液压与气压传动全套课件(精华版466p)
合集下载
液压与气压传动PPT
- 制造业:气动工具、气动输送系统 - 化工与能源:气动泵、气动阀门
液压与气压传动的比较
工作原理比较
液压传动基于不可压缩的液体, 气压传动基于可压缩气体。
优缺点比较
液压传动有较高的功率密度, 气压传动更安全可靠。
应用场景选择
液压传动适用于高承载、高精 度的场景,气压传动适用于大 范围运动控制。
液压与气压传动技术的发展趋势
液压与气压传动
这个演示文稿将介绍液压与气压传动的定义、原理和应用,以及它们的比较 和技术发展趋势。
液压传动
1
原理介绍
通过液体传递力来实现运动与控制的技术。
2
应用领域举例
- 工程机械:液压挖掘机、铲车等
- 机床:液压切割机、冲床等
气压传动
原理介绍
通过气体传递能量来实现运动与控制的技术。
应用领域举例
1
新技术和创新
电液传动、智能控制技术的应用,提高控制精度和效率。
2
可持续性和环境友好性
发展更节能、减少排放的液压与气压传动系统。
总结
• 液压与气压传动都是重要的运动控制技术。 • 液压传动适用于高功率密度和高精度的应用。 • 气压传动适用于大范围运动控制和安全可靠的需求。 • 未来发展趋势包括新技术创新和环境友好性。
液压与气压传动的比较
工作原理比较
液压传动基于不可压缩的液体, 气压传动基于可压缩气体。
优缺点比较
液压传动有较高的功率密度, 气压传动更安全可靠。
应用场景选择
液压传动适用于高承载、高精 度的场景,气压传动适用于大 范围运动控制。
液压与气压传动技术的发展趋势
液压与气压传动
这个演示文稿将介绍液压与气压传动的定义、原理和应用,以及它们的比较 和技术发展趋势。
液压传动
1
原理介绍
通过液体传递力来实现运动与控制的技术。
2
应用领域举例
- 工程机械:液压挖掘机、铲车等
- 机床:液压切割机、冲床等
气压传动
原理介绍
通过气体传递能量来实现运动与控制的技术。
应用领域举例
1
新技术和创新
电液传动、智能控制技术的应用,提高控制精度和效率。
2
可持续性和环境友好性
发展更节能、减少排放的液压与气压传动系统。
总结
• 液压与气压传动都是重要的运动控制技术。 • 液压传动适用于高功率密度和高精度的应用。 • 气压传动适用于大范围运动控制和安全可靠的需求。 • 未来发展趋势包括新技术创新和环境友好性。
液压与气压传动PPT课件
第五节 各类液压泵困的难等性。能比较及应用
第六节 液压马达
• 液压马达:它是把液压能转变成旋转机械能的一种能量 转换装置。(是指输出旋转运动的,将液压泵提供的液压 能转变为机械能的能量转换装置. )
• 一类是高速液压马达,另一类是低速液压马达
..
4
第四章 液压缸
第一节 液压缸的工作原理、类型和特点
压(元4)件由之于间液可体采介用达质管)的道泄、连露控接及、制可或元压采件缩用性(集影各成响式种,连阀不接)能,得、其到布严局格、的安传装动有比很。大 的(灵5)活液性压,传可动以出构辅故成助障用时元其不件它易传和找动工出方作原式因介难;质以使组用成和的维复修杂要系求统有。较高的技
(术4水)平液。压传动能使液压油缸的运动十分均匀稳定,可使油缸换向时无换
1. 调速回路 2. 快速运动回路 3. 速度换向回路
1.换向回路 2.锁紧回路
1. 顺序动作回路 2. 同步回路 3. 多缸快慢速互不干涉回路
..
8
第八章 典型液压系统
第一节 液压系统图的阅读和分析方法 第二节 YT4543型液压动力滑台液压系统 第三节 MLS3-170型采煤机及其液压牵引系统 第四节 日立EX400型单斗全液压挖掘机的液压系统 第五节 YB32-200型压力机的液压系统 第六节 XS-ZY-250A型注塑机比例液压系统 第七节 盘式热分散机比例压力和流量复合控制液压系统 第八节 XLB1800×10000型平板硫化机的液压系统
..
5
第五章 液压控制阀
第一节 概述
基本参数 公称压力 与流量有关的参数
1.
第二节 方向控制阀 2.
3.
4.
5.
第三节 压力控制阀 1. 2. 3.
