2012高考数学试题及答案全国卷2

合集下载

2012年全国高考2卷理科数学试题及答案

2012年全国高考2卷理科数学试题及答案

2012年全国高考2卷理科数学试题及答案一.选择题:(共12个小题,每小题5分,满分60分) 1. 复数131ii-++= (A) 2+i(B) 2-i(C) 1+2i(D)1-2i2.已知集合A ={1,3,B ={1,m },A ∪B =A ,则m = (A) 0(B) 0或3(C) 1(D) 1或33.椭圆的中心在原点,焦距为4,一条准线为x = - 4,则该椭圆的方程为(A) 221612y +x =1(B) 22168y +x =1(C) 2284y +x =1(D) 22124y +x =14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB = 2,CC 1E 为CC 1的中点,则直线AC 1与平面BED 的距离为: (A) 2(B)(C)(D) 15.已知等差数列{a n }的前n 项和为S n ,a 5 = 5,S 5 =15,则数列{11n n a a +}的前100项和为(A) 100101(B)99101(C)99100(D)1011006.△ABC 中,AB 边的高为CD ,CB u u u r = a ,CA u u u r = b ,a •b = 0,| a | = 1,| b | = 2,则AD u u u r=(A)13a -13b (B)23a -23b (C)35a -35b (D)45a -45b7.已知α 为第二象限的角,sin α +cos α,则cos2α = (A)(B)(C)(D)8.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 = (A) 14(B)35(C)34(D)459.已知x = ln π,y =log 5 2,z =12e -,则(A) x < y < z(B) z < x < y(C) z < y < x(D) y < z < x10.已知函数y =x 3-3x + c 的图像与x 轴恰有两个公共点,则c =(A) -2或2 (B) -9或3 (C) -1或1 (D) -3或111.将字母a, a, b, b, c, c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同点排列方法共有(A) 12种(B) 18种(C) 24种(D) 36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE = BF =37,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A) 16 (B) 14 (C) 12 (D) 10二.填空题:(共4个小题,每小题5分,满分20分)13.若x、y满足约束条件,则z =3x- y的最小值为14.当函数y = sin x- cos x (0≤x <2π)取得最大值时,x =15.若(x +1x)n的展开式中第三项与第七项的二项式系数相等,则该展开式中21x的系数为16. 三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1= 60o,则异面直线AB1与BC1所成的角的余弦值为二.解答题:(共6个小题,满分70分)17.(本小题满分10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A - C) + cos B = 1,a = 2c,求C .18. (本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,ACP A = 2,E是PC上的一点,PE = 2EC .(Ⅰ)证明:PC⊥平面BED ;(Ⅱ)设二面角A -PB - C为90o,求PD与平面PBCx - y +1≥0 x + y -3≤0 x + 3y -3≥019. (本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换. 每次发球,胜方得1分,负方得0分. 设再甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第四次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ 表示开始第四次发球时乙的得分,求ξ 的期望.20. (本小题满分12分)设函数f (x ) = a x + cos x , x∈[0, π] .(Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x ) ≤1 + sin x,求a的取值范围.21. (本小题满分12分)已知抛物线C:y = (x +1) 2与圆M:(x-1) 2 +( y-12) 2 = r 2 (r > 0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22. (本小题满分12分)函数f (x ) = x 2 - 2x - 3 .定义数列{x n}如下:x1= 2,x n+1是过两点P(4, 5)、Q n(x n, f (x n))的直线PQ n与x轴的交点的横坐标.(Ⅰ)证明:2≤x n < x n+1<3 ;(Ⅱ)求数列{x n}的通项公式.答案1.C2.B3.C4.C5.A6.D7.A8.C9.D 10.A 11.A 12.B13. -1 14. 15. 56 16. ………………。

2012年高考理科数学试题及答案-全国卷2

2012年高考理科数学试题及答案-全国卷2

2012年高考数学试题(理) 第1页【共10页】2012年普通高等学校招生全国统一考试(新课标Ⅱ卷)理 科 数 学第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x —y ∈A },则B 中所含元素的个数为( )A 。

3B. 6C. 8D 。

102. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种B. 10种C 。

9种D 。

8种3。

下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 。

A 。

P 2,P 3B 。

P 1,P 2C 。

P 2,P 4D. P 3,P 44。

设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( )A 。

21B 。

32C.43D 。

545。

已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. —5D. —76. 如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1, a 2,…,a N ,输入A 、B ,则( ) A 。

A +B 为a 1, a 2,…,a N 的和B 。

2B A +为a 1, a 2,…,a N 的算术平均数C 。

A 和B 分别是a 1, a 2,…,a N 中最大的数和最小的数D 。

A 和B 分别是a 1, a 2,…,a N 中最小的数和最大的数 7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )2012年高考数学试题(理) 第2页【共10页】A 。

