高中物理必修2第四章 抛体运动与圆周运动 万有引力定律专题 天体运动的“四个热点”问题

合集下载

第四章万有引力定律及航天+知识点总结 高一下学期物理鲁科版(2019)必修第二册

第四章万有引力定律及航天+知识点总结 高一下学期物理鲁科版(2019)必修第二册

新教材鲁科版2019版物理必修第二册第4章知识点清单目录第4章万有引力定律及航天第1节天地力的综合_ 万有引力定律第2节万有引力定律的应用第3节人类对太空的不懈探索第4章万有引力定律及航天第1节天地力的综合_ 万有引力定律一、行星运动的规律内容图示开普勒第一定律(椭圆定律) 所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上说明:不同行星绕太阳运动的椭圆轨道是不同的开普勒第二定律(面积定律) 任何一个行星与太阳的连线在相等的时间内扫过的面积相等说明:行星在近日点的速率大于在远日点的速率开普勒第三定律(周期定律) 行星绕太阳运行轨道半长轴a的立方与其公转周期T的平方成正比说明: a3T2=k,比值k是取决于中心天体的常量二、万有引力定律1. 内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F与这两个物体质量的乘积m1m2成正比,与这两个物体间的距离r的平方成反比。

2. 表达式:F=G m1m2r2。

3. 引力常量G:由英国物理学家卡文迪许测量得出,常取G=6. 67×10-11N·m2/kg2。

4. 万有引力定律的推导(1)建立模型太阳系中八大行星的轨道半长轴和轨道半短轴相差不大,所以我们可以建立如下的简化模型。

①行星绕太阳做匀速圆周运动。

②太阳对行星的引力提供行星做圆周运动的向心力。

③所有行星轨道半径的三次方跟它的公转周期的二次方的比值均相等,即r 3T 2=k 。

(2)太阳对行星的引力规律的推导①设行星的质量为m ,速度为v ,行星到太阳的距离为r ,则行星绕太阳做匀速圆周运 动的向心力为F=m v 2r 。

天文观测难以直接得到行星运动的速度v ,但可以得到行星公转的周期T ,它们之间的关系为v=2πr T,由以上两式可得F=m4π2T 2r ,再由r 3T2=k ,可得F=4π2mr 2。

在研究太阳对行星的引力时,“k”是一个与太阳有关的常量,故对于不同的行星,行星质量不同,但4π2k 是一定值。

鲁科版高中物理必修第二册精品课件 第4章 万有引力定律及航天 本章整合

鲁科版高中物理必修第二册精品课件 第4章 万有引力定律及航天 本章整合

某人造卫星在赤道上空做匀速圆周运动,轨道半径为r,且r<5R,飞行方向与
地球的自转方向相同,在某时刻,该人造卫星通过赤道上某建筑物的正上方,
则到它下一次通过该建筑物正上方所需要的时间为(
A.2π(
C.2π
2
-ω0)
3

3
2
B.
D.

2
+ 0
3

2
- 0
3
D
)
解析 因为同步卫星的轨道半径大约为6.6R,根据卫星的运行特点知,轨道半
1.抓住两条思路
天体问题实际上是万有引力定律、牛顿第二定律、匀速圆周运动规律的
综合应用,解决此类问题的基本思路有两条。
思路 1,中心天体的表面或附近,万有引力近似等于重力,即

G 2 =mg0(g0 表示

天体表面的重力加速度)。
思路 2,万有引力提供向心力,即

G 2 =ma。

式中 a 表示向心加速度,而向心加速度又有

2

(3)第一宇宙速度指物体在星球表面附近做匀速圆周运动的速度,由

2
G 2 =m
解得 v=


=
=
2ℎ


答案
2ℎ
(1) 2
2ℎ 2
(2) 2
(3)
2ℎ

三、天体运动中的追及相遇问题
在天体运动的问题中,我们常遇到一些这样的问题,比如a、b两物体都绕同
一中心天体做圆周运动,某时刻a、b相距最近,问a、b下一次相距最近或最
2
2

a= 、a=ω2r、a=ωv,a= 2 、a=g

高中物理必修2第四章 抛体运动与圆周运动 万有引力定律第4讲 万有引力定律

高中物理必修2第四章 抛体运动与圆周运动 万有引力定律第4讲 万有引力定律

第4讲 万有引力定律知识要点一、开普勒三定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

2.开普勒第二定律:对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

二、万有引力定律及其应用1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比。

2.表达式:F =G m 1m 2r 2G 为引力常量:G =6.67×10-11 N·m 2/kg 2。

3.适用条件(1)公式适用于质点间的相互作用。

当两个物体间的距离远远大于物体本身的大小时,物体可视为质点。

(2)公式适用于质量分布均匀的球体之间的相互作用,r 是两球心间的距离。

三、三个宇宙速度 1.第一宇宙速度(1)第一宇宙速度又叫环绕速度,其数值为7.9__km/s 。

(2)特点①第一宇宙速度是人造卫星的最小发射速度。

②第一宇宙速度是人造卫星的最大环绕速度。

(3)第一宇宙速度的计算方法①由G MmR 2=m v 2R 得v 7.9 km/s②由mg =m v 2R 得v =gR =7.9 km/s 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面附近做匀速圆周运动。

(2)7.9 km/s <v 发<11.2 km/s,卫星绕地球运动的轨迹为椭圆。

(3)11.2 km/s ≤v 发<16.7 km/s,卫星绕太阳做椭圆运动。

(4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。

基础诊断1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 【试题解析】: 行星做椭圆运动,且在不同的轨道上,所以A 、B 项错误;根据开普勒第三定律,可知C 项正确;对在某一轨道上运动的天体来说,天体与太阳的连线在相等时间内扫过的面积相等,而题中是两个天体、两个轨道,所以D 项错误。

2019人教版高中物理新教材目录

2019人教版高中物理新教材目录

2019人教版高中物理新教材目录必修一第一章运动的描述1.质点参考系2.时间位移3.位置变化快慢的描述-速度4.速度变化快慢的描述-加速度第二章匀变速直线运动的研究1.探究小车速度随时间变化的规律2.匀变速直线运动速度与时间的关系3.匀变速直线运动位移与时间的关系4.自由落体运动第三章相互作用1.重力与弹力2.摩擦力3.作用力和反作用力4.力的合成和分解5.共点力平衡第四章运动和力的关系1. 牛顿第一定律2.实验探究加速度与力和质量的关系3.牛顿第二定律4.力学单位制5.牛顿运动定律的应用6.超重和失重必修2第五章抛体运动1.曲线运动2.运动的合成与分解3.实验:探究平抛运动的特点4.抛体运动的规律第六章圆周运动1.圆周运动2.向心力3.向心加速度4.生活中的圆周运动第七章万有引力与宇宙航行1.行星的运动2.万有引力定律3.万有引力理论的成就4.宇宙航行5.相对论时空观和牛顿力学的局限性第八章机械能守恒定律1.功与功率2.重力势能3.动能和动能定理4.机械能守恒定律5.实验:验证机械能守恒定律必修三第九章静电场及其应用1.电荷2.库仑定律3.电场电场强度4.静电的防止与利用第十章静电场中的能量1.电势能和电势2.电势差3.电势差与电场强度的关系4.电容器的电容5.带电粒子在电场中的运动第十一章电路及其应用1.电源和电流2.导体的电阻3.导体电阻率的测量4.串联电路和并联电路5.实验:练习使用多用电表第十二章电能能量守恒定律1.电路中的能量转化2.闭合电路的欧姆定律3.实验:电池电动势和内阻的测量4.能源与可持续发展第十三章电磁感应与电磁波初步1.磁场磁感线2.磁感应强度磁通量3.电磁感应现象及应用4.电磁波的发现及应用5.能量量子化选修一第一章动量守恒定律1.动量2.动量定理3.动量守恒定律4.实验:验证动量守恒定律5.弹性碰撞和非弹性碰撞6.反冲现象火箭第二章机械振动1.简谐运动2.简谐运动的描述3.简谐运动的回复力和能量4.单摆5.实验:用单摆测重力加速度6.受迫振动共振第三章机械波1.波的形成2.波的描述3.波的反射折射和衍射4.波的干涉5.多谱勒效应第四章光1.光的折射2.全反射3.光的干涉4.用双缝干涉测光的波长5.光的衍射6.光的偏振和激光选修二第一章安培力与洛伦兹力1.磁场对通电导线的作用力2.磁场对运动电荷的作用力3.带电粒子在匀强磁场中的运动4.质谱仪与回旋加速器第二章电磁感应1.楞次定律2.法拉第电磁感应定律3.涡流电磁阻尼和电磁驱动4.互感和自感第三章交变电流1.交变电流2.交变电流的描述3.变压器4.电能的输送第四章电磁振荡与电磁波1.电磁振荡2.电磁场与电磁波3.无线电波的发射和接收4.电磁波谱第五章传感器1.认识传感器2.常见传感器的工作原理及应用3.利用传感器制作简单的自动控制装置选修3第一章分子动理论1.分子动理论的基本内容2.实验:油膜法测油酸分子的大小3.分子运动速率分布规律4.分子动能和分子势能第二章气体固体和液体1.温度和温标2.气体的等温变化3.气体的等压变化和等容变化4.固体5.液体第三章热力学定律1.功热和内能的改变2.热力学第一定律3.能量守恒定律4.热力学第二定律第四章原子结构和波粒二象性1.普朗克黑体辐射理论2.光电效应3.原子的核式结构模型4.氢原子光谱和玻尔的原子结构模型5.粒子的波动性和量子力学的建立第五章原子核 1.原子核的组成2.放射性元素的衰变3.核力与结合能4.核裂变与核聚变5.基本粒子。