液压与气压传动(精华版) PPT课件
甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器 等。
火炮操纵装置、舰船减摇装置、飞机起落架的收放装置 及方向舵控制装置等。
例图 例图
注塑机械 机 床 (全 自 动 六 角 车 床)
桥梁检修机械
防洪闸门及堤坝装置
巨型天线
甲板起重机械
气压传动的应用
气压传动的应用也相当普遍,许多机器设备中都装 有气压传动系统,在工业各领域,如机械、电子、 钢铁、运行车辆及制造、橡胶、纺织、化工、食品、 包装、印刷和烟草机械等,气压传动技术不但在各 工业领域应用广泛,而且,在尖端技术领域如核工 业和宇航中,气压传动技术也占据着重要的地位。
例图
自动水果分类机
自动激光唱片拾放装置
汽车组装线
自动糖果包装机
自动汽车清洗机
自动空气喷射织布机
压烫机
液压与气压传动发展
如果从17世纪帕斯卡提出静压传递原理、18世纪英国制成世界第一 台水压机算起,液压传动 已有二百多年的历史。但 是由于当时没有成熟的液 压传动技术和液压元件, 因此它没有得到普遍的应 用。随着科学技术的不断 发展,各行各业对传动技 术有了进一步的需求。特 别是在第二次世界大战期 间,由于军事上迫切地需 要反应快、重量轻、功率 大的各种武器装备,而液压传动技术正好具有这方面的优势,所以获得 了较快的发展。在战后的50年中,液压传动技术迅速地扩展到其他各个 部门,并得到了广泛的应用。
气压传动有较好的自保持能力。即使气源停止工作,或气 阀关闭,气压传动系统仍可维持一个稳定压力。
气压传动在一定的超负载工况下运行也能保证系统安全工 作,并不易发生过热现象。无油的气动控制系统特别适用 于无线电元器件的生产过程,也适用于食品及医药的生产 过程。
液压与气压传动的缺点
火炮操纵装置、舰船减摇装置、飞机起落架的收放装置 及方向舵控制装置等。
例图 例图
注塑机械 机 床 (全 自 动 六 角 车 床)
桥梁检修机械
防洪闸门及堤坝装置
巨型天线
甲板起重机械
气压传动的应用
气压传动的应用也相当普遍,许多机器设备中都装 有气压传动系统,在工业各领域,如机械、电子、 钢铁、运行车辆及制造、橡胶、纺织、化工、食品、 包装、印刷和烟草机械等,气压传动技术不但在各 工业领域应用广泛,而且,在尖端技术领域如核工 业和宇航中,气压传动技术也占据着重要的地位。
例图
自动水果分类机
自动激光唱片拾放装置
汽车组装线
自动糖果包装机
自动汽车清洗机
自动空气喷射织布机
压烫机
液压与气压传动发展
如果从17世纪帕斯卡提出静压传递原理、18世纪英国制成世界第一 台水压机算起,液压传动 已有二百多年的历史。但 是由于当时没有成熟的液 压传动技术和液压元件, 因此它没有得到普遍的应 用。随着科学技术的不断 发展,各行各业对传动技 术有了进一步的需求。特 别是在第二次世界大战期 间,由于军事上迫切地需 要反应快、重量轻、功率 大的各种武器装备,而液压传动技术正好具有这方面的优势,所以获得 了较快的发展。在战后的50年中,液压传动技术迅速地扩展到其他各个 部门,并得到了广泛的应用。
气压传动有较好的自保持能力。即使气源停止工作,或气 阀关闭,气压传动系统仍可维持一个稳定压力。
气压传动在一定的超负载工况下运行也能保证系统安全工 作,并不易发生过热现象。无油的气动控制系统特别适用 于无线电元器件的生产过程,也适用于食品及医药的生产 过程。
液压与气压传动的缺点
液压与气压传动通用课件(精华版)
气压传动
利用气体作为工作介质,通过气瓶或气瓶组产生压缩空气, 再通过气动元件将压缩空气转化为机械能输出的一种传动方 式。气压传动的基本原理是伯努利定律,即空气流速大的地 方压力小,流速小的地方压力大。
液压与气压传动的应用领域
液压传动
广泛应用于工程机械、农业机械 、汽车工业、船舶工业等领域, 如挖掘机、推土机、起重机、压 路机、液压夹具等。
同时,随着环保意识的不断提高,液压与气压传动技术也将更加注重环保和节能, 推动工业生产的可持续发展。
对我国液压与气压传动技术发展的建议和展望
我国应加大对液压与气 压传动技术研发的投入 力度,鼓励企业自主创 新,推动技术进步。
加强产学研合作,促进 科技成果的转化和应用 ,提高我国液压与气压 传动技术的整体水平。
04 液压与气压传动系统的设计
系统设计的基本原则和步骤
确定设计要求
明确液压或气压传动系统的功能、性能和参 数要求。
计算系统参数
确定系统方案
根据设计要求,选择合适的液压或气压传动 方案,包括元件选择、回路设计等。
根据பைடு நூலகம்统方案,计算液压或气压传动系统的 参数,如流量、压力、功率等。
02
01
绘制系统图和装配图
液压与气压传动通用 课件(精华版)