2012年(全国卷II)(含答案)高考文科数学

2012年(全国卷II)(含答案)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。

2012高考全国2卷数学理科试题及答案详解

2012高考全国2卷数学理科试题及答案详解

2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A ={1.3. },B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2BCD 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101(C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA=→,a ·b=0,|a|=1,|b|=2,则=→AD (A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β,则cos2α=(A) (B ) (C) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012高考全国2卷数学理科试题及答案详解

2012高考全国2卷数学理科试题及答案详解

2012年普通高等学校招生全国统一考试数学理科数学(全国二卷)一、选择题1、 复数131i i-++= A 2+i B 2-i C 1+2i D 1- 2i2、已知集合A ={1.3. },B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =14 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2BCD 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列1n a 1+n a 的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a CB =→,b CA =→,a ·b=0,|a|=1,|b|=2,则=→AD(A)b a 31-31(B )b a 32-32 (C)b a 53-53 (D)b a 54-54(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) (B ) (C) (8)已知F 1、F 2为双曲线C :2-x 22=y 的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012年全国Ⅱ高考数学试题(理)

2012年全国Ⅱ高考数学试题(理)

绝密*启用前2012年普通高等学校招生全国Ⅱ统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4,5A =,{}(,)|,,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有A .12种B .10种C .9种D .8种 3.下面是关于复数21z i=-+的四个命题: 1:||2p z =; 22:2p z i =; 3:p z 的共轭复数为1i +; 4:p z 的虚部为-1,其中的真命题为A .23,p pB .12,p pC .24,p pD .34,p p4.设1F ,2F 是椭圆2222:1(1)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为30°的等腰三角形,则E 的离心率为A .12B .23C .34D .455.已知数列{}n a 为等比数列,472a a +=,568a a =-,则110a a +=A .7B .5C .-5D .-76.如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,,N a a a ,输出,A B ,则A .AB +为12,,,N a a a 的和 B .2A B+为12,,,N a a a 的算术平均数 C .A 和B 分别是12,,,N a a a 中最大的数和最小的数D .A 和B 分别是12,,,N a a a 中最小的数和最大的数7.如图,风格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B两点,||AB =C 的实轴长为AB.C .4D .89.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ单调递减,则ω的取值范围是 A .15,24⎡⎤⎢⎥⎣⎦B .13,24⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .(]0,210.已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为A .B .C .D .11.已知三棱锥S ABC -的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为A.6B.6C.3D.212.设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为 A .1ln 2-Bln 2)-C .1ln 2+Dln 2)+第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知向量,a b 夹角为45°,且||1a =,|2|a b -= ||b= .14.设,x y 满足约束条件1,3,0,0,x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩则2z x y =-的取值范围为 .15.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C的对边,cos sin 0a C C b c --=. (1)求A ;(2)若2a =, △ABCb ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (1)证明:1DC BC ⊥;(2)求二面角11A BD C --的大小. 20.(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若90BFD ∠=,△ABD 的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.ABC A 1C 1 B 1D21.(本小题满分12分)已知函数()f x 满足121()(1)(0)2x f x f e f x x -'=-+. (1)求()f x 的解析式及单调区间; (2)若21()2f x x ax b ≥++,求(1)a b +的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何选讲】 如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD BC =; (2)△BCD ∽△GBD .23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知曲线1C 的参数方程是2cos ,3sin ,x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是ρ=2.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,)3π.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为1C 上任意一点,求2222||||||||PA PB PC PD +++的取值范围. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|||2|f x x a x =++-.(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()|4|f x x ≤-的解集包含[]1,2,求a 的取值范围.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.[]3,3-15.3816.1830三、解答题 17.。

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两局部,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试完毕,务必将试卷与答题卡一并上交。

第Ⅰ卷一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i +(D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m = (A )0(B )0或3 (C )1或(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的间隔 为(A )2 (B)(C)(D )1(5)已知等差数列{}n a 的前n 项与为n S ,55a =,515S =,则数列11{}n n a a +的前100项与为 (A )100101 (B )99101 (C )99100(D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos2α=(A )3-(B )9- (C )9(D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34(D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x <<(D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1(D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不一样,每列的字母也互不一样,则不同的排列方法共有(A )12种 (B )18种 (C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷一、选择题(1)复数131i i-+=+ (A)2i + (B )2i - (C)12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C)1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(D)1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101 (C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B)2233a b - (C )3355a b - (D )4455a b - (7)已知α为第二象限角,sin cos αα+=,则cos2α= (A)3- (B)9- (C)9 (D)3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B)35 (C)34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C)z y x << (D)y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C)1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考(新课标-)文科数学试卷及参考答案-2

