神经、内分泌与免疫调节网络
神经系统对免疫功能的调节机制研究
神经系统对免疫功能的调节机制研究免疫功能是机体对各类病原体的防御能力,而神经系统作为人体重要的调节系统之一,在免疫功能方面发挥着至关重要的作用。
近年来,越来越多的研究表明神经系统通过多种途径对免疫功能产生调节作用,从而影响身体的健康状况。
本文将探讨神经系统对免疫功能的调节机制。
1. 神经内分泌网络的作用神经内分泌网络是神经系统和免疫系统之间重要的连接桥梁。
免疫功能的调节主要通过神经内分泌系统传递的信号来实现。
例如,垂体-肾上腺轴通过释放肾上腺素和皮质类固醇等激素,调节免疫细胞的分化和功能。
神经内分泌网络的畸变可能导致免疫功能紊乱,从而引发免疫相关疾病。
2. 神经免疫调节途径神经系统通过交感神经和副交感神经对免疫功能进行调节。
交感神经可通过释放去甲肾上腺素和诱导免疫细胞产生炎症介质,影响炎症反应的发生和强度。
副交感神经则具有镇静和抑制免疫反应的作用。
这两个神经途径的平衡和调节是维持免疫功能正常水平的关键。
3. 神经递质的作用神经系统中的神经递质也对免疫功能具有重要影响。
例如,去甲肾上腺素的释放能够抑制免疫细胞的活化和炎症反应,从而调节免疫功能。
多巴胺则能够通过激活免疫细胞上的多巴胺受体,影响免疫反应的途径和结果。
神经递质的平衡和调控是维持免疫功能稳定的关键因素。
4. 神经调节的免疫相关疾病神经系统对免疫功能的调节紊乱可能导致免疫相关疾病的发生。
多种自身免疫性疾病和过敏反应与神经系统的异常活动密切相关。
例如,自身免疫性疾病如类风湿性关节炎和系统性红斑狼疮,可能与神经内分泌网络的紊乱有关。
了解神经调节在这些疾病中的作用有助于寻找新的治疗策略。
综上所述,神经系统通过神经内分泌网络、神经免疫调节途径以及神经递质等多个方面对免疫功能进行调节。
这种调节机制对身体的健康状况和免疫相关疾病的发生都具有重要的影响。
进一步研究神经系统与免疫系统之间的相互作用,有助于揭示免疫功能的调节机制,并为治疗免疫性疾病提供新的思路和策略。
生命活动的三种调节方式
生命活动的三种调节方式
生命活动的三种调节方式包括神经调节、内分泌调节和免疫调节。
1. 神经调节:神经调节是通过神经系统对生理过程进行调控。
它包括感受器的接收、传递和处理信息的神经元,以及通过神经冲动传导和神经递质释放来调节身体各个系统的活动。
例如,通过中枢神经系统的调控,我们可以感受到外界环境的变化并做出相应的反应,如感觉到寒冷时,我们会打喷嚏或颤抖以增加体温。
2. 内分泌调节:内分泌调节是通过内分泌系统对生理过程进行调控。
内分泌系统由内分泌腺(如脑垂体、甲状腺、胰岛等)和它们分泌的激素组成。
这些激素通过血液传递到相应的靶组织或器官,调节其功能和代谢。
例如,甲状腺激素可以调节体温、能量代谢和生长发育等重要生理过程。
3. 免疫调节:免疫调节是通过免疫系统对生理过程进行调控。
免疫系统包括免疫细胞(如淋巴细胞、巨噬细胞等)和免疫分子(如抗体、细胞因子等)。
它们通过识别和攻击病原体、调控炎症反应等方式来维护机体的免疫平衡和稳态。
例如,当机体感染病原体时,免疫系统会启动免疫反应,释放炎症介质来清除病原体,并最终恢复机体的健康状态。
第五节神经-内分泌-免疫调节网络
neuroendocrineimmunoregulation network
1
掌握要点:
1.神经内分泌系统与免疫系统的相互调节 下丘脑-垂体-肾上腺轴 下丘脑-垂体-性腺轴 下丘脑-垂体-甲状腺轴 下丘脑-垂体-PRL、GH轴
2
1977年Besdovsky首次提出体内存在神经-免 疫-内分泌网络的假说。
1979年Spector将神经内分泌与免疫系统相互 作用称之为神经免疫调节,相继又提出了精神神 经免疫学、心理免疫学、行为免疫学、免疫精神 病学、思维与免疫力等新概念。
1982年,Blatock将该学科的研究领域称之为 神经免疫内分泌学(neuroimmunoendocrinology)。
3
神经-免疫-内分泌调节网络的研究成果: 1.免疫器官具有丰富的神经支配; 2.免疫器官及免疫活性细胞上可合成多种激素、
44
2.细胞因子对下丘脑-垂体-性腺轴的影响 (1)对下丘脑的影响
27
28
依据: (1)下丘脑具有高密度的IL-1受体 (2)IL-1给予途径与ACTH高峰出现时间和幅度的关系
出现高峰时间:脑室内注射﹤静脉注射(30 min)﹤ 腹腔注射(2 h) 幅度:脑室内注射>静脉注射>腹腔注射 (3)静脉注射IL-1:CRH ↑→血浆ACTH↑ 连续注射IL-1:下丘脑CRH及其mRNA↑ (4)抗CRH血清可部分阻断IL-1→ACTH↑效应
