波导一微带过渡的鳍线设计

合集下载

W频段波导—微带的对脊鳍线过渡仿真设计

W频段波导—微带的对脊鳍线过渡仿真设计

W频段波导—微带的对脊鳍线过渡仿真设计作者:金少华来源:《新生代·上半月》2018年第08期【摘要】:应用HFSS设计了一款W频(75.87-87.5)GHZ的对脊鳍线微带波导过渡结构,仿真结果表明,在W 频段(75.87-87.5)GHZ内,该过渡结构插损小于0.6dB,回波损耗在20dB以下,达到项目需要。

【关键词】:W波段波导微带过渡对脊鳍线1引言在毫米波接收系统中,各芯片间采用微带线连接.而毫米波测试系统用波导接口,需要低成本、低损耗的宽频带波导到微带过渡.常用过渡结构:阶梯脊波导过渡、对脊鳍线过渡、耦合探针过渡等.对脊鳍线过渡,因其可以采用印制版技术制作在价廉的软基片上,已成为一种普遍运用的过渡结构.本文通过软件HFSS设计并仿真了一个W波段的微带到波导鳍线过渡以满足工程项目的需要。

2 对脊鳍线过渡的仿真2.1 对脊鳍线过渡的设计经典的过渡结构(如图1所示).在这个由波导到微带的过渡结构中,两个对脊鳍线制作在基片正反两面,逐漸渐变成微带线.并且构成了一圆弧形谐振区,谐振区内的金属块是用来抑制谐振的。

在图1中,1区是渐变的对脊鳍线部分,它将波导内的TE10模转变成微带线传输的的准TEM模式(见图2),同时将波导的高阻抗转变成低阻抗。

2、3 区将对脊鳍线过渡到标准微带线.这一部分一般的处理方法是用半圆弧来过渡到微带线,这样圆心固定,经过微调可得到较好的结构。

过渡中的对脊鳍线渐变设计常采用沿渐变方向的平滑阻抗变换曲线,其中,余弦平方渐变形式加工简单,成本较低,应用广泛。

因此我采用余弦平方渐变曲线( 1)设计对脊鳍线过渡结构式中:是鳍线宽度;是波导窄边尺寸;50Ω 微带线宽;是距离起点的长度;鳍线过渡的长度。

由经验可知,过渡结构长度越长,反射越小,但是工程需要整个过渡结构尽可能短,方便使用,因此需要选择一个合理的长度,一般取1.5按照上述设计思路,我完成W波段(75.87-87.5)GHZ的过渡设计,介质基片采用RT-duroid 5880 材料(相对介电常数εr= 2 . 2),基片厚度为h = 0 .127mm ,金属条带厚度t=0.017 mm,标准矩形波导,宽a = 1.5494mm,高b =3.0988mm,50Ω微带线金属条带的宽度W = 0.358mm。

一种Ka频段波导微带鳍线转换结构

一种Ka频段波导微带鳍线转换结构

空间电子技术98 S PAC E ELEC TRON IC TECHNOLO GY2009年第3期一种Ka频段波导微带鳍线转换结构王小伟李家胤周翼鸿(电子科技大学强辐射重点实验室,成都610054)摘要为使波导微带转换的尺寸和性能更优,采用HFSS高频仿真软件里的样条曲线做波导微带转换的鳍线渐变曲线,使波导微带转换的过渡长度与采用其他渐变曲线在相同指标情况下相比更短一些。

转换模型中的介质基片向标准矩形波导宽边两侧延伸四分之一波长并在其上各打一行孔径和间距合适的金属填充通孔,这样既便于固定基片,又能提高鳍线电路的隔离度。

使用HFSS软件对该模型进行仿真优化分析后的结果为:在28. 5~39GHz频带内得到大于25dB 的回波损耗和小于0. 1dB 的插入损耗,基本达到预期目的。

关键词波导微带转换样条曲线鳍线通孔0 引言随着毫米波技术的不断发展, 毫米波混合集成电路以及单片集成电路越来越多地在无线通信和雷达系统中得到广泛应用。

而现有的毫米波测试系统采用的大多是矩形波导接口,这就要求在使用毫米波单片集成电路的系统中寻找一种低成本、低损耗、易制造的宽带矩形波导到微带的过渡。

对于毫米波电路而言,鳍线就是这样一种能用于波导微带过渡的理想短距离传输线。

它具有色散小、单模带宽宽、插损低(高于波导,低于微带) ,准平面电路结构(可以采用与微波集成电路相类似的印刷技术,生产经济性好) ,与半导体和波导器件的兼容性好,对加工尺寸公差的要求不像波导那样严格等优点,现已在毫米波电路中获得了实际应用[ 1 ] 。