2012年全国高考(新课标-)文科数学试卷及参考答案-2

2012年普通高等学校招生全国统一考试 (新课标文科数学试卷及参考答案)第Ⅰ卷一、选择题1.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 2.复数z =-3+i2+i的共轭复数是 ( )(A )2+i (B )2-i (C )-1+i (D )-1-i 3.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为 ( )(A )-1 (B )0 (C )12(D )14.设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角E 的离心率为( )(A )12 (B )23 (C )34 (D )455.已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值是( )(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)6.如果执行右边的程序框图,输入正整数N(N ≥2)和数a 1,a 2,…,a N ,输出A,B ,则( ) (A )A+B 为a 1,a 2,…,a N 的和(B )A +B 2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的7.如图,网格纸上小正方形的边长为1,粗线画出的何体的三视图,则此几何体的体积为( ) (A )6 (B )9 (C )12 (D )188.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( )(A )6π (B )43π (C )46π (D )63π9.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x 条相邻的对称轴,则φ=( )(A )π4 (B )π3 (C )π2 (D )3π410.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( )(A ) 2 (B )2 2 (C )4 (D )811.当0<x ≤12时,4x<log a x ,则a 的取值范围是 ( )(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) 12.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) (A )3690 (B )3660 (C )1845 (D )1830 第Ⅱ卷二.填空题13.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________14.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______ 15.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=16.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =____三、解答题17.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c = 3a sinC -c cosA (1) 求A(2) 若a =2,△ABC 的面积为3,求b ,c 18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

2012年高考数学全国卷2

2012年高考数学全国卷2

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin βcos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。

2012高考数学试题及答案全国卷2

2012高考数学试题及答案全国卷2

2012高考数学试题(全国卷Ⅱ)一.选择题:(共12个小题,每小题5分,满分60分) 1. 复数131ii-++= (A) 2+i(B) 2-i(C) 1+2i(D)1-2i2.已知集合A ={1,3,B ={1,m },A ∪B =A ,则m =(A) 0(B) 0或3(C) 1(D) 1或33.椭圆的中心在原点,焦距为4,一条准线为x = - 4,则该椭圆的方程为(A) 221612y +x =1(B) 22168y +x =1(C) 2284y +x =1(D) 22124y +x =14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB = 2,CC 1E 为CC 1的中点,则直线AC 1与平面BED 的距离为: (A) 2(B)(C)(D) 15.已知等差数列{a n }的前n 项和为S n ,a 5 = 5,S 5 =15,则数列{11n n a a +}的前100项和为(A) 100101(B)99101(C)99100(D)1011006.△ABC 中,AB 边的高为CD ,CB = a ,CA = b ,a •b = 0,| a | = 1,| b | = 2,则AD = (A)13a -13b (B)23a -23b (C)35a -35b (D)45a -45b7.已知α 为第二象限的角,sin α +cos α,则cos2α = (A)(B)(C)(D)8.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 = (A) 14(B)35(C)34(D)459.已知x = ln π,y =log 5 2,z =12e -,则(A) x < y < z(B) z < x < y(C) z < y < x(D) y < z < x10.已知函数y =x 3-3x + c 的图像与x 轴恰有两个公共点,则c = (A) -2或2(B) -9或3(C) -1或1(D) -3或111.将字母a , a , b , b , c , c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同点排列方法共有 (A) 12种(B) 18种(C) 24种(D) 36种12.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE = BF =37,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A) 16(B) 14(C) 12(D) 10二.填空题:(共4个小题,每小题5分,满分20分)13.若x 、y 满足约束条件 ,则z =3x - y 的最小值为14.当函数y = sin x - cos x (0≤x <2π)取得最大值时,x = 15.若(x +1x) n 的展开式中第三项与第七项的二项式系数相等,则该展开式中21x 的系数为16. 三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1= 60o ,则异面直线AB 1与BC 1所成的角的余弦值为二.解答题:(共6个小题,满分70分)17.(本小题满分10分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A - C ) + cos B = 1,a = 2c ,求C .18. (本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,ACP A = 2, E 是PC 上的一点,PE = 2EC . (Ⅰ)证明:PC ⊥平面BED ;(Ⅱ)设二面角A -PB - C 为90o ,求PD 与平面PBC19. (本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换. 每次发球,胜方得1分,负方得0分. 设再甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第四次发球时,甲、乙的比分为1比2的概率 ; (Ⅱ)ξ 表示开始第四次发球时乙的得分,求ξ 的期望.x - y +1≥0x + y -3≤0 x + 3y -3≥020. (本小题满分12分)设函数f (x ) = a x + cos x , x∈[0, π] . (Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x ) ≤1 + sin x,求a的取值范围.21. (本小题满分12分)已知抛物线C:y = (x +1) 2与圆M:(x-1) 2 +( y-12) 2 = r 2 (r > 0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22. (本小题满分12分)函数f (x ) = x 2 - 2x - 3 .定义数列{x n}如下:x1= 2,x n+1是过两点P(4, 5)、Q n(x n, f (x n))的直线PQ n与x轴的交点的横坐标.(Ⅰ)证明:2≤x n < x n+1<3 ;(Ⅱ)求数列{x n}的通项公式.答案1.C2.B3.C4.C5.A6.D7.A8.C9.D 10.A 11.A 12.B13. -1 14. 15. 56 16. ………………。

