高中数学立体几何判定方法汇总

合集下载

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈lBAlBlA,,,①用来验证直线在平面内;②用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)llP∈=⋂⇒⋂∈P且βαβα①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面确定一个平面不共线CBACBA,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这条直线外的一点,有且只有一个平面αααα⊂∈⇒∉aAA,使,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个βαβα∥⇒⎭⎬⎫⊥'⊥'OOOO平面垂直于同一条直线,那么这两个平面平行。

立体几何所有的定理大总结(绝对全)

立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。

2.画法:借助辅助平⾯。

1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。

2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。

设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。

1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。

2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。

(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。

(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。

(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。

(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。

1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。

2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

常考定理总结(八大定理)

常考定理总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键..点:在需要证明的两个平面中找线面垂直..................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

立体几何基本方法总结

立体几何基本方法总结

1、建系写点坐标 2、求平面内任一点与已知点 连线的方向和平面法向量 3、代入公式求点面距 公式: d
| an | |n|
其中: a 已知点与平面内一点 连线的方向向量, n 为平面法 向量。
VP-ABC =VA-PBC =VB-APC =VC-APB
从而有:
S△ABC·d=S△PBC·hA=……. (S△ABC 、S△PBC 、hA 易求)
面法向量 几何法: 1、认准两面和一棱, 2、取点找棱两垂线, 3、注意分别在两面; 4、证两个线线垂直, 5、即可定出平面角, 6、之后求角得结论。 1、建系写点和相关向量坐标 2、求两平面的法向量 3、代入公式求角 4、根据图形判断是锐二面角还是 钝二面角,从而取值。 公式:
| cos || cos a, n |
符号语言
面面垂直
图形语言
符号语言
1、 证明其中一个平面 内的一条直线垂直于 另一个平面(线面垂 直) 2、 列出直线含于平面 的条件 3、 得结论 (面面垂直)
线线垂直
1、勾股定理 2、线面垂直定义 3、 三垂线定理及逆定 理(
用三垂线证明线线垂 直的书写要点: 1、证明线面垂直 2、 指出斜线面内射影 3、 证明平面内的直线 和斜线垂直或和射影 垂直 4、 说明直线在平面内 5、得结论
公式: d
| AB n | |n|
其中:A、B 分别是两条异面 直线上得点, n 为与两直线都 垂直的向量(及公垂线的方 向向量)
sin | cos a, n |
| an | | a || n |
其中:a 为直线方向向量,n 为平 范围: 二面角
二面角平面角的作法: ①直接法: (略) ②三垂线法:如图,作 PH⊥β, PE ⊥ l 连 EH, 由三 垂线定理逆定理知 EH ⊥ l ,故∠ PEH 为二面角的平面角;或作 PH⊥β过 H 作 HE⊥l,连 PE,由 三垂线定理知,PE⊥l,故∠PEH

高中数学立体几何判定定理与性质.docx

高中数学立体几何判定定理与性质.docx

高中立体几何判定定理及性质一、公理及其推论文字语言符号语言图像语言公理 1A l ,B l , A, B如果一条直线上的两l点在一个平面内,那么这条直线上所有的点都在这个平面内。

公理 2作用①用来验证直线在平面内;②用来说明平面是无限延展的如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)公理 3经过不在同一条直线上的三点,有且只有一个平面推论1经过一条直线和这条直线外的一点,有且只有一个平面推论 2经过两条相交直线,有且只有一个平面推论 3经过两条平行直线,有且只有一个平面公理 4 (平行公理)平行于同一条直线的两条直线平行Pl 且 P lA, B, C 不共线A, B,C 确定一个平面A有且只有一个平面,使 A, aa b P有且只有一个平面,使 a,ba ∥ b有且只有一个平面,使 a,ba ∥ ba ∥ cb ∥c ①用来证明两个平面是相交关系;②用来证明多点共线,多线共点。

用来证明多点共面,多线共面用来证明线线平行二、平行关系文字语言(1)公理 4 (平行公理)平行于同一条直线的两条直线平行(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行 .符号语言图像语言作用a ∥ ba ∥ cb ∥ ca ∥ ba a ∥bb∥b a ∥ baa ∥b ∥a b O∥ab(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

