(四年级奥数讲义)第9讲_鸡兔同笼问题(带答案)
小学奥数--鸡兔同笼(含答案解析)
![小学奥数--鸡兔同笼(含答案解析)](https://img.taocdn.com/s3/m/9436bcae50e79b89680203d8ce2f0066f5336426.png)
小学奥数--鸡兔同笼(含答案解析)1.将文章中的选择题和解答题分开,方便阅读。
2.删除了第一题和第五题中的选项,因为没有必要。
3.改写了第一题和第二题的问题,使其更加清晰。
4.修改了第三题和第七题的答案,因为原来的答案是错误的。
5.修改了第六题的选项,因为原来的选项是重复的。
6.删除了第十一题和第十四题,因为它们的问题不清晰,难以理解。
7.修改了部分题目的语言,使其更加易懂。
选择题:1.一只笼子里有鸡和兔子,从上面数有29个头,从下面数有92只脚,那么笼子中有多少只鸡?答案:17解析:设鸡的数量为x,兔子的数量为y,则有x+y=29,2x+4y=92.解得x=17,y=12.因此,笼子中有17只鸡。
2.有鸡和兔子20只,共有46只脚,其中鸡有多少只?答案:15解析:设鸡的数量为x,兔子的数量为y,则有x+y=20,2x+4y=46.解得x=15,y=5.因此,鸡有15只。
3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿。
蛐蛐和蜘蛛各有多少只?答案:4,6解析:设蛐蛐的数量为x,蜘蛛的数量为y,则有x+y=10,6x+8y=68.解得x=4,y=6.因此,蛐蛐有4只,蜘蛛有6只。
XXX四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有多少人?答案:8解析:设男生的数量为x,女生的数量为y,则有x+y=12,5x+4y=56.解得x=8,y=4.因此,男生有8人。
5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了几个小孩?答案:5解析:设小孩的数量为x,大人的数量为y,则有5x+10y=45.解得x=5,y=2.因此,这两个大人带了5个小孩。
6.一次数学竞赛XXX得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做扣2分,XXX答对多少题?答案:18解析:设小华答对的题数为x,则有5x-2(20-x)=86.解得x=18.因此,XXX答对了18题。
四年级下第九单元鸡兔同笼
![四年级下第九单元鸡兔同笼](https://img.taocdn.com/s3/m/877a51fdb1717fd5360cba1aa8114431b90d8eb0.png)
四年级下第九单元鸡兔同笼在四年级下册的数学学习中,第九单元的鸡兔同笼问题可是一个相当有趣又具有挑战性的部分。
鸡兔同笼,顾名思义,就是在一个笼子里关着鸡和兔子,然后让我们通过一些已知条件来算出鸡和兔子分别有多少只。
这个问题看似简单,实际上却需要我们运用巧妙的思维和方法来解决。
咱们先来说说最常见的解题方法——假设法。
假设笼子里全是鸡,那么腿的总数就应该是鸡的数量乘以 2。
可实际上的腿数要比这个假设的多,这多出来的腿数就是因为把兔子当成鸡来算了。
每只兔子有 4 条腿,每只鸡有 2 条腿,所以多出来的腿数除以 2 就是兔子的数量。
用总数减去兔子的数量,剩下的就是鸡的数量啦。
比如说,笼子里有 35 个头,94 条腿。
咱们先假设全是鸡,那腿的总数就是 35×2 = 70 条。
可实际有 94 条腿,多出来的 94 70 = 24 条腿就是兔子多出来的。
每只兔子比鸡多 2 条腿,所以兔子的数量就是24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
除了假设法,还有一种列表法也能解决鸡兔同笼问题。
我们可以从鸡和兔子的数量分别为 0 开始,逐步增加鸡或者兔子的数量,然后计算腿的总数,直到找到符合条件的答案。
这种方法虽然比较繁琐,但对于刚开始接触这个问题的同学来说,能帮助更好地理解其中的数量关系。
接下来,咱们通过一个实际的例子来感受一下。
有一个笼子里关着鸡和兔子共 20 只,一共有 56 条腿。
那我们就可以用列表法来试试。
|鸡的数量|兔子的数量|腿的总数||||||0|20|80(不符合)||1|19|78(不符合)||2|18|76(不符合)||||||12|8|56(符合)|经过这样一步步的尝试,我们就找到了答案,是不是很有趣呢?其实,鸡兔同笼问题不仅仅是一个数学题目,它还能培养我们的逻辑思维能力和解决问题的能力。
在生活中,也有很多类似的情况可以用这种思路来解决。
比如说,在一个班级里,有男生和女生一起参加活动,已知男生和女生的总人数以及他们的得分情况,要算出男生和女生分别有多少人;或者在商店里,不同价格的两种商品一共卖出了多少件,收入了多少钱,来算这两种商品分别卖出了多少件等等。
人教版数学四年级下册同步复习与测试讲义-第九章_数学广角——鸡兔同笼带解析答案
![人教版数学四年级下册同步复习与测试讲义-第九章_数学广角——鸡兔同笼带解析答案](https://img.taocdn.com/s3/m/1b7a45c859eef8c75fbfb3eb.png)
2019-2020学年人教版数学四年级下册同步复习与测试讲义-第九章数学广角——鸡兔同笼一、解答题1. 鸡兔同笼,鸡兔共35个头,94只脚,问鸡兔各有多少只?2. 班主任王老师,在期末用50元买了2.5元和1.5元的水笔共30支,准备作为优秀作业的奖品。
那么2.5元和1.5元的水彩笔各多少支?二、选择题笼子里有鸡和兔共15只,腿有44条,兔子有()只。
A.7B.8C.6某宾馆客房有3人间和2人间共15间,总共可以住39人,则该宾馆有()。
A.3人间6间,2人间9间B.3人间8间,2人间7间C.3人间9间,2人间6间六年级270人去公园游玩,一共租了10辆车.每辆大客车坐30人、小客车坐20人,所有的车刚好坐满,租用大客车()辆.A.3B.4C.6D.7“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有十八头,下有五十六足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡10只兔12只B.鸡10只兔8只C.鸡14只兔21只D.以上都不正确一场篮球比赛,一名队员总共投中了11个球,得了28分.他两分球投中了()个.A.4 B.5 C.6 D.7钢笔每支9元,圆珠笔每支2元,一共买了6支,花了40元,钢笔买了( )支.A.4B.3C.2100元钱买了100只鸟,大鸟3元钱一只,小鸟1元钱3只,大鸟买了()只。
A.30B.25C.75D.10在一个停车场上,停了小轿车和摩托车一共16辆,这些车一共52个轮子,小轿车有()辆。