2012年高考数学全国卷2

2012年高考数学全国卷2

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0或B 0或3C 1或D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A +=1B +=1C +=1D +=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)(B) (C) (D)(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=,则cos2α=(A) (B)(C) (D)(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)(B)(C)(D)(9)已知x=lnπ,y=log52,,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=。

2012年全国高考2卷理科数学试题及答案

2012年全国高考2卷理科数学试题及答案

2012年全国高考2卷理科数学试题及答案一.选择题:(共12个小题,每小题5分,满分60分) 1. 复数131ii-++= (A) 2+i(B) 2-i(C) 1+2i(D)1-2i2.已知集合A ={1,3,B ={1,m },A ∪B =A ,则m = (A) 0(B) 0或3(C) 1(D) 1或33.椭圆的中心在原点,焦距为4,一条准线为x = - 4,则该椭圆的方程为(A) 221612y +x =1(B) 22168y +x =1(C) 2284y +x =1(D) 22124y +x =14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB = 2,CC 1E 为CC 1的中点,则直线AC 1与平面BED 的距离为: (A) 2(B)(C)(D) 15.已知等差数列{a n }的前n 项和为S n ,a 5 = 5,S 5 =15,则数列{11n n a a +}的前100项和为(A) 100101(B)99101(C)99100(D)1011006.△ABC 中,AB 边的高为CD ,CB = a ,CA = b ,a •b = 0,| a | = 1,| b | = 2,则AD = (A)13a -13b (B)23a -23b (C)35a -35b (D)45a -45b7.已知α 为第二象限的角,sin α +cos α,则cos2α = (A)(B)(C)(D)8.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 = (A) 14(B)35(C)34(D)459.已知x = ln π,y =log 5 2,z =12e -,则(A) x < y < z(B) z < x < y(C) z < y < x(D) y < z < x10.已知函数y =x 3-3x + c 的图像与x 轴恰有两个公共点,则c =(A) -2或2 (B) -9或3 (C) -1或1 (D) -3或111.将字母a, a, b, b, c, c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同点排列方法共有(A) 12种(B) 18种(C) 24种(D) 36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE = BF =37,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A) 16 (B) 14 (C) 12 (D) 10二.填空题:(共4个小题,每小题5分,满分20分)13.若x、y满足约束条件,则z =3x- y的最小值为14.当函数y = sin x- cos x (0≤x <2π)取得最大值时,x =15.若(x +1x)n的展开式中第三项与第七项的二项式系数相等,则该展开式中21x的系数为16. 三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1= 60o,则异面直线AB1与BC1所成的角的余弦值为二.解答题:(共6个小题,满分70分)17.(本小题满分10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A - C) + cos B = 1,a = 2c,求C .18. (本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,ACP A = 2,E是PC上的一点,PE = 2EC .(Ⅰ)证明:PC⊥平面BED ;(Ⅱ)设二面角A -PB - C为90o,求PD与平面PBCx - y +1≥0 x + y -3≤0 x + 3y -3≥019. (本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换. 每次发球,胜方得1分,负方得0分. 设再甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第四次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ 表示开始第四次发球时乙的得分,求ξ 的期望.20. (本小题满分12分)设函数f (x ) = a x + cos x , x∈[0, π] .(Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x ) ≤1 + sin x,求a的取值范围.21. (本小题满分12分)已知抛物线C:y = (x +1) 2与圆M:(x-1) 2 +( y-12) 2 = r 2 (r > 0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22. (本小题满分12分)函数f (x ) = x 2 - 2x - 3 .定义数列{x n}如下:x1= 2,x n+1是过两点P(4, 5)、Q n(x n, f (x n))的直线PQ n与x轴的交点的横坐标.(Ⅰ)证明:2≤x n < x n+1<3 ;(Ⅱ)求数列{x n}的通项公式.答案1.C2.B3.C4.C5.A6.D7.A8.C9.D 10.A 11.A 12.B13. -1 14. 15. 56 16. ………………。

2012年高考数学试题及答案(全国卷理数2套)