OOOO∥(6)面面平行的性质定理如果两个∥a a ∥ b平行平面同时和第三b个平面相交 ,那么它们的交线平行。

( 7)面面平行的性∥质如果两个平面平行 , a ∥那么其中一个平面内a的直线平行于另一个平面。

高中数学立体几何判定定理及性质

高中数学立体几何判定定理及性质

高中立体几何判定定理及性质一、公理及其推论文字语言 符号语言图像语言作用公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

ααα⊂⇒∈∈∈∈l B A l B l A ,,,①用来验证直线在平面内; ② 用来说明平面是无限延展的公理2如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)ll P ∈=⋂⇒⋂∈P 且βαβα① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3经过不在同一条直线上的三点,有且只有一个平面 确定一个平面不共线C B A C B A ,,,,⇒用来证明多点共面,多线共面推论1经过一条直线和这αααα⊂∈⇒∉a A A ,使,有且只有一个平面条直线外的一点,有且只有一个平面推论2经过两条相交直线,有且只有一个平面ααα⊂⊂⇒=⋂baPba,使,有且只有一个平面推论3经过两条平行直线,有且只有一个平面ααα⊂⊂⇒baba,使,有且只有一个平面∥公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫用来证明线线平行二、平行关系文字语言符号语言图像语言作用(1)公理4 (平行公理)平行于同一条直线的两条直线平行cacbba∥∥∥⇒⎭⎬⎫(2)线面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那ααα∥∥ababa⇒⎪⎭⎪⎬⎫⊂⊄么这条直线和这个平面平行。

(3)线面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

baabb∥∥⇒⎪⎭⎪⎬⎫⊂=⋂ββαβ(4)面面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.βαααββ∥∥∥⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⊂⊂=⋂baObaba(5)面面平行的判定如果两个平面垂直于同一条直线,那么这两个平面平行。

立体几何的八个判定定理

立体几何的八个判定定理

立体几何的八个判定定理立体几何的八个判定定理是指由英国数学家约翰·威尔逊(John Wallis)在17th century所提出的一套定理。

其中包括:(1)贝瑟尔定理:任意一个平面三角形的内角之和等于180度。

(2)杨氏定理:任意一个对角相交的多边形,其内部角之和等于其外部角之和。

(3)特斯克定理:在同样边上的三个面有关的角相加等于180度。

(4)柯尔定理:在同样边上的四个面有关的角相加等于360度。

(5)高斯定理:任意一个多面体的角之和等于360度乘以面的数量。

(6)伯尔定理:任意一个多边形的角之和大于360度。

(7)双旋定理:任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。

(8)欧几里得定理:任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。

贝瑟尔定理是最重要的立体几何判定定理,表明任意一个平面三角形的三个内角之和都等于180度。

这个定理是用来表示平面三角形的构成的,而这个定理也被用来表示一个多边形的构成。

杨氏定理是贝瑟尔定理的推广,即任意一个对角相交的多边形,其内部角之和等于其外部角之和。

特斯克定理是杨氏定理的一个特殊情况,表示在同样边上的三个面有关的角相加等于180度。

柯尔定理也是杨氏定理的一个特殊情况,表示在同样边上的四个面有关的角相加等于360度。

高斯定理是一个重要的立体几何判定定理,即任意一个多面体的角之和等于360度乘以面的数量。

这个定理与贝瑟尔定理的相似之处在于,它们都可以用来表明多面体的构成,它们都表示了一个多面体的性质。

伯尔定理是高斯定理的一个推广,表明任意一个多边形的角之和大于360度。

双旋定理是一个重要的立体几何判定定理,表明任意一个多面体的内角之和等于多边形的角之和减去多边形的边的数量。

欧几里得定理也是一个重要的立体几何判定定理,表明任意一个多面体的角之和等于多边形的角之和加上多边形的边的数量乘以180度。

总的来说,立体几何的八个判定定理是一个重要的数学工具,它们不仅可以帮助人们更好地理解多面体和多边形的构造,还可以帮助人们解决一些复杂的问题,比如求解三角形的面积,求解多面体的体积等等。

