数,则a 的值为 .
三、解答题:(本大题共7题,满分58分)
19.(本题满分15分,其中每小题5分)
计算:(1)a b b a ab b ÷-)(·135;(2)3
-527515-21-35++; (3)...
22222...22222+++++-(?2?,, (222)
==x x x 则为提示:设)
20. (本题满分6分) .
5204
1222的最小值求代数式的实数根,为有理数)有两个相等、(的一元二次方程已知关于-++=-+
-m n m n m m nx x x 21.(本题满分4分) .
032)1(2的最大整数值求,
有两个不相等的实数根的一元二次方程关于k k kx x k x =+++- 22. (本题满分10分,每小题5分)
阅读下题解答过程:
.1.v 11.iv 1
.iii 1
.ii .
.i .
2232的值为符合题意
代入原方程检验,可知把,得方程两边同除以代入原方程,化简得把解:
的值的一个根,求的方程是关于已知a a a a a a a a a x a a x ax x a ∴======+-
(1)请指出上述解答过程中的错误(写出步骤号及错误原因)。
(2)请写出正确的解答步骤与结果。
23. (本题满分5分)解方程:032232
=+++x x x
24. (本题满分8分)列方程解应用:某商场将进货价为30元的商品以40元售出,平均每星期能售出500个.调查表明:这种商品的售价每上涨1元,其销售量就将减少10个.为
了实现一星期8000元的销售利润,商品的售价应定为多少元?
25. (本题满分10
分)
()().
64,03222()1(.,33,3坐标,求点面积为,若△坐标为)点(坐标;
,求点轴的距离为到)若点();
求分。
提示:将坐标代入求函数解析式轴的垂线,垂足为作过该函数图像上一点过点已知正比例函数M MOC C M y N k kx y N x M A kx y =-=
答案
一、选择题3x6=18
1.C
2.B
3.B
4.D
5.A
6.C
二、填空题2x12=24
7.<
8.±2 9.b a 42- 10.55
2<x 11.26
12.减小 13.62-5 14.a ac b b 24-2-±
15.2
16. 28)1(21=-x x
17. x-3 10000
18. 62-5-62-5或
三、解答题58
19. (15分,5×3)(1)分)论扣(直接开根号不分类讨3-2ab b a ;(2)23-7;(3)
20. (6分)代数式=-2(2分)得分要点:△=0(1分)n 2=m-1,m ≥1(1分)配方(2分)
21. (4分)0(1分)得分要点:△>0(1分) k <2
3(1分) k ≠1(1分) 22. (10分5×2)(1)错误1:步骤ii ,方程两边同除以a 要考虑a 是否为零(3分),错误2:步骤iii ,由a 2
=1应得到a=±1(2分,大意对即可); .
1-1,01
100
)1)(1(3或的值为或或,即代入原方程,化简得把解:
a a a a a a a a a a x ∴-====-+==(5分) 23. (5分)3,221-=-=x x
24. (8分)80元或60元
25. (10分)(1)y=-3x (2分);(
2)M (2,-6)或(-2,6)(4分);(3)M (3,-9)或(-3,9)(4分)。