【有理数大小比较】课件新人教版
合集下载
1.2.5有理数的大小比较 课件(共18张PPT)【新教材】人教版数学七年级上册数学
新知探究 知识点 有理数的大小比较
例 比较下列各组数的大小:
(1)5和-2;
(2)-3和-7;
(3)-(-1)和-(+2) ;
(4)-(-0.5)和|-1.5|.
(3)先化简,-(-1)=1,-(+2)=-2. 因为正数大于负数,所以1>-2,即 -(-1)>-(+2) . (4)先化简,-(-0.5)=0.5,|-1.5|=1.5. 因为0.5<1.5, 所以-(-0.5)<|-1.5|.
新知探究 知识点 有理数的大小比较
例 比较下列各组数的大小:
(1)5和-2;
(2)-3和-7;
(3)-(-1)和-(+2) ;
(4)-(-0.5)和|-1.5|.
解:(1)因为正数大于负数,所以5>-2.
(2)先求绝对值,|-3|=3,|-7|=7.
因为3<7,
即|-3|<|-7|,
所以-3>-7.
4
高
3
2
1
0
-1
-2
-3
低
-4 -5
新知探究 知识点 有理数的大小比较 ➢ 依次把这些数表示在水平的数轴上,表示它们的各点的顺序
是怎样的? -4,< -3 <,-2 <,-1 <, 0 <,1 ,< 2.
-4 -3 -2 -1 0 1 2 3 4 发现表示它们的各点的顺序是从左到右的.
在水平的数轴上表示有理数,数学中规定:它们从左到右 的顺序,就是从小到大的顺序,即左边的数小于右边的数.
所以-3.5<-2<-1.5<0<2< 313 <3.5, 即-3.5<-|-2|< -(+1.5) < |0| < -(-2) < 313<|-3.5|.
人教版七年级数学上册1.2.4《有理数比较大小》课件(共21张PPT)
1.2.4 绝对值
第2课时 有理数的大小比较 R·七年级上册
新课导入
未来一周天气预 报图,你能将这一周 的温度按从低到高的 顺序排列吗?
• 学习目标: 1.进一步理解绝对值的意义. 2.会进行有理数的大小比较.
• 学习重、难点: 重点:进一步理解绝对值的意义;掌握有理数的 大小比较方法. 难点:两个负数的大小比较方法.
基础巩固
随堂演练
1. 下面四个不等式中,正确的是( D )
A. |-2|>|-3|
B. | 2 |>| 3 |
C. 2>|-3|
D. |-2|<|-3|
综合应用
2. (1)-1与0之间还有负数吗? 1 与0之
间呢?如有,请举例. 有, 1
2 有, 1
(2)-3与-1之间有负2 整数吗?-2与2之4
-(-1)> -(+2).
(2)这是两个负数比较大小,先求它们 的绝对值.
8
= 8,
3
=
3 =
9
.
21 21 7 7 21
因为
8< 9,
21 21
即
8 <3,
21 7
所以
8 < 3.
21 7
(3)先化简,-(-0.3)=0.3, 1 1 . 33
因为
0.3< 1 ,
3
所以
-(-0.3)<1 .
按照这个顺序排列的温度,在温度计上所对 应的点是从下到上的;按照这个顺序把这些数表 示在数轴上,表示它们的各点的顺序应该是从左 到右的.
-4 -3 -2 -1 0 1 2
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。2021/8/102021/8/10Tuesday, August 10, 2021
第2课时 有理数的大小比较 R·七年级上册
新课导入
未来一周天气预 报图,你能将这一周 的温度按从低到高的 顺序排列吗?
• 学习目标: 1.进一步理解绝对值的意义. 2.会进行有理数的大小比较.
• 学习重、难点: 重点:进一步理解绝对值的意义;掌握有理数的 大小比较方法. 难点:两个负数的大小比较方法.