2012年高考数学试题及答案(全国卷理数2套)
2012 年全国统一高考数学试卷(理科)(新课标)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符
合题目要求的.
1.(5 分)(2012•新课标)已知集合 A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A}, 则 B 中所含元素的个数为( )
A.
B.
C.
D.
12.(5 分)(2012•新课标)设点 P 在曲线
上,点 Q 在曲线 y=ln(2x)上,则|PQ|
最小值为( )
A.1﹣ln2
B.
C.1+ln2
二.填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)(2012•新课标)已知向量
夹角为 45°,且


D. ,则
14.(5 分)(2012•新课标)设 x,y 满足约束条件:
A.A+B 为 a1,a2,…,an 的和 B. 为 a1,a2,…,an 的算术平均数
C.A 和 B 分别是 a1,a2,…,an 中最大的数和最小的数 D.A 和 B 分别是 a1,a2,…,an 中最小的数和最大的数 7.(5 分)(2012•新课标)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的 三视图,则此几何体的体积为( )
21.(12 分)(2012•新课标)已知函数 f(x)满足 f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求 f(x)的解析式及单调区间;
(2)若
,求(a+1)b 的最大值.
四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答 时请写清题号. 22.(10 分)(2012•新课标)如图,D,E 分别为△ABC 边 AB,AC 的中点,直线 DE 交△

2012年(全国卷II)(含问题详解)高考文科数学

2012年(全国卷II)(含问题详解)高考文科数学

2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .C B C .D C D .A D2.函数1y x =+(x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 B .3 C .2 D.19.△ABC中,AB边的高为CD.若CB=a,CA=b,a·b=0,|a|=1,|b|=2,则AD=( )A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则( )A.x<y<z B.z<x<y C.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=1 3 .动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为( ) A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330,x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x -3cos x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,22AC=,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D 到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+,∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1, 所以212a =,213122S =+=. 显然只有B 项符合.7. C 由题意可采用分步乘法计数原理,甲的排法种数为14A ,剩余5人进行全排列:55A ,故总的情况有:14A ·55A =480种.故选C项.8. D 连结AC 交BD 于点O ,连结OE , ∵AB =2,∴22AC =.又122CC =,则AC =CC 1. 作CH ⊥AC 1于点H ,交OE 于点M . 由OE 为△ACC 1的中位线知,CM ⊥OE ,M 为C H 的中点.由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD .∴CM ⊥面BDE .∴HM 为直线AC 1到平面BDE 的距离. 又△AC C 1为等腰直角三角形,∴CH =2.∴HM =1. 9. D ∵a ·b =0,∴a ⊥b . 又∵|a |=1,|b |=2, ∴||5AB =.∴1225||55CD ⨯==. ∴222545||2()55AD =-=. ∴4544445()55555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m =22.∴=22m . 又22224c a b =+=, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>51log 52=,12111e2e 4z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12,∴2112KX =,∴X 2为HD 中点, 2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x)8展开式的通项为T r +1=8C r x 8-r(12x)r=C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin x -3cos x =13π2(sin cos )2sin()223x x x -=-.当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6. 又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222212222322cos 5222a a a a a AEA a a a a ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭∠==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,…a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又PA ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF . 因为22AC =,PA =2,PE =2EC , 故23PC =,233EC =,2FC =, 从而6PC FC =,6ACEC=, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面PAB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC .BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC ⊥平面PAB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG =2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0, 则P (0,0,2),E (423,0,23),B (2,-b,0). 于是PC =(22,0,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP =(0,0,2),AB =(2,-b,0). 设m =(x ,y ,z )为平面PAB 的法向量, 则m ·AP =0,m ·AB =0, 即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0). 设n =(p ,q ,r )为平面PBC 的法向量, 则n ·PC =0,n ·BE =0, 即2220p r -=且22033p bq r ++=, 令p =1,则2r =,2q b =-,n =(1,2b-,2). 因为面PAB ⊥面PBC ,故m ·n =0,即20b b-=,故2b =, 于是n =(1,-1,2),DP =(2-,2-,2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P(A)=0.4,P(A0)=0.42=0.16,P(A1)=2×0.6×0.4=0.48,P(B)=P(A0·A+A1·A)=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2)P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x 1=-1-1a-,x2=-1+1a-.当x∈(-∞,-1-1a-)时,f′(x)>0,f(x)是增函数;当x∈(-1-1a-,-1+1a-)时,f′(x)<0,f(x)是减函数;当x∈(-1+1a-,+∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x 1-a )+23ax 1=23(a -1)x 1-3a . 同理,f (x 2)=23(a -1)x 2-3a .因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1),故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1),r =|MA |=2215(10)(1)22-+-=,即52r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t+1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M 到该切线的距离为52, 即22212(1)11522[2(1)](1)t t t +⨯--+=++-, 化简得t 2(t 2-4t -6)=0, 解得t 0=0,1210t =+,2210t =-.抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l 的距离22|22(1)1|6552(1)d ⨯--+==+-.。