普通高中物理(新教材)必修第二册教材介绍

普通高中物理(新教材)必修第二册教材介绍

2017年版课程标准
2. 曲线运动与万有引力定律 4.通过史实,了解万有引力定律的发 现 过程。知道万有引力定律。认识发现万 有引力定律的重要意义。认识科学定律对 人类探索未知世界的作用。 5.会计算人造地球卫星的环绕速度。 知 道第二宇宙速度和第三宇宙速度。
3. 牛顿力学的局限性与相对论初步 1.知道牛顿力学的局限性,体会人类 对 自然界的探索是不断深入的。
根据课程标准“通过实验,探究并了解匀速圆周运动 向心力大小与半径、角速度、质量的关系”的要求,把“ 向心力”放在“向心加速度”之前。
04 第六章 圆周运动:概述
物理观念
• 拓展对机械运动的认识 • 通过认识物体做圆周运动的条件,丰富对运动与力
的 关系的认识 • 形成从运动与相互作用两个角度分析分析机械运动
“物理学是一门实验科学,也是一门崇尚理性、遵循逻辑推
理的理论科学。由于物质世界纷繁复杂,有限的实验和观察难以 完全揭示其背后的本质规律和内在联系。因此,在依赖先进的科 学装置的同时,物理学的发展也必须借助于强有力的数学工具和
大型计算技术,以及深刻的洞察力和丰富的想象力。”
非理性思 维成分
第2节 万有引力定律
第1节 曲线运动
重视学生体验
第1节 曲线运动
不仅关注推理的结论,更重视推理的过程
实验事实:旋转砂轮上的火星、旋转雨伞上的水 滴,都沿圆周切线飞出
归纳推理:做曲线运动物体在某点的速度方向, 在曲线该点切线方向上
以上归纳推理过程合理吗?
事实:旋转砂轮上的火星、投掷出的链球,都沿圆周切线飞出
猜想:因圆周运动速度方向与圆相切,曲线运动速度方向或跟曲线相切
• 精选素材进行STSE教育
03 第五章 抛体运动:具体说明

高2021届高2018级高中物理复习必修2第四章 抛体运动与圆周运动 万有引力定律第2讲 抛体运动

高2021届高2018级高中物理复习必修2第四章 抛体运动与圆周运动 万有引力定律第2讲 抛体运动

9
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
3.小明玩飞镖游戏时,从同一位置先后以速度vA和vB将飞镖水平 掷出,飞镖依次落在靶盘上的A、B两点,如图4所示,飞镖在空中
运动的时间分别为tA和tB。不计空气阻力,则( )
A.vA<vB,tA<tB
B.vA<vB,tA>tB
C.vA>vB,tA<tB
@《创新设计》
图3
8
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
解析 小锤打击弹性金属片后,A球做平抛运动,B球做自由落体运动。A球在竖直 方向上的运动情况与B球相同,做自由落体运动,因此两球同时落地。实验时,需A、 B两球从同一高度开始运动,对质量没有要求,但两球的初始高度及打击力度可以 有变化,实验时要进行3~5次得出结论。本实验不能说明A球在水平方向上的运动 性质,故选项B、C正确,A、D错误。 答案 BC
基础诊断 1.人站在平台上平抛一小球,球离手时的速度为v1,落地时速度为v2,不计空气阻力,下列
图中能表示出速度矢量的演变过程的是( )
答案 C
7
知识梳理 双基过关
课堂互动 研透考点
2.(多选)[教科版必修2·P9“实验探究”改编]为了验证平抛运动 的小球在竖直方向上做自由落体运动,用如图3所示的装置进行 实验。小锤打击弹性金属片,A球水平抛出,同时B球被松开,自 由下落,关于该实验,下列说法正确的有( ) A.两球的质量应相等 B.两球应同时落地 C.应改变装置的高度,多次实验 D.实验也能说明A球在水平方向上做匀速直线运动
2
知识梳理 双基过关
课堂互动 研透考点
@《创新设计》
4.基本规律 如图1,以抛出点O为坐标原点,以初速度v0方向(水平方向)为x轴正方向,竖直向 下为y轴正方向。

高一物理必修2双向细目表(excel版)

高一物理必修2双向细目表(excel版)

1
3
竖直方向的抛体运动
❤❤❤❤
11
4
平抛运动计算(平抛与斜面)
❤❤❤❤❤
11
5
实验:平抛运动
❤❤❤❤❤
1
6
斜抛运动
❤❤
1
7
线速度、角速度、周期
❤❤❤❤❤
11
8
向心力的来源
❤❤❤❤❤
1
9
匀速圆周运动
❤❤❤❤❤
1
10
水平方向的圆周运动
❤❤❤❤
1
11
竖直方向的抛体运动
❤❤❤❤❤
1
12 圆周运动中的相遇追、周期性多解性问题

1
13
离心现象
❤❤❤
1
14
日心说和地心说
❤❤
1
15
开普勒三定律
❤❤
1
16
引力常量
❤❤❤
1
17
万有引力定律
❤❤❤❤❤
1
18
天体质量、密度的计算
❤❤❤❤❤
1
19
宇宙速度
❤❤❤❤❤
1
20
卫星运行参量的比较与计算
❤❤❤❤❤
1
21
卫星的变轨与对接
❤❤❤
1
22
同步卫星特点
❤❤❤❤
1
23
同步卫星、近地卫星、地面物体
❤❤❤
1
45
功率(瞬时功率、平均功率)
❤❤❤❤❤
1
46
机车启动问题
❤❤❤❤
1
47
平抛+圆周+功能关系
❤❤❤❤❤
1
48
弹簧+圆周+平抛

鲁科版高中物理必修第二册精品课件 第4章 万有引力定律及航天 第1节 天地力的综合万有引力定律

鲁科版高中物理必修第二册精品课件 第4章 万有引力定律及航天 第1节 天地力的综合万有引力定律
过相等的面积,则行星在离恒星较近的位置速率较大,在远离恒星的位置速
率较小,因为行星在B点的速度比在A点的速度大,则恒星位于E点,选项C正
确,D错误。
答案 C
3.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的
直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力
大小是他在地球上所受万有引力的(
道引力常量G的值。
2.牛顿得出万有引力定律100多年后,英国物理学家卡文迪许测量得出引力
常量G的值,其数值通常取G=6.67×10-11 N·m2/kg2。
3.引力常量的普适性成了万有引力定律正确性的有力证据。
【自我检测】
1.正误辨析
(1)行星绕太阳运动一周的时间内,它离太阳的距离是不变的。(
)
解析 行星绕太阳运动的轨道是椭圆,太阳在椭圆的一个焦点上,所以行星
有引力定律仅适用于天体之间
B.卡文迪许首先用实验比较准确地测定了引力常量G的数值
C.两物体各自受到对方引力的大小不一定相等,质量大的物体受到的引力也大
D.万有引力定律对质量大的物体适用,对质量小的物体不适用
解析 万有引力定律适用于所有物体间,A、D错误;根据物理学史可知卡文迪许
首先用实验比较准确地测定了引力常量G的数值,B正确;两物体各自受到对方的
运动时的半长轴大小为
3
勒第三定律得 2
=
联立解得
(+0 )
4
+0