目录
• 液压与气压传动基础知识 • 液压系统 • 气压系统 • 液压与气压传动系统的设计 • 液压与气压传动系统的故障诊断与
排除 • 液压与气压传动技术的发展趋势和
未来展望
01 液压与气压传动基础知识
液压与气压传动的定义和原理
液压传动
利用液体作为工作介质,通过密封容器的压力传递动力和运 动的一种传动方式。液压传动的基本原理是帕斯卡原理,即 在小面积上施加压力,将产生较大的力;在大面积上施加压 力,将产生较小的力。
利用气体作为工作介质,通过气瓶或气瓶组产生压缩空气, 再通过气动元件将压缩空气转化为机械能输出的一种传动方 式。气压传动的基本原理是伯努利定律,即空气流速大的地 方压力小,流速小的地方压力大。
液压与气压传动的应用领域
液压传动
广泛应用于工程机械、农业机械 、汽车工业、船舶工业等领域, 如挖掘机、推土机、起重机、压 路机、液压夹具等。
同时,随着环保意识的不断提高,液压与气压传动技术也将更加注重环保和节能, 推动工业生产的可持续发展。
对我国液压与气压传动技术发展的建议和展望
我国应加大对液压与气 压传动技术研发的投入 力度,鼓励企业自主创 新,推动技术进步。
加强产学研合作,促进 科技成果的转化和应用 ,提高我国液压与气压 传动技术的整体水平。
04 液压与气压传动系统的设计
系统设计的基本原则和步骤
确定设计要求
明确液压或气压传动系统的功能、性能和参 数要求。
计算系统参数
确定系统方案
根据设计要求,选择合适的液压或气压传动 方案,包括元件选择、回路设计等。
根据பைடு நூலகம்统方案,计算液压或气压传动系统的 参数,如流量、压力、功率等。
02
01
绘制系统图和装配图
液压与气压传动通用 课件(精华版)
目录
• 液压与气压传动基础知识 • 液压系统 • 气压系统 • 液压与气压传动系统的设计 • 液压与气压传动系统的故障诊断与
排除 • 液压与气压传动技术的发展趋势和
未来展望
01 液压与气压传动基础知识
液压与气压传动的定义和原理
液压传动
利用液体作为工作介质,通过密封容器的压力传递动力和运 动的一种传动方式。液压传动的基本原理是帕斯卡原理,即 在小面积上施加压力,将产生较大的力;在大面积上施加压 力,将产生较小的力。
《液压与气压传动》课件
统
液压传动系统由各种液压元件组成,例如液压泵、液压缸、液压阀等。这些元件的选择和使用将直接影响系统 的性能。
气压传动原理
气压传动是通过气体传递力量和控制运动的一种方式。相比液压传动,它具 有独特的优点和适用领域。
气压元件与系统
气压传动系统通常包括气压源、气动执行元件和气动控制元件。了解这些元 件的功能和组成对于实现高效的气压传动至关重要。
比较与对比
液压传动和气压传动各有优缺点,适用于不同的应用场景。了解它们的区别和特点有助于选择合适的传动方式。
总结
液压传动和气压传动是工程领域中常用的传动方式。通过本课程,您将深入了解它们的原理、应用和区别,为 您的工作和学习提供有价值的知识。
《液压与气压传动》PPT 课件
本课程将介绍液压与气压传动的原理、优点、应用领域以及常见元件和系统 的组成。让我们一起探索这个令人着迷的领域吧!
课程介绍
通过本课程,您将了解液压与气压传动的基本原理,以及它们在各个领域的应用。我们将探索这两种传动方式 的优点和特点。
液压传动原理
液压传动使用液体传递力量和控制运动。了解液压传动的基本原理对于设计和维护液压系统至关重要。
液压传动系统由各种液压元件组成,例如液压泵、液压缸、液压阀等。这些元件的选择和使用将直接影响系统 的性能。
气压传动原理
气压传动是通过气体传递力量和控制运动的一种方式。相比液压传动,它具 有独特的优点和适用领域。
气压元件与系统
气压传动系统通常包括气压源、气动执行元件和气动控制元件。了解这些元 件的功能和组成对于实现高效的气压传动至关重要。
比较与对比
液压传动和气压传动各有优缺点,适用于不同的应用场景。了解它们的区别和特点有助于选择合适的传动方式。
总结
液压传动和气压传动是工程领域中常用的传动方式。通过本课程,您将深入了解它们的原理、应用和区别,为 您的工作和学习提供有价值的知识。
《液压与气压传动》PPT 课件
本课程将介绍液压与气压传动的原理、优点、应用领域以及常见元件和系统 的组成。让我们一起探索这个令人着迷的领域吧!
课程介绍
通过本课程,您将了解液压与气压传动的基本原理,以及它们在各个领域的应用。我们将探索这两种传动方式 的优点和特点。
液压传动原理
液压传动使用液体传递力量和控制运动。了解液压传动的基本原理对于设计和维护液压系统至关重要。
液压与气压传动PPT
工作原理
液压传动