基础巩固
随堂演练
1. 下面四个不等式中,正确的是( D )
A. |-2|>|-3|
B. | 2 |>| 3 |
C. 2>|-3|
D. |-2|<|-3|
综合应用
2. (1)-1与0之间还有负数吗? 1 与0之
间呢?如有,请举例. 有, 1
2 有, 1
(2)-3与-1之间有负2 整数吗?-2与2之4
-(-1)> -(+2).
(2)这是两个负数比较大小,先求它们 的绝对值.
8
= 8,
3
=
3 =
9
.
21 21 7 7 21
因为
8< 9,
21 21
即
8 <3,
21 7
所以
8 < 3.
21 7
(3)先化简,-(-0.3)=0.3, 1 1 . 33
因为
0.3< 1 ,
3
所以
-(-0.3)<1 .
按照这个顺序排列的温度,在温度计上所对 应的点是从下到上的;按照这个顺序把这些数表 示在数轴上,表示它们的各点的顺序应该是从左 到右的.
-4 -3 -2 -1 0 1 2
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。2021/8/102021/8/10Tuesday, August 10, 2021
人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第1课时有理数的概念)
2017 √
√
√
4
3
√√
√
-4.9
√
√
√
0
√
-12 √
√
√
√
探究新知
知识点 2 有理数的分类 你能根据有理数的定义对有理数分类吗?
探究新知
有理数
整数 分数
正整数 零 负整数 正分数
负分数
探究新知
质疑探索 学了有理数的分类后,有没有一些数不是有理数呢? 探究总结
有限小数和无限循环小数都是分数,所以也是有理数. 无限不循环小数(如π)不是分数,就不是有理数.
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
第一章 有理数
1.2 有理数及其大小比较 1.2.1 有理数的概念
学习目标
1. 了解有理数的定义. 2. 会判断一个数是整数还是分数,是正数还是负数. 3. 知道有理数的两种分类方法.
探究新知
知识点 1 有理数的概念 某天毛毛看报纸,见到下面一段内容:冬季的一天,某地 的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而 同一天北京的气温为-3℃~7℃. 问题1:这里面出现的数是什么数? 6,7是正数; -10,-3是负数; 0既不是正数也不是负数.
〖数学〗有理数的大小比较课件 2024-2025学年人教版数学七年级上册
武汉5 ℃ 北京-10℃ 上海0℃ 广州10℃ 哈尔滨-20℃
问题:你能将上述五个城市的最低气温按从低到高的
顺序依次排列吗?
哈尔滨 北京
上海 武汉
广州
-20℃ < -10℃ < 0℃ < 5℃ < 10℃
新知探究
哈尔滨 北京 上海 武汉 广州
-20℃ < -10℃ < 0℃ < 5℃ < 10℃
●
24 = 24 , - 5 5 25 . 35 35 7 7 35
因为 24 25 , 35 35
所以 24 - 5 ,
35
7
所以 24 - 5 . 35 7
同号两数比较大小要 考虑它们的绝对值.
新知探究
(3) 5 和 (0.83). 6
解:先化简:
5 = 5 ,(0.83) 0.83. 66
新知探究
例2 比较下列各数的大小.
(1)-(-3)和-(+2); 异号两数比较大小
解:先化简,-(-3)=3, 要考虑它们的正负. -(+2)=-2,
因为正数大于负数,所以3>-2, 即-(-3)>-(+2).
新知探究
(2) 24 和- 5 ; 35 7
两负数相比较,绝对值大的反而小.
解:两个负数做比较,先求它们的绝对值.
第一章 有理数
1.2 有理数
1.2.5 有理数的大小比较
人教版-数学-七年级上册
学习目标
1.通过探究得出有理数大小的比较方法.【重点 】 2.能利用数轴及绝对值的知识,比较两个有理 数的大小.【难点】
新课导入
你能说出哪个城市 的最低气温最低吗?