29
多数免疫指标中IL-1α﹥IL-1β 对于HPA轴IL-1α﹤IL-1β ②TNFα:下丘脑CRH↑→HPA激活 ③IL-6:下丘脑→HPA激活
30
(2)细胞因子对垂体的作用 ①IL-1 IL-1 →垂体→ACTH↑ 依据: (a)10-7mmol/L的重组人IL-1β→腺垂体细胞
神经系统与免疫系统、内分泌系统的关系
神经系统与免疫系统、内分泌系统的关系人教2019版高中生物学选择性必修一说,内环境稳态是神经—体液—免疫调节网络共同作用的结果:神经调节和体液调节紧密联系,密切配合:那么,神经系统与免疫系统、内分泌系统有什么样的关系呢?神经系统与免疫系统、内分泌系统的相互关系是一个重要的生理学问题。
这个问题不只是关系到生理学,而且与心理学、医学有关,这也是心身医学的基本问题。
神经系统与免疫系统有什么关系呢?先来考察一个实验:小鼠被多次注射抑制淋巴细胞活动的化学药物。
在每一次注射时都让这些小鼠嗅到樟脑的气味,樟脑原本对免疫系统没有影响。
经过一段时间的训练后,只让小鼠嗅到樟脑气味,不注射抑制淋巴细胞活动的化学药物,再检查小鼠淋巴细胞的机能。
研究者发现樟脑气味已经抑制淋巴细胞的活性,如同抑制淋巴细胞活动的化学药物一样。
这是建立了一个条件反射,条件刺激是樟脑气味,非条件刺激是抑制淋巴细胞活动的化学药物。
虽然目前对这种条件反射的路径还很不清楚,但用无关动因可以建立抑制免疫活动的条件反射,说明动物的高级神经活动与免疫系统的密切关系。
现在知道神经系统、免疫系统和内分泌系统这三个系统有几方面的关系:(1)有共同的信号分子及其受体。
免疫细胞可分泌激素,非免疫细胞可产生白细胞细胞因子。
例如,白细胞分泌促甲状腺激素(TSH)、促肾上腺皮质激素(ACTH)、生长激素、催乳素以及下丘脑促肾上腺皮质激素释放激素(CRH)。
激素和细胞因子的受体在多种组织上发现。
脑中的神经元有免疫细胞产生的细胞因子受体;天然杀伤细胞有阿片受体和β肾上腺素能受体。
看来神经系统、内分泌系统和免疫系统共同具有化学信号分子和它们的受体。
(2)激素和神经肽能改变免疫细胞的机能。
多年来已经知道不同的应激刺激(包括过冷、过热、中毒、感染、创伤、发热、缺氧、疼痛、疲劳、恐惧等)都可激活下丘脑-垂体-肾上腺系统,引起血液中肾上腺皮质激素含量升高,抑制免疫机能,如抑制淋巴细胞增殖,减少抗体生产,降低天然杀伤细胞的活性等。
免疫调控
神经-内分泌-免疫调节网络 独特型-抗独特型细胞网络 免疫细胞调节网络 细胞因子网络
免疫调节概念
免疫调节(immune regulation)是指在抗 原引起的免疫应答过程中免疫细胞之间、 免疫细胞与免疫分子之间以及免疫系统与 其他系统之间的相互作用,使免疫应答维 持在适度水平,以保证正常机体免疫功能 的稳定。 其本质是在遗传基因控制下由多因素参与 的调节过程。
免疫细胞调节网络
3.抗体水平的调节 免疫细胞激活信号转导中的两种对立成分 蛋白质的磷酸化和脱磷酸化 蛋白酪氨酸激酶(PTK)—激活信号转导的启动和上游阶段 蛋白酪氨酸磷酸酶(PTP)—脱磷酸化,负调节作用
免疫细胞存在两类功能相反的受体
激活受体和抑制性受体 激活性受体:免疫受体酪氨酸活化基序 ITAM 抑制性受体:免疫受体酪氨酸抑制基序 ITIM
神经-内分泌-免疫调节网络
神经-内分泌系统主要通过神经纤维、神经递质和激素调节免疫系 统功能;免疫系统则通过分泌多种细胞因子,反馈信息,调节神 经-内分泌系统。
独特型-抗独特型细胞网络
1.独特型
不同 B 细胞克隆产生的抗体分子的 V 区 (包括 BCR 和免疫球蛋白超 家族的TCR)的表位不同,都具有免疫原性,把抗体V区的表位称为 独特型。 机体受刺激抗原后产生抗体 (Ab1) ,当Ab1 的独特型达到一定剂 量时则引起免疫应答,产生抗独特型(Ab2)
细胞因子网络
4.机体对细胞因子表达的调控 CK信号转导抑制蛋白(SOCS)可阻遏细胞因子的Jak-STAT信 号转导途径,从而有效调控细胞因子产生和功能。细 Nhomakorabea因子网络
谢谢,再见
IL-3促进髓样祖细胞分化。
细胞因子网络
3.细胞因子双向免疫调节作用 (1)正调节作用:IFN-γ、TNF-α等可促进APC表达MHC分子, 从而促进抗原提呈和 T细胞活化;IL-2、IL-4、IL-5、IL-6等可促 进T、B细胞活化、增殖和分化;IL-12、TNF-α等可促进CTL活化 及其胞毒作用。 (2)负调节作用:IL-10、TGF-β等可显著抑制单核/巨噬细胞、 T细胞活化、增殖、细胞因子释放及功能。 (3)调节Th细胞分化和免疫应答类型:局部微环境中IL-12和IL4 可分别诱导 Th0 细胞分化为 Th1 细胞和 Th2 细胞。另一方面, Th1细胞和Th2细胞通过分别产生 IFN-γ和IL-4,又可彼此发挥负 调节作用。