利用密闭工作容积内液体的压力能来传递动力和进行控制。液压系统由液压泵、 液压缸、控制阀等组成,通过改变液体的压力和流量来实现运动方向和速度的 控制。
气压传动
利用密闭工作容积内气体的压力能来传递动力和进行控制。气压系统由空气压 缩机、气瓶、气动执行元件、控制阀等组成,通过改变气体的压力和流量来实 现运动方向和速度的控制。
气压传动系统
以压缩气体为工作介质,通过气体的压力和体积变化来传 递能量,实现运动和力的传递。
工作介质特性
液压油具有较好的润滑性能和稳定性,适用于重载和高精 度传动;压缩气体易于获取且成本低,但易受温度和压力 变化影响。
工作原理特点
液压系统通过密封容积变化产生力,具有较大的力矩和扭 矩输出;气压系统通过气体压力和体积变化驱动执行元件 ,具有快速响应和简单的结构。
度影响,需定期检查气瓶压力和元件密封性。
维护与可靠 性
液压系统具有较高的位置精度和刚度,适用于高精度 定位和重载传动;气压系统定位精度和刚度相对较低, 适用于轻载和快速运动场合。
应用场合的比较与选择
重载高精度传动
液压系统适用于需要大 功率和高精度传动的场 合,如数控机床、重型
机械等。
轻载快速运动
气压系统适用于对精度 要求不高的轻载快速运 动场合,如气动夹具、
应用领域
01
02
03
04
工业领域
用于各种机床、生产线、起重 机械等的运动控制和动力传递
。
车辆领域
用于各种车辆的悬挂系统、转 向系统、刹车系统等。
航空航天领域
用于飞行器的起落架系统、飞 行控制等。
农业领域
用于拖拉机、收割机等的悬挂 系统和控制系统。
《液压与气压传动》课件
01
除了以上主要元件外,液压系统 中还需要一些辅助元件,如油箱 、过滤器、冷却器等。
02
这些辅助元件的作用是保证液压 系统的正常工作和延长元件的使 用寿命。
03
气压系统元件
气瓶
压缩空气储存设备
01
气瓶是用于储存压缩空气的设备,通常由金属制成,如钢或铝
。
分合有多种分类和规格,常见的
气动辅助元件
过滤器
过滤器用于清除压缩空气中的杂质和水分,保证 气动系统的正常运行。
油雾器
油雾器用于向气动系统中添加润滑油,减少摩擦 和磨损,提高系统的使用寿命。
消声器
消声器用于降低气动系统运行时的噪音,保护人 员和环境免受噪音污染。
04
液压与气压传动系统设计
系统设计流程
确定设计目标
明确液压或气压传动系统的功 能和性能要求,确定系统的基
液压缸的设计和制造需要考虑到负载、速度、压力等参数,以确保其正常工作和寿 命。
液压马达
液压马达是液压系统中的动力输 出元件,用于将液压能转换为机
械能,驱动机械设备转动。
液压马达的种类很多,包括齿轮 马达、叶片马达、柱塞马达等。
液压马达的选择需要考虑转速、 扭矩、效率等参数,以确保其满
足实际需求。
液压辅助元件
确定系统流量和压力
根据负载需求和系统的工作循环,计 算液压或气压传动系统的流量和压力 。
元件选择与校核
根据元件的工作参数和性能要求,选 择合适的液压或气压元件,并进行必 要的校核计算。
系统效率计算
根据系统的功率输入和输出,计算液 压或气压传动系统的效率,评估系统 的能源利用效果。
控制性能分析
对液压或气压传动系统的控制性能进 行分析,包括响应速度、稳定性和精 度等。
液压与气压传动课件ppt
至关重要的影响。
在使用液压缸时,同样需要 注意其维护和保养,定期检 查其工作状态和性能参数, 以保证其正常运转和延长使
用寿命。
液压阀
液压阀是液压传动系统中的控制元件,它的作用 是控制液压系统中液体的流动方向、压力和流量 等参数,以满足工作机构对运动状态和力的控制 要求。
液压阀的性能参数包括通径、额定压力、流量等 ,这些参数的选择和使用对于整个液压系统的性 能和稳定性也有着至关重要的影响。
液压缸
01
02
03
04
液压缸是液压传动系统中的 执行元件,它的作用是将液 体的压力能转换成机械能, 驱动工作机构实现往复运动
或转矩输出。
液压缸的种类也很多,常见 的有活塞缸、柱塞缸、摆动 缸等,它们的工作原理和结 构也有所不同,但都能实现 将液体的压力能转换成机械
能的目的。
液压缸的性能参数包括推力 、速度、行程等,这些参数 的选择和使用对于整个液压 系统的性能和稳定性也有着
液压油的种类也很多,常见 的有矿物油型、乳化型、合 成型等,它们的工作原理和 结构也有所不同,但都能实 现传递能量、润滑、冷却和 防锈的目的。
液压油的性能参数包括粘度 、闪点、凝固点等,这些参 数的选择和使用对于整个液 压系统的性能和稳定性也有 着至关重要的影响。
在使用液压油时,需要注意 其维护和保养,定期检查其 工作状态和性能参数,以保 证其正常运转和延长使用寿 命。同时还需要注意液压油 的清洁度,防止杂质的混入 和污染。
液压与气压传动课件
目 录