高中数学立体几何解题方法与技巧

高中数学立体几何解题方法与技巧

高中数学立体几何解题方法与技巧高中数学立体几何是数学的一个重要分支,它研究的是空间中的图形、体积、表面积以及它们之间的关系。

学好立体几何,需要掌握一些解题方法与技巧。

下面将介绍一些常用的解题方法与技巧。

一、立体几何的基本概念与性质:在学习立体几何之前,首先需要掌握一些基本概念与性质。

例如:1.空间几何图形的基本要素:点、直线、平面。

2.空间几何体的基本要素:线段、直线、面、多面体等。

3.空间几何体的性质与关系:例如四边形的内角和等于360度,平面与直线的位置关系等。

二、图形的投影与视图:解题时,往往需要在二维平面上进行推导与计算。

因此,需要了解图形的投影与视图的概念与方法。

1.图形的平面投影:例如将三维图形的投影投到一个平面上,可以简化问题的分析与计算。

2.三视图的绘制:根据题目中的给定条件,绘制三个视图,有助于理清问题的关系和结构。

三、平行与相似:平行和相似是解决立体几何问题常用的关键性质。

掌握平行线与平行面的性质,以及相似三角形的性质,对解题有很大帮助。

1.平行线及其性质:例如平行线的万能定理、内线定理、等角对内线等。

2.平行面及其性质:例如平行面的性质、平行面截平行线的性质等。

3.相似三角形及其性质:例如相似三角形的比例定理、角平分线定理、海伦公式等。

四、体积与表面积:在解体积与表面积的问题时,需要掌握各种几何体的计算公式与基本相应的性质。

1.体积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的体积公式与相关性质。

2.表面积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的表面积公式与相关性质。

五、解题的方法与技巧:1.运用三角形的相似性质:当我们遇到复杂的几何体时,可以通过寻找相似三角形来简化问题的分析。

2.运用等高线的思想:当题目中出现高度或等高的条件时,可以利用等高线的思想来求解。

3.利用平行投影和垂直投影:平行投影和垂直投影是解决立体几何问题常用的方法,可以通过不同的投影方式简化问题的分析与计算。

高中数学的归纳立体几何中的常见问题解析与解题方法

高中数学的归纳立体几何中的常见问题解析与解题方法

高中数学的归纳立体几何中的常见问题解析与解题方法立体几何作为高中数学中的一个重要分支,是学生们遇到的较为复杂和抽象的数学知识之一。

在这个领域中,归纳推理是解决问题的重要方法之一。

本文将针对高中数学中归纳立体几何的常见问题,分析其解题方法,帮助学生们更好地掌握这一知识。

一、平面几何的归纳思维在解决立体几何问题时,平面几何的归纳思维是非常重要的。

通过观察、总结和归纳,我们可以找到一些规律,从而解决问题或推导出结论。

下面,我们以立体的表面积和体积问题为例,介绍归纳思维的应用。

1. 立方体的体积问题立方体是最基础的立体之一,其体积的计算是立体几何中的一个重要问题。

我们可以通过观察立方体的结构,发现其体积与边长之间存在着一定的关系。

进而通过归纳思维,我们可以得出结论:立方体的体积等于边长的立方。

2. 圆柱的表面积问题圆柱是另一个常见的立体,其表面积的计算同样是立体几何中的重点内容。

通过观察不同半径和高度的圆柱,我们可以发现其表面积与半径和高度之间存在着一定的关系。

由此,我们可以归纳出结论:圆柱的表面积等于两个底面积和侧面积之和。

二、解体思路与技巧除了归纳思维,掌握解题的思路和技巧也是高中数学归纳立体几何的关键。

下面,我们将介绍一些解题思路和技巧,帮助学生们更好地解决立体几何中的常见问题。

1. 利用平行关系平行关系是解决立体几何问题中常用的思路之一。

通过观察立体的各个部分,我们可以找到平行的线段、平面或面对面的关系。

利用平行关系,可以得出许多有用的结论,进而解决问题。

举例来说,当我们需要计算一个立体的体积时,可以通过将其分成若干个平行的截面,然后计算每个截面的面积,并将其相加,从而求得整个立体的体积。

2. 利用相似关系相似关系也是解决立体几何问题的常用技巧之一。

当两个立体之间存在相似的关系时,我们可以利用相似关系来求解未知量。

举例来说,当我们需要求解一个复杂立体的某一部分的长度或面积时,可以先找到一个与之相似且已知部分的长度或面积,然后利用相似比例来求解未知量。

高中数学立体几何总结

高中数学立体几何总结

高中数学立体几何总结立体几何是高中数学中一个重要的内容,大致内容包括立体几何基本概念、体积、体积计算公式、侧棱、正三棱柱、正四棱锥、正八棱锷、台面等等。

(一)立体几何基本概念1、三视图:即从三个不同的视角把物体有条不紊的绘出来的文字图形,可以根据它来确定物体的三维形状。

