高考数学不等式中最值问题全梳理
高考数学专题--基本不等式求最值的常用方法(解析版)
高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。
已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。
解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。
已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。
解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。
已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。
解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。
所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。
高三数学备考12利用基本不等式处理最值、证明不等式和实际问题解析版
问题12利用基本不等式处理最值、证明不等式和实际问题一、考情分析不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. 二、经验分享(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. (2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(4)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (5)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(6)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围. 三、知识拓展 1.(1)若R b a ∈,,则;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则(当且仅当b a =时取“=”);(3)若00a ,b >>,则(当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或12x x+≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a bb a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a+≥或2a bb a+≤-(当且仅当b a =时取“=”). 6.若R b a ∈,,则(当且仅当b a =时取“=”).7.一个重要的不等式链:.8.9.函数图象及性质(1)函数图象如右图所示:(2)函数性质:①值域:;②单调递增区间:;单调递减区间:.10.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.四、题型分析(一) 利用基本不等式求最值利用基本不等式求函数最值时,应注意三个条件:“一正,二定,三相等”,这三个条件中,以定值为本.因为在一定限制条件下,某些代数式需经过一定的变式处理,才可利用基本不等式求得最值,而怎样变式,完全取决于定值的作用.主要有两种类型:一类是中条件给出定值式,一类是条件中无定值式.类型一给出定值【例1】【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知实数,且,则的最小值为____【答案】【解析】由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【小试牛刀】设,x y 是正实数,且1x y +=,则的最小值是__________.【答案】14. 【分析一】考虑通法,消元化为单元函数,而后可用导数法和判别式法求解函数的最小值; 【解析一】【分析二】考虑整体替换的方法,分母的和为常数. 【解析二】设2x s +=,1y t +=,则4s t +=,类型二 未知定值【例2】已知,x y 为正实数,则433x yx y x++的最小值为 A .53 B .103 C .32D .3 【答案】3 【解析】,当且仅当时取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【小试牛刀】已知函数在R 上是单调递增函数,则23cb a-的最小值是【答案】1 【解析】 由题意的,因为函数()f x 在R 上单调递增,所以满足,可得23b c a≥,且0a >所以,当且仅当3b a =时等号成立,所以.技巧一:凑项【例3】设0a b >>,则的最小值是【分析】拼凑成和为定值的形式 【解析】4=(当且仅当和1ab ab =,即⎪⎩⎪⎨⎧==222b a 时取等号). 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【小试牛刀】【江苏省无锡市2019届高三上学期期中】设为正实数,且,则的最小值为________. 【答案】27 【解析】因为,所以因此当且仅当时取等号,即的最小值为27.技巧二:凑系数【例4】 当04x <<时,求的最大值.【分析】由04x <<知820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到为定值,故只需将凑上一个系数即可.【解析】,当282x x =-,即2x =时取等号,∴当2x =时,的最大值为8.【评注】本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 【小试牛刀】设230<<x ,求函数的最大值.【解析】∵230<<x ,∴023>-x ,∴,当且仅当232x x =-,即时等号成立.【点评】总的来说,要提高拼凑的技巧,设法拼凑出乘积或和为定值的形式. 技巧三: 分离 【例5】 求的值域.【分析一】本题看似无法运用基本不等式,不妨将分子配方凑出含有()1x +的项,再将其分离. 【解析一】,当,即时,(当且仅当1x =时取“=”号).【小试牛刀】已知a,b 都是负实数,则的最小值是【答案】2(﹣1)【解析】222≥-.技巧四:换元【例6】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行.