新知探究 知识点 1 借助数轴比较有理数的大小
《有理数大小比较》课件-新人教版新
04
有理数大小比较的练习题
基础练习题
总结词:巩固基础 练习题1:-12○-5,填“>”、“<”或“=”
练习题2:比较下列每组数的大小
基础练习题
• 3.5○-4.2
基础练习题
3.5○2
3.5○-2.7
练习题3:数轴上点A表示的数为-5,若将点A向右平移3个单位到点B, 则点B表示的数是( )。
举例
比较-3和5,因为5是正整数且大于0,而-3是负整数,所以5 大于-3。
分数比较规则
分数比较规则
对于两个分数,可以先将它们化 为同分母,然后比较分子的大小 。如果分子相同,那么分母大的 分数值反而小。
举例
比较$frac{3}{4}$和$frac{2}{3}$ ,化为同分母后得到 $frac{9}{12}$和$frac{8}{12}$, 分子9大于8,所以$frac{3}{4}$大 于$frac{2}{3}$。
05
有理数大小比较的总结与反思
总结有理数大小比较的规则和方法
总结:有理数大小比较的规则和方法 主要包括数轴比较法、绝对值比较法 、特殊值比较法和差值比较法等。这 些方法各有特点,适用范围也不同, 需要根据具体情况选择合适的方法进 行比较。
VS
数轴比较法是通过将有理数标在数轴 上,然后根据数轴上的位置关系进行 比较。绝对值比较法是根据绝对值的 性质,将有理数转化为非负数进行比 较。特殊值比较法是通过选取一些特 殊的值进行比较。差值比较法是通过 计算两个数的差,然后根据差的正负 性进行比较。
THANKS
感谢观看
混合数比较规则
混合数比较规则
对于混合数(即整数和分数混合而成的数),可以先将它们化为同分母,然后 比较分子的大小。如果分子相同,那么分母大的混合数值反而小。
有理数大小比较PPT课件
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
一定要记住 啊!!
根据这个规定,由于|-6|=6,|-4|=4,因此| -6| < |-4|,在数轴上分别划划出表示-6的点B和 表示-4的点A,如下图,我们看到,点B在点A的左 边。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
请问:那个美人鱼的位 置低?
???
- 50米 - 80米
从右图中我们可以看到,红线段 的长度为50米,黄线段的长度为 80米,80米大于50米,所以美人 鱼乙的位置更低。
即|-50|=50,|-80|=80
50<80
美人鱼乙的 位置低!!
- 50米 - 80米
- 50ห้องสมุดไป่ตู้ - 80米
结论 二
两个负数,绝对值大的反而小
1.3 有理数大小的比较
我们已经知道,正数可以比较大小,例 如5>3,20>12
我们还知道,正数都大于0,负数都小于 0
那么,一个正数于一个负数能比较大小 吗?
两个负数能比较大小吗?
珠穆朗玛峰,高度比海平面高 8848米
吐鲁番盆地,高度比海平面底 155米,
若海平面的高度为零度,则它 们的高度分别如何表示?
它们两个那个高啊?
当然是珠穆朗玛峰高
珠穆朗玛峰的海拔高度可以表示为8848米 吐鲁番盆地的海拔高度可以表示为 –155米
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
一定要记住 啊!!
根据这个规定,由于|-6|=6,|-4|=4,因此| -6| < |-4|,在数轴上分别划划出表示-6的点B和 表示-4的点A,如下图,我们看到,点B在点A的左 边。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
请问:那个美人鱼的位 置低?
???
- 50米 - 80米
从右图中我们可以看到,红线段 的长度为50米,黄线段的长度为 80米,80米大于50米,所以美人 鱼乙的位置更低。
即|-50|=50,|-80|=80
50<80
美人鱼乙的 位置低!!
- 50米 - 80米
- 50ห้องสมุดไป่ตู้ - 80米
结论 二
两个负数,绝对值大的反而小
1.3 有理数大小的比较
我们已经知道,正数可以比较大小,例 如5>3,20>12
我们还知道,正数都大于0,负数都小于 0
那么,一个正数于一个负数能比较大小 吗?