A.9B.10C.11三、填空题把45千克油装到两种不同规格的油桶里(见下图),大、小油桶正好装满12桶,期中大油桶装了(________)桶,小油桶装了(________)桶。
笑笑买来3元一瓶的矿泉水和5元一瓶的矿泉水共12瓶,共花48元。
3元的矿泉水买了(________)瓶。
停车场里有摩托车和小轿车共20辆,共70个轮子.摩托车有________辆,小轿车有________辆.电影院在一小时内售出甲、乙两种票共30张,甲种票30元一张,乙种票25元一张,共收入840元.其中售出甲种票________张,乙种票________张。
四年级数学下册教案9:数学广角——鸡兔同笼问题答案解析
![四年级数学下册教案9:数学广角——鸡兔同笼问题答案解析](https://img.taocdn.com/s3/m/563dcff1c67da26925c52cc58bd63186bdeb9218.png)
尊敬的老师和家长们,大家好!今天我为大家介绍的是四年级数学下册教案-9:数学广角——鸡兔同笼问题答案解析。
我们先来了解一下什么是鸡兔同笼问题。
如果我们有一个笼子,里面关着若干只鸡和若干只兔,我们不知道具体的数量,但是知道了它们的脚的总数,我们该如何算出鸡和兔的数量呢?这就是鸡兔同笼问题,也是一道经典的数学问题。
它可以帮助孩子们提高综合计算能力和逻辑推理能力,对于培养孩子们的数学思维和创新能力也非常有帮助。
回到我们的题目。
假设笼子里面有x只鸡和y只兔,它们的脚的总数是z只。
我们可以列出下面的方程式:2x + 4y = z我们就可以通过解方程的方法来算出x和y了。
我们先将方程转化一下,得到:y = (z - 2x) / 4由于y是整数,z - 2x必须是4的倍数,否则就不存在整数解。
我们可以尝试逐个枚举z - 2x,从而算出y的取值。
再根据y的取值,算出x的取值。
具体的过程可以参考下面的表格:z - 2x y x4 1 (z - 4) / 28 2 (z - 8) / 212 3 (z - 12) / 216 4 (z - 16) / 2... ... ...注意:在计算x和y的取值时,需要将解除左右两边的系数,即化为最简式。
以上是解题的步骤,我们来看一下具体的例题。
例题:一个鸡兔同笼,有三十只脚,有两种动物,且兔子的数目是鸡的2倍,请问这个笼子里有多少只鸡和兔?解:根据题意,我们可以列出方程:2x + 4y = 30y = 2x将第二个式子代入第一个式子,得到:2x + 4(2x) = 30化简得:10x = 30解得:x = 3代入y = 2x,得:y = 6这个笼子里有3只鸡和6只兔。
我还想提醒大家一点:在解题的过程中,要用图像化的方式来帮助孩子们理解和解决问题。
可以画出一张鸡和兔的图片,用小圆圈代表鸡的头,用小点代表鸡的脚,用小三角形代表兔子的头,用小虚线代表兔子的耳朵和尾巴,用小星号代表兔子的脚,让孩子们自己来摆放和计数,这样可以更加直观地让孩子们理解和掌握鸡兔同笼问题的解题方法。
(四年级奥数讲义)第9讲_鸡兔同笼问题(带答案)
![(四年级奥数讲义)第9讲_鸡兔同笼问题(带答案)](https://img.taocdn.com/s3/m/d35b4cf104a1b0717fd5ddc3.png)
第9讲鸡兔同笼问题◆认识鸡兔同笼问题。
◆用假设法解鸡兔同笼问题。
我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。
用假设法解题,首先要根据题意去正确地判断应该怎么假设,一般可假设要求的两个或几个未知量相等,或者假设要求的两个未知量是同一种量;其次要能根据所做的假设,注意到数量关系发生了什么变化,怎样从所给的条件与变化了的数量关系的比较重做出适当的调整,从而找到正确的答案。
【例题1】鸡兔同笼,共100个头,320只脚,鸡兔各多少只?答案:60,40思路点拨:【拓展1】(2009年北京“高思”数学思维能力检测试题)在马达加斯的大草原上,环尾狐猴和斑马进行投篮比赛,每只环尾狐投进一球记2分,每只斑马投进一只球记3分,共投进了100个球,共得了220分,那么斑马一共投进了多少个球? 答案:20思路点拨:【例题2】现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个? 答案:20,30思路点拨:【拓展2】现有大小塑料袋60个,每个大袋可装苹果5千克,每个小袋可装苹果3千克,小袋比大袋少装苹果60千克。
问大小塑料袋各有多少个? 答案:30,30思路点拨:【例题3】(“希望杯”全国数学大赛试题)小猴和小熊轮流共同完成一批玩具的组装,小猴每天可以完成20件,小熊每天只能完成12件。
它们用8天的时间共组装了112件玩具。
小猴工作了多少天? 答案:2思路点拨:【拓展3】松鼠妈妈采松球,晴天每天可以采20个,雨天每天只能采12个,它一连几天才了112个松球,平均每天14个。
小学奥数应用题专题——鸡兔同笼(含答案解析)
![小学奥数应用题专题——鸡兔同笼(含答案解析)](https://img.taocdn.com/s3/m/dc5fa257ec3a87c24128c420.png)
32.有1元和5元的人民币共17张,合计49元,两种面值的人民币各有多少张?
33.小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.小同共存了多少钱?
34.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
12.鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?
13.在一个停车场上,现有车辆 辆,其中汽车有 个轮子,摩托车有 个轮子,这些车共有 个轮子,那么三轮摩托车有多少辆?
14.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?
3.鸡兔共有 只,关在同一个笼子中。每只鸡有两条腿,每只兔子有四条腿,笼中共有 条腿。试计算,笼中有鸡多少只?兔子多少只?
4.动物园里有一群鸵鸟和大象,它们共有 只眼睛和 只脚,问:鸵鸟和大象各有多少?
5.鸡兔同笼,上有 头,下有 足,求笼中鸡兔各几只?
6.动物园里养了一些梅花鹿和鸵鸟,共有脚 只,鸵鸟比梅花鹿多 只,梅花鹿和鸵鸟各有多少只?
21.乐乐百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?
22.有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?
18. 个和尚 个馍,大和尚 人分 个馍,小和尚 人分 个馍.问:大、小和尚各有多少人?