2
答案
(+0 )
4
·
T',由开普
'3
'2
(+0 )
T'=
2
·
+0

高中物理必修二:万有引力与航天知识点总结

高中物理必修二:万有引力与航天知识点总结

高中物理必修二:万有引力与航天知识点总结一、人类认识天体运动的历史1、“地心说”的内容及代表人物:托勒密(欧多克斯、亚里士多德)2、“日心说”的内容及代表人物:哥白尼(布鲁诺被烧死、伽利略)二、开普勒行星运动定律的内容开普勒第二定律:V近>V远开普勒第三定律:K:与中心天体质量有关,与环绕星体无关的物理量;必须是同一中心天体的星体才可以列比例,太阳系:三、万有引力定律1、内容及其推导:应用了开普勒第三定律、牛顿第二定律、牛顿第三定律。

①②③2、表达式:3、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1,m2的乘积成正比,与它们之间的距离r的二次方成反比。

4、引力常量:,牛顿发现万有引力定律后的100多年里,卡文迪许在实验室里用扭秤实验测出。

5、适用条件:(1)适用于两个质点间的万有引力大小的计算。

(2)对于质量分布均匀的球体,公式中的r就是它们球心之间的距离。

(3)一个均匀球体与球外一个质点的万有引力也适用,其中r为球心到质点间的距离。

(4)两个物体间的距离远远大于物体本身的大小时,公式也近似的适用,其中r为两物体质心间的距离。

6、推导:四、万有引力定律的两个重要推论1、在匀质球层的空腔内任意位置处,质点受到地壳万有引力的合力为零。

2、在匀质球体内部距离球心r处,质点受到的万有引力就等于半径为r的球体的引力。

五、黄金代换若已知星球表面的重力加速度g和星球半径R,忽略自转的影响,则星球对物体的万有引力等于物体的重力,有所以。

其中是在有关计算中常用到的一个替换关系,被称为黄金替换。

导出:对于同一中心天体附近空间内有,即:环绕星体做圆周运动的向心加速度就是该点的重力加速度。

六、双星系统两颗质量可以相比的恒星相互绕着旋转的现象,叫双星。

设双星的两子星的质量分别为和,相距L,和的线速度分别为和,角速度分别为和,由万有引力定律和牛顿第二定律得:相同的有:周期,角速度,向心力,因为,所以轨道半径之比与双星质量之比相反:线速度之比与质量比相反:七、宇宙航行:1、卫星分类:侦察卫星、通讯卫星、导航卫星、气象卫星……2、卫星轨道:可以是圆轨道,也可以是椭圆轨道。

高中物理教科版目录(全套)

高中物理教科版目录(全套)

高中物理- 教科版目录(全套)必修一第一章运动的描述1.1 质点参考系空间时间1.2 位置变化的描述位移1.3 直线运动中位移随时间变化的1.4 运动快慢与方向的描述1.5 直线运动速度随时间变化的图像.1.6 速度变化快慢的描述加速度1.7匀速直线运动的规律1.8匀速直线运动的规律的应用1.9 匀速直线运动的加速度第二章力2.1力2.2重力2.3 弹力2.4摩擦力2.5力的合成2.6力的分解第三章牛顿运动定律3.1从亚里士多德到伽利略3.2 牛顿第一定律3.3 牛顿第二定律3.4牛顿第三定律3.5 牛顿运动定律的应用3.6 自由落体运动3.7 超重与失重3.8汽车安全运行与牛顿运动定律第四章物体的平衡4.1 共点力作用下物体的平衡4.2 共点力平衡条件的应用4.3 平衡的稳定性(选学)必修二第一章抛体运动1.1 曲线运动1.2 运动的合成与分解1.3 平抛运动1.4 斜抛运动第二章圆周运动2.1 描述圆周运动2.2 圆周运动的向心力2.3 匀速圆周运动的实例分析2.4 圆周运动与人类文明(选学)第三章万有引力定律3.1天体运动3.2 万有引力定律3.3 万有引力定律的应用3.4人造卫星宇宙速度第四章机械能和能源4.1 功4.2 功率4.3动能与势能4.4动能定理4.5 机械能守恒定律4.6能源的开发与利用第五章经典力学的成就与局限性5.1 经典力学的成就与局限性5.2 了解相对论5.3 初识量子论理科选修- 选修3-1第一章电场1.1电荷电荷守恒定律1.2库仑定律1.3 电场电场强度和电场线1.4 电势差1.5 电势差与电场强度的关系1.6 电容器和电容1.7 静电的利用及危害第二章直流电路2.1欧姆定律2.2 电阻定律2.3 焦耳定律2.4 电阻的串联、并联及其应用2.5 伏安法测电阻2.6 电源的电动势和内阻2.7 闭合电路欧姆定律2.8 欧姆表多用电表2.9逻辑电路和控制电路第三章磁场3.1 磁现象磁场3.2 磁感应强度磁通量3.3磁场对电流的作用-安培力3.4 磁场对运动电荷的作用-落伦兹.3.5洛伦兹力的应用选修3-2第一章电磁感应1.1 电磁感应现象的发现1.2 感应电流产生的条件1.3 法拉第电磁感应定律1.4 楞次定律1.5 电磁感应中的能量转化与守恒1.6 自感日光灯1.7 涡流研究课题测量玩具电动机运转时的. 第二章交变电流2.1 交变电流2.2 描述正弦交流电的物理量2.3实验:练习使用示波器2.4电容器在交流电路中的作用2.5 电感器在交流电路中的作用2.6 变压器2.7 电能的输送第三章传感器3.1 传感器3.2 温度传感器和光电式传感器3.3 生活中的传感器3.4实验探究:简单的光控和温控.选修3-3第一章分子动理论与统计思想1.1 物体是由大量分子组成的1.2 分子的热运动1.3分子间的相互作用力1.4 统计规律分子运动速率分布1.5 温度内能气体的压强1.6实验探究:用油膜法测油酸分.第二章固体和液体2.1 晶体和非晶体2.2 半导体2.3 液体的表面张力2.4液晶第三章气体3.1气体实验定律3.2 气体实验定律的微观解释及图.3.3 理想气体3.4饱和汽与未饱和汽3.5 空气的湿度第四章能量守恒与热力学定律4.1能量守恒定律的发现4.2 热力学第一定律4.3宏观热过程的方向性4.4 热力学第二定律4.5熵概念初步第五章能源与可持续性发展5.1 能源与人类生存的关系5.2 能源利用与环境问题5.3 可持续发展战略选修3-4第一章机械振动1.1 简谐运动1.2 单摆1.3简谐运动的图像和公式1.4阻尼振动受迫振动1.5 实验探究:用单摆测定重力加. 第二章机械波2.1 机械波德形成和传播2.2 横波的图像2.3 波的频率和波速2.4 惠更斯原理波的反射与折射2.5 波的干射、衍射第三章电磁振荡电磁波3.1电磁振荡3.2 电磁场和电磁波3.3电磁波普电磁波的应用3.4 无线电波发射、传播和接收第四章光的折射4.1 光的折射定律4.2 实验探究:测定玻璃的折射率4.3 光的全反射第五章光的波动性5.1 光的干涉5.2实验探究:用双缝干涉观光的.5.3 光的衍射与偏振5.4激光第六章相对论6.1 经典时空观6.2 狭义对相对论的两个基本假设6.3 相对论时空观6.4 相对论的速度变换定律质量和.6.5广义相对论选修3-5第一章碰撞与能量守恒1.1 碰撞1.2 动量1.3 动量守恒定律1.4 动量守恒定律的应用第二章原子结构2.1 电子2.2 原子的核式结构模型2.3 光谱氢原子光谱2.4 波尔的原子模型能级第三章原子核3.1 原子核的组成与核力3.2 放射性衰变3.3 放射性的应用、危害与防护3.4 原子核的结合能3.5 核裂变3.6 核聚变3.7 粒子物理学简介第四章波粒二象性4.1 量子概念的诞生4.2 光电效应与光量子假说4.3 光的波粒二象性4.4 实物粒子的波粒二象性4.5 不确定关系。

高三物理一轮总复习 第4章 曲线运动万有引力与航天 第4节 万有引力定律天体运动(必修2)