目前常用的过渡结构有: 阶梯脊波导过渡[ 2 ] 、对极鳍线过渡[ 3 ] 、耦合探针过渡[ 4, 5 ] 等。

这些过渡结构带宽较宽,插入损耗小。

其中阶梯脊波导过渡加工复杂;耦合探针过渡因波导出口方向与电路平行,使其不满足很多系统结构的要求;而对极鳍线过收稿日期: 2008 - 04 - 29; 修回日期: 2008 - 06 - 30 渡,因其可以采用微波印制版技术制作在价廉的基片上,现在已成为一种普遍运用的过渡结构。

W波段波导—微带对脊鳍线过渡结构设计

W波段波导—微带对脊鳍线过渡结构设计

Science &Technology Vision 科技视界0引言,。

,,。

:[1,2]、[3~4]。

,,,,。

,。

W 。

,80~95GHz 20dB,0.4dB。

1理论分析。

TE10,TEM 。

,,。

,WR10(2.54mm×1.27mm)。

50Ω[5]。

1。

,TE1090°,TEM [6]。

,,50Ω。

图1矩形波导—微带对脊鳍线过渡结构W 波段波导—微带对脊鳍线过渡结构设计单伟包超高志宇郑晓秦越(中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610213)【摘要】文章基于对脊鳍线过渡结构设计并仿真了一种W 波段的矩形波导—微带线的转换器。

该转换器具有平面电路的几何结构优点,且空间体积小、质量轻,可广泛应用于毫米波平面传输线组成的电路中。

通过仿真结果表明:在W 波段(80~95GHz )的频带范围内,该过渡结构的回波损耗小于20dB ,插入损耗小于0.4dB 。

【关键词】W 波段;波导—微带转换;毫米波;对脊鳍线中图分类号:TN02文献标识码:ADOI :10.19694/ki.issn2095-2457.2021.12.45【Abstract 】This paper designs and simulates a W-band rectangular waveguide —microstrip line converter basedon the transition structure of the ridge—fin line.The converter has the advantages of planar circuit geometry structure,small space and light weight,and can be widely used in circuits composed of millimeter wave planartransmission lines.The simulation results show that:in the W band (80-95GHz)frequency band,the return loss ofthe transition structure is less than 20dB,and the insertion loss is less than 0.4dB.【Key words 】W band ;Waveguide to microstrip ;Millimeter wave ;Antipodal finline作者简介:单伟(1993—),男,汉族,硕士研究生,助理工程师,现主要从事核仪表系统技术研究。

基片集成波导及其微带过渡的设计

基片集成波导及其微带过渡的设计
21 0 2年 8月
舰 船 电 子 对 抗
SH I PB0A RD ELECTR0 N I C0 U NT ER M EA SU RE C
A u .2 1 g 02
Vo . 5 No 4 I3 .
第 3 5卷第 4期
基 片集 成波 导及 其 微 带过 渡 的设 计
赵 元 英 袁 皓 ,
收 稿 日期 : 0 2 5—1 2 1 —0 0
0 引 言
矩形 波导具 有 功 率 容量 大 、 耗 小 、 辐射 、 损 无 品 质 因数高 的特点 , 高频波 段其优 势更 加 明显 , 在 因此 在微 波 、 米波 电路 和系统 中被广 泛应 用 , 在许 多 毫 现 毫米波 设备 的输 入 输 出端 口均 为 波 导形 式 。但 是 , 由于其 体积 大 , 量 大 , 本 高 , 须通 过 各 种 过渡 重 成 必
(. 国 电子 科 技 集 团公 司 1 所 , 家庄 0 0 5 ;. 1中 3 石 5 0 1 2 云南 大学 , 明 60 9 ) 昆 5 0 1
摘 要 : 了工作 于毫米波频段 的基片集成波导 (I , 了基片集成波 导及其微带过 渡的原理和结构 , 推 设计 SW)阐述 公式
导 出过 渡 结 构 中各 种 参 数 的 计 算 方 法 , 过 HF S软 件 进 行 仿 真 , 作 了 SW 与 微 带 过 渡 的 样 品并 测 试 , 果 表 明 通 S 制 I 结
t n l S Sl s ha 一 1 B r m 5 5 G H zt 7 5 G H z. ur O S i e s t n 0 d fo 3 . o 3 .
Ke r : ub t a e i e r t d wa e i e; c o t i r nsto i p d nc y wo ds s s r t nt g a e v gu d mir s rp t a ii n;m e a e