2012年高考全国卷2数学试题及参考答案

2012年高考全国卷2数学试题及参考答案

一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若U={-2,-1,0,1,2},M={-1,0,1},N={-2,-1,2},则=( )A. B.{0,1} C.{-2,0,1,2} D. {-1}2. 已知(1+i)(a+bi)=3-i(i为虚数单位,a,b均为实数),则a的值为()A.0B. 1C.2D.33.直线l经过点(1,-2),且与直线x+2y=O垂直,则直线l的方程是()A. 2x + y - 4 = OB. 2x + y - 4 = OC. 2x - y -4 =OD. 2x - y + 4 = O4. 已知函数f(x)=Asin( 的部分图像如图所示,则实数ω的值为( )A. B. 1 C.2 D.45. 若l,m为空间两条不同的直线,a, 为空间两个不同的平面,则l 丄a的一个充分条件是()A,l// 且a丄 B. l 且a丄C.l丄且a//D.l丄m且m//a6. 右图的程序框图中输出S的结果是25,则菱形判断框内应填入的条件是()A. i <9B.i>9C.i≤9D.i≥97. 对具有线性相关关系的变量x,y有一组观测数据(xi,yi)( i=1,2,…,8),其回归直线方程是:,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,则实数a的值是()A. B. C. D.B.设e1,e2是两个互相垂直的单位向量,且,则在上的投影为()A. B. C. D.9. 在平面直角坐标系中,不等式组所表示的平面区域面积为( )A, B.2 C. D.310.设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f( 1)>1,f(2)=m2-2m,f(3)= ,则实数m的取值集合是()A. B.{O,2} C. D. {0}第II卷(满分1OO分)二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置)11.函数f(x)= 的定义域为______12.中心在原点,焦点在x轴上的双曲线的一条渐近线为y= ,焦点到渐近线的距离为3,则该双曲线的方程为______13.甲、乙两人需安排值班周一至周四共四天,每人两天,具体安排抽签决定,则不出现同一人连续值班情况的概率是_____14.右图为一个简单组合体的三视图,其中正视图由一个半圆和一个正方形组成,则该组合体的体积为______.15.下列关于数列{an}的命题:①数列{an}的前n项和为Sn,且2Sn = an+ 1,则{an}不一定是等比数列;②数列{an}满足an+ 3 - an+ 2 = an + 1 - an对任意正整数n恒成立,则{an}一定是等差数列;③数列{an}为等比数列,则{an•an+1}为等比数列;④数列{an}为等差数列,则{an+an+1}为等差数列;⑤数列{an}为等比数列,且其前n项和为Sn则Sn,S2n-Sn,S3n-S2 ,…也成等比数列. 其中真命题的序号是_______(写出所有真命题的序号).三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)已知向量a= (1,-2),b=(2sin ,cos ),且a•b=1(I)求sinA的值;(II)若A为ΔABC的内角,,ΔABC的面积为,AB=4,求BC的长.17.(本小题满分12分)根据空气质量指数4PI(整数)的不同,可将空气质量分级如下表:对甲、乙两城市某周从周一到周五共5天的空气质量进行监测,获得的API数据如下图的茎叶图.(I)请你运用所学的统计知识,选择三个角度对甲乙两城市本周空气质量进行比较;(II)某人在这5天内任选两天到甲城市参加商务活动,求他在两天中至少有一天遇到优良天气的概率.18.(本小题满分12分)如图BB1 ,CC1 ,DD1均垂直于正方形AB1C1D1所在平面A、B、C、D四点共面.(I)求证:四边形ABCD为平行四边形;(II)若E,F分别为AB1 ,D1C1上的点,AB1 =CC1 =2BB1 =4,AE = D1F =1.求证:CD丄平面DEF;19.(本小题满分13分)已知椭圆C: 的顶点到焦点的最大距离为,且离心率为(I)求椭圆的方程;(II)若椭圆上两点A、B关于点M(1,1)对称,求|AB|20.(本小题满分I3分)已知函数f(x)=(x-1)ex-ax2(I)当a=1时,求函数f(x)在区间[0,2]上零点的个数;(II)若f(x)≤ 0在区间[0,2]上恒成立,求实数a的取值范围.21.(本小题满分13分)已知正项等差数列{an}中,其前n项和为Sn,满足2Sn=an•an+1 (I )求数列{an}的通项公式;(II)设bn= ,Tn=b1+b2+…+bn,求证:Tn<3.。

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012年高考数学(理科)试题(全国2卷word文档含答案)