高三物理一轮总复习 第4章 曲线运动万有引力与航天 第4节 万有引力定律天体运动(必修2)
D.轨道Ⅱ是月球的卫星绕月球做匀速圆周运动 的唯一可能轨道
【解析】轨道Ⅱ上,万有引力提供向心力, 运动时不需要火箭提供动力,A 选项正确;在轨 道Ⅱ和Ⅲ的切点 P,加速度 a 相同,B 选项错误; 探测器在圆轨道Ⅱ上GMr2m=mrv2P,经 P 点变轨, 需满足 GMrm2 >mvrP′2,即 vP′<vP,应在 P 点减 速,C 选项错误;轨道Ⅱ不是月球卫星唯一的圆 轨道,D 选项错误.
【答案】AD
例 2 如图所示,“嫦娥三号”探测器 发射到月球上要经过多次变轨,最终 降落到月球的表面上,其中轨道Ⅱ为 圆形.下列说法正确的是( )
A.探测器在轨道Ⅱ上运动时不需要火箭提供动 力
B.探测器在轨道Ⅲ经过 P 点时的加速度小于在 轨道Ⅱ经过 P 时的加速度
C.探测器在 P 点由轨道Ⅱ进入轨道Ⅲ必须点火 加速
步星离地面的高度 h= 3 G4MπT2 2-R ≈3.6×107 m.
GM (5)线速度一定:v= R+h ≈3.1×103 m/s. (6)绕行方向一定:与地球自转的方向 相同 .
知识点四 三种宇宙速度
宇宙速度 数值
意义
(km/s)
这是卫星绕地球表面做匀速圆周运
第一宇宙
动的线速度,也是卫星的最小发射速
3.适用条件:万有引力定律适用于两质点间万有 引力大小的计算.
知识点三 同步卫星的六个“一定” (1)轨道平面一定:轨道平面与 地球赤道 共面. (2)周期一定:与地球自转周期 相同 ,即 T =24 h. (3)角速度一定:与地球自转的角速度 相同 .
(4)高度一定:由 G(RM+mh)2=m4Tπ22(R+h)得同
万有引力没有全部用来提供其做圆周运动的向心
力,故不适用上述式子,但其与同步卫星 C 的角 速度和周期相同,即:ωA=ωC,TA=TC

《高中物理必修2》教材分析

《高中物理必修2》教材分析

《高中物理必修2》教材分析本文试就教科版《高中物理必修2》的编写修订作简要说明,并逐节对教材进行分析,希望对实际教学有所帮助。

一、整体结构《课程标准》指出:在必修2模块中,“学生将通过机械能、曲线运动的规律和万有引力等内容的学习,进一步了解物理学的核心内容,体会高中物理课的特点和学习方法,为以后进一步学习打好基础,为后续模块的选择做准备。

”为此,教科版《必修2》将该模块的教学内容分为以下五章来展开:第一章“抛体运动”;第二章“匀速圆周运动”;第三章“万有引力定律”;第四章“机械能和能源”;第五章“经典力学的成就与局限性”。

作出上述安排,主要是出于以下考虑:1.将“抛体运动”、“圆周运动”与“万有引力”前移,有利于体现教材的逻辑联系。

对照《课程标准》必修2的内容安排:一、“机械能和能源”;二、“抛体运动与圆周运动”;三、“经典力学的成功与局限性”(含“万有引力”)。

教科版《必修2》是将“抛体运动”、“圆周运动”与“万有引力”放在了“机械能和能源”之前。

《必修1》模块主要是两块内容:运动的描述、相互作用与运动规律,研究的内容主要是质点运动的基本规律以及力与物质运动的关系。

从学生思维发展的角度和知识内在的逻辑联系来看,中间插入能量再回到曲线运动,显得比较生硬,而且学生在《必修1》中刚刚学习了力的分解与合成,这方面的基础有利于理解抛体运动中的运动合成与分解。

而万有引力定律也涉及了力与运动的问题,又与曲线运动相关。

学完了运动,对各种不同运动中速度的理解,又将丰富和深化对机械能的理解。

2.将“经典力学的成就与局限性”后移,有利于教学内容的总结拓展。

对照人教版《必修2》:第五章“曲线运动”;第六章“万有引力与航天”(含“经典力学的局限性”);第七章“机械能及其守恒定律”。

教科版《必修2》是将“经典力学的成就与局限性”单独列为一章,而且放在了教材的最后。

最后以“经典力学的成就与局限性”作为高中物理必修1和必修2模块全部内容的一个总结,也是对力学内容学习的一个总结,可以让学生站在更高的角度来审视经典力学。

高考物理必修2第4章第4讲万有引力与航天

高考物理必修2第4章第4讲万有引力与航天

第4讲 万有引力与航天知识排查开普勒三定律 定律 内容 图示或公式 开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等 a 3T 2=k ,k 是一个与行星无关与中心天体有关的常量万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的平方成反比。

2.表达式:F =G m 1m 2r 2引力常量G =6.67×10-11 N·m 2/kg 2。

宇宙速度1.三个宇宙速度第一宇宙速度(环绕速度)v 1=7.9 km/s ,是人造卫星的最小发射速度 第二宇宙速度 v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度第三宇宙速度v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度2.第一宇宙速度的求解第一宇宙速度是人造卫星在地面附近绕地球做匀速圆周运动的速度,也称为最大环绕速度。

(1)由G MmR2=mv2R得v=GMR=7.9 km/s(2)由mg=m v2R得v=gR=7.9 km/s时空观1.经典时空观(1)在经典力学中,物体的质量是不随运动状态而改变的。

(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的。

2.相对论时空观在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。

小题速练1.思考判断(1)第一宇宙速度是卫星绕地球做匀速圆周运动的最小速度。

()(2)发射探月卫星的速度必须大于第二宇宙速度。

()(3)若物体的速度大于第二宇宙速度而小于第三宇宙速度,则物体可绕太阳运行。

()答案(1)×(2)×(3)√2.下列说法正确的是()A.伽利略发现了万有引力定律,并测得了引力常量B.根据表达式F=G m1m2r2可知,当r趋近于零时,万有引力趋近于无穷大C.在由开普勒第三定律得出的表达式r3T2=k中,k是一个与中心天体有关的常量D.两物体间的万有引力总是大小相等、方向相反,是一对平衡力解析牛顿发现了万有引力定律,卡文迪许测得了引力常量,故选项A错误;表达式F=G m1m2r2中,当r趋近于零时,万有引力定律不适用,故选项B错误;表达式r3T2=k中,k是一个与中心天体有关的常量,故选项C正确;物体间的万有引力总是大小相等、方向相反,是一对相互作用力,故选项D错误。