波导到微带转换电路 设计报告

波导到微带转换电路 设计报告

波导到微带转换电路学生姓名:学号:单位:时间:2010年5月6日一、技术指标:请设计一只Ka波段波导到微带转换电路。

其技术指标要求如下:工作频率:26.5~40GHz输入/输出驻波比:<1.2dB插入损耗:<1.0dB二、理论分析目前常用的微带-波导探针过渡的方式有两种,都是将微带探针从波导宽边的中心插入,一种是介质面垂直与波导传输方向,称为H面探针,如图1所示,另一种介质面平行于波导传输方向,称为E面探针,如图2所示。

本课题采用的是E面探针过渡,下面详细介绍本课题中的微带-波导过渡设计方法。

图1 H面探针图2 E面探针微带—波导过渡的构成形式如图3所示,探针从波导宽边的中心插入,任一个沿探针方向具有非零电场的波导模将在探针上激励起电流。

探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。

由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗,然后利用四分之一阻抗变换器实现与混频电路内微带传输线的阻抗匹配。

对微带-波导过渡性能有较大影响的电路参数共5个,由表1列出。

探针插入处波导开窗的大小对性能也有一定影响,在设计时可先将其确定。

一般的原则是开窗越小越小越好,以形成截止波导。

探针距波导终端短路面的长度D我们取四分之波导波长,因为终端短路后,波导内形成驻波,波节间距离为二分之波导波长,取四分之波导波长的短路长度,可以保证探针在波导内处于最大电压,即电场最强的波腹位置,以达到尽量高的耦表1影响微带-波导过渡性能的参数三、设计过程:确定中心频率为大气窗口35GHz,频段为26.5GHz到40GHz。

确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。

此处采用WR-28标准矩形波导,尺寸为7.112mm*3.556mm,基板材料选用Rogers5880型基片,厚度为0.254mm,相对介电常数为2.2,微带金属条带厚度为0.035mm,由ADS中LineCalc 计算得中心频率35GHz处50欧姆微带线宽度为0.754mm。

Ka频段固态功率放大器的设计

Ka频段固态功率放大器的设计

Ka频段固态功率放大器的设计作者:李绘勃李桢来源:《中国科技博览》2013年第25期[摘要]毫米波系统已广泛应用于军事通信,作为核心部件的毫米波发射机,其输出功率为衡量系统性能指标的重要因素。

本文运用混合集成的方法设计了一种Ka频段固态功率放大器,测试结果表明,该放大器在f0±1.5 GHz的工作频带内,增益大于35dB,P-1为30 dBm,达到设计要求。

[关键词]Ka频段混合集成放大器中图分类号:TN722.3 文献标识码:A 文章编号:1009-914X(2013)25-0008-011.固态功率放大器的设计固态功率放大器的设计指标为:工作频段f0±1.5 GHz;增益G≥35 dB;P-1≥32 dBm;杂散小于等于50 dBc;输入输出接口为BJ320标准波导。

1.1 方案选择考虑到Ka频段频率源的输出功率较低以及实际链路中的插入损耗等,根据后级毫米波驱动行波管的增益情况,本固态驱动放大器的设计采用两级级联方案实现。

经过对目前毫米波MMIC芯片进行调研,第一级放大采用AMMC5040芯片,功放芯片采用XP1027实现。

1.2 过渡设计与仿真对此方案中的过渡部分,采用对极鳍线来实现,波导-微带对极鳍线过渡器的结构如图1所示。

在设计中需要特别注意的是由于鳍线半圆切口区会在Ka频段的中心位置出现谐振现象,因此通过优化设计鳍线中的巴伦来消除带内谐振点就显得尤为重要。

对极鳍线过渡段采用了余弦平方的过渡形式,其设计公式为:式中:w为50Ω微带线的宽度;z为鳍线传输线的纵向坐标;b为波导高度;L为渐变过渡段的长度。

渐变过渡段的长度L不能过短,因为过短时,端口的反射系数较大;但也不能过长,若过长时,电路的损耗较大。

只能采取折衷的办法,一般L取(1~1.5)λ0左右(其中λ0为TE10模的波导波长)。

图2为利用高频仿真软件CST建立的模型和仿真结果,可以看出,在中心频率处,插入损耗小于0.1 dB,回波损耗大于20 dB,满足设计要求。

Ka波段波导-微带转换电路

Ka波段波导-微带转换电路

Ka 波段波导-微带转换电路摘 要:本文在了解矩形波导、微带线的传输理论及分析了Ka 波段波导-微带转换电路的特性后,利用HFSS 仿真软件对它进行仿真并优化,设计出了Ka 波段波导-微带转换电路。