神经生物学第七章 神经、内分泌与免疫系统的关系
下丘脑调节因子的化学性质和主要作用
(3) 下 丘 脑 调 节 性 多 肽 发 挥作用的途径
下丘脑—垂体门脉系统
下丘脑的促垂体区核团神 经元轴突投射到正中隆 起,将下丘脑调节肽释 放入第一级毛细血管网 (下丘脑-垂体门脉系 统),到第二级毛细血 管网转运到腺垂体,调 节后者的分泌活动。
神经垂体主要贮存抗利尿激素 (antidiuretic hormone, ADH, 血管升压素)和催产素 (oxytocin, OXT)
下丘脑的内分泌区主要集 中在正中隆起、弓状核、 视交叉上核、腹内侧核和 室周核等基底部的“促垂 体 区”(hypophysiotropic area),以及视上核、室旁 核等核团
海马、杏仁核破坏:免疫功能增强:淋巴细胞绝对 数、免疫球蛋白、淋巴细胞反应性和NK细胞活 性增加
3、应激与免疫 ➢应激的类型:过冷、过热、中毒、感染、
创伤、外科手术、发热、缺氧、疼痛、过 劳、恐惧等
➢一般情况下,应激可激活下丘脑-垂体- 肾上腺轴的作用,引起肾上腺皮质激素升 高,导致免疫功能下降
二)、神经递质对免疫系统的调节作用 1、儿茶酚胺 情绪激动、恐惧使机体儿茶酚胺升高或外给儿茶酚胺:
数量
4、组胺 抑制单核细胞产生IL-1、IFN-、IL-2 抑制巨噬细胞产生补体
三)、神经肽对免疫系统的调节作用
神经肽(neuropeptide):一类生物活性肽。 1、内源性阿片肽:-内啡肽(endophin)、亮啡
肽、甲啡肽
对免疫功能的作用较复杂:不能定论。 低浓度-内啡肽促进淋巴细胞转化,高浓度抑制
▪ TRH成为第一个被分离纯化并被阐明结构与功能 的下丘脑激素,它为3肽,因此也是迄今为止所 知的最小的活性肽之一。
(完整版)神经、内分泌与免疫调节网络
5. 神经免疫内分泌网络概念的形成和确立
1979年,Wybrain证明了人的T淋巴细胞上存在阿片肽受体,阿 片肽可以通过特异性受体调节淋巴细胞的功能,这直接证明了 神经系统与免疫系统存在功能联系。
进入八十年代后,由于技术方法的进步和新的学说和理 论的问世,对神经、内分泌和免疫系统三者之间的关系 的探讨进入一个新的阶段,神经免疫内分泌学渐趋成形。 围绕神经免疫内分泌系统间交互影响,还有众多名词术 语从不同的角度加以反映,如:
Galen曾注意到: 忧郁的妇女较乐观的女生易罹患癌 症。
人的情绪变化:喜,怒、思、忧、悲,恐、惊
情绪变化与健康的关系:
中医的描述: 喜伤心 怒伤肝 忧(悲)伤肺 恐(惊)伤肾 思伤脾
统计学结果: 人类疾病有2/3 与心理刺激 生活境遇有关,其中心身疾 病占1/3.
2. 行为对免疫功能的影响
第六、七讲 神经-内分泌-免疫调节网络
赵春杰 东南大学医学院人体结构与神经科学学系
一、引 言
传统观点:机体的免疫系统和神经、内分泌系统是自 主行使功能的独立系统。
新的认识:免疫系统与神经和内分泌系统的联系十分 紧密,三个系统之间相互影响,共同组成神经内分泌 免疫网络。
1. 情绪与疾病关系
盖伦(Galen, 129~199) 的气质学说:四种气质类型 多血质(充满活力和动力) 胆汁质(容易激怒) 抑郁质(通常表现为忧郁和悲哀) 黏液质(人迟缓或者懒惰)。
热金属片刺激皮肤为条件刺激,检测抗体滴度)
Robert Ader(罗伯特.爱德尔)的假设:经典条件反射作用可以 改变免疫应答 。成功地建立了条件性免疫抑制的动物模型。条件刺
激糖精水注射配对非条件刺激环注射免疫抑制药物磷酰胺,死亡率增加
神经、内分泌与免疫系统关系
• 英国的C. Murry Parkes博士和他的同事们,于1969 年公布了他们关于鳏夫寿命的研究,他们发现鳏夫的 死亡率高得惊人——常常在女方去世后6个月内相继 去世,他们认为这是心理应激损害了人的防御系统所 造成的。
• 澳大利亚的研究者Roger Baitrop及同事对26名男女 丧偶者进行过一项简单的血液实验,他们分别在两周 和六周之后抽取了两个血样,从血样中发现,两周后 免疫能力没有下降,但是6周以后免疫细胞的反应性 下降了,该组织研究人员第一次宣称,“严重的心理 应激会使免疫功能的异常达到明显的水平。”
• 西方医学的许多早期观察均说 明应激性刺激可导致疾病或促 进发病。