四年级奥数.应用题.鸡兔同笼
![四年级奥数.应用题.鸡兔同笼](https://img.taocdn.com/s3/m/d18fec6f011ca300a6c390c0.png)
假设法一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法一两个量的“鸡兔同笼”问题——变例【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【例 2】张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中___________发。
小学四年级奥数鸡兔同笼应用题专题讲义
![小学四年级奥数鸡兔同笼应用题专题讲义](https://img.taocdn.com/s3/m/5f837537b6360b4c2e3f5727a5e9856a561226cf.png)
鸡兔同笼专题“鸡兔同笼”问题是我国古代名题之一。
它记载于唐代的一部算书《孙子算经》。
书中的题目是这样的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”,许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
解鸡兔同笼的基本步骤1.抬腿法(金鸡独立)2.假设法3.鸡兔关系例1:鸡兔同笼,头共46,足共128,鸡兔各几只?解析:我们先采用“抬腿法”,假设这些鸡和兔都是训练有素的,主人一声口哨,所有的动物都抬起两条腿。
现在我们想想一下场面:所有的鸡都坐在地上,所有的兔子都抬起了两条腿站立着。
现在一共抬起了46×2=92条腿,地上剩余128-92=36条腿,地上的腿都是兔子的,每只兔子两条腿站立着,所有一共有兔子36÷2=18只,所以鸡有46-18=28只。
练一练:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?(10,6)练一练:鸡兔共有45只,关在同一个笼子中,笼中共有100条腿。
试计算,笼中有鸡多少只?兔子多少只?(40,5)例2:动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问:鸵鸟和大象各有多少?解析:首先,两种动物都是只有两只眼睛,所以两种动物一共有36÷2=18只。
采用“假设法”,假设全是鸵鸟,那么共有18×2=36只脚,那么还有52-36=16只脚没有计算,每只大象有两只脚没有计算,所以一共有16÷2=8只大象,鸵鸟共有18-8=10只。
练一练:100个和尚160个馍,大和尚1人分3个馍,小和尚1人分1个馍.问:大、小和尚各有多少人?(70,30)例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?解析:可以把问题转化为“鸡兔同笼”问题,想象为普通文化用品有11条腿,彩色文化用品有19条腿,从而转化为“一共16个头,280条腿的鸡兔同笼问题”。
人教版数学四年级下册:鸡兔同笼问题 讲解及习题(含答案)
![人教版数学四年级下册:鸡兔同笼问题 讲解及习题(含答案)](https://img.taocdn.com/s3/m/3f6550438f9951e79b89680203d8ce2f0066651a.png)
人教版数学四年级下册:鸡兔同笼问题讲解及习题(含答案)鸡兔同笼问题是一类古老的中国算题,它涉及到鸡和兔,许多小学算术应用题都可以转化为这种问题来解决。
例如,有一个XXX家,她养了鸡和兔,它们的头一共有16个,脚有44只。
我们可以假设所有的头都是鸡,但实际上有12只脚是兔子的。
因此,我们可以用兔去换鸡,每换一只兔,头数不变,但脚数增加2只。
通过计算,我们得知XXX 家有6只兔和10只鸡。
同样的,我们也可以假设所有的头都是兔子,但实际上有20只脚是鸡的。
这时,我们可以用鸡去换兔,每换一只鸡,头数不变,但脚数减少2只。
通过计算,我们得知XXX家有6只兔和10只鸡。
在解决鸡兔同笼问题时,我们通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
另一个例子是,有100个和尚和140个馍,大和尚每人分3个馍,小和尚每人分1个馍。
我们可以将大和尚看作鸡,小和尚看作兔,馍看作脚,这样就可以用鸡兔同笼问题来解决。
假设100个人都是大和尚,这时需要300个馍,比实际情况多了160个馍。
我们可以用小和尚去换大和尚,每换一个,总人数不变,但馍数减少2个。
通过计算,我们得知小和尚有80人,大和尚有20人。
最后一个例子是,彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
我们可以将彩色文化用品看作鸡,普通文化用品看作兔,这样就可以用鸡兔同笼问题来解决。
假设有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
通过计算,我们得知彩色文化用品买了8套,普通文化用品买了8套。
买彩色文化用品16套,需要支付19元/套,因此总共需要支付19×16=304元。
但实际支付的金额为280元,因此多支付了304-280=24元。
现在可以用普通文化用品去换彩色文化用品,每换一套可以少支付19-11=8元。
四年级奥数鸡兔同笼问题
![四年级奥数鸡兔同笼问题](https://img.taocdn.com/s3/m/18beb9ab541810a6f524ccbff121dd36a32dc4a3.png)
鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。
这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。
一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。
如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。
四年级数学奥数鸡兔同笼含答案
![四年级数学奥数鸡兔同笼含答案](https://img.taocdn.com/s3/m/e0b6567abe23482fb4da4c8b.png)
鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。
求大船和小船的只数。
7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。
大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。
其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。
求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
三四年级奥数 鸡兔同笼问题 简单版讲义
![三四年级奥数 鸡兔同笼问题 简单版讲义](https://img.taocdn.com/s3/m/9571afd0fd0a79563d1e7218.png)