• 液压与气压传动概述 • 液压传动系统 • 气压传动系统 • 液压与气压传动系统的设计与维护 • 液压与气压传动系统的应用实例
01
液压与气压传动概述
定义与特点
在使用液压缸时,同样需要 注意其维护和保养,定期检 查其工作状态和性能参数, 以保证其正常运转和延长使
用寿命。
液压阀
液压阀是液压传动系统中的控制元件,它的作用 是控制液压系统中液体的流动方向、压力和流量 等参数,以满足工作机构对运动状态和力的控制 要求。
液压阀的性能参数包括通径、额定压力、流量等 ,这些参数的选择和使用对于整个液压系统的性 能和稳定性也有着至关重要的影响。
液压缸
01
02
03
04
液压缸是液压传动系统中的 执行元件,它的作用是将液 体的压力能转换成机械能, 驱动工作机构实现往复运动
或转矩输出。
液压缸的种类也很多,常见 的有活塞缸、柱塞缸、摆动 缸等,它们的工作原理和结 构也有所不同,但都能实现 将液体的压力能转换成机械
能的目的。
液压缸的性能参数包括推力 、速度、行程等,这些参数 的选择和使用对于整个液压 系统的性能和稳定性也有着
液压油的种类也很多,常见 的有矿物油型、乳化型、合 成型等,它们的工作原理和 结构也有所不同,但都能实 现传递能量、润滑、冷却和 防锈的目的。
液压油的性能参数包括粘度 、闪点、凝固点等,这些参 数的选择和使用对于整个液 压系统的性能和稳定性也有 着至关重要的影响。
在使用液压油时,需要注意 其维护和保养,定期检查其 工作状态和性能参数,以保 证其正常运转和延长使用寿 命。同时还需要注意液压油 的清洁度,防止杂质的混入 和污染。
液压与气压传动课件
目 录
• 液压与气压传动概述 • 液压传动系统 • 气压传动系统 • 液压与气压传动系统的设计与维护 • 液压与气压传动系统的应用实例
01
液压与气压传动概述
定义与特点
《液压与气压传动教学课件》课件
液压传动系统
探究液压系统的组成、工作 过程以及在工业机械中的应 用与发展。
Hale Waihona Puke 气压传动1 气压传动的基本概念
与原理
解释气压传动的定义、基 本原理以及适用的气体介 质选择。
2 气压元件
介绍气压泵、气压阀、气 压缸和气压马达等常见的 气压元件。
3 气压传动系统
讨论气压系统的组成、工 作过程以及在工业机械中 的应用与发展。
液压与气压传动的比较与应用
两种传动方式的比较
比较液压传动和气压传动的特 点、优势和劣势,帮助选择最 合适的传动方式。
液压与气压传动在工 业机械中的应用
探讨液压传动和气压传动在工 业机械领域的广泛应用和实际 案例。
液压与气压传动的未 来前景
展望液压传动和气压传动的未 来发展趋势,探索新技术和创 新。
《液压与气压传动教学课件》 课件
液压与气压传动是工程中常见的动力传动方式。本课件将深入介绍液压传动 和气压传动的基本概念、原理以及在工业机械中的应用。
液压传动
液压传动的基本概念与 原理
了解液压传动的定义、基本 原理及合适的液体介质选择。
液压元件
介绍液压泵、液压阀、液压 缸和液压马达等常用的液压 元件。
液压与气压传动课件-PPT
2、实际流体的伯努利方程:
由于实际流体具有粘性,流动时必然产生内摩擦力且 造成能量的损失,使总能量沿流体的流向逐渐减小, 而不再是一个常数;另一方面由于液体在管道过流截 面上的速度分布并不均匀,在计算中用的是平均流速, 必然会产生误差,为了修正这一误差引入了动能修正
系数α 。
所以,实际的伯努利方程应为
•由此可知动力粘度μ :是指它在单位速度梯 度下流动时单位面积上产生的内摩擦力。
动力粘度μ的单位:
CGS制中常用 P(泊) 1cP(厘泊)=10-2 P (泊)
SI单位: Pa·s(帕·秒) 1 Pa·s =1 N·s/m2
换算关系: 1 Pa·s =10 P =103 cP
(2) 运动粘度ν :
第一节 液压油液
在液压系统中,最常用的工作介质是 液压油,液压油是传递信号和能量的工作 介质。同时,还起到润滑,冷却和防锈等 方面的作用。液压系统能否可靠和有效地 工作,在很大程度上取决于液压油。
一、液压油液的性质
(一)密度和重度: 密度ρ:单位 Kg/m3
对匀质液体:单位体积内所含的质量。 ρ = m/V
1)静止液体内某点处的压力由两部分组成:一部分是液体
表面上的压力p0,另一部分是ρg与该点离液面深度h的
乘积。
2)静止液体内的压力沿液深呈直线规律分布。
3)离液面深度相同处各点的压力都相等,压力相等的点组 成的面叫等压面。
同一种液体于连通器内
空气 水
连通但不是同一种液体
汞
水
(二)压力的表示法及单位:
1bar=105N/m2
例1:已知ρ=900kg/m3 , F=1000N,
A=1 ×10-3 m2 , 求h=0.5m处的静压力p=?