• 1936年,Selye发现 “应激” ( stress ) 是 由 肾 上 腺 皮 质 激 素分泌过多所致,由此证明了 内分泌系统对免疫系统的影响。
• 嗣后,不断有报道描述神经精 神因素及内分泌因素对免疫功 能、免疫性疾病和肿瘤的影响。
• 一 般 的 应 激 也 会 危 害 人 的 免 疫 系 统 。 Steven E.Lovcke所做的实验发现,那些应付能力差的大学 生(poor copers),对大学生活向他们提出的一般 要求都感到压力很大,这些人的杀伤细胞活动较低。
4. 应激和神经内分泌系统的关系
• 在 20世纪 20年代末期,Scherrer发现硬骨鱼的下丘脑 具有内分泌细胞的特征,随后对多种动物的研究也得到 了相似的结果。
(1)三大系统在体内均系广泛分布,但神经系统有以突 触为中介的结构连续性,并可借其分支支配各种组织和 器官,包括内分泌组织和细胞。免疫组织亦如此,甚至 小肠壁集合淋巴小结也发现有神经末梢分布。所以,广 义上讲,内分泌和免疫系统可视为反射弧的传出环节。
(2)神经系统的信息传递主要由神经纤维上的动作电位 及突触来实现,而内分泌及免疫系统的信息传递 多是由 体液运输完成的,后者还依赖于免疫细胞的循环而行使 其细胞和体液免疫功能,又称为“流动的脑”。
中枢神经在神经-内分泌-免疫网络中的调节作用研究
中枢神经在神经-内分泌-免疫网络中的调节作用研究进展机体是一个统一而复杂的整体,体内各个系统虽然有各自独特的生理功能,但其生理活动及对外界的反应不是各自孤立进行的,它们都受神经、内分泌系统的支配。
大量研究已证实,神经纤维通过其网络投射到机体各个器官,参与监测内、外环境,控制内、外分泌腺的分泌,从而对机体的功能和代谢进行整体协调。
神经系统还通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素,甚至还有神经细胞分泌的细胞因子,共同调控着免疫系统的功能;而免疫系统通过免疫细胞产生的多种细胞因子和激素样物质反馈作用于神经、内分泌系统。
这种双向的复杂作用使各系统内或系统之间得以相互作用或调节,形成一个完整的调节回路,被称为/神经-内分泌-免疫网络。
神经系统作用广泛、迅速而灵敏,内分泌系统与免疫系统作用相对局限、缓慢而持久。
外周神经可感受局部环境因素的变化,并以非连续性、闪电式的方式将信息传递到中枢神经系统,中枢神经系统通过对外周神经传来的信息进行分析、归纳、整合,再向外周发出信号,从而引起体温、呼吸、体内激素水平改变、免疫细胞活化、炎症介质产生等一系列变化。
因此在神经-内分泌-免疫网络参与对外周炎症反应的调节中,神经系统占据主导地位,而中枢神经系统又起最主要的作用,是应激反应的调控中心。
本文就近年来有关中枢神经对神经-内分泌-免疫网络调节的研究进展作一简要介绍。
1 下丘脑-垂体-肾上腺轴(hypothalamic pituitary adrenal,HPA)的调节下丘脑-垂体-肾上腺轴对机体的应激具有重要调控作用,同时也是中枢神经系统参与调控外周炎症的主要传出通路。
在严重烧伤、休克、感染等损伤因素的刺激下,机体内环境将发生一系列变化,表现为神经内分泌改变和免疫系统激活。
这些应激引起的免疫内分泌改变是由糖皮质激素介导的观点在神经-内分泌-免疫网络研究领域一直占主导地位;而临床上广泛使用糖皮质激素进行免疫抑制治疗,更强化了这一观点,即应激是中枢神经系统通过HPA 轴依赖途径进行调节的。
第二讲 神经-内分泌-免疫网络调节(完整)
二、免疫系统对神经、内分泌系统的调节机制
(-)合成和释放神经肽和激素
现已证明这些由免疫细胞分泌的神经肽和激素其 结构和功能与神经内分泌系统所产生的完全相同, 氨基酸测序表明,淋巴细胞和巨噬细胞产生的 ACTH和β- EP与腺垂体产生的ACTH和β- EP完全 相同, 这种由淋巴细胞产生的ACTH能直接作用 于肾上腺皮质引起肾上腺皮质激素分泌增加,故有 人称之为“淋巴-肾上腺轴”,此外,免疫细胞分 泌的其他肽类(如 GH、GnRH) 的氨基酸序列与 神经内分泌系统所产生的也相同,为表示免疫系统 产生的神经肽和激素与神经内分泌系统所产生的神 经肽和激素的区别,有人将免疫系统产生的神经肽 和激素称为免疫反应性激素(immunoreactive hormone)。至今已证实由免疫系统产生的免疫 反应性激素有20余种(表16-2)。
2.活化的单核一巨噬细胞生成和释放IL-l增多, 则IL-1作用于下丘脑,促进CRH释放,进而促进 腺垂体释放ACTH,继而促进肾上腺皮质释放GC。 3.ACTH和GC可分别抑制IL-1的进一步生成和 释放。 4.ACTH的前体POMC裂解释放的α-MSH可 在中枢水平对抗IL-l刺激CRH分泌的效应。