抛体运动、 圆周运动、万有引力与宇宙航行 知识点总结 -高一物理

抛体运动、 圆周运动、万有引力与宇宙航行 知识点总结 -高一物理

抛体运动知识点一:曲线运动一、曲线运动的速度方向1.质点在某一点的速度方向,沿曲线在这一点的切线方向.2.曲线运动是变速运动.(1)速度是矢量,既有大小,又有方向.(2)在曲线运动中,速度的方向是变化的,所以曲线运动是变速运动.二、物体做曲线运动的条件1.物体如果不受力,将静止或做匀速直线运动.2.物体做曲线运动时,由于速度方向时刻改变,物体的加速度一定不为0;物体所受的合力一定不为0.3.物体做曲线运动的条件:(1)动力学角度:物体所受合力的方向与它的速度方向不在同一直线上时,物体做曲线运动.(2)运动学角度:物体的加速度方向与速度方向不在同一直线上时,物体做曲线运动.技巧点拨一、曲线运动的速度方向1.曲线运动中,质点在某一点的速度方向,沿曲线在这一点的切线方向.2.曲线运动中,质点的速度方向时刻改变,所以曲线运动一定是变速运动,加速度一定不为零.二、物体做曲线运动的条件1.物体做曲线运动的条件(1)动力学条件:合力方向与物体的速度方向不在同一直线上.(2)运动学条件:加速度方向与物体的速度方向不在同一直线上.说明:物体做曲线运动时,所受合力可能变化,也可能不发生变化.2.物体运动性质的判断(1)直线或曲线的判断看合力方向(或加速度的方向)和速度方向是否在同一直线上.(2)匀变速或非匀变速的判断合力为恒力,物体做匀变速运动;合力为变力,物体做非匀变速运动.(3)变速运动的几种类型轨迹特点加速度与速度方向的关系加速度特点运动性质直线共线加速度不变匀变速直线运动加速度变化非匀变速直线运动曲线不共线加速度不变匀变速曲线运动加速度变化非匀变速曲线运动三、曲线运动中合力方向、速度方向与轨迹的关系由于曲线运动的速度方向时刻改变,合力不为零.合力垂直于速度方向的分力改变速度的方向,所以合力总指向运动轨迹的凹侧,即曲线运动的轨迹总向合力所指的一侧弯曲.知识点二:运动的合成与分解一、一个平面运动的实例——观察蜡块的运动1.建立坐标系研究蜡块在平面内的运动,可以选择建立平面直角坐标系.如图1所示,以蜡块开始匀速运动的位置为原点O,以水平向右的方向和竖直向上的方向分别为x轴和y轴的方向,建立平面直角坐标系.图12.蜡块运动的位置:玻璃管向右匀速平移的速度设为v x,蜡块沿玻璃管匀速上升的速度设为v y,在某时刻t,蜡块的位置P的坐标:x=v x t,y=v y t.3.蜡块运动的轨迹:将x、y消去t,得到y=v yv x x,可见蜡块的运动轨迹是一条过原点的直线.4.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=v yv x.二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,同时参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫作运动的合成;已知合运动求分运动的过程,叫作运动的分解.3.运动的合成与分解遵循矢量运算法则.技巧点拨一、运动的合成与分解1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性 各分运动与合运动同时发生和结束,时间相同 等效性 各分运动的共同效果与合运动的效果相同同体性 各分运动与合运动是同一物体的运动 独立性各分运动之间互不相干,彼此独立,互不影响3.运动的合成与分解(1)运动的合成与分解是指位移、速度、加速度的合成与分解.其合成、分解遵循平行四边形定则. (2)对速度v 进行分解时,不能随意分解,应按物体的实际运动效果进行分解. 二、合运动的性质与运动轨迹1.分析两个互成角度的直线运动的合运动的性质时,应先求出合运动的合初速度v 和合加速度a ,然后进行判断. (1)是否为匀变速的判断:加速度或合力⎩⎪⎨⎪⎧变化:变加速运动不变:匀变速运动(2)曲、直判断:加速度或合力与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动2.两个互成角度的直线运动的合运动轨迹的判断:轨迹在合初速度v 0与合加速度a 之间,且向加速度一侧弯曲实验:探究平抛运动的特点知识点:实验:探究平抛运动的特点一、抛体运动和平抛运动1.抛体运动:以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力作用的运动.2.平抛运动:初速度沿水平方向的抛体运动.3.平抛运动的特点: (1)初速度沿水平方向; (2)只受重力作用.二、实验:探究平抛运动的特点 (一)实验思路:(1)基本思路:根据运动的分解,把平抛运动分解为不同方向上两个相对简单的直线运动,分别研究物体在这两个方向的运动特点.(2)平抛运动的分解:可以尝试将平抛运动分解为水平方向的分运动和竖直方向的分运动. (二)进行实验:方案一:频闪照相(或录制视频)的方法(1)通过频闪照相(或视频录制),获得小球做平抛运动时的频闪照片(如图所示);(2)以抛出点为原点,建立直角坐标系;(3)通过频闪照片描出物体经过相等时间间隔所到达的位置;(4)测量出经过T ,2T ,3T ,…时间内小球做平抛运动的水平位移和竖直位移,并填入表格; (5)分析数据得出小球水平分运动和竖直分运动的特点.抛出时间T 2T 3T 4T 5T 水平位移竖直位移结论水平分运动特点竖直分运动特点方案二:分别研究水平和竖直方向分运动规律 步骤1:探究平抛运动竖直分运动的特点(1)如图所示,用小锤击打弹性金属片后,A 球做________运动;同时B 球被释放,做__________运动.观察两球的运动轨迹,听它们落地的声音.(2)改变小球距地面的高度和小锤击打的力度,即改变A 球的初速度,发现两球____________,说明平抛运动在竖直方向的分运动为______________.步骤2:探究平抛运动水平分运动的特点 1.装置和实验(1)如图所示,安装实验装置,使斜槽M 末端水平,使固定的背板竖直,并将一张白纸和复写纸固定在背板上,N 为水平装置的可上下调节的向背板倾斜的挡板.(2)让钢球从斜槽上某一高度滚下,从末端飞出后做平抛运动,使小球的轨迹与背板平行.钢球落到倾斜的挡板N 上,挤压复写纸,在白纸上留下印迹.(3)上下调节挡板N ,进行多次实验,每次使钢球从斜槽上同一(选填“同一”或“不同”)位置由静止滚下,在白纸上记录钢球所经过的多个位置.(4)以斜槽水平末端端口处小球球心在木板上的投影点为坐标原点O ,过O 点画出竖直的y 轴和水平的x 轴. (5)取下坐标纸,用平滑的曲线把这些印迹连接起来,得到钢球做平抛运动的轨迹.(6)根据钢球在竖直方向是自由落体运动的特点,在轨迹上取竖直位移为y 、4y 、9y …的点,即各点之间的时间间隔相等,测量这些点之间的水平位移,确定水平方向分运动特点.(7)结论:平抛运动在相等时间内水平方向位移相等,平抛运动水平方向为匀速直线运动. 2.注意事项:(1)实验中必须调整斜槽末端的切线水平(将小球放在斜槽末端水平部分,若小球静止,则斜槽末端水平). (2)背板必须处于竖直面内,固定时要用铅垂线检查坐标纸竖线是否竖直. (3)小球每次必须从斜槽上同一位置由静止释放.(4)坐标原点不是槽口的端点,应是小球出槽口时钢球球心在木板上的投影点.(5)小球开始滚下的位置高度要适中,以使小球做平抛运动的轨迹由坐标纸的左上角一直到达右下角为宜.抛体运动的规律知识点:抛体运动的规律一、平抛运动的速度以速度v 0沿水平方向抛出一物体,以抛出点为原点,建立如图所示的平面直角坐标系.(1)水平方向:不受力,加速度是0,水平方向为匀速直线运动,v x =v 0.(2)竖直方向:只受重力,由牛顿第二定律得到:mg =ma .所以a =g ;竖直方向的初速度为0,所以竖直方向为自由落体运动,v y =gt . (3)合速度大小:v =v 2x +v 2y =v 20+(gt )2;方向:tan θ=v y v x =gtv 0(θ是v 与水平方向的夹角).二、平抛运动的位移与轨迹 1.水平位移:x =v 0t ①2.竖直位移:y =12gt 2②3.轨迹方程:由①②两式消去时间t ,可得平抛运动的轨迹方程为y =g 2v 02x 2,由此可知平抛运动的轨迹是一条抛物线. 三、一般的抛体运动物体被抛出时的速度v 0沿斜上方或斜下方时,物体做斜抛运动(设v 0与水平方向夹角为θ). (1)水平方向:物体做匀速直线运动,初速度v 0x =v 0cos θ.(2)竖直方向:物体做竖直上抛或竖直下抛运动,初速度v y 0=v 0sin θ.如图所示.技巧点拨一、对平抛运动的理解 1.平抛运动的特点(1)做平抛运动的物体水平方向不受力,做匀速直线运动;竖直方向只受重力,做自由落体运动;其合运动为匀变速曲线运动,其轨迹为抛物线.(2)平抛运动的速度方向沿轨迹的切线方向,速度大小、方向不断变化. 2.平抛运动的速度变化如图所示,由Δv =g Δt 知,任意两个相等的时间间隔内速度的变化量相同,方向竖直向下.二、平抛运动规律的应用1.平抛运动的研究方法(1)把平抛运动分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动.(2)分别运用两个分运动的运动规律去求分速度、分位移等,再合成得到平抛运动的速度、位移等. 2.平抛运动的规律(1)平抛运动的时间:t =2hg,只由高度决定,与初速度无关.(2)水平位移(射程):x =v 0t =v 02hg,由初速度和高度共同决定. (3)落地速度:v =v 2x +v 2y =v 20+2gh ,与水平方向的夹角为θ,tan θ=v y v 0=2gh v 0,落地速度由初速度和高度共同决定. 3.平抛运动的推论(1)做平抛运动的物体在某时刻,其速度方向与水平方向的夹角为θ,位移方向与水平方向的夹角为α,则有tan θ=2tan α. 证明:如图所示,tan θ=v y v x =gtv 0tan α=y A x A =12gt 2v 0t =gt 2v 0所以tan θ=2tan α.(2)做平抛运动的物体在任意时刻的速度的反向延长线一定通过此时水平位移的中点. 证明:x A =v 0t ,y A =12gt 2,v y =gt ,又tan θ=v y v 0=y A x A ′B ,解得x A ′B =v 0t 2=x A2.三、平抛运动的临界问题分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突显出来,找出满足临界状态的条件四、斜抛运动 1.斜抛运动的规律(1)斜抛运动的性质:斜抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.(2)斜抛运动的基本规律(以斜上抛为例说明,如图所示) ①水平方向:v 0x =v 0cos θ,F 合x =0. ②竖直方向:v 0y =v 0sin θ,F 合y =mg .(3)斜上抛运动可以看成水平方向的匀速直线运动和竖直方向的竖直上抛运动的合运动. ①速度公式:v x =v 0x =v 0cos θ v y =v 0y -gt =v 0sin θ-gt②位移公式:x =v 0cos θ·t y =v 0sin θ·t -12gt 22.斜抛运动的对称性(1)时间对称:相对于轨迹最高点,两侧对称的上升时间等于下降时间. (2)速度对称:相对于轨迹最高点,两侧对称的两点速度大小相等. (3)轨迹对称:斜抛运动的轨迹相对于过最高点的竖直线对称.圆周运动知识点:圆周运动一、线速度1.定义:物体做圆周运动,在一段很短的时间Δt 内,通过的弧长为Δs .则Δs 与Δt 的比值叫作线速度,公式:v =ΔsΔt .2.意义:描述做圆周运动的物体运动的快慢.3.方向:为物体做圆周运动时该点的切线方向.4.匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动. (2)性质:线速度的方向是时刻变化的,所以是一种变速运动,这里的“匀速”是指速率不变. 二、角速度1.定义:连接物体与圆心的半径转过的角度与转过这一角度所用时间的比值,公式:ω=ΔθΔt .2.意义:描述物体绕圆心转动的快慢. 3.单位:弧度每秒,符号是rad/s 或rad·s -1. 4.匀速圆周运动是角速度不变的运动. 三、周期1.周期T :做匀速圆周运动的物体,运动一周所用的时间,单位:秒(s).2.转速n :物体转动的圈数与所用时间之比.单位:转每秒(r /s)或转每分(r/min).3.周期和转速的关系:T =1n (n 的单位为r/s 时).四、线速度与角速度的关系1.在圆周运动中,线速度的大小等于角速度大小与半径的乘积.2.