2、几何体:是由把平面图形几何关系组合而成的任何在空间中由一致点构成的物体。

3、棱:即立体几何中各几何体的侧面所围成的线段或面称为棱,如正三棱柱的侧棱。

(二)体积1、体积的定义:体积是立体图形的面积之和,反映物体内部空间的容积大小。

2、体积的计算公式:几何体的体积可用面积的乘积公式计算,比如正三棱柱的体积的表示公式:V=ah;正四棱锥的体积的表示公式:V=1/3bh;正八棱锷的表示公式为:V=1/3πr²h。

(三)正三棱柱1、正三棱柱,是一种方形底面,面积相同的三角柱体,它有三个直角,等边的三个棱,以及一个正方形的底部。

2、侧棱:正三棱柱的侧棱可以分别表示为a,b,c三条线段,表示a=b=c,它们在同一平面且互相垂直。

3、体积计算:正三棱柱的体积可以用面积乘积公式来计算:V=ah;其中,a表示正三棱柱的侧棱,h表示高度。

(四)正四棱锥1、正四棱锥是由正方形底面、顶面和棱构成的三角锥体,它有四个直角棱,棱之间相互垂直,底面和顶面也相互垂直。

2、侧棱:正四棱锥的侧棱只有一条,用a表示,它的四条边都要等于。

(五)正八棱锷1、正八棱锷是一种八个棱组成的几何体,其四条边中有三条边为互相垂直的折线,其余五条边为圆形弧线。

2、侧棱:正八棱锷有八个侧棱,用a1,a2,a3…a8表示,但它们互相之间不相等,作用上也不是等距的。

(六)台面1、台面,又称台体,是由一个小三角形共同构成的平面图形。

当该平面图形在三维空间中展开时,可以形成一个台体,它由三个等高的并列棱构成。

2、台体体积计算:台体的体积可以由其三角面积和三边长共同确定,台体的体积公式为:V=1/3(A1+A2+A3)H;其中,A1,A2,A3表示三个三角面积,H表示高度。

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧

高考数学中立体几何的考点及解题技巧高考数学中的立体几何是相对来说比较难的一个环节,也是考生必须要掌握的内容之一。

本文将针对高考数学中立体几何的考点和解题技巧做一个详尽的论述。

1. 空间基本概念在解决空间问题时,首先需要掌握的就是空间基本概念。

包括点、线、面的概念及其相关性质。

比如平行四边形的对角线相交于点O,则线段OA、OB互相平分且相等。

2. 立体图形的投影立体图形的投影是指将三维的立体图形在某一平面上产生的影像。

在这里,我们主要讲解直线与平面的投影,并通过题目的解答来加深记忆。

3. 三视图三视图是三维立体图形的三个面正、左、俯视图。

在解决题目时,需要掌握三维图形和其三视图之间的对应关系,想象立体图形在视线方向上的不同表现,来确定视角和投影位置。

特别是在椎体、金字塔、棱锥等图形的题目中,需要考生准确细致地确定各部分的位置。

4. 空间向量空间向量是指空间中有大小和方向的量,在立体几何中经常使用,可以用于排除无关信息,简化问题。

5. 立体几何解题的思路立体几何解题的方法及思路与平面几何有些不同。

在立体几何中,有的题目需要平面几何的方法来解决;某些题目需要分解为几个简单的平面图形,再运用三角函数来解决;有些题目需要利用向量的性质,优化模型。

因此,在解答的过程中,需要先明确各部分关系,做到想象明确,思路清晰。

高考数学中立体几何的考点及解题技巧就是如此,需要同学们根据自已的掌握程度,不断深化学习。

建议同学们多进行课堂上的实际解答,熟练掌握相关理论知识。

除此之外,同学们还需要养成良好自习习惯,在课外时间多加练习,巩固学习成果。

相信在充分掌握理论知识的情况下,同学们一定可以取得优异的高考成绩。

立体几何判定方法汇总

立体几何判定方法汇总

一、四种常见几何体的平面展开图1.正方体沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6―1。

图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。

2.长方体沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。

这一展开图是六个两两彼此全等的长方形组成的,见图6―2。

图6―2只是长方体平面展开图的一种画法,还有别的画法(从略)。

3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。

它由一个长方形和两个全等的圆组成,这个长方形的长是圆柱底面圆的周长,宽是圆柱体的高。

这个长方形又叫圆柱的侧面展开图。

图6―3就是圆柱的平面展开图。

4.(直)圆锥体沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥体剪开铺平,就得到圆锥的平面展开图。