二、内分泌系统对免疫系统的调节
大多数的激素起免疫抑制作用(如ACTH、肾 上腺皮质激素、SS、雄激素、胰岛素、前列腺素 等),只有少数激素(如甲状腺素、生长激素、 OT和PRL等)可增强免疫应答反应,而雌激素 这两种作用均存在。
1.垂体激素 切除垂体可导致淋巴器官萎缩和 进行性全身免疫功能的破坏,包括影响抗体产生、 淋巴细胞数目减少、机体对皮肤移植排斥反应, 以及体外的混合淋巴细胞反应均减弱。根据垂体 激素对免疫系统的作用,可将其分为两大类:一 类为免疫增强类激素包括GH、PRL、TSH、βEP等,它们能够促进淋巴细胞增生和抗体形成; 二类为免疫抑制类激素,包括 ACTH、GnRH、 SS、β- EP等,
北京大学免疫学免疫应答之六:免疫调节
• MHC多态性
1.神经 、内分泌系统对免疫系统的调节
神经‐内分泌系统主要通过神经纤维 、神经递质和激素而调节免疫系统功能。 交感或副交感神经支配中枢免疫器官和外周免疫器官,可分别抑制或增强免 疫细胞分化、发育、成熟及效应。免疫细胞表面及细胞内表达多种神经递质 受体和激素受体,神经系统和内分泌系统所产生、释放的神经递质和激素可 作用于相应受体,从而发挥正向或负向免疫调节作用。
免疫细胞产生的神经内分泌肽
名称 促肾上腺皮质激素
(ACTH) 内啡肽 生长激素 生乳素 绒毛膜促性腺素
血管活性肠肽(VIP)
产生细胞
淋巴细胞和巨噬细胞
淋巴细胞、巨噬细胞 淋巴细胞 淋巴细胞 T 细胞 单核细胞、肥大细胞、多形 核白细胞
名称
生长抑制素
脑啡肽 精氨酸升压素(AVP) 催产素 神经垂体激素运载蛋白
表17-1 免疫细胞的激活性受体和抑制性受体
免疫细胞
B细胞
激活性受体
BCR
T细胞
TCR,CD28
NK 细胞
CD16,NCR
肥大细胞
Fc εRI
γδT细胞
Vγ9Vδ2TCR
* 仅表达于某些CD8+CTL
抑制性受体
FcγRII-B,CD22,CD72 CTLA-4,PD-1,KIR* KIR,CD94 / NKG2A
TSH
产生细胞 单核细胞、肥大细胞、多形 核白细胞 辅助性T细胞 胸腺上皮细胞 胸腺上皮细胞
胸腺上皮细胞、T 细胞
第三节 整体和群体水平的免疫调节
MHC多态性和自然选择举例: • HLA-B53在抗疟疾流行中的作用——带B53的黑人较不易患疟疾,有保护作用。
白人和黄种人 中非洲人群 中非洲疟疾患者
神经—内分泌—免疫调节网络与疾病
吉林大学畜牧兽医学院 柳巨雄
目录
1 神经-内分泌-免疫调节网络概述 2 神经-内分泌-免疫调节网络与稳态 3 神经-内分泌-免疫调节网络与疾病 4 我们课题组在这一领域的一些研究工作
Ⅰ 概述
神经系统、内分泌系统和免疫系统之间相互作用、相 互依赖的复杂关系的研究已经成为一门独立的边缘学科,即 神经免疫调节(neuroimmunoregulation)或神经免疫内分 泌学(neuro-immuno-endocrinology)。研究者们已通 过大量实验证实,神经内分泌系统通过其广泛的外周神经突 触及其分泌的神经递质和众多的内分泌激素,甚至还有神经 细胞分泌的细胞因子,来共同调控着免疫系统的功能;而免疫 系统通过免疫细胞产生的多种细胞因子和激素样物质反馈 作用于神经内分泌系统。两个系统的细胞表面都证实有相 关受体接受对方传来的各种信息。这种双向的复杂作用使 两个系统内或系统之间得以相互交通和调节,构成神经内分 泌免疫调节网络(neuro-endocrine-immunoregulatory network),共同维持着机体的稳态。
一、神经和内分泌系统对免疫功能的调节
神经系统可以通过两条途径来影响免疫功能,一 条是通过神经释放递质来发挥作用,另一条是通过改 变内分泌的活动间接影响免疫功能。
(一)免疫细胞上的神经递质及内分泌激素受体
神经递质和内分泌激素的受体。它们包括类固醇 受体、儿茶酚胺受体、组胺受体、阿片受体、胰岛素 受体、胰高血糖素受体、血管活性肠肽受体、促甲状 腺激素释放因子受体、生长激素受体、催乳素受体、 生长抑素受体、P物质受体、升压素受体、胆囊收缩 素受体、降钙素受体等。
神经免疫发生(neuroimmunogenesis)
神经、内分泌与免疫调节网络
人的情绪变化:喜,怒、思、忧、悲,恐、惊
情绪变化与健康的关系:
中医的描述: 喜伤心 怒伤肝 忧(悲)伤肺 恐(惊)伤肾 思伤脾
统计学结果: 人类疾病有2/3 与心理刺激 生活境遇有关,其中心身疾 病占1/3.