满足实验要求:在Ka 频段26.5GHz~40GHz 内的输入/输出驻波比≤1.2,插入损耗≤1.0dB 。

关键词:Ka 波段,微带线,矩形波导,HFSS ,转换电路Abstract :After the understanding about the transmission theory of rectangular waveguide and micro-strip line and the analysis of the speciality of Ka-band waveguide micro-strip transform circuit, this paper will design the Ka-band waveguide micro-strip transform circuit by the simulation and optimization of HFSS. It meets the requirements: the input/output standing wave ratio is 1.2 within the Ka frequency range 26.5GHz~40GHz and the insertion loss is 1.0dB.Key word :Ka-band ,Micro-strip, Waveguide, HFSS , Transform circuit1. 引言波导-微带转换电路是各种雷达、通讯、电子对抗等系统中最重要的一种无源转接过渡,又是各系统的重要组成部分,它性能的好坏直接影响系统的性能。

随着微波集成电路的发展,微带线又是微波、低频段毫米波电路的主要传输线,而实现波导-微带的过渡就成了人们日益关注的问题。

X波段缝隙波导天线阵列综合设计

X波段缝隙波导天线阵列综合设计

X波段缝隙波导天线阵列综合设计发布时间:2022-05-13T08:53:10.651Z 来源:《科技新时代》2022年3期作者:宋军林琦[导读] 实现了低幅瓣电平、40°余割平方宽波束维相位加权的缝隙波导阵列天线设计,为其他缝隙波导天线阵列综合设计提供参考。

贵州航天南海科技有限责任公司贵州省遵义市563000摘要:本论文立足于某雷达研制的应用背景,该雷达发射采用方位机扫+俯仰相扫体制,方位上通过泰勒加权优化缝隙波导,实现低幅瓣电平,俯仰上通过基于遗传算法优化加权,形成赋形波束(0~40°),接收采用BDF多波束形成。

本论文结合任务指标需求,采用AnsoftHFSS、CST、Matlab天线仿真软件,验证了波导建模和天线阵列赋形仿真,实现了低幅瓣电平、40°余割平方宽波束维相位加权的缝隙波导阵列天线设计,为其他缝隙波导天线阵列综合设计提供参考。

关键词:波导缝隙天线泰勒加权遗传算法波束赋形1 引言波导缝隙天线是从上世纪四十年代开始出现和发展起来的,现在已被广泛地应用于微波通信和雷达系统中。

它的优点在于阵列馈电系统与辐射系统合一,天线整体厚度很小。

而且波导缝隙可以用数控机床精密加工,波导本身就是低损耗馈电系统,所以可以精确的控制口面幅度和相位分布,容易构成高增益、低副瓣的天线。

在许多应用中需要阵列天线方向图形成指定波束以达到所需的要求,越来越多的人开始重视它的综合和设计的研究。

天线波束赋形有多种不同的方法,但对于相控阵天线来说,采用只改变馈电相位分布的仅相位加权方法可使其不改变原有功率分配馈电网络和不增加新设备的情况下,利用计算机控制移相器值的改变实现波束赋形,是非常经济的可行方法。

2 缝隙波导天线设计2.1 理论设计天线形式为裂缝波导阵列,波导为BJ100标准铝波导,波导窄边并联缝隙,行距,每行波导缝隙间距按照经验公式且上下边频对应的波导波长均满足该公式,取dx=18.5mm,采用泰勒分布。

横向Ka波段波导微带探针过渡的设计和优化

横向Ka波段波导微带探针过渡的设计和优化

向具 有 非 零 电场 的波 导模 式 比 如 1 ’ 式 会 在 探 针 上 激 励 出 E模
电 流 ,从 而 激 励 起 电磁 场 ,将 波 导 内 的 电 磁 场 传 输 出 去 , 同 理, 当从 微 带 转 换 至 波 导 时 , 带 线 上 T M 模 向 波 导 入 射 产 微 E
F g Mirsrp pa ea d w v rp g to ie t n a p r l l i.2 co t ln a epo a ain drci aal i n o e
过 渡 结 构 不 可 避 免 的会 具 有 容 性 电抗 , 以 探 针 后 面 还 需 串 所
强 、 性好等 。 韧
文 中 采 用 介 电 常 数 为 2 的 D ri5 8 . 2 uo 8 0作 为 电 路 的 介 d

质 基 片 。基 片 厚 度 为 02 4mi。 . l 5 l
微 带 线 采 用 标 准 的 5 标 准 微 带 , 金 属 层 厚 度 为 00 00 5mm。 中 心 频 率 ,则 在 中心 频 率 3 H 处 微 带 线 宽 .3 取 4G z
摘 要 : 绍 了一 种横 向 K 介 a波段 宽 带 波 导一 带探 针 过 渡 的 设 计 。基 于 有 限 元 场 分析 软 件 A sfH S 微 no F S对 该 类 过 渡 的 t
设 计 方 法进 行 了研 究 。 最后 给 出 了 K a波段 内 的优 化数 据 。 仿 真 结 果 表 明 ,该 宽 带波 导一 带探 针 过 渡在 2 . — 微 65 G
图 1 微 带 平 面与 波 传 播 方 向垂 直
F g 1 M irsf ln ndwa ep o a aindrcinaep r n iua i. cot ppa ea v rp g t ie t r epe d c lr i o o