【解法一】由已知得a =30-2b b +1 ,ab =30-2b b +1 ·b =-2 b 2+30bb +1 .∵a >0,∴0<b <15.令t =b +1,则 1<t <16,∴ab =-2t 2+34t -31t =-2(t +16t )+34.∵t +16t ≥2t ·16t =8,∴ab ≤18,∴y ≥118 ,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30-ab =a +2b .∵a +2b ≥22 ab ,∴30-ab ≥2 2 ab .令u =ab ,则 u 2+2 2 u -30≤0,-5 2 ≤u ≤3 2 ,∴ab ≤3 2 ,ab ≤18,∴y ≥118 .【点评】①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.【小试牛刀】设正实数y x ,满足1=+y x ,则的取值范围为【答案】]89,1[ 【解析】因为,所以410≤<xy设,所以当41=t 时,上式取得最大值当21=t 时,上式取得最小值所以的取值范围为]89,1[【点评】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.【例7】已知0,0x y >>,且191x y +=,求x y +的最小值.【错解】Q 0,0x y >>,且191x y+=,∴,故.【错因】解法中两次连用基本不等式,在等号成立条件是x y =,在1992xyxy+≥等号成立条件是19x y=,即9y x =,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】,,当且仅当9y x x y=时,上式等号成立,又191x y+=,可得时,.【小试牛刀】【江苏省苏北四市2019届高三第一学期期末】已知正实数满足,则的最小值为____. 【答案】【解析】正实数x ,y 满足1,则:x +y =xy , 则: 4x +3y ,则: 437+4,故的最小值为.故答案为:.技巧六:取平方【例8】已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.【解析】W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20,∴W ≤20 =2 5 . 【小试牛刀】求函数的最大值.【解析】注意到21x -与52x -的和为定值.,又0y >,,当且仅当21x -=52x -,即32x =时取等号,故max 22y =. 【点评】本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件. 技巧七:构造要求一个目标函数),(y x f 的最值,我们利用基本不等式构造一个以),(y x f 为主元的不等式(一般为二次不等式),解之即可得),(y x f 的最值. 【例9】设,x y 为实数,若,则2x y +的最大值是 .【分析】利用基本不等式将已知定值式中224x y ,xy +的均转化成含2x y +的不等式,再求2x y +的最大值.【答案】2105. 【解析】,可解得2x y +的最大值为2105. 【点评】本题的解法过程体现了“消元”的思想,所求目标函数是和的形式,那我们就设法消去条件等式中的乘积,方法就是利用基本不等式,这里它的作用,一个是消元,还有就是把条件的等式变为了不等式. 【小试牛刀】若正实数x ,y ,满足,则x y +的最大值为【分析】构成关于x y +的不等式,通过解不等式求最值 【解析】由,得.即,.计算得出:.y x +∴的最大值是4.技巧八:添加参数【例10】若已知0,,>c b a ,则的最小值为 .【解析】时可取得函数的最小值,此时,此时51=λ,最小值为552. 【小试牛刀】设w z y x ,,,是不全为零的实数,求的最大值.【解析】显然我们只需考虑的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足:故依据取等号的条件得,,参数t 就是我们要求的最大值.消去,αβ我们得到一个方程,此方程的最大根为我们所求的最大值,得到212t +=. 【点评】从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式,这个等式建立的依据是等号成立的条件,目的就是为了取得最值.【小试牛刀】设,,x y z 是正实数,求的最小值.【解析】引进参数k ,使之满足,依据取等号的条件,有:,故的最小值4.综上所述,应用均值不等式求最值要注意:一要“正”:各项或各因式必须为正数;二可“定”:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能“等”:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值. (二) 基本不等式与恒成立问题 【例11】已知x >0,y >0,且21+=1x y,若恒成立,则实数m 的取值范围是 .【分析】先求左边式子的最小值 【解析】∵0>x ,0>y ,且21+=1x y,∴,当且仅当4y x =x y ,即y x 2=时取等号,又21+=1x y,∴4=x ,2=y ,∴,要使恒成立,只需,即28>m +2m ,解得24<<-m ,故答案为24<<-m .【点评】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数恒大于0,就必须对a 进行限制--令0≥a ,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单.【小试牛刀】若对任意的正实数,x y 恒成立,求a 的最小值. 【解析】对任意的正实数,x y 恒成立,∴对任意的正实数,x y 恒成立.设,由取等号条件:,消去k ,可以得到:210t t --=,解得:512t +=,因此a 的最小值为512+.题型二 基本不等式的实际应用【例12】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解析】(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250 =-13x 2+40x -250; 当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x ).