公式:v =ωr .技巧点拨一、线速度和匀速圆周运动1.对线速度的理解 (1)线速度是物体做圆周运动的瞬时速度,线速度越大,物体运动得越快.(2)线速度是矢量,它既有大小,又有方向,线速度的方向在圆周各点的切线方向上.(3)线速度的定义式:v =ΔsΔt ,Δs 代表在时间Δt 内通过的弧长.2.对匀速圆周运动的理解(1)由于匀速圆周运动是曲线运动,其速度方向沿着圆周上各点的切线方向,所以速度的方向时刻在变化. (2)匀速的含义:速度的大小不变,即速率不变.(3)运动性质:匀速圆周运动是一种变速运动,其所受合外力不为零. 二、角速度、周期和转速 1.对角速度的理解(1)角速度描述做圆周运动的物体绕圆心转动的快慢,角速度越大,物体转动得越快. (2)角速度的定义式:ω=ΔθΔt ,Δθ代表在时间Δt 内物体与圆心的连线转过的角度.(3)在匀速圆周运动中,角速度不变. 2.对周期和频率(转速)的理解(1)匀速圆周运动具有周期性,每经过一个周期,线速度大小和方向与初始时刻完全相同.(2)当单位时间取1 s 时,f =n .频率和转速对匀速圆周运动来说在数值上是相等的,但频率具有更广泛的意义,两者的单位也不相同.3.周期、频率和转速间的关系:T =1f =1n .三、描述匀速圆周运动各物理量之间的关系 1.描述匀速圆周运动各物理量之间的关系(1)v =Δs Δt =2πrT=2πnr(2)ω=ΔθΔt =2πT =2πn(3)v =ωr2.各物理量之间关系的理解(1)角速度、周期、转速之间关系的理解:物体做匀速圆周运动时,由ω=2πT=2πn 知,角速度、周期、转速三个物理量,只要其中一个物理量确定了,其余两个物理量也确定了.(2)线速度与角速度之间关系的理解:由线速度大小v =ω·r 知,r 一定时,v ∝ω;v 一定时,ω∝1r ;ω一定时,v ∝r .四、同轴转动和皮带传动问题向心加速度知识点:向心加速度一、匀速圆周运动的加速度方向1.定义:物体做匀速圆周运动时的加速度总指向圆心,这个加速度叫作向心加速度.2.向心加速度的作用:向心加速度的方向总是与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小. 二、匀速圆周运动的加速度大小 1.向心加速度公式 a n =v 2r或a n =ω2r .2.向心加速度的公式既适用于匀速圆周运动,也适用于非匀速圆周运动.技巧点拨一、向心加速度及其方向 对向心加速度及其方向的理解1.向心加速度的方向:总指向圆心,方向时刻改变.2.向心加速度的作用:向心加速度的方向总是与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小.3.圆周运动的性质:不论向心加速度a n 的大小是否变化,其方向时刻改变,所以圆周运动的加速度时刻发生变化,圆周同轴转动皮带传动齿轮传动装 置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接(皮带不打滑),A 、B 两点分别是两个轮子边缘上的点两个齿轮啮合,A 、B 两点分别是两个齿轮边缘上的点特点 角速度、周期相同线速度大小相等 线速度大小相等规 律 线速度大小与半径成正比:v A v B =rR角速度与半径成反比:ωA ωB =r R 角速度与半径成反比:ωA ωB =r 2r 1运动是变加速曲线运动.4.变速圆周运动的加速度并不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢,所以变速圆周运动中,向心加速度的方向也总是指向圆心. 二、向心加速度的大小 1.向心加速度公式(1)基本公式:①a n =v2r;②a n =ω2r .(2)拓展公式:①a n =4π2T 2r ;②a n =4π2n 2r =4π2f 2r ;③a n =ωv .2.向心加速度公式的适用范围向心加速度公式不仅适用于匀速圆周运动,也适用于非匀速圆周运动,v 即为那一位置的线速度,且无论物体做的是匀速圆周运动还是非匀速圆周运动,其向心加速度的方向都指向圆心. 3.向心加速度与半径的关系(如图所示)向心加速度公式的应用技巧向心加速度的每一个公式都涉及三个物理量的变化关系,必须在某一物理量不变时分析另外两个物理量之间的关系. (1)先确定各点是线速度大小相等,还是角速度相同.(2)在线速度大小相等时,向心加速度与半径成反比,在角速度相同时,向心加速度与半径成正比.向心力一、向心力1.定义:做匀速圆周运动的物体所受的合力总指向圆心,这个指向圆心的力叫作向心力.2.方向:始终沿着半径指向圆心.3.作用:只改变速度的方向,不改变速度的大小.4.向心力是根据力的作用效果命名的,它由某个力或者几个力的合力提供.5.表达式: (1)F n =m v 2r(2)F n =mω2r .二、变速圆周运动和一般的曲线运动1.变速圆周运动的合力:变速圆周运动的合力产生两个方向的效果,如图所示.(1)跟圆周相切的分力F t :改变线速度的大小. (2)指向圆心的分力F n :改变线速度的方向. 2.一般的曲线运动的处理方法(1)一般的曲线运动:运动轨迹既不是直线也不是圆周的曲线运动.(2)处理方法:可以把曲线分割为许多很短的小段,每一小段可以看作圆周运动的一部分,分析质点经过曲线上某位置的运动时,可以采用圆周运动的分析方法来处理.知识点一:实验:探究向心力的大小与半径、角速度、质量的关系探究方案一 用绳和沙袋定性研究 1.实验原理如图(a)所示,绳子的一端拴一个小沙袋(或其他小物体),将手举过头顶,使沙袋在水平面内做匀速圆周运动,此时沙袋所受的向心力近似等于绳对沙袋的拉力.2.实验步骤在离小沙袋重心40 cm 的地方打一个绳结A ,在离小沙袋重心80 cm 的地方打另一个绳结B .同学甲看手表计时,同学乙按下列步骤操作:操作一 手握绳结A ,如图(b)所示,使沙袋在水平面内做匀速圆周运动,每秒转动1周.体会此时绳子拉力的大小. 操作二 手仍然握绳结A ,但使沙袋在水平面内每秒转动2周,体会此时绳子拉力的大小. 操作三 改为手握绳结B ,使沙袋在水平面内每秒转动1周,体会此时绳子拉力的大小.操作四 手握绳结A ,换用质量较大的沙袋,使沙袋在水平面内每秒转动1周,体会此时绳子拉力的大小. (1)通过操作一和二,比较在半径、质量相同的情况下,向心力大小与角速度的关系. (2)通过操作一和三,比较在质量、角速度相同的情况下,向心力大小与半径的关系. (3)通过操作一和四,比较在半径、角速度相同的情况下,向心力大小与质量的关系. 3.实验结论:半径越大,角速度越大,质量越大,向心力越大. 探究方案二 用向心力演示器定量探究 1.实验原理向心力演示器如图所示,匀速转动手柄1,可使变速塔轮2和3以及长槽4和短槽5随之匀速转动.皮带分别套在塔轮2和3上的不同圆盘上,可使两个槽内的小球分别以几种不同的角速度做匀速圆周运动.小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂的杠杆使弹簧测力套筒7下降,从而露出标尺8,根据标尺8上露出的红白相间等分标记,可以粗略计算出两个球所受向心力的比值.2.实验步骤(1)皮带套在塔轮2、3半径相同的圆盘上,小球转动半径和转动角速度相同时,探究向心力与小球质量的关系. (2)皮带套在塔轮2、3半径相同的圆盘上,小球转动角速度和质量相同时,探究向心力与转动半径的关系. (3)皮带套在塔轮2、3半径不同的圆盘上,小球质量和转动半径相同时,探究向心力与角速度的关系. 探究方案三 利用力传感器和光电传感器探究 1.实验原理与操作如图所示,利用力传感器测量重物做圆周运动的向心力,利用天平、刻度尺、光电传感器分别测量重物的质量m 、做圆周运动的半径r 及角速度ω.实验过程中,力传感器与DIS 数据分析系统相连,可直接显示力的大小.光电传感器与DIS 数据分析系统相连,可直接显示挡光杆挡光的时间,由挡光杆的宽度和挡光杆做圆周运动的半径,可得到重物做圆周运动的角速度.实验时采用控制变量法,分别研究向心力与质量、半径、角速度的关系. 2.实验数据的记录与分析(1)设计数据记录表格,并将实验数据记录到表格中(表一、表二、表三) ①m 、r 一定(表一)序号 1 2 3 4 5 6 F n ω ω2②m 、ω一定(表二)序号123456F n r③r 、ω一定(表三)序号 1 2 3 4 5 6 F nm(2)数据处理分别作出F n -ω、F n -r 、F n -m 的图像,若F n -ω图像不是直线,可以作F n-ω2图像. (3)实验结论:①在质量和半径一定的情况下,向心力的大小与角速度的平方成正比. ②在质量和角速度一定的情况下,向心力的大小与半径成正比. ③在半径和角速度一定的情况下,向心力的大小与质量成正比.知识点二:向心力的分析和公式的应用一、向心力的理解及来源分析 导学探究1.如图1所示,用细绳拉着质量为m 的小球在光滑水平面上做匀速圆周运动.图1(1)小球受哪些力作用?什么力提供了向心力?合力指向什么方向? (2)若小球的线速度为v ,运动半径为r ,合力的大小是多少?答案 (1)小球受到重力、支持力和绳的拉力,绳的拉力提供了向心力,合力等于绳的拉力,方向指向圆心.(2)合力的大小F =m v 2r.2.若月球(质量为m )绕地球做匀速圆周运动,其角速度为ω,月地距离为r .月球受什么力作用?什么力提供了向心力?该力的大小、方向如何?答案 月球受到地球的引力作用,地球对月球的引力提供了月球绕地球做圆周运动的向心力,其大小F n =mω2r ,方向指向地球球心. 知识深化 1.对向心力的理解(1)向心力大小:F n =m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r .(2)向心力的方向无论是否为匀速圆周运动,其向心力总是沿着半径指向圆心,方向时刻改变,故向心力是变力.(3)向心力的作用效果——改变线速度的方向.由于向心力始终指向圆心,其方向与物体运动方向始终垂直,故向心力不改变线速度的大小. 2.向心力的来源分析向心力是根据力的作用效果命名的.它可以由重力、弹力、摩擦力等各种性质的力提供,也可以由它们的合力提供,还可以由某个力的分力提供.(1)当物体做匀速圆周运动时,由于物体线速度大小不变,沿切线方向的合外力为零,物体受到的合外力一定指向圆心,以提供向心力.(2)当物体做非匀速圆周运动时,其向心力为物体所受的合外力在半径方向上的分力,而合外力在切线方向的分力则用于改变线速度的大小. 二、匀速圆周运动问题分析 1.匀速圆周运动问题的求解方法圆周运动问题仍属于一般的动力学问题,无非是由物体的受力情况确定物体的运动情况,或者由物体的运动情况求解物体的受力情况.解答有关匀速圆周运动问题的一般方法步骤:(1)确定研究对象、轨迹圆周(含圆心、半径和轨道平面). (2)受力分析,确定向心力的大小(合成法、正交分解法等). (3)根据向心力公式列方程,必要时列出其他相关方程. (4)统一单位,代入数据计算,求出结果或进行讨论. 2.几种常见的匀速圆周运动实例图形受力分析力的分解方法满足的方程及向心加速度⎩⎪⎨⎪⎧Fcos θ=mg Fsinθ=mω2l sin θ或mg tan θ=mω2l sin θ⎩⎪⎨⎪⎧F N cos θ=mg F N sin θ=mω2r 或mg tan θ=mω2r⎩⎪⎨⎪⎧F 升cos θ=mg F 升sin θ=mω2r 或mg tan θ=mω2r⎩⎪⎨⎪⎧F N =mgF 拉=m B g =mω2r 三、变速圆周运动和一般的曲线运动导学探究用绳拴一沙袋,使沙袋在光滑水平面上做变速圆周运动,如图5所示.图5(1)分析绳对沙袋的拉力的作用效果. (2)沙袋的速度大小如何变化?为什么?答案 (1)绳对沙袋的拉力方向不经过圆心,即不与沙袋的速度方向垂直,而是与沙袋的速度方向成一锐角θ,如题图所示,拉力F 有两个作用效果,一是改变线速度的大小,二是改变线速度的方向. (2)由于拉力F 沿切线方向的分力与v 一致,故沙袋的速度增大. 知识深化 1.变速圆周运动(1)受力特点:变速圆周运动中合力不指向圆心,合力F 产生改变线速度大小和方向两个作用效果.(2)某一点的向心力仍可用公式F n =m v 2r =mω2r 求解.(3)2.一般的曲线运动曲线轨迹上每一小段看成圆周运动的一部分,在分析其速度大小与合力关系时,可采用圆周运动的分析方法来处理. (1)合外力方向与速度方向夹角为锐角时,速率越来越大.(2)合外力方向与速度方向夹角为钝角时,力为阻力,速率越来越小.生活中的圆周运动知识点:生活中的圆周运动一、火车转弯1.如果铁道弯道的内外轨一样高,火车转弯时,由外轨对轮缘的弹力提供向心力,由于质量太大,因此需要很大的向心力,靠这种方法得到向心力,不仅铁轨和车轮极易受损,还可能使火车侧翻.。