一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个头;从下面数,有只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由只变成了只;如果笼子里有一只兔子,则脚的总数就比头的总数多.因此,脚的总只数与总头数的差,就是兔子的只数,即(只).显然,鸡的只数就是(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:(1) 如果假设全是兔,那么则有:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数(2) 如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,3594944714735473512-=351223-=知识结构基本的鸡兔同笼A行程,方程等专题中也都会接触到假设法【例 1】 动物园里有一群鸵鸟和大象,它们共有只眼睛和只脚,问:鸵鸟和大象各有多少?【巩固】 鸡和兔共56只眼睛和92只脚,问:鸡和兔各有几只?【例 2】 动物园里养了一些梅花鹿和鸵鸟,共有脚只,鸵鸟比梅花鹿多只,梅花鹿和鸵鸟各有多少只?【巩固】 一个养殖园内,鸡比兔多36只,共有脚792只,鸡兔各几只?【例 3】 鸡兔同笼,鸡、兔共有只,兔的脚数比鸡的脚数多只,问鸡、兔各多少只?36522082010756例题精讲【巩固】 鸡、兔共100只,鸡脚比兔脚多20只.问:鸡、兔各多少只?【例 4】 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只 ?【巩固】 鸡、兔共有27只,鸡的脚比兔的脚少18只。
四年级奥数培优《鸡兔同笼问题》讲义及解析
![四年级奥数培优《鸡兔同笼问题》讲义及解析](https://img.taocdn.com/s3/m/e6ad7bd5b0717fd5360cdccd.png)
四年级奥数培优《鸡兔同笼问题》讲义及解析鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
四年级奥数-鸡兔同笼经典题讲解
![四年级奥数-鸡兔同笼经典题讲解](https://img.taocdn.com/s3/m/a61d0b4519e8b8f67d1cb94f.png)
例1:笼子有若干鸡和兔,从上面数,有20个头;从下面数,有54只脚。
问鸡和兔各有多少?分析:鸡兔同笼问题,核心的解法是假设法。
随着难度的加大,会结合转化思想,分组处理等。
本题是最基础的鸡兔同笼问题,我们假设20个头全是鸡,则共有脚20×2=40只。
而实际上有54只脚,两者的差是54-40=14只,因为20只不全是鸡,还有兔子,一只兔子可以补回4-2=2只脚的差,共要14÷2=7只兔子才能补回14只脚的差。
于是鸡有20-7=13只。
例2:实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分,王刚做错了几题?分析:我们假设王刚全做对,则他应该得:12×9=108分,实际只得了84分,有108-84=24分的差,这24分的差,是因为王刚有些题做错了,做错了一道补回3+9=12分,所以做错了:24÷12=2道。
例3:鸡和兔共100只,鸡的脚数比兔子的脚数多80只,问鸡和兔子各有多少只?分析:这是一道稍有难度的鸡兔同笼问题。
鸡兔同笼问题,一般来说会给出动物的头数和、动物的脚数和,但本题在给出动物的头数和时,却只提供了动物的脚数差,稍有不同。
思路还是用假设法,假设100只全是鸡,则鸡的脚数是100×2=200只,兔子的脚数为0,鸡和兔的脚数差是200只,但实际上鸡的脚数别只比兔多80只,这200-80=120只脚的差是把兔子假设成鸡导致的,一只鸡换回一只兔子,可以补回4+2=6只脚的差,要120÷6=20只兔子才能补回,所以鸡有100-20=80只。
例4:鸡兔同笼,鸡比兔多10只,但鸡的脚数比兔子的脚数却少60只,问鸡和兔子各有多少只?分析:这是一道知道头数差、脚数差,求鸡兔数量的问题。
我们假设兔子有2只脚,则鸡比兔多10×2=20只脚,但实际鸡脚却比兔子脚数少60只,鸡脚和兔脚的差是20-(-60)=20+60=80只脚,是因为兔子的脚只算了2只,每只兔子少算了4-2=2只脚,所以有:80÷2=40只兔子,有40+10=50只鸡。
人教版数学四年级下册同步复习与测试讲义-第九章_数学广角——鸡兔同笼(有答案)
![人教版数学四年级下册同步复习与测试讲义-第九章_数学广角——鸡兔同笼(有答案)](https://img.taocdn.com/s3/m/a0017b74e53a580217fcfe17.png)
人教版数学四年级下册同步复习与测试讲义-第九章数学广角——鸡兔同笼一、解答题1. 鸡兔同笼,鸡兔共35个头,94只脚,问鸡兔各有多少只?2. 班主任王老师,在期末用50元买了2.5元和1.5元的水笔共30支,准备作为优秀作业的奖品。
那么2.5元和1.5元的水彩笔各多少支?二、选择题笼子里有鸡和兔共15只,腿有44条,兔子有()只。
A.7B.8C.6某宾馆客房有3人间和2人间共15间,总共可以住39人,则该宾馆有()。
A.3人间6间,2人间9间B.3人间8间,2人间7间C.3人间9间,2人间6间六年级270人去公园游玩,一共租了10辆车.每辆大客车坐30人、小客车坐20人,所有的车刚好坐满,租用大客车()辆.A.3B.4C.6D.7“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有十八头,下有五十六足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡10只兔12只B.鸡10只兔8只C.鸡14只兔21只D.以上都不正确一场篮球比赛,一名队员总共投中了11个球,得了28分.他两分球投中了()个.A.4 B.5 C.6 D.7钢笔每支9元,圆珠笔每支2元,一共买了6支,花了40元,钢笔买了( )支.A.4B.3C.2100元钱买了100只鸟,大鸟3元钱一只,小鸟1元钱3只,大鸟买了()只。
A.30B.25C.75D.10在一个停车场上,停了小轿车和摩托车一共16辆,这些车一共52个轮子,小轿车有()辆。
A.9B.10C.11三、填空题把45千克油装到两种不同规格的油桶里(见下图),大、小油桶正好装满12桶,期中大油桶装了(________)桶,小油桶装了(________)桶。
笑笑买来3元一瓶的矿泉水和5元一瓶的矿泉水共12瓶,共花48元。
3元的矿泉水买了(________)瓶。
停车场里有摩托车和小轿车共20辆,共70个轮子.摩托车有________辆,小轿车有________辆.电影院在一小时内售出甲、乙两种票共30张,甲种票30元一张,乙种票25元一张,共收入840元.其中售出甲种票________张,乙种票________张。
(完整版)四年级奥数第九讲鸡兔同笼
![(完整版)四年级奥数第九讲鸡兔同笼](https://img.taocdn.com/s3/m/b48019a3f111f18583d05ac8.png)
第九讲鸡兔同笼解答鸡兔同笼问题的方法有很多种,常用的就是假设法,假设题中都是鸡,则兔的只数=(每只鸡的脚数×鸡兔总只数)÷(每只兔的只数-每只鸡的脚数),鸡的只数=鸡兔总数-兔数;如果假设题中都是兔,鸡的只数=(每只兔的脚数×鸡兔总数)÷(每只兔的脚数-每只鸡的脚数),兔的只数=鸡兔总只数-鸡数。
鸡兔同笼问题中还有一类比较特殊的问题,那就是运送货物的破损赔偿和考试答题答错扣分类的问题。
解答考试答题答错扣分类的问题,关键是计算出答对与答错的分数之间的数量差,如答对1道题得5分,答错1题扣3分,这样答对1题与答错1道题的差距就是5+3=8分。
例题1:鸡兔同笼,数头有35个,数脚有62只。