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -2500<x <80,1 200-x +10 000xx ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x ) ≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【牛刀小试】 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 【答案】80【解析】设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20.当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18, ∵x +25x ≥2x ·25x =10,∴y x =18-(x +25x )≤18-10=8,当且仅当x =25x ,即x =5时,取等号. 五、迁移运用1.【江苏省南通市通州区2018-2019学年第一学期高三年级期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______. 【答案】【解析】设直角三角形的斜边为c ,直角边分别为a ,b , 由题意知, 则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.2.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.3.【江苏省常州市2019届高三上学期期末】已知正数满足,则的最小值为________. 【答案】4【解析】由基本不等式可得,所以,当且仅当,即当y=x2时,等号成立,因此,的最小值为4,故答案为:4.4.【江苏省扬州市2018-2019学年度第一学期期末】已知正实数x,y满足,若恒成立,则实数m的取值范围为_______.【答案】【解析】由于x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,,由基本不等式可得,当且仅当,即当x=2y=6时,等号成立,所以,x+y的最小值为9.因此,m≤9.故答案为:m≤9.5.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测】已知,,且,则的最大值为_________.【答案】【解析】化为,即,解得:,所以,的最大值为。
高考数学利用基本不等式求最值8大题型(解析版)
利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。
题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。
在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。
在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。
利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。
不等式中最值问题全梳理
不等式中最值问题全梳理
不等式中最值问题是一个重要且复杂的话题,涉及多个知识点和技巧。
以下是对不等式中最值问题的全面梳理:
1. 基本不等式:
平方和与平方差的不等式。
例如,对于任意实数a和b,有a^2 + b^2 ≥ 2ab和a^2 - b^2 ≥ 0。
算术平均值与几何平均值的不等式。
对于正数a和b,有a+b≥2√(ab)。
2. 均值不等式:两个正数的均值不等式是a+b≥2√(ab),其中a和b都是正数。
3. 最值定理:设x和y是正数,且xy=k(常数),则x=y时,取得最值。
同样地,如果x+y=k(常数),则x=y时,取得最值。
运用最值定理求最值的三要素是:一正二定三相等。
4. 解题技巧:
确认对称:最值肯定在等号取得,需要看条件和所求。
取等解方程:确认最值需要取等得到的根可以直接写在答案上。
5. 典型例题:
利用均值不等式求最值。
例如,已知x>0,y>0,且x+y=1,求xy的最大值。
利用均值不等式得到xy≤(x+y)/2^2=1/4,当且仅当x=y=1/2时取等号。
利用基本不等式求最值。
例如,已知x<0,求函数y=x+1/x的最小值。
利用基本不等式得到y=x+1/x≤-2,当且仅当x=-1时取等号。
以上是对不等式中最值问题的全面梳理,包括基本不等式、均值不等式、最值定理和解题技巧等知识点,以及一些典型例题的解析。
掌握这些知识点和技巧有助于解决不等式中最值问题。
高中数学函数、数列、不等式、几何求【最值问题】通解法分享!
通解法就是把数列、不等式、解析几何等最值问题通通转化为函数问题,然后根据函数的属性来求最值。
高中数学最值问题
【基础方法介绍】
1、求函数最值常见的方法主要有这7种:
配方法,单调性法,均值不等式法,导数法,判别式法,三角函数有界性,数形结合图象法。
2、求几类重要函数的最值方法;
3、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法 (线性规划,曲函数的最值 )
【各类最值题型通解方法】
【函数求最值常用10法例题解析】
方法1:利用一次函数的单调性
方法2:利用二次函数的性质
方法3:利用二次方程的判别式
方法4:利用一些重要不等式求最值
方法5:利用三角函数的有界性求最值
方法6:利用参数换元求最值
方法7:利用图形对称性求最值
方法8:利用圆锥曲线的切线求最值
方法9:利用复数的性质求最值
方法10:利用数形结合方法求最值
【最值问题练习】。
不等式最值问题的常用解法
不等式最值问题的常用解法1. 引言不等式最值问题是数学中的一个重要概念,它涉及到不等式的性质和最值的求解。
在数学建模、优化问题以及实际生活中的许多情境中,我们经常需要找到不等式中变量的取值范围以及使得不等式达到最大或最小值的解。
本文将介绍不等式最值问题的常用解法,包括代数法、图像法和微积分方法。
2. 代数法代数法是求解不等式最值问题中常用且简便的方法之一。
它通过对不等式进行变形和化简,得到一个较为简单易解的形式,并从中找出取得最值的条件。
2.1 简单例子考虑以下不等式:x2−4x+3>0。
我们可以使用代数法来求解该不等式。