两个负数能比较大小吗?
珠穆朗玛峰,高度比海平面高 8848米
吐鲁番盆地,高度比海平面底 155米,
若海平面的高度为零度,则它 们的高度分别如何表示?
它们两个那个高啊?
当然是珠穆朗玛峰高
珠穆朗玛峰的海拔高度可以表示为8848米 吐鲁番盆地的海拔高度可以表示为 –155米
1.2.5有理数的大小比较 课件-人教版(2024)数学七年级上册 (1)
典例讲解
例1 已知 a>0,b<0,且|b|<|a|, 把a, -a, b, -b四个数从小到大的顺序用“<” 号连接.
例2 比较下列各数的大小.
(1) 5 和-2
(2)-3 和 -7
(2) -(-1)和-(+2)
(3) -(-0.5)和 |-0.5|
针对练习
比较下列各数的大小. (1)-(-3)和-(+2)
(4)
−
3 5
和
−
3 4
(4)
−
3 5
>
−
3 4
(1)正数大于0,负数小于0,正数大于负数 (2)两个负数,绝对值大的反而小.
a
0
b
针对练习
1.已知有理数a,b,c在数轴上的位置如图所示,则下列关系正确的是 (D)
A.a>b>c>0 C.b>0>c>a
B.b>c>0>a D.b>0>a>c
2 用“<”或“>”填空. (1)2.4___>_____1.8;(2)-5____<____0; (3)+2_____>___-8.
D.3
2.在 0,2,-3,-12 这四个数中,最小的数是( C )
A.0
B.2
C.-3
D.-12
3.有理数a,b在数轴上表示的位置如图所示,则( C )
A.a>0 B.a>b C.a<b D.|a|<|b|
4.不小于-4的负整数有( B )
A.5个
B.4个 C.3个 D.无数个
5.下列判断,正确的是( D ) A.若a>b,则│a│>│b│ C.若a<b<0,则│a│<│b│
第一章 有理数 1.2.5 有理数的大小比较
人教版数学七年级上册《有理数大小的比较》课件
到原点的距离等于10的数有 个,它们的关系是一
对
.
这时我们就说10的绝对值是10,—10的绝对值也是10.
例如,—3.8的绝对值是3.8;17的绝对值是17;—6的绝对
值是
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对
值,记作∣a∣
讲授新课
一 借助数轴比较有理数的大小 下图表示某一天我国5个城市的最低气温.
例1 在数轴上表示数-3,-5,4,0,并比较它们的大 小,将它们按从小到大的顺序用“<”号连接.
解:-3,-5,4,0在数轴上表示如图:
●
●
●
●
-5 -4 -3 -2 -1 0 1 2 3 4 5
将它们按从小到大的顺序排列为:
-5 <-3 <0 <4
针对训练
如图,数轴上A,B,C三点表示的数分别为a,b, c,则它们的大小关系是( D ) A.a>b>c B.b>c>a C.c>a>b D.b>a>c
新人教版数学七年级(上)
1.2.5 有理数 第1课时 有理数大小的比较
学习目标
1、理解、掌握绝对值概念.体会绝对值的作用与意义
2、掌握求一个已知数的绝对值和有理数大小比较的方
法.
3、体验运用直观知识解决数学问题的成功.
重点 绝对值的概念 难点 绝对值的概念与两个负数的大小比较
课堂引入
10到原点的距离是 ,—10到原点的距离也是
武汉5 ℃ 北京-10℃ 上海0℃ 广州10℃ 哈尔滨-20℃
问题:你能将上述五个城市的最低气温按从低到
高的顺序依次排列吗?