X波段四路功率合成器

X波段四路功率合成器

X波段四路功率合成器张思明;谢敏【摘要】文章介绍了一种基于波导-鳍线-微带线过渡的4路功率合成器结构,并通过Ansoft HFSS电磁仿真软件对其进行了仿真分析和优化设计.在整个X波段(8GHz~12GHz)内,功率合成器的插入损耗小于0.25dB,回波损耗大于-15dB,且通过加载微带扇形结构使同一平面上端口的隔离度大于8.5dB.结果表明,此结构在实现微波功率合成方面具有一定的应用前景.【期刊名称】《大众科技》【年(卷),期】2019(021)002【总页数】3页(P40-42)【关键词】X波段;波导-微带过渡;功率合成器;鳍线【作者】张思明;谢敏【作者单位】西安电子工程研究所,陕西西安 710100;西安电子工程研究所,陕西西安 710100【正文语种】中文【中图分类】TN731 引言微波或毫米波频段高功率发射机是现代雷达必不可少的关键分机之一。

近年来,随着微波半导体大功率器件的发展,采用微波单片集成电路和微波网络技术的固态发射机得到广泛的应用。

相比于微波电子管发射机,固态发射机具有工作电压低、体积小、重量轻、工作频带宽、效率高等优点[1,2]。

但是由于单个固态功率放大器件的功率容量较小,所以为了在满足固态发射机大功率指标要求的同时又可体现固态发射机的优点,就需要在发射机中设计功率合成器将多个固态放大器的输出进行叠加,即采用功率合成技术[3]。

功率合成就是通过设计无源的功率合成网络将多个功率固态放大器的输出进行叠加。

Nail-Shuo Chen提出了一种基于集成在标准 WR-90波导内的槽形天线阵列宽带空间功率合成放大器,在工作频带内具有 73%的平均合成效率[4]。

Saavedra.C.E 提出了将电路、波导及空间功率合成用于毫米波的概念,其提出的无源阵自由空间到微带线间的插入损耗低于1.5dB[5]。

设计无源的功率合成网络的关键在于尽可能的提高功率合成效率,降低损耗。

本文提出了一种基于波导-鳍线-微带线过渡的无源功率合成器。

毫米波传输线 鳍线

毫米波传输线 鳍线

2.4鳍线
槽在E面位移的情况
➢ 当s从零增加到(b-w)/2时, λ g / λ先 增后减,Zc在(b-w)/2时趋于饱和 ;
➢ 对于固定的s , λ g / λ和 Zc随槽宽的增 大而增加;
➢ 低阻抗结构可以通过将槽向一侧壁 移动时获得。 s趋于零、w=0.1时, Zc=40Ω,利于低阻抗器件的匹配。
底的加脊波导:
g
e (/cr)2
同尺寸空气填充加 脊波导的截止波长
有效介电常数
Zc
Zc
e (/cr)2
同尺寸空气填充加脊波 导f→∞的特性阻抗
➢ 适用条件:低介电常数的薄基片(d/a<0.1,εe 近似看作一个常数 )
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.4 鳍线
鳍线的分析方法
鳍线的分析方法主要有:横向谐振法(TRM),传 输线矩阵法(TLMM),有限元法(FEM),谱域法 (SDM),谱域导抗法(SDIM)等数值方法,以及经 验公式近似法。
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.4鳍线
导行波长和特性阻抗
➢ P. J.Meier的近似公式,将鳍线看成带有介质衬
2.4鳍线
微带线是一种非常好传输线结构,目前最高频率 可达110GHz。但是在毫米波高端仍旧存在问题:
1.辐射损耗大,电路中寄生模耦合明显增加,电路Q值降 低。
2.强烈的色散效应以及随之而来的高次模传输的可能性 必然导致电路稳定性下降。
3.把多个电路集成在一起时,为减小电路间的有害耦合 必须采用模式隔离或谐振吸收装置。
电子科技大学电子工程学院《毫米波理论与技术》讲义
2.4鳍线
(a)
鳍线导体
鳍线槽