首先,将该不等式化简为(x−1)(x−3)>0。
然后,我们可以画出函数f(x)= (x−1)(x−3)的图像来帮助分析它的取值范围。
从图中可以看出,当x<1或x>3时,函数f(x)的取值大于零。
因此,不等式(x−1)(x−3)>0的解集为x∈(−∞,1)∪(3,+∞)。
2.2 一般步骤代数法可以用于解决更复杂的不等式最值问题。
下面是一般的求解步骤:1.将不等式化简为一个多项式等于零的形式。
2.分析多项式的根(零点)和函数在这些根附近的符号变化情况。
3.根据符号变化情况,确定函数在不同区间上的取值范围。
4.根据题目要求找到使得不等式达到最大或最小值的解。
3. 图像法图像法是另一种常用的求解不等式最值问题的方法。
它通过绘制函数图像来帮助我们直观地理解和分析不等式中变量的取值范围以及函数取得最值的条件。
3.1 简单例子考虑以下不等式:1x>x。
我们可以使用图像法来求解该不等式。
首先,将该不等式转化为1x −x>0。
然后,我们可以绘制函数f(x)=1x−x的图像。
从图中可以看出,当x<−1或x>0时,函数f(x)的取值大于零。
因此,不−x>0的解集为x∈(−∞,−1)∪(0,+∞)。
等式1x3.2 注意事项在使用图像法时,需要注意以下几点:•绘制函数图像时,要考虑定义域和值域的限制。
用基本不等式求最值六种方法
用基本不等式求最值六种方法用基本不等式求最值六种方法一.配项求 $\frac{9}{x-2}$ 的最小值。
解析:$y=\frac{9}{x-2}+2-2\geq 8$。
当 $x-2=2$ 时,即$x=5$ 时等号成立。
二.配系数求 $y=x^4-3x$ 的最大值。
解析:$y=\frac{1}{2}(3x^4-3x)\leq \frac{1}{2}\cdot 2=1$。
当 $x=\sqrt[3]{\frac{1}{3}}$ 时,即 $y=1$ 时等号成立。
三.重复使用不等式求 $a^2+b^2$ 的最小值,已知 $a>b>0$。
解析:$a^2+b^2\geq \frac{1}{2}(a+b)^2=2ab$。
再用$a^2+b^2\geq \frac{1}{2}(a+b)^2$,得 $a^2+b^2\geq 2ab+(a-b)^2$。
当 $a-b=b$ 时,即 $a=2b$ 时等号成立,此时$a^2+b^2=5b^2$。
四.平方升次求 $y=x+4-x^2$ 的最大值,当 $x>0$ 时。
解析:$y^2=x^2+2x(4-x^2)+(4-x^2)^2=8-2x^4+6x^2\leq8+(x^2+(4-x^2)^2)=16$。
当 $x=2$ 时,即 $y=4$ 时等号成立。
五.待定系数法求 $y=2\sin x(\sin x+\cos x)$ 的最大值。
解析:$y=2\sin^2 x+2\sin x\cos x=2\sin x(\sin x+\cos x)\leq 2\sqrt{(\sin^2 x+\cos^2 x)(\sin^2 x+2\cos^2 x)}=2\sqrt{\sin^2x+2\cos^2 x}$。
当 $\sin^2 x=2\cos^2 x$ 时,即 $\tan^2 x=2$,即 $x=\frac{\pi}{8}$ 时取得最大值 $\sqrt{6}$。
六.常值代换已知 $x>0,y>0$,且 $x+2y=3$,求$\frac{1}{x}+\frac{1}{y}$ 的最小值。
高中数学-基本不等式---求最值的常见技巧
高中数学-基本不等式---求最值的常见技巧【理论解析】一个技巧:222a b ab+≥逆用就是222a bab+≤,2a b+≥(0,0)a b>>逆用就是2()2a bab+≤等.两个变形:(1) 2112a ba b+≤≤≤+(,)a b R+∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b=时取等号)(2)222()22a b a bab++≤≤(,)a b R∈(当且仅当a b=时取等号).三个注意“一正、二定、三相等”的忽视.【解题方法技巧举例】1、添、减项(配常数项)例1 求函数221632y xx=++的最小值.222221620,32163(2)6266x y xxxx+>=++=++-+≥=解:当且仅当22163(2)2xx+=+,即22x=时,等号成立. 所以y的最小值是6.2、配系数(乘、除项)例2 已知0,0x y>>,且满足3212x y+=,求lg lgx y+的最大值.分析lg lg lg()x y xy+=, xy是二项“积”的形式,但不知其“和”的形式x y+是否定值,而已知是3x与2y的和为定值12,故应先配系数,即将xy变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6.3、 裂项例3已知1x >-,求函数()()521x x y x ++=+的最小值.分析 在分子的各因式中分别凑出1x +,借助于裂项解决问题.()()141110,14(1)5519x x x y x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦+>=+=+++≥+=解:当且仅当411x x +=+,即1x =时,取等号.所以min 9y =.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值. 分析 分母是x 与(12)x -的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1)x + (这是解本题时真正需要的).于是通过取倒数即可解决问题.解 由102x <<,得10x +>,120x ->.221(12)1312(1)31131211113212x x x x y x x x x x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦当且仅当31211x xxx -=++,即15x =时,取等号. 故y 的最小值是12.5、 平方例5 已知0,0x y >>且22283y x +=求.分析 条件式中的x 与y 都是平方式,而所求式中的x 是一次式,y 是平方式但带根号.初看似乎无从下手,但若把所求式平方,则解题思路豁然开朗,即可利用均值不等式来解决.222222222((62)32(1)32(1)9333()22y x y x y x =+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:当且仅当222(1)3y x =+,即32x =,2y =时, 等号成立.