它是由一个半径为圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一个圆组成的,这个扇形又叫圆锥的侧面展开图。

具体图形见图6―4。

二、四种常见几何体表面积与体积公式1.长方体长方体的表面积=2×(a×b+b×c+c×a)长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。

2.正方体正方体的表面积=6×a2正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体圆柱体的侧面积=2πRh圆柱体的全面积=2πRh+2πR2=2πR(h+R)圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。

4.圆锥体圆锥体的侧面积=πRl圆锥体的全面积=πRl+πR2母线长与高)。

立体几何判定方法总结

立体几何判定方法总结

立体几何判定方法总结
立体几何判定方法是指从立体几何角度完成几何形状识别以及比较宽高比等图形参数。

它们主要用于几何分析及形状识别,如直线、圆弧、曲线、甚至更复杂的几何体等。

目前研究者已经掌握了多种立体几何判定方法,最常用的有:几何属性分析、拟合分
析和数字图像处理等。

一、几何属性分析
几何属性分析是依据几何体的实际属性进行立体几何判定方法的重要方法。

它以三维
坐标系、坐标变换、矩阵以及内容丰富的几何学功能而得名。

几何属性分析应用于形状识别、分级、影像变换、拟合匹配等。

二、拟合分析
拟合分析是运用曲线拟合的理论,通过几何体边界上的点位,以半径、截面积大小或
线义等属性,来进行几何形状的测试,还可以用它来定义几何体的大小位置等属性。

三、数字图像处理
数字图像处理是利用计算机获取的图像信息,学习和研究图像处理识别等功能。

以像
素数据为基础,采用像素灰度信息、多维微积分或投影、特色值等测量距离,由GPS或位
置数据,完成形状分析。

综上,立体几何判定方法有几何属性分析、拟合分析、数字图像处理等多种方法可供
使用。

主要的功能是判断几何体的外形及形状、大小、宽高比,依据具体情况具体选择以
上不同方法,灵活地应用以达到准确、高效的几何处理。

高中数学立体几何解题技巧

高中数学立体几何解题技巧

高中数学立体几何解题技巧许多高中生认为立体几何很难,但只要打好基础,立体几何将会变得很容易。

学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。

下面是整理的高中数学立体几何解题技巧,供参考。

高中数学立体几何解题技巧1.平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.点击查看:数学答题技巧及常用解题方法3.空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题

高中数学知识点总结及公式大全立体几何中的平行与垂直问题高中数学知识点总结及公式大全:立体几何中的平行与垂直问题在高中数学中,几何是一个重要的分支,而立体几何更是其中的重要内容之一。