鸡兔各有多少只?举一反三:1、鸡兔同笼,数头有88个头,数脚有244只,鸡和兔各有多少只?2、龟鹤同池,数头有100个,数脚有316只。
龟鹤各有多少只?例题2、杨老师带了51名同学去公园划船,共租了11条船,每条大船能坐6人,每条小船能坐4人,他们要租几条大船、几条小船就能刚好坐满?(分析:本题同样属于鸡兔同笼类问题,用假设法找到假设人数与实际人数的差,再除以每条大船与小船的人数差。
计算实际人数时,别忘了老师。
)举一反三1、汪老师带了45名同学去春游,它们只租了10条船,每条大船坐5人,每条小船坐3人,他们各租了几条大船和几条小船?2、木料加工厂共卖桌椅25套,得现金650元。
每张椅子售价20元,每张桌子售价35元,卖了桌子和椅子各多少张?3、小丽有面值是2元,5元的人民币共27张,合计99元。
面值是2元,5元的人民币各有多少张?例题3、运送1000个玻璃瓶,规定安全运到一个可得运费3角。
但打碎一个,不仅不给运费还要赔5角,如果运完后共得运费260元,那么运送过程中打碎了多少个玻璃瓶?(分析:假设1000个玻璃瓶都没有打碎,共可得运费1000×3(角)=300元,而实际得到260元,少得到300-260=40元=400角,运输工人在运送过程中,每打碎一个玻璃瓶不但得不到3角的运费,还要赔偿5角,所以共损失3+5=8角。
小学四年级下册数学讲义第九章 数学广角-鸡兔同笼 人教新课标版(含解析)
![小学四年级下册数学讲义第九章 数学广角-鸡兔同笼 人教新课标版(含解析)](https://img.taocdn.com/s3/m/e61bc4a9ed630b1c58eeb570.png)
人教版小学四年级数学下册同步复习与测试讲义第九章数学广角-鸡兔同笼【知识点归纳总结】鸡兔同笼方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数公式3:总脚数÷2-总头数=兔的只数;总只数-兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2;兔的只数=鸡兔总只数-鸡的只数公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数-兔总只数公式6:(头数x4-实际脚数)÷2=鸡公式7:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数.【经典例题】例1:鸡兔同笼,鸡兔共35个头,94只脚,问鸡兔各有多少只?分析:假设全部是兔子,有35×4=140只脚,已知比假设少了:140-94=46只,一只鸡比一只兔子少(4-2)只脚,所以鸡有:46÷(4-2)=23只;兔子有:35-23=12只.解:鸡:(35×4-94)÷(4-2),=46÷2,=23(只);兔子:35-23=12(只);答:鸡有23只,兔子有12只.点评:此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.例2:班主任王老师,在期末用50元买了2.5元和1.5元的水笔共30支,准备作为优秀作业的奖品.那么2.5元和1.5元的水彩笔各多少支?分析:假设30支全是2.5元的水笔,则用30×2.5=75元,这样就多75-50=25元;用25÷(2.5-1.5)=25支得出1.5元的水笔支数,进而得出2.5元的水笔数量.解:1.5元的水笔数量:25÷(2.5-1.5)=25÷1=25(支),30-25=5(支),答:2.5元的水彩笔5支,1.5元的水彩笔25支.点评:此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.【同步测试】单元同步测试题一.选择题(共8小题)1.笼子里有鸡和兔共15只,腿有44条,兔子有()只.A.7B.8C.62.某宾馆客房有3人间和2人间共15间,总共可以住39人,则该宾馆有()A.3人间6间,2人间9间B.3人间8间,2人间7间C.3人间9间,2人间6间3.六年级270人去公园游玩,一共租了10辆车.每辆大客车坐30人、小客车坐20人,所有的车刚好坐满,租用大客车()辆.A.3B.4C.6D.74.“鸡兔同笼”问题是我国古代的数学名题之一,《孙子算经》中记载的题目是这样的:“今有鸡兔同笼,上有十八头,下有五十六足,问鸡兔各几何?”,同学们,你得出的这个古代名题的结果是()A.鸡10只兔12只B.鸡10只兔8只C.鸡14只兔21只D.以上都不正确5.一场篮球比赛,一名队员总共投中了11个球,得了28分.他两分球投中了()个.A.4B.5C.6D.76.钢笔每支9元,圆珠笔每支2元,一共买了6支,花了40元,钢笔买了()支.A.4B.3C.27.100元钱买了100只鸟,大鸟3元钱一只,小鸟1元钱3只.大鸟买了()只.A.30B.25C.75D.108.在一个停车场上,停了小轿车和摩托车一共16辆,这些车一共52个轮子.小轿车有()辆.A.9B.10C.11二.填空题(共8小题)9.把45千克油装到两种不同规格的油桶里(见图),大、小油桶正好装满12桶,期中大油桶装了桶,小油桶装了桶.10.笑笑买来3元一瓶的矿泉水和5元一瓶的矿泉水共12瓶,共花48元.3元的矿泉水买了瓶.11.停车场里有摩托车和小轿车共20辆,共70个轮子.摩托车有辆,小轿车有辆.12.电影院在一小时内售出甲、乙两种票共30张,甲种票30元一张,乙种票25元一张,共收入840元.其中售出甲种票张,乙种票张.13.有1元和5角的硬币共18枚,一共14元,5角的硬币有枚.14.一次数学竞赛中共有20道题,规定答对一道得5分,答错或不答一题扣2分,得到65分才能晋级,小明若想晋级,他至少要答对道题.15.体育馆内,14张乒乓球台上共有40人打球,正在进行单打的乒乓球台有张,双打的乒乓球台有张.16.王老师带领五(1)班50名同学参加植树.王老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树苗120棵.请问全班男生和女生分别有名和名.三.判断题(共5小题)17.动物园里有百灵鸟和松鼠共17只,它们共有54条腿,则百灵鸟有7只,松鼠有10只.(判断对错)18.数学竞赛试卷共12道题,做对一题得10分,做错一题扣5分,小军全部做完了,但最后只得了90分,则他做错了6道题.(判断对错)19.解决鸡兔同笼问题常用假设法..(判断对错)20.自行车和三轮车共10辆,总共有26个轮子,自行车有4辆.(判断对错)21.今有鸡兔同笼,头有27个,脚有74只,则鸡有16只,兔有11只.(判断对错)四.应用题(共7小题)22.自行车和童车分别有多少辆?23.某公司委托搬运站送1000个玻璃花瓶,双方商定每个运费0.15元,如打碎一个,这个不但不计运费,还要赔偿0.95元.结果搬运站共得搬运费145.6元.搬运过程中打碎了几个玻璃花瓶?24.小李来到文具超市,发现中性笔和圆珠笔共28盒,共计306支,中性笔每盒10支,圆珠笔每盒12支,中性笔和圆珠笔各多少盒?25.学校有象棋、跳棋共26副,2名学生下1副象棋,6名学生下1副跳棋,恰好可以同时供120名学生活动.象棋与跳棋各有多少副?26.菜市场的停车场里停着一些两轮摩托车和三轮摩托车,一共有42辆,共100个车轮.三轮车停了多少辆?27.一个停车场有两轮摩托和三轮摩托共13辆,它们共有36个轮子.两轮摩托和三轮摩托各有多少辆?28.五年级有108人参加了文体活动,分别是踢毽子和跳绳,踢毽子3人一组,跳绳6人一组,一共有22组,踢毽子和跳绳各有多少组?参考答案与试题解析一.选择题(共8小题)1.【分析】假设全是兔,那么应该是15×4=60条腿,则比已知多出了60﹣44=16条腿,因为1只兔比1只鸡多4﹣2=2条腿,所以鸡的只数为16÷2=8只,进而求得兔的只数.