故的最大值是评注 本题也可将x纳入根号内,即将所求式化为.6、 换元(整体思想)例6求函数y =的最大值.分析t =,进行换元,再使分子常数化,然后运用均值不等式来解决.22,0,2,(0)2100;1014212=.23,2t t x t t y t t t y t y t t t t t x =≥=-=≥+==>=≤=+==-则当时,当时,当且仅当,即所以时7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .分析 直接利用均值不等式,只能求xy 的最小值,而无法求x y +的最小值.这时可逆用条件,即由191x y =+,得19()()x y x y x y +=++,然后展开即可解决问题.190,0,1199()()1010169,4,12.16.x y x y y xx y x y x y x yy x x y x yx y >>+=+=++=++≥====+解:由,得当且仅当即时,等号成立故的最小值是 评注 若已知0,0,x y >>1x y += (或其他定值),要求19x y +的最大值,则同样可运用此法. 8、 巧组合 例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .分析 初看,这是一个三元式的最值问题,无法利用a b +≥来解决.换个思路,可考虑将2a b c ++重新组合,变成()()a b a c +++,而()()a b a c ++等于定值4-,于是就可以利用均值不等式了.,,0,2()()2,,1.2 2.a b c a b c a b a c b c b c a a b c >++=+++≥======-++解:由知当且仅当即时,等号成立故的最小值为9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值.分析 本题也是三元式的最值问题.由题意得32x zy +=,则可对2y xz 进行消元,用,x z 表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为【例题解析】 例1 求函数()()yx x x=++49的最值.解: (1)当x >0时,25362133613=⋅+≥++=xx x x y , 当且仅当xx=36即6=x 时取等号.所以当x =6时,y min =25. (2)当x <0时,->->xx0360,, ()()-+-⎛⎝ ⎫⎭⎪≥--⎛⎝ ⎫⎭⎪=x x x x 3623612, 11213)]36()[(13=-≤-+--=∴xx y .当且仅当-=-x x 36,即x =-6时取等号,所以当x =-6时,y max =-=13121.例2已知0,0x y >>,且191x y+=,求x y +的最小值. 解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y x x y =时,上式等号成立,又191x y+=,可得4,12x y ==时,()min 16x y += . 例3 当04x <<时,求(82)y x x =-的最大值.解析:此题为两个式子积的形式,但其和不是定值.注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可.211282(82)[2(82)]()8222x x y x x x x +-=-=-≤=当282x x =-,即2x =时取等号 ,所以当2x =时,(82)y x x =-的最大值为8.例4 已知54x <,求函数14245y x x =-+-的最大值. 解析:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =.例5已知x,y为正实数,且2212yx+=,求的最大值.解析:因条件和结论分别是二次和一次,故采用公式222a bab+≤.12,==下面将x=2212222yx++≤4=当且仅当x=2212yx+=,即2x=,2y=时,等号成立.所以的最大值为4.评注:本题注意到适当添加常数配凑后,两项的平方和为常数,故而进行变形利用基本不等式链解决问题.【基本不等式课堂练习】一、选择题1.已知0,0a b >>,则112ab a b++的最小值是( )A .2 B .22 C .4 D .5 2.当0<x <2π时,函数f (x )=x x x 2sin sin 82cos 12++的最小值为( )A.2B.23C.4D.433.设y=x 2+2x+5+2125x x ++,则此函数的最小值为()A .174B .2C .265D .以上均不对 4,若,下列不等式恒成立的是( )A .B .C .D .5,若且,则下列四个数中最大的是 ( )A. B. C.2ab D.a6. 设x>0,则的最大值为 ( )A.3 B.C.D.-1 7,设的最小值是( ) A. 10 B.C.D.8. 若x, y 是正数,且,则xy 有( )A最大值16 B.最小值 C.最小值16 D.最大值9. a,b 是正数,则三个数的大小顺序是( )A. B.C. D.10.下列函数中最小值为4的是( )A B C D11、已知二次函数f(x)=ax 2-(a +2)x +1(a ∈Z),且函数f(x)在(-2,-1)上恰有一个零点,则不等式f(x)>1的解集为( )A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)12、已知M 是△ABC 内的一点,且AB →·AC →=23,∠BAC =30°,若△MBC ,△MCA 和△MAB 的面积分别为12,x ,y ,则1x +4y 的最小值是( )A .20B .18C .16D .913.设x,y 为正数, 则(x+y)(1x + 4y)的最小值为 ( )A.6 B.9 C.12 D.1514. 已知定义域为R 的偶函数在上是增函数,且,则不等式的解集为( )A .B .C .D .15.若,则的最小值为( )A .8 B .C .2D .417.若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是( ) A. 245 B. 285C.5D.6 18.下列不等式一定成立的是( )A .21lg()lg (0)4xx x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 19若点(,)A x y 在第一象限且在236x y +=上移动,则3322log log x y + ( )A 、最大值为1B 、最小值为1C 、最大值为2D 、没有最大、小值 20、 已知01x <<,求函数411y x x=+-的最小值.21、已知0,0a b >>,328a b +=,求函数的最大值.。