在立体几何中,平行和垂直是我们经常遇到的问题。

本文将对高中数学中的立体几何知识点进行总结,并提供一些常用的公式。

一、平行与垂直的概念在几何中,平行和垂直是两个基本的关系。

平行指的是两条直线永远不会相交的情况,可以想象成两条铁轨永远平行。

垂直则指的是两条直线相互成直角,可以想象成两根彼此垂直的木棍。

二、平行与垂直的判定方法1. 平行关系的判定方法:(1) 同位角相等定理:如果两条直线被一组相交线段所切割,且这些相交线段的对应角相等,则这两条直线是平行的。

(2) 平行线的性质定理:如果一条直线上的两个点分别与另一条直线上的两个点相连,且相连的线段互相平行,则这两条直线是平行的。

(3) 平行线的判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行的。

2. 垂直关系的判定方法:(1) 两条直线相交且相交角为90度,则这两条直线是垂直的。

(2) 垂直线的性质定理:如果一条直线与另一条直线相互垂直,且这两条直线各自还与第三条直线相交,则第三条直线与这两条直线也是垂直的。

(3) 垂直线的判定定理:如果两条直线的斜率互为负倒数,则这两条直线是垂直的。

三、常用公式在立体几何中,我们经常使用一些公式来求解问题。

下面是一些常用的公式:1. 立方体的表面积公式:立方体的表面积等于6倍的边长平方。

2. 立方体的体积公式:立方体的体积等于边长的立方。

3. 正方体的表面积公式:正方体的表面积等于6倍的边长平方。

4. 正方体的体积公式:正方体的体积等于边长的立方。

5. 圆柱体的表面积公式:圆柱体的表面积等于2πr² + 2πrh,其中r为底面半径,h为高。

6. 圆柱体的体积公式:圆柱体的体积等于πr²h,其中r为底面半径,h为高。

立体几何判定方法汇总

立体几何判定方法汇总

立体几何判定方法汇总一、判定两线平行的方法1、平行于同一直线的两条直线互相平行2、垂直于同一平面的两条直线互相平行3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行5、在同一平面内的两条直线,可依据平面几何的定理证明二、判定线面平行的方法1、据定义:如果一条直线和一个平面没有公共点2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行3、两面平行,则其中一个平面内的直线必平行于另一个平面4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面三、判定面面平行的方法1、定义:没有公共点2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行3 垂直于同一直线的两个平面平行4、平行于同一平面的两个平面平行四、面面平行的性质1、两平行平面没有公共点2、两平面平行,则一个平面上的任一直线平行于另一平面3、两平行平面被第三个平面所截,则两交线平行4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面五、判定线面垂直的方法1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面六、判定两线垂直的方法1、 定义:成︒90角2、 直线和平面垂直,则该线与平面内任一直线垂直3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法1、 定义:两面成直二面角,则两面垂直2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质1、 二面角的平面角为︒902、 在一个平面内垂直于交线的直线必垂直于另一个平面3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面九、各种角的范围 1、异面直线所成的角的取值范围是:︒≤<︒900θ (]︒︒90,0 2、直线与平面所成的角的取值范围是:︒≤≤︒900θ []︒︒90,0 3、斜线与平面所成的角的取值范围是:︒≤<︒900θ (]︒︒90,04、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]︒︒180,0 十、三角形的心1、 内心:内切圆的圆心,角平分线的交点2、 外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点一、面积:1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧2、中截面面积:2`0ss s += 3、`21ch s =正棱锥侧 rl cl s π==21圆锥侧 4、()``21h c c s +=正棱台侧()()l r r l c c s ``21+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠6、面积比是相似比的平方,体积比是相似比的立方7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:2s i n 22αππθ⋅=⋅=l r8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角为θ,则:lc c l r r l r r `2`360`-=⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s当轴截面顶角(]︒︒∈90,0α时,αsin 212l s s ==轴截面截面最大当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=222190sin 2110、球面距离θ⋅=R l (θ用弧度表示,Rl=θ)二、体积1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2π圆柱2、sh V 31=棱锥sh h r V 31312=⋅=π圆锥3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31s s s s h +⋅+4、334R V π=球5、)3(31)3(61222h R h h r h V -=+=ππ球缺6、)(31体适用于有内切球的多面内切球半径表体r S V ⋅=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何有关概念与公式
一、判定两线平行的方法
1、平行于同一直线的两条直线互相平行
2、垂直于同一平面的两条直线互相平行
3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行
4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行
5、在同一平面内的两条直线,可依据平面几何的定理证明
二、判定线面平行的方法
1、据定义:如果一条直线和一个平面没有公共点
2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行
3、两面平行,则其中一个平面内的直线必平行于另一个平面
4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面
5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面
三、判定面面平行的方法
1、定义:没有公共点
2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行
3 垂直于同一直线的两个平面平行
4、平行于同一平面的两个平面平行
四、面面平行的性质
1、两平行平面没有公共点
2、两平面平行,则一个平面上的任一直线平行于另一平面
3、两平行平面被第三个平面所截,则两交线平行
4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面
五、判定线面垂直的方法
1、定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直
2、如果一条直线和一个平面内的两条相交线垂直,则线面垂直
3、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面
4、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
5、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面
6、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面
六、判定两线垂直的方法
1、 定义:成︒90角
2、 直线和平面垂直,则该线与平面内任一直线垂直
3、 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直
4、 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直
5、 一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法
1、 定义:两面成直二面角,则两面垂直
2、 一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质
1、 二面角的平面角为︒90
2、 在一个平面内垂直于交线的直线必垂直于另一个平面
3、 相交平面同垂直于第三个平面,则交线垂直于第三个平面
九、各种角的范围
1、异面直线所成的角的取值范围是:︒≤<︒900θ 0,2π⎛⎤
⎥⎝⎦
2、直线与平面所成的角的取值范围是:︒≤≤︒900θ 0,2π⎡⎤
⎢⎥⎣⎦
3、斜线与平面所成的角的取值范围是:︒≤<︒900θ 0,2π⎛⎤
⎥⎝⎦
4、二面角的大小用它的平面角来度量;取值范围是:︒≤<︒1800θ (]0,π 十、三角形的心 1、 内心:内切圆的圆心,角平分线的交点 2、 外心:外接圆的圆心,垂直平分线的交点 3、 重心:中线的交点 4、
垂心:高的交点
十一、棱柱及有关概念 (一) 棱柱的判断:
看面:有两个面互相平行,其余各面为四边形. 看线:每相邻两个四边形的公共边都互相平行. (二)棱柱的分类
棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.
十二、棱锥及有关概念
一)正棱锥的概念
有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥. 二)正棱锥的性质.
(1)各侧棱相等,各侧面都是全等的等腰三角形. (2)正棱锥的斜高相等.
(3)正棱锥中的几个重要直角三角形及两类角:
①正棱锥的高、侧棱和侧棱在底面上的射影(正多边形的半径)组成一个直角三角形.
②正棱锥的高、斜高和斜高在底面上的射影(正多边形的边心距)组成一个直角三角形.
③正棱锥的侧棱、斜高和正多边形边长的一半组成一个直角三角形. ④正棱锥底面内,正多边形的半径、边心距和边长的一半组成一个直角三角形.
⑤正棱锥的侧棱与底面所成的角;侧面与底面所成的角. 十三、球的有关概念
1、 半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。