《液压与气压传动教学课件》课件
能有着重要影响。
液压马达
液压马达是液压系统中的执行元件,它的主要作用是将液体的压力能转换成机械能 ,驱动负载运动。
液压马达的种类也很多,常见的有齿轮马达、叶片马达、柱塞马达和螺杆马达等。
液压马达的性能参数包括排量、扭矩、转速和效率等,这些参数的选择和使用同样 对整个液压系统的性能有着重要影响。
液压缸
气压传动
在轻载、短距离、低成本场合有广泛应用,如自动化生产线上的气动夹具、气 动门等。
02
液压系统元件
液压泵
液压泵是液压系统中的重要元件 ,它的主要作用是将原动机的机 械能转换成液体的压力能,为整
个液压系统提供动力。
液压泵的种类繁多,常见的有齿 轮泵、叶片泵、柱塞泵和螺杆泵
等。
液压泵的性能参数包括排量、压 力、功率和效率等,这些参数的 选择和使用对整个液压系统的性
液压与气压传动基本原理
介绍液压与气压传动的定义、工作原理和应用领域。
液压与气压元件
详细介绍各种液压与气压元件,如泵、阀、缸等的工作原理和特点 。
系统设计与应用
通过案例分析,讲解液压与气压系统的设计流程、元件选型及实际 应用。
在线学习平台
课程学习
提供完整的《液压与气压传动教学课件》在线学习资源,方便学 生随时随地学习。
工作原理
液压传动
利用液压油作为工作介质,通过泵、 阀等元件控制液体的压力和流向,实 现动力传递和运动控制。
气压传动
利用压缩空气作为工作介质,通过气 瓶、阀等元件控制气体的压力和流量 ,实现动力传递和运动控制。
应用领域
液压传动
广泛应用于工程机械、农业机械、汽车工业等领域,如挖掘机、推土机、起重 机的升降系统等。
互动交流
液压马达
液压马达是液压系统中的执行元件,它的主要作用是将液体的压力能转换成机械能 ,驱动负载运动。
液压马达的种类也很多,常见的有齿轮马达、叶片马达、柱塞马达和螺杆马达等。
液压马达的性能参数包括排量、扭矩、转速和效率等,这些参数的选择和使用同样 对整个液压系统的性能有着重要影响。
液压缸
气压传动
在轻载、短距离、低成本场合有广泛应用,如自动化生产线上的气动夹具、气 动门等。
02
液压系统元件
液压泵
液压泵是液压系统中的重要元件 ,它的主要作用是将原动机的机 械能转换成液体的压力能,为整
个液压系统提供动力。
液压泵的种类繁多,常见的有齿 轮泵、叶片泵、柱塞泵和螺杆泵
等。
液压泵的性能参数包括排量、压 力、功率和效率等,这些参数的 选择和使用对整个液压系统的性
液压与气压传动基本原理
介绍液压与气压传动的定义、工作原理和应用领域。
液压与气压元件
详细介绍各种液压与气压元件,如泵、阀、缸等的工作原理和特点 。
系统设计与应用
通过案例分析,讲解液压与气压系统的设计流程、元件选型及实际 应用。
在线学习平台
课程学习
提供完整的《液压与气压传动教学课件》在线学习资源,方便学 生随时随地学习。
工作原理
液压传动
利用液压油作为工作介质,通过泵、 阀等元件控制液体的压力和流向,实 现动力传递和运动控制。
气压传动
利用压缩空气作为工作介质,通过气 瓶、阀等元件控制气体的压力和流量 ,实现动力传递和运动控制。
应用领域
液压传动
广泛应用于工程机械、农业机械、汽车工业等领域,如挖掘机、推土机、起重 机的升降系统等。
互动交流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高等教育“十一五”国家级重点教材 普通高等工科教育机电类规划教材
液压与气压传动(第4版)
左健民 主编
湖北工业大学机械电子工程系
液压传动与气压传动
(杨曙东 何存兴主编)
(第三版)
课件ห้องสมุดไป่ตู้制:
湖北工业大学 陈水胜 李奕
前言
一、课程的性质和任务 二、课程的基本要求 三、课程内容(理论教学+实验教学=56学时) 四、教学大纲执行说明 五、学时分配 六、教材及参考书
3.功率关系
由式(0-1)和式(0-3)可得 F1v1= Wv2
(0-6)
式(0-6)左端为输入功率,右端为输出功率,这说明在不计损失的情况 下输入功率等于输出功率,由式(0-6)还可得出 P=pA1v1=pA2v2=pq (0-7) 由式(0-7)可以看出,液压与气压传动中的功率P可以用压力p和流量q 的乘积来表示,压力p和流量q式流体传动中最基本、最重要的两个参数, 它们相当于机械传动中的力和速度,它们的乘积即为功率。 从以上分析可知,液压传动和气压传动是以流体的压力能来传递动 力的。
二.液压与气压传动的工作原理
液压与气压传动的基本工 作原理是相似的,现以图 0-1 所示的液压千斤顶来简述液压 传动的工作原理。由图 0-1 a 可知,大缸体 9和大活塞 8组 成举升液压缸 。杠杆手柄 1 、 小缸体 2 、小活塞 3 、单向阀 4 和 7 组成手动液压泵。如提 起手柄使小活塞向上移动,小 活塞下端油腔容积增大,形成 局部真空,这时单向阀 4 打开 通过吸油管 5从油箱 12中吸油; 用力压下手柄 ,小活塞下移 , 小活塞下腔压力升高,单向阀4 关闭,单向阀7打开,下腔的油 液经管道6输入大缸体9的下腔, 迫使大活塞 8向上移动,顶起重 物。再次提起手柄吸油时,举升缸下腔的压力油将力图倒流入手动泵内,但此时单向阀 7 自动关闭,使油液不 能倒流,从而 保证了重物不会自行下落 。不断地往复扳动手柄 ,就能不断地把 油液压入举升缸下腔,使重物 逐渐地升起。如果打开截止阀 11,举升缸下腔的油液通过管道 10 、阀 11流回油箱,大活塞在重物和自重作用 下向下移动,回到原始位置。