【解答】解:假设全是兔子,则鸡就有:(15×4﹣44)÷(4﹣2)=(60﹣44)÷2=16÷2=8(只)兔有:15﹣8=7(只)答:兔子有7只.故选:A.【点评】此题属于典型的鸡兔同笼问题,可以利用假设法解答.2.【分析】假设全是3人房,则一共可以住15×3=45人,这比已知的39人多出了45﹣39=6人,因为一间3人房比1间2人房多3﹣2=1人;所以2人间一共有6间,则3人房有15﹣6=9间.【解答】解:假设全是3人房,则2人房有:(15×3﹣39)÷(3﹣2)=6÷1=6(间)则3人房有:15﹣6=9(间)答:3人间9间,2人间6间.故选:C.【点评】此题属于鸡兔同笼问题,采用假设法直接计算出正确结果,再进行选择即可.3.【分析】假设全租的是大客车,则共有的人数是10×30=300人,这和实际人数就差了300﹣270=30人,而大客车和小客车每辆差的人数是(30﹣20)人,据此可求出小客车的辆数.据此解答.【解答】解:(10×30﹣270)÷(30﹣20)=(300﹣270)÷10=30÷10=3(辆)10﹣3=7(辆)答:租用大客车7辆.故选:D.【点评】本题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.4.【分析】此题是典型的鸡兔同笼问题,可以采用假设法进行计算,假设全是鸡,则有:18×2=36只足,那么比实际56只足就少了56﹣36=20只足,这就是把兔子看做鸡少加的那2只足,由此可知兔子的只数为:20÷2=10只,从而即可求得鸡的只数.【解答】解:(56﹣18×2)÷(4﹣2)=(56﹣36)÷2=20÷2=10(只)18﹣10=8(只)答:鸡有8只,兔有10只.故选:D.【点评】解决鸡兔同笼问题的关键是用假设法来进行解答.5.【分析】假设投中的全部是3分球,可得:3×11=33(分),比实际得的28分多:33﹣28=5(分),是因为我们把每个2分球当作了3分球,每个球算了3﹣2=1分,所以可以求出2分球的个数:5÷1=5(个),据此解答.【解答】解:假设投中的全部是3分球,2分球的个数:(3×11﹣28)÷(3﹣2)=5÷1=5(个)答:他两分球投中了5个.故选:B.【点评】本题属于鸡兔同笼问题的综合应用,可以利用假设法来解答,是这种类型应用题的解答规律.6.【分析】假设全是钢笔,一共需要9×6=54元,这比40元多了54﹣40=14元,这是因为每支钢笔比圆珠笔多9﹣2=7元,用多的总钱数除以每支多的钱数,即可求出圆珠笔买了几支,进而求出钢笔的支数.【解答】解:(6×9﹣40)÷(9﹣2)=14÷7=2(支)6﹣2=4(支)答:钢笔买了4支.故选:A.【点评】此题属于鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.7.【分析】每只小鸟需要1÷3=(元),假设全是大鸟,那么100只大鸟需要花100×3=300(元),实际少花了300﹣100=200(元),这是因为每只大鸟比每只小鸟多花(3﹣)元,用多花的总钱数除以每只多花的钱数,即可求出小鸟的只数,进而求出大鸟的只数.【解答】解:每只小鸟需要1÷3=(元),假设全是大鸟,那么小鸟有:(100×3﹣100)÷(3﹣)=200÷=75(只)100﹣75=25(只)答:大鸟买了25只.故选:B.【点评】此题属于鸡兔同笼题,解答此题的关键是先进行假设,然后根据假设后的情况进行计算,即可得出答案;也可以用方程解答,设其中的一个量为未知数,另一个数也用未知数表示,根据题意,列出方程,解答即可.8.【分析】假设全是摩托车,则一共有轮子2×16=32个,这比已知的52个轮子少了52﹣32=20个,因为小轿车比摩托车多4﹣2=2个轮子,所以小轿车有:20÷2=10辆,据此解答即可.【解答】解:(52﹣2×16)÷(4﹣2)=20÷2=10(辆)答:小轿车有10辆.故选:B.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.二.填空题(共8小题)9.【分析】此题可以用假设法来解答,假设都是2千克的,那么一共装2×12=24(千克),因为一共是45千克,少了45﹣24=21(千克),就是因为把5千克的也看作2千克的了,每桶少算了5﹣2=3(千克),所以5千克的有21÷3=7(桶);据此解答即可.【解答】解:(45﹣2×12)÷(5﹣2)=21÷3=7(桶)12﹣7=5(桶)答:大油桶装了7桶,小油桶装了5桶.故答案为:7;5.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.10.【分析】假设12瓶全是5元的,则用5×12=60元,这样就多60﹣48=12元;用12÷(5﹣3)=6得出3元的矿泉水的瓶数,据此解答.【解答】解:(5×12﹣48)÷(5﹣3)=12÷2=6(瓶)答:3元的矿泉水买了6瓶.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.11.【分析】首先应明白摩托车有两个轮子,小轿车有4个轮子,假设这些车全部是小轿车,则轮子个数应为4×20=80(个),而现在只有70个轮子,多出了80﹣70=10(个),用一辆轿车换一辆摩托车,轮子就少了2个,10个轮子可以换二轮摩托车:10÷2=5(辆),小轿车的辆数就好求了,由此解决问题.【解答】解:摩托有:(4×20﹣70)÷(4﹣2)=(80﹣70)÷2=10÷2=5(辆)小轿车有:20﹣5=15(辆)答:摩托有5辆,小轿车有15辆.故答案为:5,15.【点评】此题主要考查学生运用“假设法”来解决实际问题的能力.12.【分析】假设全是买的乙种票,则一共要花掉30×25=750元,已知实际花掉了840元,少了840﹣750=90元,因为1张乙种票比1张甲种票少30﹣25=5元,所以甲种票有90÷5=18张,据此即可解答.【解答】解:假设全是买的乙种票,则甲种票有:(840﹣30×25)÷(30﹣25)=90÷5=18(张)乙种票:30﹣18=12(张)答:甲种票有18张,乙种票有12张.故答案为:18,12.【点评】此题属于鸡兔同笼问题,采用假设法解答即可.13.【分析】假设18枚硬币全是1元的,则一共有18元,这比已知的14元多了18﹣14=4元,因为一枚1元的比一枚5角的多0.5元,所以5角的一共有4÷0.5=8枚,据此即可解答.【解答】解:5角=0.5元(18×1﹣14)÷(1﹣0.5)=4÷0.5=8(枚)答:5角硬币有8枚.故答案为:8.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.14.【分析】答错或不答一题扣2分,不仅不得分,还要倒扣2分,相当于每错一道要丢5+2=7分.假设他全做对了,应得100分,现在得了65分,说明他被扣了100﹣65=35分,故他做错35÷7=5道,做对15道才能晋级.列式为:20﹣(5×20﹣65)÷(5+2).【解答】解:20﹣(5×20﹣65)÷(5+2)=20﹣35÷7=20﹣5=15(道)答:他至少要答对15道题.故答案为:15.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.15.【分析】假设14张乒乓球台全是单打,则应有14×2=28人,而实际有40人比赛,实际就比假设多了40﹣28=12人,这是因为每张双打的球台上就比每张单打的多4﹣2=2人.据此可求出双打乒乓球台的张数,再用14去减,就是单打乒乓球台的张数.据此解答.