哈尔滨 北京
上海 武汉
广州
《有理数大小比较》课件-新人教版新
3
理解有理数大小比较的几何意义
在数轴上,右边的数总比左边的数大,正数永远 大于0,负数永远小于0。
学习心得分享
通过本节课的学习,我掌握了有理数 大小比较的方法和步骤,对数轴上的 点和数的大小关系有了更深刻的理解 。
通过本节课的学习,我意识到数学知 识的连贯性和系统性,需要不断巩固 和复习前面的知识,为后续的学习打 下坚实的基础。
进阶练习题
$-frac{2}{3}$ 和 $-frac{1}{4}$ $frac{3}{4}$ 和 $2$
$-3$ 和 $-2$
进阶练习题
答案
$-frac{1}{2} < frac{1}{3}$,$- frac{1}{2}$ 在 $frac{1}{3}$ 的左侧
$-frac{2}{3} < -frac{1}{4}$,$-frac{2}{3}$ 在 $frac{1}{4}$ 的左侧
综合练习题及答案
$0 > -frac{1}{2}$,$0$ 在 $frac{1}{2}$ 的右侧
VS
$-3 < 2$,$-3$ 在 $2$ 的左侧
06
总结与回顾
本节课的重点回顾
1 2
有理数大小比较的方法
数轴比较法、绝对值比较法、特殊值比较法等。
掌握有理数大小比较的步骤
确定比较的方法、确定比较的数轴点、进行大小 比较并得出结论。
进阶练习题
$frac{3}{4} < 2$,$frac{3}{4}$ 在 $2$ 的左侧
$-3 < -2$,$-3$ 在 $-2$ 的左侧
综合练习题及答案
总结词
综合运用知识
练习三
请比较以下有理数的大小,并指 出它们在数轴上的位置关系
《有理数大小比较》课件 新人教版共20页
谢谢!
《有理数大小比较》课件 新人教版
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
61、奢侈是舒适的,否则就不是奢侈 பைடு நூலகம்——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
1.2.5 有理数的大小对比 课件 人教版数学七年级上册 (41)
在数轴上表示的两个数, 右边的数总比左边的数大.
正数大于0,负数小于0, 正数大于负数;
两个负数,绝对值大的反而小.
课后作业
1.有理数a、b在数轴上的对应点的位置如图所示,则a、b、 -a、|b|的大小关系正确的是( A )
A.|b|>a>-a>b C.a>|b|>b>-2a
B.|b|>b>a>-a D.a>|b|>-a>b
因为 3<7,
即
|-3|<|-7|,
所以
-3>-7.
(3)先化简, -(-1)=1,- (+2)=-2.
因为正数大于负数,所以1>-2,
即
-(-1)>-(+2).
(4)先化简, -(-0 .5)=0 .5,|-1.5|=1.5.
因为
0.5<1.5,
所以 -(-0.5)<|-1.5|.
随堂检测
1.若 |a| = |b|,则 a 与 b 的关系是( C )
随堂检测
4.将下列各组数按从小到大的顺序排列,并用“<”连接:
-3, +2, +5, 0, -10, 8.
.-10
. . . . . -3
0 +2 +5
8
-10 -8 -6 -4 -2 0 2 4 6 8 10
解:-10<-3<0<+2<+5<8
课堂小结
有理数比 较大小
数轴比较大小
运用数的规 律比较大小
情境引入
思考 右图给出了未来一周中
每天的最高气温和最低气温, 其中最低气温是多少?最高 气温呢?你能将这七天中每 天的最低气温按从低到高的 顺序排列吗?
最低气温-4℃
最高气温9℃
新知探究
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数大小的比较方法: 都记住了吗?
一、数轴比较法:
在数轴上表示的两个数,右边的数总比左边的
数大。
|
|
|
|
|
|
|
|
|
-5 -4 -3 -2 -1 0 1 2 3
二、直接比较法:
1、 正数都大于零,负数都小于零,
正数大于一切负数。 2、两个正数比较大小,绝对值大的数大;
两个负数比较大小,绝对值大的数反而小。
哈尔滨 北京
上海 武汉 广州
-20℃ < -10℃ < 0℃ < 5℃ < 10℃
哈尔滨 北京
上海 武汉 广州
-20℃ < -10℃ < 0℃ < 5℃ < 10℃
●
-20
越来越大
●
-10
●
●
●
0 5 10
请大家思考这五个数的大小与它们 在数轴上的位置有什么关系?