基片集成波导与微带线的转换设计

基片集成波导与微带线的转换设计

基片集成波导与微带线的转换设计随着通信技术的发展,无线通信系统越来越广泛地应用于日常生活和工业生产中。

在无线通信系统中,波导和微带线是常见的传输介质。

波导是一种用于传输电磁波的管道,其优点是低损耗、高传输效率和较大的带宽,但是波导的制作成本较高,体积较大,无法直接集成于集成电路中。

而微带线是一种用于传输微波信号的导行线,在集成电路中易于制作和集成,但是其损耗较大,带宽较小,因此在实际应用中需要将波导与微带线进行转换。

波导与微带线的转换设计是无线通信系统中的重要环节,其设计需要考虑到传输效率、损耗、带宽和制作成本等多方面因素。

本文将重点介绍基片集成波导与微带线的转换设计。

基片集成波导与微带线的转换设计是指将波导和微带线集成在同一电路板上,并设计出高效的波导与微带线之间的转换结构。

基片集成波导与微带线的转换设计既可以利用波导的优点,又可以利用微带线的优点,从而在无线通信系统中取得更好的性能。

基片集成波导与微带线的转换设计主要包括以下几个方面:波导与微带线之间的传输结构设计、波导与微带线之间的阻抗匹配设计、波导与微带线之间的传输效率和损耗分析、基片集成工艺等。

首先,波导与微带线之间的传输结构设计是基片集成波导与微带线的转换设计的重要部分。

传输结构的设计需要考虑到波导与微带线的特性,并设计出合适的结构来实现波导与微带线之间的信号传输。

目前常用的波导与微带线之间的传输结构有耦合槽、耦合窗、天线和耦合结构等,这些结构的设计需要考虑到波导与微带线的工作频率、阻抗匹配和传输效率等因素。

其次,波导与微带线之间的阻抗匹配设计是基片集成波导与微带线的转换设计的关键环节。

阻抗匹配设计需要将波导与微带线的阻抗进行匹配,从而实现波导与微带线之间的高效能量传输。

阻抗匹配设计需要考虑到波导与微带线的特性、工作频率、波导结构和微带线结构等因素。

第三,波导与微带线之间的传输效率和损耗分析是基片集成波导与微带线的转换设计的重要内容。

波导微带

波导微带

罴 疆 鬟
200"8·15 10:36.11
频率(GHz)
图4仿真结果

3结论 基于场模式匹配以及阻抗变换的方法在不同传输系统转换设计中常常使用,此过渡解
决了脊波导重复安装导致性能下降的问题,可望在实际中验证和使用。
参考文献 【I】薛良金<毫米波工程基础)哈尔滨工业大学出版社2004年 【2】 JiaLin Li, Wei Shao ”A NOVEL WAVEGUIDE-TO-MICROSTRIP TRANSITION FOR
A-A。截面电场分布
B-B’截面电场分布
C-C’截面电场分布D-D’截面电场分布 图2各截面所对应的电场分布图
在csr中背对背仿真的结构如图3所示
图3背对背的过渡结构 通过宽带阶梯加脊波导把矩形波导的主模波阻抗变换到微带特性阻抗以实现过渡·在 这种结构中,加脊波导由一些减高波导组成,以便使波导高度从b逐渐变化到低阻抗实现 阻抗匹配,通过查表我们可以得到3阶切比雪夫阻抗变换器的数值,从而确定该过渡的物 理尺寸.脊波导特性阻抗可以采用近似公式…计算。波导采用BJ320(a-7.12mm,b23·56mm), 介质的相对介电常数为2.2,厚度为0.254m:阶梯的高度相差0.5u.长度分别为:i.6mm, 1.4mm,2.0mm,介质探入波导的长度为2.3mm。仿真结果如图4,我们可以看到在 3lGffz一40GHz其回波损耗均在lOdB以下,插损在0.6dB左右。
意如图1所示:

BC D
A‘
B。C‘D‘
圈1过渡的纵剖国
那么各个截面上的电场分布如图2所示,在A—A’截面上传播的是波导的主模T卧,经 过脊波导的变换。场逐渐被集中压缩到介质之中,场模式也从TE-n逐渐变化到微带线上的 TEM波模式,从而实现了波导到微带的变化,脊波导不仅实现了场模式的匹配,而且也完 成了阻抗匹配…。

W波段波导_微带探针过渡设计

W波段波导_微带探针过渡设计

W波段波导-微带探针过渡设计付骥 胡皓全( 电子科技大学电子工程学院,成都 610054 )摘 要:本文采用高频仿真软件HFSS仿真设计出了W波段E面探针方式的波导到微带过渡结构,并制作了实物进行了测试,实测结果表明在频率85GHz-100GHz范围内,过渡的插入损耗小于1dB,与仿真结果基本吻合,适合工程应用。