高中基本不等式求最值解题技巧
高中基本不等式求最值解题技巧高中基本不等式求最值解题技巧一、基本不等式的概念和特点高中数学中,不等式是一个重要的概念,它与等式一样,是数学中的一种关系。
而基本不等式是不等式中的一种基础类型,它具有许多特点和求解技巧。
基本不等式一般为形如a/x + b/y ≥ c的形式,其中a、b、c为常数,x、y为变量,且x、y均大于0。
在基本不等式中,我们常常需要求解其最值,即找到使得不等式成立的最大或最小值。
这就需要掌握一些技巧和方法来解决这类问题,从而提高我们的数学解题能力。
二、基本不等式求最值的一般步骤1. 分析问题:我们需要对题目给出的基本不等式进行分析,明确要求的最值是最大值还是最小值。
要注意不等式中的常数和变量的具体取值范围。
2. 辅助变量法:辅助变量法是解决基本不等式求最值问题的常用方法。
通过引入一个新的变量,可以将原不等式转化为关于辅助变量的方程组,从而更容易地确定最值的取值范围。
3. 推广性分析:分析不等式中各项参数的推广性,确定不等式成立的条件,从而辅助我们找到最值的解法。
4. 求导分析:对于涉及函数的基本不等式问题,可以利用导数的性质进行求解。
通过求导分析函数的单调性和极值情况,可以确定不等式的最值区间。
5. 综合利用不等式性质:利用不等式的性质,结合数学推理和逻辑推导,可以更灵活地解决不等式求最值的问题。
三、高中基本不等式求最值的解题技巧与举例分析以基本不等式a/x + b/y ≥ c为例,我们可以通过具体的数学题目来演示基本不等式求最值的解题技巧。
给定不等式2/x + 3/y ≥ 5,求x和y的最小值。
我们可以引入辅助变量法,令t=1/x,s=1/y,那么不等式可以转化为2t + 3s ≥ 5。
通过求解辅助不等式2t + 3s = 5的解集,确定最值的取值范围。
进一步分析可知,不等式成立的条件为t>0,s>0,因此我们可以确定最值的解。
我们可以利用推广性分析的方法,分析a、b、c的取值范围,从而求解最值问题。
基本不等式应用-利用基本不等式求最值的技巧-知识点总结与题型分析
基本不等式应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x =2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --g 不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。
高中数学解题方法系列:用基本不等式求最值的4种策略
高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。
“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。
分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。
解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。
(完整版)一题多解之利用基本不等式求最值
一题多解之利用基本不等式求最值用基本不等式求函数的最大(小)值是高中数学的一个重点,三个条件必须同时具备,才能应用,即“一正,二定,三相等”.在具体的题目中“正数”条件往往易从题设中获得,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.因此,“定值”条件决定着不等式应用的可行性.这是解题成败的关键。
例、已知正数a,b 满足311=+b a ,求b a +的取值范围。
思路点拨:一种思路是根据划归思想,二元转化为一元,即利用311=+b a 将ba +中的b 用a 表示,然后用基本不等式求范围;另一种思路是对311=+b a 变形,获得b a +与ab 的关系,然后利用解不等式消去ab 建立b a +的不等式求解.解析:方法一:由311=+b a 得ab b a 3=+,13-=∴a a b ,由于a>0,b>0,可得31>a ,于是 )31(913113-++=-+=+a a a a a b a 3432)31(91)31(232)31(9131=+-⨯-≥+-+-=a a a a , 当)31(9131-=-a a ,即32=a 时取等号,b a +∴的取值范围是),34[+∞令t ta a a g +-=33)(2,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⨯--≥⨯-=∆+-=0)31(31323034)3(33)(22g t t t t ta a a g解得34≥t , 所以b a +的取值范围是),34[+∞ 运用基本不等式求最值的技巧: 1、含有多个变量的条件最值问题,一种方法是减少变量的个数,将问题转化为只含有一 个变量的函数的最值问题进行解决;另一种方法是采用代换的方法,对代数式变形后, 在运用基本不等式。
2、妙用“1”的代换求代数式的最值:在求解含有两个变量的代数式的最值问题时,通常的解决办法是变量替换或常值“1”的替换,即由已知条件得到某个式子的值为常 数,然后将欲求最值的代数式乘上常数,再对代数式进行变形整理,从而可利用基本 不等式求最值. 针对性练习:1.已知a >0,b >0,131,a b+=则a+2b 的最小值为( ) (A)726+(B)23 (C)723+ (D)14 解析:选A.()133a 2b a 2b a 2b ()16726,a b b a+=++=+++≥+Q ∴a+2b 的最小值为72 6.+ 2.若-4<x <1,则2x 2x 2f (x)2x 2-+=-( ) (A)有最小值1 (B)有最大值1 (C)有最小值-1 (D)有最大值-13.已知0<x <1,则4y lgx lgx=+的最大值为_________. 解析:∵0<x <1,∴lgx <0,-lgx >0. ()4y lgx ()244lgx∴-=-+-≥=,即y ≤-4. 当且仅当41lgx x lgx 100-=-=,即时等号成立,故y max =-4. 