想一想
有理数大小的比较方法:
记住了吗?
☞ 不忘老朋友
请比较下列几组数的大2 _<__ 7;
⑶ 3 _<__ 4
7
9
第一章 从自然数到有理数
1.5 有理数的大小比较
☞ 说一说
下图表示某一天我国5个城市的最低气温.
武汉5 ℃ 北京-10℃ 上海0℃ 广州10℃ 哈尔滨-20℃
问:你能将上述五个城市的最低气温按从 低到高的顺序依次排列吗?
☞ 合作探究
挑战自我
(1)小明在课外书上看到一道习题: “若a表示一个有理数,请比较a与-a 的大小”,他觉得太简单了,马上就得 出了a> -a的结论,他做得对吗?
若a是正数,则a>-a;
分类讨论: 若a是负数,则a<-a;
若a是零,则a=--a。
小结 拓展
1、有理数的大小比较有两种方法: 数轴比较法和直接比较法。
●
●
●
●
-5 -4 -3 -2 -1 0 1 2 3 4 5
将它们按从小到大的顺序排列为:
-5 <-3 <0 <4 .
你会了吗?
把下列各数表示在数轴上,并按从 小到大的顺序用“ < ”号连接:
5,0,
-4
1 2
,-2,
模仿练习
思考:
(1)请完成下列图表
数据 比较大小
8 3 1<3<8<15 15 1
⑵-3 __<__+1;
⑷
-
1 2
__<_-
1 4
;
⑸ -|-3| __>__-4.5
好好想想
1、利用数轴回答: ⑴有没有最大的整数和最小的整数?
答:都没有。
⑵有没有最大的正整数和最小的正整数? 答:没有最大的正整数,最小的正整数是1。
⑶有没有最大的负整数和最小的负整数?
答:最大的负整数是-1,没有最小的负整数。
同学们 再见!
谢
谢
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
一、数轴比较法:
在数轴上表示的两个数,右边的数总比左
边的数大。 小
大
-5 -4 -3 -2 -1 0 1 2 3 4 5
有没有最大的有理数?有没有最小的有 理数?为什么?
☞ 趁热打铁
例1 在数轴上表示数-3,-5,4,0, 并比较它们的大小,将它们按从小到 大的顺序用“<”号连接。
解: -3,-5,4,0在数轴上表示如图:
☞ 灵活运用
例2 比较下列每对数的大小,并说明 理由:
⑴ 1与- 10; ⑵- 0.001与0
⑶ - 9与-11
⑷-
43与-
2 3
解:⑴1>-10(正数大于一切负数)
⑵-0.001<0(负数都小于零)
☞ 巩固知识
比较下面各对数的大小,并说明理由:
⑴
5 6
__>__
1 6
;
⑶ -1 __<__0;
2、填空:绝对值最小的有理数是 0 ;绝 对值最小的自然数是 0 ;绝对值最小的负整 数是 -1 。
3、求大于- 4并且小于3.2的所有整数。 答:大于- 4并且小于3.2的整数有:
-3,-2,-1,0,1,2,3. 4、你能写出绝对值不大于2的所有整数吗?
答:绝对值不大于2的整数有:-2,-1,0,1,2.
你发现了什么?
求绝对 比较绝对值的大小 值
|8|=8
|3|=3
1<3<8<15
|15|=15
|1|=1
正数比较大小,绝对值大的数大
数据
-7 -3 -5 -9
比较大小
-9<-7<-5<-3
求绝对 值
|-7|=7
|-3|=3
|-5|=5
|-9|=9
比较绝对值的 大小
3<5<7<9
你发现了什么?
两个负数比较大小,绝对值大的反而小。