关键词:毫米波;W波段;波导微带变换Design of W Band Waveguide to Microstrip Probe TransitionFU Ji, HU Hao-quan(School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China) Abstract: In this paper, a structure of W band waveguide to microstrip probe transition is designed and analyzed by using the advanced electromagnetic simulation software HFSS. The transition is also fabricated and measured to demonstrate the performance, the measured results show that the insertion loss of the transition is less than 1dB in the frequency of 85GHz to 100GHz, which shows good agreement with theoretical results.Key words:Millimeter wave; W band; Microstrip probe transition引 言随着毫米波技术的发展,毫米波混合集成电路与单片集成电路在通信、雷达、制导以及其它一些系统中得到广泛应用,微带传输线正在越来越多的场合取代金属波导,成为制作毫米波集成电路的重要传输线。

Ka频段波导—同轴探针—微带过渡的研究

Ka频段波导—同轴探针—微带过渡的研究

Ka 频段波导—同轴探针—微带过渡的研究刁睿,徐锐敏,谢小强电子科技大学电子工程学院,四川成都 (610054)E-mail :screamtodie@摘 要:本文介绍了一种设计波导—同轴探针—微带过渡结构的方法。

设计采用HFSS 分析并进行优化,在26.5-39GHz 范围内,插入损耗小于0.11dB ,输入端回波损耗小于-19.5dB ,最小可达-24dB 。

关键词:毫米波,同轴探针,过渡中图分类号:TN631. 引 言在毫米波频段,为便于测试、天馈以及独立微带电路之间的连接,常常需要将微带电路输入、输出端口通过转换结构过渡到矩形波导。

在需要将信号作一段距离的传输时,也必须将电路从微带转换至波导,以降低传输损耗。

因而采用微带的毫米波集成电路往往都必须具有宽带特性的波导-微带过渡的接口。

探针结构是工作于TEM 模的同轴线和工作于10TE 模的矩形波导间的一种常用的过渡结构[1]。

在实际应用中,过渡器的一个不可忽视的附加因素是气密要求。

很多微带电路,特别是军用微带电路,为保证能在各种恶劣环境条件下性能的稳定性,对系统的气密性提出了更高的要求。

而通常所采用的E 面探针型波导—微带过渡结构在波导上的开口较大,不仅使系统的气密性受到一定的影响,对矩形波导内的场分布也将产生较大的扰动。

综合运用相关理论知识并考虑到波导—微带过渡结构的具体要求,采用波导—同轴探针—微带过渡结构将能够获得较好的效果。

为此本文对波导—同轴探针—微带过渡结构的设计方法进行了介绍。

2. 理论分析探针在波导中相当于一个小天线,若同轴线接波源,探针便是发射小天线,它向波导所限定的辐射电磁波. 一般地说,只要电磁波的电场或与波导某模式的电场或磁场分量一致,该模便会被激励。

本文讨论单探针激励矩形波导[2],如图1所示。

采用R.F.Harrington 的等效电路法来进行研究。

在矩形波导内,由同轴波导驱动一根很细的探针,如图所示,细探针被放置在z=0的波导模截面上。

Ku频段波导微带转换的设计与分析

Ku频段波导微带转换的设计与分析

Ku频段波导微带转换的设计与分析陈小忠;闫书保【摘要】Designs and processes a waveguide-microstrip converter applied in Ku band by using HFSS software. The waveguide-microstrip converter adopts the probe plane and narrow waveguide wall vertical structure. Simulation of return loss small than -30dB, insert loss less than 0.3dB, actual test return loss is less than-18dB, single loss is 0.3dB.%利用HFSS仿真软件,设计并加工一个用于Ku频段的波导微带转换器.该波导微带转换采用探针平面与波导窄壁垂直的结构. 两端口仿真回波小于-30dB,差损小于0.3dB,实际测试回波小于-18dB,单个波导微带转换端口差损为0.3dB.【期刊名称】《现代计算机(专业版)》【年(卷),期】2015(000)018【总页数】4页(P58-61)【关键词】HFSS仿真;波导微带转换;Ku频段【作者】陈小忠;闫书保【作者单位】广州海格通信集团股份有限公司,广州 510663;广州海格通信集团股份有限公司,广州 510663【正文语种】中文随着微波技术的发展,往往要求能量在不同的介质中进行传输。

而且微带线正逐步取代金属波导,成为微波电路小型化的重要部分。

就目前而言,波导微带过渡主要有脊波导、过渡鳍线、微带探针等几种形式。

脊波导与微带的连接通常采用硬压力接触,这就导致其性能与压力接触相关,所以其可靠性较差。

鳍线存在较多的电磁波模式,而且对其进行抑制较为困难,另外,鳍线在截至频率时会产生一个纯电抗特性的源阻抗或负载阻抗,使有源器件处于不稳定区域,容易出现自激。

微波天线的设计资料(微带天线)(MicrostripAntenna)

微波天线的设计资料(微带天线)(MicrostripAntenna)