球面所围成的几
何体叫做球体。

2、 以过球心的平面截球面,截面圆叫大圆。

以不经过球心的平面截球面,
截面圆叫小圆。

3、 球心和截面圆心的连线垂直于截面,由勾股定理,有:22d R r -= 4、 把地球看作一个球时,经线就是球面上从北极到南极的半个大圆。

赤道
是一个大圆,其余的纬线都是小圆。

5、 球面距离是球面上过两点的大圆在这两点之间的劣弧的长度。

十四、面积:
1、ch s =直棱柱侧 ()为直截面周长斜棱柱侧``c l c s = rh cl s π2==圆柱侧
2、中截面面积:2
`0s
s s += 3、`21ch s =正棱锥侧 rl cl s π==21
圆锥侧 4、()``21h c c s +=正棱台侧
()()l r r l c c s ``2
1
+=+=π圆台 5、预备定理ph s π2=锥球内接圆台,圆柱,圆
①24r s π=球 ②rh s π2=球带 ③)(222h r rh s +==ππ球冠
6、面积比是相似比的平方,体积比是相似比的立方
7、圆锥轴截面的顶角α和侧面展开图的圆心角θ的关系为:
2
sin 22αππθ⋅=⋅=l r
8、圆台上、下底面半径为r`、r ,母线为l,圆台侧面展开后所得的扇环圆心角
为θ,则:l
c c l r r l r r `
2`360`-=
⋅-=︒⋅-=πθ 9、圆锥中,过两母线的截面面积为s
当轴截面顶角(]︒︒∈90,0α时,αsin 21
2l s s ==轴截面截面最大
当轴截面顶角[)︒︒∈180,90α时,轴截面截面最大s l l s ≠=︒=2221
90sin 21
10、球面距离θ⋅=R l (θ用弧度表示,R
l
=θ)
十五、体积
1、l s sh V `==棱柱(s`为直截面面积) sh h r V =⋅=2
π圆柱
2、sh V 3
1
=棱锥
sh h r V 31312=⋅=π圆锥
3、`)`(31s s s s h V +⋅+=棱台 =++=)``(3122r rr r h V π圆台`)`(31
s s s s h +⋅+
4、334
R V π=球
5、)3(31
)3(61222h R h h r h V -=+=ππ球缺
6、)(3
1
体适用于有内切球的多面内切球半径表体r S V ⋅=。

相关文档
最新文档