2012高考理科数学全国2卷试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C)12i + (D)12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B)0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C)22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B((D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD = (A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - (7)已知α为第二象限角,sin cos αα+=,则cos2α= (A)3- (B)9- (C)9(D)3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B)z x y << (C )z y x << (D)y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D)3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考2卷理科数学试题及答案

2012年全国高考2卷理科数学试题及答案

2012年全国⾼考2卷理科数学试题及答案2012年全国⾼考2卷理科数学试题及答案⼀.选择题:(共12个⼩题,每⼩题5分,满分60分)1. 复数131ii-++= (A) 2+i(B) 2-i(C) 1+2i(D)1-2i2.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m = (A) 0或3(B) 0或3(C) 1或3(D) 1或33.椭圆的中⼼在原点,焦距为4,⼀条准线为x = - 4,则该椭圆的⽅程为(A) 221612y +x =1(B) 22168y +x =1(C) 2284y +x =1(D) 22124y +x =14.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB = 2,CC 1 = 22,E 为CC 1的中点,则直线AC 1与平⾯BED 的距离为:(A) 2(B)3(D) 15.已知等差数列{a n }的前n 项和为S n ,a 5 = 5,S 5 =15,则数列{11n n a a +}的前100项和为(A)100101(B)99101(C)99100(D)1011006.△ABC 中,AB 边的⾼为CD ,CB = a ,CA = b ,a ?b = 0,| a | = 1,| b | = 2,则AD =(A)13a -13b (B)23a -23b (C)35a -35b (D)45a -45b7.已知α为第⼆象限的⾓,sin α +cos α =33,则cos2α =(A) -53(B) -59(C)598.已知F 1、F 2为双曲线C :x 2-y 2 =2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2 =(A)14(B)35(C)34(D)459.已知x = ln π,y =log 5 2,z =12e -,则(A) x < y < z(B) z < x < y (C) z < y < x (D) y < z < x10.已知函数y =x 3-3x + c 的图像与x 轴恰有两个公共点,则c =(A) -2或2(B) -9或3(C) -1或1(D) -3或111.将字母a , a , b , b , c , c 排成三⾏两列,要求每⾏的字母互不相同,每列的字母也互不相同,则不同点排列⽅法共有(A) 12种(B) 18种 (C) 24种 (D) 36种12.正⽅形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE = BF =37,动点P 从E 出发沿直线向F 运动,每当碰到正⽅形的边时反弹,反弹时反射⾓等于⼊射⾓,当点P 第⼀次碰到E 时,P 与正⽅形的边碰撞的次数为(A) 16 (B) 14 (C) 12 (D) 10⼆.填空题:(共4个⼩题,每⼩题5分,满分20分)13.若x 、y 满⾜约束条件,则z =3x - y 的最⼩值为14.当函数y = sin x - cos x (0≤x <2π)取得最⼤值时,x =15.若(x +1) n 的展开式中第三项与第七项的⼆项式系数相等,则该展开式中21x的系数为16. 三棱柱ABC -A 1B 1C 1中,底⾯边长和侧棱长都相等,∠BAA 1=∠CAA 1= 60o ,则异⾯直线AB 1与BC 1所成的⾓的余弦值为⼆.解答题:(共6个⼩题,满分70分)17.(本⼩题满分10分)△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c ,已知cos(A - C ) + cos B = 1,a = 2c ,求C .x - y +1≥0x + y -3≤0 x + 3y -3≥018. (本⼩题满分12分)如图,四棱锥P -ABCD 中,底⾯ABCD 为菱形,PA ⊥底⾯ABCD ,AC = 22,P A = 2,E 是PC 上的⼀点,PE = 2EC . (Ⅰ)证明:PC ⊥平⾯BED ;(Ⅱ)设⼆⾯⾓A -PB - C 为90o ,求PD 与平⾯PBC 所成的⾓的⼤⼩.19. (本⼩题满分12分)乒乓球⽐赛规则规定:⼀局⽐赛,双⽅⽐分在10平前,⼀⽅连续发球2次后,对⽅再连续发球2次,依次轮换. 每次发球,胜⽅得1分,负⽅得0分. 设再甲、⼄的⽐赛中,每次发球,发球⽅得1分的概率为0.6,各次发球的胜负结果相互独⽴. 甲、⼄的⼀局⽐赛中,甲先发球.(Ⅰ)求开始第四次发球时,甲、⼄的⽐分为1⽐2的概率;(Ⅱ)ξ表⽰开始第四次发球时⼄的得分,求ξ的期望.20. (本⼩题满分12分)设函数f (x ) = a x + cos x , x ∈[0, π] .(Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x ) ≤1 + sin x ,求a 的取值范围.21. (本⼩题满分12分)已知抛物线C :y = (x +1) 2与圆M :(x -1) 2 +( y -12) 2 = r 2(r > 0)有⼀个公共点A ,且在A 处两曲线的切线为同⼀直线l .(Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离.22. (本⼩题满分12分)函数f (x ) = x 2 - 2x - 3 .定义数列{x n }如下:x 1= 2,x n +1是过两点P (4, 5)、Q n (x n , f (x n ))的直线PQ n 与x 轴的交点的横坐标.(Ⅰ)证明:2≤x n < x n +1<3 ;EABCDP(Ⅱ)求数列{x n}的通项公式.答案1.C2.B3.C4.C5.A6.D7.A8.C9.D 10.A 11.A 12.B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高考数学试题(全国卷Ⅱ)
一.选择题:(共12个小题,每小题5分,满分60分)
1. 复数=
(A) 2+i (B) 2-i (C) 1+2i (D)1-2i
2.已知集合A={1,3,},B ={1,m},A∪B =A,则m =
(A) 0或 (B) 0或3 (C) 1或 (D) 1或3
3.椭圆的中心在原点,焦距为4,一条准线为x = - 4,则该椭圆的方程为
(A) =1 (B) =1 (C) =1 (D) =1
4.已知正四棱柱ABCD -A1B1C1D1中,AB= 2,CC1 = 2,E为CC1的中点,则直线AC1与平面BED的距离为:
(A) 2 (B) (C) (D) 1
5.已知等差数列{a n}的前n项和为S n,a5= 5,S5 =15,则数列{}的前100项和为
(A) (B) (C) (D)
6.△ABC中,AB边的高为CD,= a,= b,a•b = 0,| a | = 1,| b | = 2,则=
(A)a -b (B) a -b (C) a -b (D) a -b
7.已知a为第二象限的角,sin a +cos a =,则cos2a =
(A) - (B) - (C) (D)
8.已知F1、F2为双曲线C:x2-y2 =2的左、右焦点,点P在C 上,|PF1|=2|PF2|,则cos∠F1PF2 =
(A) (B) (C) (D)
9.已知x = ln p,y =log 5 2,z =,则
(A) x < y < z (B) z < x <y (C) z < y < x (D) y< z< x
10.已知函数y =x 3-3x + c的图像与x轴恰有两个公共点,则c =
(A) -2或2 (B) -9或3 (C) -1或1 (D) -3或1
11.将字母a, a, b, b, c, c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同点排列方法共有
(A) 12种 (B) 18种 (C) 24种 (D) 36种
12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE= BF =,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为
(A) 16 (B) 14 (C) 12 (D) 10
二.填空题:(共4个小题,每小题5分,满分20分)
13.若x、y满足约束条件,则z =3x- y的最小值为
x - y +1≥0
x +y -3≤0
x +3y -3≥0
14.当函数y = sin x- cos x (0≤x <2p)取得最大值时,x =
15.若(x+) n的展开式中第三项与第七项的二项式系数相等,则该展开式中的系数为
16. 三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1= 60o,则异面直线AB1与BC1所成的角的余弦值为
二.解答题:(共6个小题,满分70分)
17.(本小题满分10分)
△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A - C) + cos B = 1,a = 2c,求C .
18. (本小题满分12分)
如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底
面ABCD,AC = 2,PA = 2,
E是PC上的一点,PE = 2EC .
(Ⅰ)证明:PC⊥平面BED ;
(Ⅱ)设二面角A -PB - C为90o,求PD与平面PBC所成的角的大小. 19. (本小题满分12分)
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换. 每次发球,胜方得1分,负方得0分. 设再甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立. 甲、乙的一局比赛中,甲先发球.
(Ⅰ)求开始第四次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)x 表示开始第四次发球时乙的得分,求x 的期望.
20. (本小题满分12分)
设函数f (x ) = a x + cos x , x∈[0, p] .
(Ⅰ)讨论f (x )的单调性;
(Ⅱ)设f (x ) ≤1 + sin x,求a的取值范围.
21. (本小题满分12分)
已知抛物线C:y = (x +1) 2与圆M:(x-1) 2 +( y-) 2 = r 2 (r > 0)有一个公共点A,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.
22. (本小题满分12分)
函数f (x ) = x 2 - 2x - 3 .定义数列{x n}如下:x1= 2,x n+1是过两点P(4, 5)、Q n(x n, f (x n))的直线PQ n与x轴的交点的横坐标.
(Ⅰ)证明:2≤x n < x n+1<3 ;
(Ⅱ)求数列{x n}的通项公式.
答案
1. C
2.B
3.C
4.C
5.A
6.D
7.A
8.C
9.D 10.A 11.A 12.B
13. -1 14. 15. 56 16. ………………。

相关文档
最新文档