4.已知函数2x 2y (x 2).x x 1+=-++> (1)求1y 的取值范围; (2)当x 为何值时,y 取何最大值?5.已知a>0,b>0,a+b=2,则14a b+的最小值是( )(A)72(B)4 (C)92(D)5解析:选C.由已知可得14a b1412a b()2a b2a b2b2a++=⋅+=+++≥52a b922b2a2+⋅=,当且仅当24a b33==,时取等号,即14a b+的最小值是92.6.若a>0,b>0,且a+b=1,则ab+1ab的最小值为( )(A)2 (B)4 (C)174(D)227.已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为( )(A)5 (B)7 (C)8 (D)9解析:选B.由已知得log2(m-2)+log2(2n-2)=3,即log2[(m-2)(2n-2)]=3,因此m2,n1,(m2)(2n2)8.>⎧⎪>⎨⎪--=⎩于是4n1.m2=+-所以444m n m1m232(m2)37.m2m2m2+=++=-++≥-=---g当且仅当4m2,m2-=-即m=4时等号成立,此时m+n取最小值7.。
基本不等式题型归纳
基本不等式题型归纳基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系.其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值.【题型一】利用拼凑法构造不等关系【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .练习:1.若实数满足,且,则的最小值为 .2.若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______3.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________,x y 0x y >>22log log 1x y +=22x y x y+-4.已知正数a ,b 满足195ab a b+=-,则ab 的最小值为 【题型二】含条件的最值求法【典例4】已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为练习1.已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 .2.已知正数满足,则的最小值为 .3.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .4.己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b =________.6.已知正实数,a b 满足()()12122a b b b a a+=++,则ab 的最大值为 .,x y 22x y +=8x yxy+60ax by +-=2(3)50x b y +-+=【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .4.若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。
高考数学不等式方法技巧及题型全归纳(100页)
g(x) 0
f
(x)
0
(2) f (x) 0 f x g x 0
g(x)
f (x) g(x)
0
f (x) g(x) g(x) 0
0
2.2 含有绝对值的不等式
(1) f x g x f (x) g(x) 或 f (x) g(x) ;
(2)| f (x) | g(x) g(x) f (x) g(x) ;
到的 与原式是恒等的,则称 1, 2, ⋅⋅⋅ , 是完全对称的.
如
+
+
,
b
a
c
c
b
a
a
c
b
等.
设 ( 1, 2, ⋅⋅⋅ , )是一个 元函数. 若作置换 1 → 2, 2 → 3, ⋅⋅⋅ , −1 → , → 1,得到
的 与原式是恒等的,则称 ( 1, 2, ⋅⋅⋅ , )是轮换对称的.
如3
+
3
+
3 , a b c 等. ab bc ca
显然,完全对称的一定是轮换对称的.
2
2、重要不等式
2.1 无理式、分式
(1)
f
(x)
g(x)
g(x) 0
f
(x)
0
g(x) 0
或
f
(x)
g 2(x)
g(x) 0
f
(x)
g(x)
f
(x)
0
f (x) g 2 (x)
f (x)
g(x) 0 g(x) 0 或
2.1 无理式、分式............................................................................................................... 3 2.2 含有绝对值的不等式................................................................................................... 3 2.3 一元二次不等式........................................................................................................... 3 2.4 基本不等式................................................................................................................... 4 2.5 柯西不等式................................................................................................................... 4
不等式专题:基本不等式求最值的6种常用方法(解析版)
基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学不等式中最值问题全梳理
模块一、题型梳理
题型一 基本不等式与函数相结合的最值问题
例题1 若方程ln x m =有两个不等的实根1x 和2x ,则22
12x x +的取值范围是( )
A .()1,+∞
B
.