高一物理必修2万有引力与天体运动知识点讲解无答案

高一物理必修2万有引力与天体运动知识点讲解无答案

万有引力与天体运动讲义[本章要点综述]1.开普勒第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。

32r k T= (K 值只与中心天体的质量有关) 2.万有引力定律: 122m rF G m =⋅万 (1)赤道上万有引力:F mg F mg ma =+=+引向向 (g a 向和是两个不同的物理量,)(2)两极上的万有引力:F mg =引3.忽略地球自转,地球上的物体受到的重力等于万有引力。

22GMm mg GM gR R=⇒=(黄金代换) 4.距离地球表面高为h 的重力加速度:()()()222GMmGM mg GM g R h g R h R h '''=⇒=+⇒=++5.卫星绕地球做匀速圆周运动:万有引力提供向心力 2GMm F F r ==万向 (1)22GMm GM ma a r r=⇒= (轨道处的向心加速度a 等于轨道处的重力加速度g 轨) (2)22Mm v G m r r=得 ∴r 越大,v 22GMm v GM m v r r r =⇒= (3)由22Mm G m r r ω=得 ∴r 越大,ω 223GMm GM m r r r ωω=⇒= (4)由2224Mm G m r r Tπ=得 ∴r 越大,T 223224GMm r m r T r T GM ππ⎛⎫=⇒= ⎪⎝⎭6.中心天体质量的计算:方法1:22gR GM gR M G=⇒= (已知R 和g ) 方法2:2GM v r v M r G=⇒= (已知卫星的V 与r ) 方法3:233GM r M r Gωω=⇒= (已知卫星的ω与r )方法4:2323244r r T MGM GTππ=⇒=(已知卫星的周期T与r)方法5:已知32324GMvr v TMGrTGMππ⎧=⎪⎪⇒=⎨⎪=⎪⎩(已知卫星的V与T)方法6:已知33GMvvrMGGMrωω⎧=⎪⎪⇒=⎨⎪=⎪⎩(已知卫星的V与ω,相当于已知V与T)7.地球密度计算:球的体积公式:343V Rπ=2233232322()3434rM M rRVmMG mGT RrrGTTMππρππ=⎧⎪⎪=⇒⎨===⎪⎪⎩近地卫星23GTπρ=(r=R)8.发射速度:采用多级火箭发射卫星时,卫星脱离最后一级火箭时的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题天体运动的“四个热点”问题双星或多星模型1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。