1896年,美国医生麦肯锡(Mackenzie)的报道:某患者对玫 瑰花粉过敏,接触到玫瑰花粉时会产生过敏性哮喘;但是当该患者 见到人造的假玫瑰花时也产生哮喘。
70~80年代,相继从下丘脑组织中分离、纯化出了促甲 状腺激素释放激素(TRH)、促性腺激素释放激素(GnRH)、 生长激素释放激素(GHRH )、生长抑素(SS)和促肾上腺 皮质激素释放激素(CRH)等肽类激素。证实神经、内分 泌两个系统,在功能上实质上是一个相互依存的整体。
神经内分泌系统对应激的反应
具体例子:
环境改变、焦虑,均可引起闭经;精神紧张可致肾上腺皮 质激素的分泌量明显增加。
糖皮质激素对治疗大多数自身免疫病有效,说明糖皮质激 素和性激素与免疫系统存在着直接或间接的联系。
某些中枢神经核团或区域参与对机体免疫功能的调节,如 可改变外周血中单核细胞吞噬能力及循环血中抗体深度等。 机体接受抗原刺激后,脑内某些区域神经元放电发生改变。
激糖精水注射配对非条件刺激环注射免疫抑制药物磷酰胺,死亡率增加
他们的发现得到反复证实,从而开启了一个新的研究领域的大门— —心理神经免疫学(Psychoneuriommunology)
西方医学的许多早期观察均说明应激性刺激可导致疾 病或促进发病。直至1919年,Ishigami的工作才为 以上的经验积累提供了直接的实验证据。
1979年,Wybrain证明了人的T淋巴细胞上存在阿片肽受体,阿 片肽可以通过特异性受体调节淋巴细胞的功能,这直接证明了 神经系统与免疫系统存在功能联系。
2022-2023学年 北师大版 选择性必修一 神经-内分泌-免疫调节网络(32张)
(2)机体对寒冷刺激的反应除了神经系统外,举例说明哪一系统也起到了重 要的作用?该系统对机体调节的特点是什么? 提示:除神经系统外,内分泌系统在机体对寒冷刺激的反应中也起到了重要 作用,例如甲状腺可以分泌更多的甲状腺激素以促进细胞内有机物的氧化 分解,释放更多的热量。内分泌系统主要对机体的生长、发育和新陈代谢 发挥着持久而广泛的调节作用。
(3)尝试将图4-14的文图信息转化为文字信息。 提示:教科书图4-14作为模型具有以下几层含义:①神经系统通过反射弧支 配内分泌系统和免疫系统;②内分泌系统和免疫系统利用相应的信号分子 通过体液传送影响神经系统的功能;③内分泌系统和免疫系统通过各自分 泌的信号分子彼此调控;④神经系统、内分泌系统和免疫系统借助神经-体 液通路以及相应的神经递质、激素和细胞因子形成一个有机整体,共同调 节机体的稳态。
2.神经细胞与内分泌细胞具有免疫细胞的特点 (1)中枢神经系统内存在白细胞介素和干扰素等细胞因子,以及多种 细胞因子的受体或相应的mRNA。 (2)内分泌腺或散在的内分泌细胞内也存在多种细胞因子,而且在抗原刺激 下细胞因子的种类与含量会发生改变。 (3)神经系统、内分泌系统和免疫系统内存在共同的神经递质、神经肽、 激素和细胞因子等信号分子,而且细胞表面都分布有相应的受体。这些信 号分子和受体构成了神经-内分泌-免疫调节网络的“通用信号”,三大调节 系统通过经常性的信息交流,相互协调,共同维持机体的稳态。
合作探究·释疑解惑
知识点一 神经系统、内分泌系统和免疫系统的统一性 【问题引领】
分析教科书第112页“图4-14 神经-内分泌-免疫系统的联系示意图”,结合 第111、112页的相关内容回答下列问题。 (1)神经-内分泌-免疫调节网络的“通用信号”是什么? 提示:神经-内分泌-免疫调节网络的“通用信号”是神经递质、神经肽、激 素和细胞因子等信号分子及相应的受体。
神经-内分泌-免疫网络
神经-内分泌-免疫网络—神经系统通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素神经-内分泌-免疫网络—神经系统通过其广泛的外周神经突触及其分泌的神经递质和众多的内分泌激素,甚至还有神经细胞分泌的细胞因子,来共同调控着免疫系统的功能;而免疫系统通过免疫细胞产生的多种细胞因子和激素样物质反馈作用于神经内分泌系统。
2个系统的细胞表面都证实有相关受体接受对方传来的各种信息。
这种双向的复杂作用使2个系统内或系统之间得以相互交通和调节,构成神经内分泌免疫调节网络,共同维持着机体的稳态。
学术术语来源---增强大鼠神经干细胞生物活性的黄芪注射液文章亮点:1 不同质量浓度黄芪注射液干预,神经干细胞初期细胞增殖速度加快,而24 h后不同质量浓度黄芪注射液干预的细胞活性逐渐趋于一致。
2 50 g/L黄芪注射液能诱导神经干细胞快速分化,且显示神经元特异性烯醇化酶阳性细胞的数量也明显增加。