实验十三微带天线(Microstrip Antenna)一、实验目的1.了解天线之基本原理与微带天线的设计方法。

2.利用实验模组的实际测量得以了解微带天线的特性。

二、预习内容1.熟悉微带天线的理论知识。

2.熟悉天线设计的基本概念及理论知识。

三、实验设备四、理论分析天线基本原理:天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。

所以天线亦可视为射频发收电路与空气的信号耦合器。

在射频应用上,天线的类型与结构有许多种类。

就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole)、双极型(Dipole)、喇叭型(Horn)、抛物型(Parabolic Disc)、角型(Corrner)、螺旋型(Helix)、介电质平面型(Dielectric Patch)及阵列型(Array)天线,如图13-1所示。

就使用频宽来分别有窄频带型(Narrow-band,10%以下)及宽频带型(Broad-band,10%以上)。

图13-1 常见天线(一)天线特性参数1.天线增益(Antenna Gain’G):isotropicPPG=其中 G——天线增益P——与测量天线距离R处所接收到的功率密度,Watt / m2Pisotropic——与全向性天线距离R处所接收到的功率密度,Watt / m2由此可推导出,与增益为G的天线距离R处的功率密度应为接收功率密度:24RPGP txrec⋅⋅=π其中 G——天线增益P tx——发射功率,Watt / m2R——与天线的距离,m2.天线输入阻抗(Antenna Input Impedance’Zin):IVZin=其中 Z in——天线输入阻抗V——在馈入点上的射频电压I——在馈入点上的射频电流以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。

3.辐射阻抗(Radiation Resistance’Rrad):(a)单极型(c)喇叭型(d)抛物面(e)螺旋型(f)阵列型2i P R av rad =其中Pav ——天线平均辐射功率,Wi ——馈入天线的有效电流,A I ——在馈入点上的射频电流对一半波长天线而言,其辐射阻抗为73Ω。

Ka波段宽带波导微带变换设计解析

Ka波段宽带波导微带变换设计解析

Ka 波段宽带波导微带变换设计解析
1 引言
在使用波导接口的毫米波系统中,同时利用微带电路集成度高的特点时波导微带过渡结构是必不可少的。

电路中波导微带过渡要求低损耗、宽频段、
易于加工等特点,目前过渡形式主要存在以下方式:鳍线过渡、小孔耦合、
脊波导过渡以及E-面探针方式,这些形式各有长短,适合不同场合。

本文采用高频电磁场仿真软件HFSS 快速设计出E-面探针方式的波导--微带过渡结构,采用全波分析法相较于谱域分析会更精确、快速,通过仿真设计以及实
物测试达到较好的结果,在30GHz~40GHz 的频段内驻波《1.5,插损《1dB 的良好指标。

2 快速设计原理
E-面探针方式的波导--微带过渡结构如图1 所示,探针通过在波导面的开窗深入波导内,开窗尺寸既要利于装配同时要尽量小以减少对波导传输性能
的影响,同时形成的波导截止频率应在工作频率之外。

探针长度D、宽度
WP 以及离波导短路面的距离L 均能影响探针从波导宽边看过去的随频率变
化的阻抗。

变换设计的一个最重要工作就是首先综合计算出上述三个参数使
得探针阻抗随频率变化而变化的范围尽量小。

阻抗此时显示为实部和容性虚部,所以为了将阻抗匹配至50 欧姆,须和探针传接一个高阻抗感性微带线其。

Ka频段波导内空间功率合成

Ka频段波导内空间功率合成

第四部分 微波毫米波无源器件及电路1167Ka 频段波导内空间功率合成刁睿 徐锐敏 谢小强电子科技大学电子工程学院,成都610054,email :screamtodie@摘要:本文提出了一种Ka 频段波导-微带对极鳍线阵列形式的空间功率合成网络。

该结构以波导作为输入和输出口,过渡和功率分配一步完成,经三维电磁仿真软件HFSS 仿真表明,该合成网络具有宽频带、低插损的优点。

这是获得高效率合成的必备条件之一,具有很大的利用前景。

关键字:毫米波,对极鳍线,空间功率合成Waveguide-Based Spatial Power combiningat Ka-bandDiao Rui, Xu Ruimin, Xie XiaoqiangCollege of Electronic Engineering, University of Electronic Science and Technology of China, 610054email :screamtodie@Abstract : In this paper, a spatial power combiner at Ka-band using filine arrays of waveguide to microstrip transition is proposed. The input and output port of the network is the waveguide, transiting and power dividing are achieved at one time. By simulating the combiner using HFSS, it is indicate that this model has a wide band and small insert loss, which are the necessary conditions for a high efficiency. The model’s feasibility is validated. Key Words: millimeter wave, finline, spatial power combining1 引言随着毫米波技术在制导、雷达、短程通信等领域得到广泛应用,对毫米波信号源的输出功率也提出了越来越高的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档