如图1所示。

图1(2)特点①各自所需的向心力由彼此间的万有引力提供,即Gm1m2L2=m1ω21r1,Gm1m2L2=m2ω22r2②两颗星的周期及角速度都相同,即T1=T2,ω1=ω2③两颗星的半径与它们之间的距离系为r1+r2=L(3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r1。

2.多星模型模型三星模型(正三角形排列)三星模型(直线等间距排列)四星模型图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力另外三星球对其万有引力的合力合并的引力波。

根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km,绕二者连线上的某点每秒转动12圈。

将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( )A.质量之积B.质量之和C.速率之和D.各自的自转角速度【试题解析】由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有G m 1m 2L 2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km,解得m 1+m 2=ω2L 3G ,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误。

【参考答案】BC1.(2019·吉林模拟)我国发射的“悟空”号暗物质粒子探测卫星,三年来对暗物质的观测研究已处于世界领先地位。

宇宙空间中两颗质量相等的星球绕其连线中心匀速转动时,理论计算的周期与实际观测周期不符,且T 理论T 观测=k (k >1)。

因此,科学家认为,在两星球之间存在暗物质。

假设以两星球球心连线为直径的球体空间中均匀分布着暗物质(已知质量分布均匀的球体对外部质点的作用,等效于质量集中在球心处对质点的作用),两星球的质量均为m 。

那么暗物质的质量为( ) A.k 2-28mB.k 2-14mC.(k 2-1)mD.(2k 2-1)m【试题解析】双星均绕它们连线的中点做匀速圆周运动,令它们之间的距离为L ,由万有引力提供向心力得G m 2L 2=m 4π2T 2理论·L 2,解得T 理论=πL 2L Gm 。

根据观测结果,星体的运动周期T 理论T 观测=k ,这种差异可能是由双星之间均匀分布的暗物质引起的,又均匀分布在球体内的暗物质对双星系统的作用与一质量等于球内暗物质的总质量m ′(位于球心处)的质点对双星系统的作用相同,有G m 2L 2+G mm ′(L 2)2=m 4π2T 2观测·L 2,解得T 观测=πL 2L G (m +4m ′),所以m ′=k 2-14m 。

选项B 正确。

【参考答案】B2.(多选)为探测引力波,中山大学领衔的“天琴计划”将向太空发射三颗完全相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形的中心,卫星将在以地球为中心、离地面高度约10万公里的轨道上运行,针对确定的引力波源进行引力波探测。

如图2所示,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”。

已知地球同步卫星距离地面的高度约为3.6万公里,以下说法正确的是( )图2A.若知道引力常量G 及三颗卫星绕地球的运动周期T ,则可估算出地球的密度B.三颗卫星具有相同大小的加速度C.三颗卫星绕地球运动的周期一定大于地球的自转周期D.从每颗卫星可以观察到地球上大于13的表面【试题解析】若知道引力常量G 及三颗卫星绕地球的运动周期T 根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得到M =4π2r 3GT 2,因地球的半径未知,也不能计算出轨道半径r ,不能计算出地球体积,故不能估算出地球的密度,选项A 错误;根据G Mm r 2=ma ,由于三颗卫星到地球的距离相等,则绕地球运动的轨道半径r 相等,则它们的加速度大小相等,选项B 正确;根据万有引力等于向心力,G Mm r 2=m 4π2T 2r 解得T =2πr 3GM ,由于三颗卫星的轨道半径大于地球同步卫星的轨道半径,故三颗卫星绕地球运动的周期大于地球同步卫星绕地球运动的周期,即大于地球的自转周期,选项C正确;当等边三角形边与地球表面相切的时候,恰好看到地球表面的13,所以本题中,从每颗卫星可以观察到地球上大于13的表面,选项D正确。

【参考答案】BCD、赤道上的物体、同步卫星和近地卫星赤道上的物体、近地卫星、同步卫星的对比比较内容赤道上的物体近地卫星同步卫星向心力来源万有引力的分力万有引力向心力方向指向地心重力与万有引力的关系重力略小于万有引力重力等于万有引力角速度ω1=ω自ω2=GMR3ω3=ω自=GM(R+h)3ω1=ω3<ω2线速度v1=ω1R v2=GMRv3=ω3(R+h) =GMR+h v1<v3<v2(v2为第一宇宙速度)向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h) =GM(R+h)2a1<a3<a2物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c为地球的同步卫星。

下列关于a、b、c的说法中正确的是()图3 A.b 卫星转动线速度大于7.9 km/sB.a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC.a 、b 、c 做匀速圆周运动的周期关系为T c >T b >T aD.在b 、c 中,b 的速度大【试题解析】b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G Mm R 2=m v 2R ,解得v =GM R ,代入数据得v =7.9 km/s,故A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =GM r 2得b 的向心加速度大于c 的向心加速度,即a b>a c >a a ,故B 错误;卫星c 为同步卫星,所以T a =T c ,根据T =2πr 3GM 得c 的周期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c 中,根据v =GM r ,可知b 的速度比c 的速度大,故D 正确。

【参考答案】D1.有a 、b 、c 、d 四颗卫星,a 还未发射,在地球赤道上随地球一起转动,b 在地面附近近地轨道上正常运行,c 是地球同步卫星,d 是高空探测卫星,设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图4所示,则下列关于卫星的说法中正确的是( )图4A.a 的向心加速度等于重力加速度gB.c 在4 h 内转过的圆心角为π6C.b 在相同的时间内转过的弧长最长D.d 的运动周期可能是23 h【试题解析】同步卫星的运行周期与地球自转周期相同,角速度相同,则a 和c 的角速度相同,根据a =ω2r 知,c 的向心加速度大,由GMm r 2=ma 知,c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故a 的向心加速度小于重力加速度g ,选项A 错误;由于c 为同步卫星,所以c 的周期为24 h,因此4 h 内转过的圆心角为θ=π3,选项B 错误;由四颗卫星的运行情况可知,b 运行的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C 正确;d 的运行周期比c 要长,所以其周期应大于24 h,选项D 错误。

【参考答案】C2.如图5所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,a 和b 的轨道半径相同,且均为c 的k 倍,已知地球自转周期为T 。

则( )图5A.卫星b 也是地球同步卫星B.卫星a 的向心加速度是卫星c 的向心加速度的k 2倍C.卫星c 的周期为1k 3TD.a 、b 、c 三颗卫星的运行速度大小关系为v a =v b =k v c【试题解析】卫星b 相对地球不能保持静止,故不是地球同步卫星,A 错误;根据公式G Mm r 2=ma 可得a =GM r 2,即a a a c =r 2c r 2a =1k 2,B 错误;根据开普勒第三定律r 3a T 2a =r 3c T 2c可得T c =r 3c r 3a T 2a =1k 3T a =1k 3T ,C 正确;根据公式G Mmr 2=m v 2r 可得v =GMr ,故v a =v b <v c k,D 错误。

【参考答案】C卫星(航天器)的变轨及对接问题考向卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图6所示。

图6(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。

(2)在A点点火加速,由于速度变大,万有引力不足以提供向心力(G Mmr2<mv2r),卫星做离心运动进入椭圆轨道Ⅱ。

(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。

2.对接航天飞船与宇宙空间站的“对接”实际上就是两个做匀速圆周运动的物体追赶问题,本质仍然是卫星的变轨运行问题。

3.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v=GMr判断。

(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。

【例3】我国发射的“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接。

假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()图7A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接【试题解析】若使飞船与空间站在同一轨道上运行,然后飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A错误;若使飞船与空间站在同一轨道上运行,然后空间站减速,所需向心力变小,则空间站将脱离原轨道而进入更低的轨道,不能实现对接,选项B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C正确;若飞船在比空间实验室半径较小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D错误。

相关文档
最新文档