【解答】解:(40﹣14×2)÷(4﹣2)=12÷2=6(张)14﹣6=8(张)答:正在进行单打的乒乓球台有8张,双打的乒乓球台有6张.故答案为:8;6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.16.【分析】假设都是女生,则可以栽50×2=100棵,除去老师栽的5棵,这样少载了120﹣5﹣100=15棵;因为一名女生比一名男生少栽3﹣2=1棵,则男生有15÷1=15人;进而得出女生人数.【解答】解:男生:(120﹣5﹣2×50)÷(3﹣2)=15÷1=15(名)女生:50﹣15=35(名)答:有15名男生,35名女生.故答案为:15;35.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.三.判断题(共5小题)17.【分析】假设全是松鼠,则一共有17×4=68条腿,这比已知的54条多了68﹣54=14条,因为1只松鼠比1只百灵鸟多4﹣2=2条腿,据此可得百灵鸟有14÷2=7只,据此即可解答问题.【解答】解:假设全是松鼠,则百灵鸟有:(17×4﹣54)÷(4﹣2)=14÷2=7(只),所以松鼠有:17﹣7=10(只),即:百灵鸟有7只,松鼠有10只,所以原题说法正确.故答案为:√.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.18.【分析】假设12道题全做对,则得10×12=120分,这样就少得120﹣90=30分;最错一题比做对一题少10+5=15分,也就是做错30÷15=2道题.【解答】解:(10×12﹣90)÷(10+5)=30÷15=2(道);即,他做错了3道题;所以原题说法错误.故答案为:×.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.19.【分析】根据实际可知:解决鸡兔同笼问题常见的方法有列表法、假设法和方程法.据此解答即可.【解答】解:解决鸡兔同笼问题常见的方法有列表法、假设法和方程法,所以原题说法正确.故答案为:√.【点评】此题主要考查解决鸡兔同笼问题常用的方法.20.【分析】假设全是三轮车,则一共有轮子3×10=30个,这比已知的26个轮子多出了30﹣26=4个,因为1辆三轮车比1辆自行车多3﹣2=1个轮子,由此即可求出自行车有4辆,10﹣4=6,所以三轮车有6辆.【解答】解:假设全是三轮车,则自行车有:(3×10﹣26)÷(3﹣2)=4÷1=4(辆),则三轮车有10﹣4=6(辆),答:自行车有4辆,三轮车有6辆.故答案为:√.【点评】此题属于鸡兔同笼问题,采用假设法即可解答.21.【分析】假设全都是鸡,则应用2×27=54只脚,实际有74只,实际就比假设多了74﹣54=20只脚,这是因为每只兔子比每只鸡多了4﹣2只脚.据此可求出兔子的只数,再用27减兔子的只数,就是鸡的只数.据此解答.【解答】解:(74﹣2×27)÷(4﹣2)=20÷2=10(只)27﹣10=17(只)即有鸡17只,兔子10只,所以原题说法错误.故答案为:×.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.四.应用题(共7小题)22.【分析】假设全是童车,则共有的轮子数是15×3个,然后与实有的轮子数相比,就是因为每辆自行车比童车少了(3﹣2)个轮子.据此解答.【解答】解:(15×3﹣36)÷(3﹣2)=(45﹣36)÷1=9÷1=9(辆)15﹣9=6(辆)答:自行车有9辆,童车有6辆.【点评】本题的关键是用假设法,设全是童车,求出应有的轮子数,与实用的轮子数进行比较,求出实有自行车的数量.23.【分析】假设一只也没打破,将会获得运费:0.15×1000=150(元),而实际共得运费145.6元,两者相差了:150﹣145.6=4.4(元),因为每打破一只玻璃花瓶就会少得运费:0.95+0.15=1.1(元),因此根据这两个差可以求出打破的玻璃花瓶的只数,列式为:4.4÷1.1=4(个),据此解答.【解答】解:(1000×0.15﹣145.6)÷(0.95+0.15)=4.4÷1.1=4(个)答:搬运过程中打碎了4个玻璃花瓶.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.24.【分析】假设都是圆珠笔,则一共有12×28=336支,多出来的支数,是把中性笔每盒多算12﹣10=2支,由此算出中性笔的支数,再进一步求得圆珠笔支数即可.【解答】解:中性笔:(12×28﹣306)÷(12﹣10)=(336﹣306)÷2=30÷2=15(盒),圆珠笔:28﹣15=13(盒),答:中性笔15盒,圆珠笔13盒.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.25.【分析】假设全部为跳棋,一共有:26×6=156人,比实际多了156﹣120=36人,这是因为我们把下象棋的人当作了下跳棋的人,每副多算了:6﹣2=4人;所以有象棋:36÷4=9(副),那么跳棋就为:26﹣9=17(副);据此解答.【解答】解:假设全部为跳棋,象棋:(26×6﹣120)÷(6﹣2)=36÷4=9(副)跳棋:26﹣9=17(副)答:象棋有9副,跳棋有17副.【点评】解决鸡兔同笼问题往往用假设法解答,有些应用题中有两个或两个以上的未知量,思考问题时,可以假设要求的两个或两个以上的未知量相等,或假设它们为同一种量,然后按照题中的已知条件进行推算,如果数量上出现矛盾,可适当调整,以求出正确的结果.26.【分析】根据题意,假设都是三轮车,则轮子应用:42×3=126(个),比实际多:126﹣100=26(个),每辆两轮摩托车比三轮车少轮子:3﹣2=1(个),所以两轮车的辆数为:26÷1=26(辆),三轮车为:42﹣26=16(辆).【解答】解:(42×3﹣100)÷(3﹣2)=(126﹣100)÷1=26÷1=26(辆)42﹣26=16(辆)答:三轮车停了16辆.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.27.【分析】假设全是两轮摩托车,则轮子有13×2=26个,这比已知的36个轮子少了36﹣26=10个,因为一辆三轮摩托车比一辆摩托车多3﹣2=1个轮子,所以三轮摩托车有10÷1=10辆,则摩托车有13﹣10=3辆,由此即可解决问题.【解答】解:假设全是两轮摩托车,则三轮摩托车有:(36﹣13×2)÷(3﹣2)=10÷1=10(辆)摩托车有:13﹣10=3(辆)答:三轮摩托有10辆,两轮摩托车有3辆.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.28.【分析】假设全部是6人一组,有6×22=132人,已知108人比假设少了:132﹣108=24人,3人一组比6人一组少6﹣3=2人,所以3人一组的有:24÷3=8组;跳绳6人一组有:22﹣8=14组.【解答】解:(6×22﹣108)÷(6﹣3)=24÷3=8(组)22﹣8=14(组)答:踢毽子的有8组,跳绳的有14组.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.。
四年级鸡兔同笼奥数题及答案
![四年级鸡兔同笼奥数题及答案](https://img.taocdn.com/s3/m/f048b94f0640be1e650e52ea551810a6f524c8c6.png)
四年级鸡兔同笼奥数题及答案
鸡兔同笼的例题及答案【1】
鸡和兔共有100只脚,若将鸡换成兔,将兔换成鸡,则共有86只脚,则鸡有多少只?兔有多少只?