关键词:干细胞;干细胞与中医药;干细胞基础实验;中医药;黄芪注射液;神经干细胞;MTT;生物活性;细胞分化;干细胞图片文章摘要背景:黄芪对神经功能缺损疾病治疗及神经再生的作用已受到神经科学和脑科学研究者的密切关注,其对神经干细胞的影响也成为一个新的探索方向。
目的:探索黄芪注射液对大鼠神经干细胞生物活性的影响。
方法:分离、培养Wistar大鼠胚胎神经干细胞。
采用荧光免疫细胞化学法鉴定巢蛋白染色阳性,原代培养细胞传至第2代纯化后,随机分为对照组、50,200,400 g/L黄芪注射液组分别培养6,12,24 h后。
采用MTT法检测细胞活性,通过比较细胞活性,选50 g/L黄芪注射液组诱导分化7 d后用免疫组化法检测神经元特异性烯醇化酶和胶质纤维酸性蛋白的表达。
结果与结论:MTT显示药物作用6 h,50,200,400 g/L黄芪注射液组细胞的活性与对照组相比明显升高 (P < 0.05);但24 h后不同质量浓度的黄芪注射液对细胞活性逐渐趋于一致(P > 0.05)。
2022-2023学年 北师大版 选择性必修1 神经-内分泌-免疫调节网络 作业
第六节神经-内分泌-免疫调节网络基础巩固1.下列对神经-内分泌-免疫调节网络信号的相关解释,正确的是()。
A.只有神经细胞能产生神经肽B.只有免疫细胞存在细胞因子的受体C.神经肽及相应的受体属于神经-内分泌-免疫调节网络的“通用信号”D.mRNA是通过血液运输在神经-内分泌-免疫调节网络中共用的信号分子答案:C解析:免疫细胞和内分泌细胞也能产生神经肽,A项错误。
神经细胞、内分泌细胞和免疫细胞等都属于细胞因子的靶细胞,都有细胞因子的特异性受体,B项错误。
神经递质、神经肽、激素和细胞因子等信号分子及其相应的受体是神经-内分泌-免疫调节网络的“通用信号”,C项正确。
mRNA存在于细胞内,D项错误。
2.下列关于信号分子的叙述,错误的是()。
A.甲状腺激素能够到达全身B.胰岛素能够到达全身C.细胞因子只能弥散在局部组织发挥作用D.神经递质只能弥散在局部组织发挥作用答案:C解析:细胞因子既可以进入组织液,在局部发挥作用,也可以进入血液循环,远距离作用于包括神经元、内分泌细胞和免疫细胞在内的各种细胞。
3.去甲肾上腺素既可以由肾上腺髓质分泌,又可以由神经元释放。
下列对去甲肾上腺素的叙述,正确的是()。
A.去甲肾上腺素只属于激素分子B.去甲肾上腺素只属于神经递质C.释放去甲肾上腺素的神经可能为交感神经D.去甲肾上腺素就是肾上腺素答案:C解析:去甲肾上腺素既属于神经递质又属于激素,A、B两项错误。
去甲肾上腺素可以由肾上腺髓质分泌,推测其功能可能与肾上腺素类似,即可能具有应激作用,因此去甲肾上腺素可能由交感神经释放,C项正确。
去甲肾上腺素和肾上腺素不是同一种物质,D项错误。
4.下列不属于神经系统控制免疫系统方式的是()。
A.通过自主神经B.通过神经递质C.通过神经肽D.通过DNA答案:D解析:DNA是细胞的遗传物质,不会成为神经系统控制内分泌系统的物质。
5.有个别对玫瑰花粉产生超敏反应的人,即使看到假的玫瑰花也会出现超敏症状,这说明()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选课件
7
精选课件
8
精选课件
9
严重的心理应激会使免疫功能的异常达到明显的水平: 鳏夫常常在女方去世后6个月内相继去世 男女丧偶者在丧偶两周后免疫能力没有下降,但是6
周以后免疫细胞的反应性下降了
一般的应激也会危害人的免疫系统: 应付能力差的大学生的杀伤细胞活性较低。
第六、七讲 神经-内分泌-免疫调节网络
赵春杰
东南大学医学院人体结构与神经科学学系
精选课件
1
一、引 言
传统观点:机体的免疫系统和神经、内分泌系统是自 主行使功能的独立系统。
新的认识:免疫系统与神经和内分泌系统的联系十分 紧密,三个系统之间相互影响,共同组成神经内分泌 免疫网络。
精选课件
2
1. 情绪与疾病关系
精选课件
10
精选课件
11
精选课件
12
Vernon Riley的旋转应激实验:
实验方法:患乳腺癌的小白鼠被放在旋转台的顶部,以四 种速度进行旋转,每分钟转速分别为16、33、45或78, 这样就会使动物产生程度不同的旋转应激。
结果:每分钟转16转的小白鼠所患癌症的恶性程度比起每 分钟转 33 转的要小些,而每分钟转 33 转者其乳癌的恶 性程度比 45 转者又小些,每分钟 78 转的小白鼠肿瘤生 长得最快。
激糖精水注射配对非条件刺激环注射免疫抑制药物磷酰胺,死亡率增加
他们的发现得到反复证实,从而开启了一个新的研究领域的大门— —心理神经免疫学(Psychoneuriommunology)
精选课件
5
3. 应激对免疫系统功能的影响
西方医学的许多早期观察均说明应激性刺激可导致疾 病或促进发病。直至1919年,Ishigami的工作才为 以上的经验积累提供了直接的实验证据。