以看出,被小活塞压出的油液的体积必然等于大活塞向上升起后大缸扩大的 体积。即 A1h1=A2h2 或 h2/h1=A1/A2 (0-2)
从式(0-2)可知,两活塞的位移和两活塞的面积成反比, 将A1h1 =A2h2 两端同除以活塞移动的时间t得 A1h1/t=A2h2/t 即 v2/v1=A1/A2 (0-3)
一.液压与气压传动的研究对象
液压与气压传动是研究以有压流体( 压力油或压缩空气 )为能源介 质,来实现各种机械的传动和自动控制的学科。液压与气压传动实现传动 和控制的方法是基本相同的,它们都是利用各种元件组成所需要的各种控 制回路,再由若干回路有机组合成能完成一定控制功能的传动系统来进行 能量的传递、转换与控制。 液压传动所用的工作介质为液压油或其它合成液体,气压传动所用的 工作介质为空气,由于这两种流体的性质不同,所以液压传动和气压传动 又各有其特点。液压传动传递动力大,运动平稳,但由于液体粘性大,在 流动过程中阻力损失大,因而不宜作远距离传动和控制;而气压传动由于 空气的可压缩性大,且工作压力低( 通常在 1.0MPa以下 ),所以传递动 力不大,运动也不如液压传动平稳,但空气粘性小,传递过程中阻力小、 速度快、反应灵敏,因而气压传动能用于远距离的传动和控制。
液压传动的工作原理
图0-1b为液压千斤顶的简化模型,据此可分析两活塞之间的力比例关系、 运动关系和功率关系。
1.力比例关系
当大活塞上有重物负载 W 时, 大活塞下腔的油液就将产生一定的 压力 p ,p = W/A2 。根据帕斯卡原 理“在密闭容腔内,施加于静止液体上的压力将以等值同时传到液压各点”。 因而要顶起大活塞及其重物负载W,在小活塞下腔就必须要产生一个等值的 压力p,也就是说小活塞上必须施加力F1,F1=pA1,因而有 p =F1/A1=W/A2 或 W/F1=A2/A1 (0-1)
总目录
绪论 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
流体力学基础 液压动力元件 液压执行元件 液压控制元件 液压辅助元件 液压基本回路 典型液压传动系统 液压伺服和电液比例控制技术 液压系统的设计与计算
绪 论
一.液压与气压传动的研究对象 二.液压与气压传动的工作原理 三.液压与气压传动系统的组成 四.液压与气压传动的优缺点 五.液压与气压传动的应用及发展
三.液压与气压传动系统的组成
左图( 动画 )所示为机床工作台液压 系统的工作原理图 ( 慢速左移 )。 活塞的移动速度 由节流阀 来调节。节 流阀口开大 ,进入液压缸的油液增多,活 塞的移动速度增大 ;节流阀口关小时,进 入液压缸的油液减小 ,活塞的移动速度减小 。 液压泵输出的多余油液需经溢流阀和 回油管排回油箱 ,这只有在压力支管中的 油液压力对 溢流阀钢球的作用力等于或略 大于溢流阀中弹簧的预紧力时 ,油液才能 顶开溢流阀中的钢球流回油箱。 为克服活塞所受到的各种阻力 ,液压 缸必须产生一个足够大的推力 ,这个推力 是由液压缸中的油液压力产生的 。要克服 的阻力越大 ,液压缸中的油液压力越高; 反之压力就越低。
式中v1 、 v2分别为小活塞和大活塞的运动速度。
从式(0-3)可以看出,活塞的运动速度和活塞的作用面积成反比。 Ah/t的物理意义是单位时间内液体流过截面积为A的某一截面的体积,称 为流量q,即 q = Av 因此, A1v1=A2v2 (0-4) 如果已知进入缸体的流量q,则活塞的运动速度为 v=q/A (0-5) 调节进入缸体的流量 q,即可调节活塞的运动速度v,这就是液压与 气压传动能实现无级调速的基本原理。从式( 0-5 )可得到另一个重要 的基本概念。即活塞的运动速度取决于进入液压(气压)缸(马达)的 流量,而与流体压力大小无关。
由 式(0-1)可知,当负载 W 增大时,流体工作压力p也要随之增大, 亦即 F1 要随之增大;反之,若负载W很小,流体压力就很低,F1 也就很小。 由此建立了一个很重要的基本概念,即在液压和气压传动中工作压力取决于 负载,而与流入的流体多少无关。
2.运动关系
如果不考虑液体的可压缩性、漏损和缸体、油管的变形,从图0-1b可
液压与气压传动(第4版)
左健民 主编
湖北工业大学机械电子工程系
液压传动与气压传动
(杨曙东 何存兴主编)
(第三版)
课件ห้องสมุดไป่ตู้制:
湖北工业大学 陈水胜 李奕
前言
一、课程的性质和任务 二、课程的基本要求 三、课程内容(理论教学+实验教学=56学时) 四、教学大纲执行说明 五、学时分配 六、教材及参考书
3.功率关系
由式(0-1)和式(0-3)可得 F1v1= Wv2
(0-6)
式(0-6)左端为输入功率,右端为输出功率,这说明在不计损失的情况 下输入功率等于输出功率,由式(0-6)还可得出 P=pA1v1=pA2v2=pq (0-7) 由式(0-7)可以看出,液压与气压传动中的功率P可以用压力p和流量q 的乘积来表示,压力p和流量q式流体传动中最基本、最重要的两个参数, 它们相当于机械传动中的力和速度,它们的乘积即为功率。 从以上分析可知,液压传动和气压传动是以流体的压力能来传递动 力的。