)
+∞
C .
()2,+∞ D .()0,1
【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为
ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞,
12,Inx m Inx m =-=
故可得()120In x x =,解得211x x =
,则22
12x x +
=212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 22
91
sin cos αα
+的最小值为( ) A .2
B .16
C .8
D .12
【分析】利用22sin cos 1αα+=将22
91sin cos αα
+变为积为定值的形式后,根据基本不等式可求得最小值.
【解析】∵22sin cos 1αα+=,∵
()22
2222
9191sin cos sin cos sin cos αααααα⎛⎫
+=++ ⎪⎝⎭
2222
sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2
1cos 4α=时“=”成立,故2291
sin cos αα
+的最小值为16.
【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最值,属于基础题.
例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y
n -4=0(m >0,n >0)上,则
m +n 的最小值为________.
【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∵1m +1
n =4,∵m >0,n >0,∵m +n =14(m +n )⎝⎛⎭⎫1m +1n =14⎝⎛⎭⎫2+n m +m n ≥14⎝
⎛⎭
⎪⎫
2+2
n m ·m n =1,当且仅当m =n =12时等号成立,∵m +n 的最小值为1.
题型二 基本不等式与线性规划相结合的最值问题
例题4 已知,x y 满足约束条件230
23400x y x y y -+≥⎧⎪
-+≤⎨⎪≥⎩
,若目标函数2z mx ny =+-的最大值为1(其中
0,0m n >>),则
11
2m n
+的最小值为( ) A .3
B .1
C .2
D .
32
【分析】画出可行域,根据目标函数z 最大值求,m n 关系式23m n +=,再利用不等式求得112m n
+最小值.
【解析】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.
()11111151519322323232322n m m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32
.故选:D
【小结】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.
题型三 基本不等式与数列相结合的最值问题
例题5 已知递增等差数列{}n a 中,122a a =-,则3a 的( ) A .最大值为4- B .最小值为4
C .最小值为4-
D .最大值为4或4-
【分析】根据等差数列的通项公式可用1a 表示出d .由数列单调递增可得10a <.用1a 表示出3a ,结合基本不等式即可求得最值.
【解析】因为122a a =-,由等差数列通项公式,设公差为d ,可得()112a a d +=-,变形可得
11
2
d a a =--
因为数列{}n a 为递增数列,所以11
2
0d a a =--
>,即10a <,而由等差数列通项公式可知312a a d =+ ()11111242a a a a a ⎛⎫
⎛⎫=+--=-+- ⎪ ⎪⎝⎭⎝⎭,由10a ->,140a >-结合基本不等式可得 ()
31144a a a ⎛⎫
=-+-≥= ⎪⎝⎭
,当且仅当12a =-时取得等号,所以3a 的最小值为4。
【小结】本题考查了等差数列通项公式与单调性的应用,基本不等式在求最值中的用法,属于中档题.
例题6 已知a ,b 均为正数,且2是2a ,b 的等差中项,则1
ab 的最小值为________. 【解析】由于2是2a ,b 的等差中项,故2a +b =4,又a ,b 均为正数,故2ab ≤⎝⎛⎭
⎫2a +b 22=4, 当且仅当2a =b =2,即a =1,b =2时取等号,所以1
ab 的最小值为1
2.
题型四 基本不等式与向量相结合的最值问题
例题7 如图所示,已知点G 是ABC 的重心,过点G 作直线分别交AB ,AC 两边于M ,N 两点,
且AM
xAB =,AN yAC =,则3x y +的最小值为______.
【分析】根据重心的性质有133
1
AG AB AC =
+,再表达成,AM AN 的关系式,再根据M ,G ,N 三点共线可得系数和为1,再利用基本不等式求解即可.
【解析】根据条件:1AC AN y =
,1AB AM x =,又133
1
AG AB AC =+,1133AG AM A x y N ∴=+. 又M
,G ,N 三点共线,11331y x
∴
+=.0x ,0y >,
()114433333
333x x y x y x y y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭.
3x y ∴+的最小值为
3,当且仅当3x y y x =时“=”成立.故答案为:
3
. 【小结】本题主要考查了基底向量与向量的共线定理性质运用,同时也考查了基本不等式应用,属于中等题型.。