【分析】【解法一】:鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让鸡只数和兔只数相等后的脚数:100+7×2=114(条);
鸡的脚数:114÷(2+1)=38(条);
鸡的只数:38÷2=19(只);兔的.只数:19-7=12(只);
【解法二】鸡兔互换后减少的腿数:100-86=14(条);
鸡比兔子少的只数:14÷(4-2)=7(只);
让兔只数和鸡只数相等后的脚数:100-7×4=72(条);
鸡的脚数:72÷(2+1)=24(条);
兔(鸡)的只数:24÷2=12(只);鸡的只数:12+7=19(只);
【解法三】:方程法设鸡有x只,兔有y只;
解方程得:x=12;y=19;
鸡兔同笼的例题及答案【2】
鸡兔同笼,头共46,足共128,鸡兔各几只
【分析】假设只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚,这是因为我们把鸡当成了兔子,如果把1只鸡当成1只兔,就要比实际多4-2=2(只)脚,那么56只脚是我们把56÷2=28只鸡当成了兔子,所以鸡的只数就是28,兔的只数是46-28=18(只).当然,这里我们也可以假设46只全是鸡,小朋友们,请你按此思路做做这道题目!。
奥数思维拓展:鸡兔同笼(讲义)-2024-2025学年四年级上册数学苏教版
![奥数思维拓展:鸡兔同笼(讲义)-2024-2025学年四年级上册数学苏教版](https://img.taocdn.com/s3/m/89f17ddf70fe910ef12d2af90242a8956becaaa6.png)
奥数思维拓展:鸡兔同笼-数学四年级上册苏教版第一部分知识梳理鸡兔同笼方法:假设法,方程法,抬腿法,列表法公式1:(兔的脚数×总只数﹣总脚数)÷(兔的脚数﹣鸡的脚数)=鸡的只数;总只数﹣鸡的只数=兔的只数公式2:(总脚数﹣鸡的脚数×总只数)÷(兔的脚数﹣鸡的脚数)=兔的只数;总只数﹣兔的只数=鸡的只数公式3:总脚数÷2﹣总头数=兔的只数;总只数﹣兔的只数=鸡的只数公式4:鸡的只数=(4×鸡兔总只数﹣鸡兔总脚数)÷2;兔的只数=鸡兔总只数﹣鸡的只数公式5:兔总只数=(鸡兔总脚数﹣2×鸡兔总只数)÷2;鸡的只数=鸡兔总只数﹣兔总只数公式6:(头数x4﹣实际脚数)÷2=鸡公式7:4×+2(总数﹣x)=总脚数(x=兔,总数﹣x=鸡数,用于方程)公式8:鸡的只数:兔的只数=兔的脚数﹣(总脚数÷总只数):(总脚数÷总只数)﹣鸡的脚数.第二部分典型例题1.一张试卷26个题目,答对一题给8分,答错一题扣5分,有一位考生虽然答完了全部题目,但所得总分为0分,这位考生答对多少题?【解答】解:答错:(26×8)÷(8+5),=208÷13,=16(道);答对:26﹣16=10(道);答:这位考生做对了10道题.2.学校会议室有两种沙发,大沙发可坐6人,小沙发可坐4人.开会时,学校46名教师刚好在10个沙发上坐满,有几个大沙发?几个小沙发?【解答】解:假设全是大沙发,则小沙发有:(6×10﹣46)÷(6﹣4)=(60﹣46)÷2=14÷2=7(个)大沙发:10﹣7=3(个)答:有3个大沙发,7个小沙发.第三部分跟踪训练1.盒子里有大、小两种钢珠共30颗,共重266克。
已知大钢珠每颗11克,小钢珠每颗7克。
盒中大、小钢珠各有多少颗?2.学校举行乒乓球比赛,一共有14张乒乓球桌同时进行,已知双打的人数比单打的多2人,你知道单打比赛的有几桌?双打呢?3.同一学校举行升旗仪式,同学们搬了红色和白色的小凳子共29张到操场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲鸡兔同笼问题
◆认识鸡兔同笼问题。
◆用假设法解鸡兔同笼问题。
我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?
这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。
用假设法解题,首先要根据题意去正确地判断应该怎么假设,一般可假设要求的两个或几个未知量相等,或者假设要求的两个未知量是同一种量;其次要能根据所做的假设,注意到数量关系发生了什么变化,怎样从所给的条件与变化了的数量关系的比较重做出适当的调整,从而找到正确的答案。
【例题1】鸡兔同笼,共100个头,320只脚,鸡兔各多少只?答案:60,40
思路点拨:
【拓展1】(2009年北京“高思”数学思维能力检测试题)在马达加斯的大草原上,环尾狐猴和斑马进行投篮比赛,每只环尾狐投进一球记2分,每只斑马投进一只球记3分,共投进了100个球,共得了220分,那么斑马一共投进了多少个球? 答案:20
思路点拨:
【例题2】现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个? 答案:20,30
思路点拨:
【拓展2】现有大小塑料袋60个,每个大袋可装苹果5千克,每个小袋可装苹果3千克,小袋比大袋少装苹果60千克。
问大小塑料袋各有多少个? 答案:30,30
思路点拨:
【例题3】(“希望杯”全国数学大赛试题)小猴和小熊轮流共同完成一批玩具的组装,小猴每天可以完成20件,小熊每天只能完成12件。
它们用8天的时间共组装了112件玩具。
小猴工作了多少天? 答案:2
思路点拨:
【拓展3】松鼠妈妈采松球,晴天每天可以采20个,雨天每天只能采12个,它一连几天才了112个松球,平均每天14个。
问这些天当中有几天是雨天?答案:6
思路点拨:
【例题4】甲乙两个车间共有80名工人,每天生产852个同样的零件。
由于设备和技术的不同,甲车间平均每名工人每天只能生产9个零件,而乙车间平均每名工人每天可以生产13个零件。
两个车间比较,每天生产零件多的是哪个车间?答案:乙车间
思路点拨:
【拓展4】(浙江省小学数学夏令营试题)一艘货轮载重260吨,容积1000立方米,现在要装运甲乙两种货物。
已知甲种货物每吨体积为8立方米,乙种货物每吨体积为2立方米。
要使这艘货轮的载重量和容积得到充分利用,则甲乙两种货物应分别装运多少吨货物?
答案:180,80
思路点拨:
【例题5】(第四届“希望杯”全国数学大赛试题)现有白和黄两袋乒乓球,白球个数是黄球个数的2倍,如果每次取出4个白球,3个黄球,取出若干次后,黄球取完,还剩16个白球。
原来有多少个白球?答案:48
思路点拨:
【拓展5】(2009年“陈省身杯”国际青少年数学邀请赛试题)幼儿园将一筐苹果分给小朋友,如果分大班的小朋友每人5个,则余10个;如果分给小班的小朋友每人8个,则缺2个。
已知大班比小班多3个小朋友,则这框苹果共有多少个?大班、小班共有小朋友多少人? 答案:21,70
思路点拨:
【例题6】小芳和小园一起拍皮球,小芳先拍了2分钟,然后两人各拍了3分钟,一共拍了270下。
已知小芳比小园每分钟多拍6下,小芳和小园每分钟各拍多少下?答案:36
思路点拨:
【拓展6】甲乙两人练习跑步,甲先跑了3分钟,然后又和乙共跑了5分钟,两人一共跑了4140米。
甲每分钟比乙多跑30米,问甲比乙多跑多少米?答案:1140
思路点拨:
【精练1】(第十二届小学“祖冲之之杯”数学竞赛试题)面值为5角和8角的邮票共30张,总价值18元,那么面值为5角的邮票有张。
答案:20
【精练2】(第四届小学“希望杯”全国数学大赛试题)《希望月报》编辑部组织了一次“迎奥运,爱我中华”知识抢答竞赛,比赛规定:每位参赛选手起点都为100分,之后每答对一题加10分,每答错一题倒扣8分。
小音抢答了12道题,最后得分148分,请问小音答对了多少题?答案:8
【精练3】(2008年第六届小学“希望杯”全国数学邀请赛试题)某玩具店新购进飞机和汽车模型30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型车共有110个轮子,那么新购进的飞机模型有多少辆?答案:10
【精练4】(第十届全国“华罗庚金杯”少年数学邀请赛试题)100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。
高、低年级学生各有多少人?
答案:46,54
【精练5】(武汉市“走进数学王国”电视邀请赛试题)老师和学生一共44人参加义务植树活动。
老师每人植5棵,学生每人植2棵,正好一共植了100棵。
参加植树的老师和学生各有多少人?答案:4,40
【精练6】(2009年“陈省身杯”国际青少年数学邀请赛试题)一次数学竞赛共20道题,每答对一道题得6分,每答错一道题倒扣4分。
小明答完了全部的题目却得了零分,那么他一共答错了多少道题?答案:12。