二.液压与气压传动的工作原理
液压与气压传动的基本工 作原理是相似的,现以图 0-1 所示的液压千斤顶来简述液压 传动的工作原理。由图 0-1 a 可知,大缸体 9和大活塞 8组 成举升液压缸 。杠杆手柄 1 、 小缸体 2 、小活塞 3 、单向阀 4 和 7 组成手动液压泵。如提 起手柄使小活塞向上移动,小 活塞下端油腔容积增大,形成 局部真空,这时单向阀 4 打开 通过吸油管 5从油箱 12中吸油; 用力压下手柄 ,小活塞下移 , 小活塞下腔压力升高,单向阀4 关闭,单向阀7打开,下腔的油 液经管道6输入大缸体9的下腔, 迫使大活塞 8向上移动,顶起重 物。再次提起手柄吸油时,举升缸下腔的压力油将力图倒流入手动泵内,但此时单向阀 7 自动关闭,使油液不 能倒流,从而 保证了重物不会自行下落 。不断地往复扳动手柄 ,就能不断地把 油液压入举升缸下腔,使重物 逐渐地升起。如果打开截止阀 11,举升缸下腔的油液通过管道 10 、阀 11流回油箱,大活塞在重物和自重作用 下向下移动,回到原始位置。
以看出,被小活塞压出的油液的体积必然等于大活塞向上升起后大缸扩大的 体积。即 A1h1=A2h2 或 h2/h1=A1/A2 (0-2)
从式(0-2)可知,两活塞的位移和两活塞的面积成反比, 将A1h1 =A2h2 两端同除以活塞移动的时间t得 A1h1/t=A2h2/t 即 v2/v1=A1/A2 (0-3)
一.液压与气压传动的研究对象
液压与气压传动是研究以有压流体( 压力油或压缩空气 )为能源介 质,来实现各种机械的传动和自动控制的学科。液压与气压传动实现传动 和控制的方法是基本相同的,它们都是利用各种元件组成所需要的各种控 制回路,再由若干回路有机组合成能完成一定控制功能的传动系统来进行 能量的传递、转换与控制。 液压传动所用的工作介质为液压油或其它合成液体,气压传动所用的 工作介质为空气,由于这两种流体的性质不同,所以液压传动和气压传动 又各有其特点。液压传动传递动力大,运动平稳,但由于液体粘性大,在 流动过程中阻力损失大,因而不宜作远距离传动和控制;而气压传动由于 空气的可压缩性大,且工作压力低( 通常在 1.0MPa以下 ),所以传递动 力不大,运动也不如液压传动平稳,但空气粘性小,传递过程中阻力小、 速度快、反应灵敏,因而气压传动能用于远距离的传动和控制。
液压传动的工作原理
图0-1b为液压千斤顶的简化模型,据此可分析两活塞之间的力比例关系、 运动关系和功率关系。
1.力比例关系
当大活塞上有重物负载 W 时, 大活塞下腔的油液就将产生一定的 压力 p ,p = W/A2 。根据帕斯卡原 理“在密闭容腔内,施加于静止液体上的压力将以等值同时传到液压各点”。 因而要顶起大活塞及其重物负载W,在小活塞下腔就必须要产生一个等值的 压力p,也就是说小活塞上必须施加力F1,F1=pA1,因而有 p =F1/A1=W/A2 或 W/F1=A2/A1 (0-1)
总目录
绪论 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
流体力学基础 液压动力元件 液压执行元件 液压控制元件 液压辅助元件 液压基本回路 典型液压传动系统 液压伺服和电液比例控制技术 液压系统的设计与计算
绪 论
一.液压与气压传动的研究对象 二.液压与气压传动的工作原理 三.液压与气压传动系统的组成 四.液压与气压传动的优缺点 五.液压与气压传动的应用及发展
三.液压与气压传动系统的组成
左图( 动画 )所示为机床工作台液压 系统的工作原理图 ( 慢速左移 )。 活塞的移动速度 由节流阀 来调节。节 流阀口开大 ,进入液压缸的油液增多,活 塞的移动速度增大 ;节流阀口关小时,进 入液压缸的油液减小 ,活塞的移动速度减小 。 液压泵输出的多余油液需经溢流阀和 回油管排回油箱 ,这只有在压力支管中的 油液压力对 溢流阀钢球的作用力等于或略 大于溢流阀中弹簧的预紧力时 ,油液才能 顶开溢流阀中的钢球流回油箱。 为克服活塞所受到的各种阻力 ,液压 缸必须产生一个足够大的推力 ,这个推力 是由液压缸中的油液压力产生的 。要克服 的阻力越大 ,液压缸中的油液压力越高; 反之压力就越低。
式中v1 、 v2分别为小活塞和大活塞的运动速度。
从式(0-3)可以看出,活塞的运动速度和活塞的作用面积成反比。 Ah/t的物理意义是单位时间内液体流过截面积为A的某一截面的体积,称 为流量q,即 q = Av 因此, A1v1=A2v2 (0-4) 如果已知进入缸体的流量q,则活塞的运动速度为 v=q/A (0-5) 调节进入缸体的流量 q,即可调节活塞的运动速度v,这就是液压与 气压传动能实现无级调速的基本原理。从式( 0-5 )可得到另一个重要 的基本概念。即活塞的运动速度取决于进入液压(气压)缸(马达)的 流量,而与流体压力大小无关。
由 式(0-1)可知,当负载 W 增大时,流体工作压力p也要随之增大, 亦即 F1 要随之增大;反之,若负载W很小,流体压力就很低,F1 也就很小。 由此建立了一个很重要的基本概念,即在液压和气压传动中工作压力取决于 负载,而与流入的流体多少无关。
2.运动关系
如果不考虑液体的可压缩性、漏损和缸体、油管的变形,从图0-1b可