精选课件
16
5. 神经免疫内分泌网络概念的形成和确立
1979年,Wybrain证明了人的T淋巴细胞上存在阿片肽受体,阿 片肽可以通过特异性受体调节淋巴细胞的功能,这直接证明了 神经系统与免疫系统存在功能联系。
精选课件
17
进入八十年代后,由于技术方法的进步和新的学说和理 论的问世,对神经、内分泌和免疫系统三者之间的关系 的探讨进入一个新的阶段,神经免疫内分泌学渐趋成形。 围绕神经免疫内分泌系统间交互影响,还有众多名词术 语从不同的角度加以反映,如:
盖伦(Galen, 129~199) 的气质学说:四种气质类型 多血质(充满活力和动力) 胆汁质(容易激怒) 抑郁质(通常表现为忧郁和悲哀) 黏液质(人迟缓或者懒惰)。
Galen曾注意到: 忧郁的妇女较乐观的女生易罹患癌 症。
精选课件
3
人的情绪变化:喜,怒、思、忧、悲,恐、惊
情绪变化与健康的关系:
1924年,俄国学者Metalnikov(梅契尼柯夫)证明:经典式条 件反射可改变免疫反应,说明免疫系统亦接受神经系统高级中枢的 有力影响。(木薯蛋白和灭活的炭疽杆菌腹腔注射为非条件刺激,以抓搔或
热金属片刺激皮肤为条件刺激,检测抗体滴度)
Robert Ader(罗伯特.爱德尔)的假设:经典条件反射作用可以 改变免疫应答 。成功地建立了条件性免疫抑制的动物模型。条件刺
具体例子:
环境改变、焦虑,均可引起闭经;精神紧张可致肾上腺皮 质激素的分泌量明显增加。
糖皮质激素对治疗大多数自身免疫病有效,说明糖皮质激 素和性激素与免疫系统存在着直接或间接的联系。
某些中枢神经核团或区域参与对机体免疫功能的调节,如
可改变外周血中单核细胞吞噬能力及循环血中抗体深度等。
机体接受抗原刺激后,脑内某些区域神经元放电发生改变。
蓝斑-去甲肾上腺素能神经元轴(LC-NE)兴奋
神 经
儿茶酚胺分泌↑
内
分 下丘脑-垂体-肾上腺皮质轴(HPA)强烈兴奋 泌
ቤተ መጻሕፍቲ ባይዱ
反
应
糖皮质激素分泌↑
其它内分泌激素的变化
精选课件
15
看似独立存在的神经、内分泌和免疫三大系统,实际上 是一个有着广泛的内在联系的有机整体,它们组成神经内分泌-免疫网络,共同调节机体内环境的平衡与稳定。 其中某一环节的疾病,必然会影响到另外两个环节功能 的正常发挥。
结论:起消极作用的生活事件,不管情况严重与否,都会 使机体的免疫能力受到抑制。
精选课件
13
4. 应激和神经内分泌系统的关系
在20世纪20年代末期,Scherrer发现硬骨鱼的下丘脑具 有内分泌细胞的特征,随后对多种动物的研究也得到了 相似的结果。
50年代,Harris和Green基于神经解剖、神经生理学的 研究成果,提出了“下丘脑可能分泌某些激素样物质, 参与并调控垂体激素的合成与分泌功能”的假设。
1919年,Ishigami对慢性结核病人进行流行病学调 查,免疫学检测结果证实情感挫折可明显削弱机体对 结核杆菌的吞噬能力,并提出情绪性应激可导致免疫 抑制的观点。
他的发现为情绪可以影响机体免疫功能的观点提供了 直接的实验证据。
精选课件
6
1936 年 , Selye 分 析 了 一 系 列 伤 害 性 刺激对机体的影响,发现诸如缺氧、冷 冻、感染、失血、中毒和情绪紧张等均 可引起肾上腺皮质肥大,胸腺萎缩,外 周血中淋巴细胞减少等变化,他将这群 征候称为“应激”(stress),并确定 这些变化是由肾上腺皮质激素分泌过多 所致,由此证明了内分泌系统对免疫系 统的影响。
70~80年代,相继从下丘脑组织中分离、纯化出了促甲 状腺激素释放激素(TRH)、促性腺激素释放激素(GnRH)、 生长激素释放激素(GHRH )、生长抑素(SS)和促肾上腺 皮质激素释放激素(CRH)等肽类激素。证实神经、内分 泌两个系统,在功能上实质上是一个相互依存的整体。
精选课件
14
神经内分泌系统对应激的反应
中医的描述: 喜伤心 怒伤肝 忧(悲)伤肺 恐(惊)伤肾 思伤脾
统计学结果: 人类疾病有2/3 与心理刺激 生活境遇有关,其中心身疾 病占1/3.
精选课件
4
2. 行为对免疫功能的影响
1896年,美国医生麦肯锡(Mackenzie)的报道:某患者对玫 瑰花粉过敏,接触到玫瑰花粉时会产生过敏性哮喘;但是当该患者 见到人造的假玫瑰花时也产生哮喘。
神经免疫学(neuroimmunology) 心理神经免疫学(psychoneuroimmunology) 行为免疫学(behavioral immunology) 免疫精神病学(immunopsychiatry) 神经免疫发生(neuroimmunogene-sis) 神经免疫调节(neuroimmunomodulation)