1.同余的概念及基本性质

合集下载

1.同余的概念-人教A版选修4-6初等数论初步教案

1.同余的概念-人教A版选修4-6初等数论初步教案

同余的概念-人教A版选修4-6 初等数论初步教案一、教学目标1.了解同余的概念。

2.掌握同余运算的性质。

3.能够使用同余运算的性质解决初等数论问题。

二、教学重点1.同余的概念。

2.同余运算的性质。

三、教学难点1.应用同余运算的性质解决初等数论问题。

四、教学内容及进度安排课时教学内容学时第一课时同余的概念1学时第二课时同余运算的性质1学时第三课时应用同余运算的性质解决初等数论问题1学时五、教学步骤第一课时-同余的概念1.引入:回顾模运算的概念、性质及应用。

2.学习:同余的概念及其表示法,同余数的概念。

3.总结:总结同余的概念及其表示法。

第二课时-同余运算的性质1.引入:引入同余运算的性质及其证明方法。

2.学习:同余运算的基本性质,同余运算的逆元及其应用。

3.总结:总结同余运算的性质及其应用。

第三课时-应用同余运算的性质解决初等数论问题1.引入:引入应用同余运算的性质解决初等数论问题的方法。

2.学习:应用同余运算的性质解决初等数论问题的例子。

3.总结:总结应用同余运算的性质解决初等数论问题的方法。

六、教学评估1.在课堂上布置练习题,检查学生对同余运算的掌握情况。

2.布置一道探究题,让学生归纳总结同余运算的性质和应用。

3.综合考虑学生的平时表现、作业和考试情况,评估其对同余运算的掌握情况。

七、拓展阅读1.同余式及其应用2.解一元高次同余方程八、参考资料1.《数学(高中必修)》人教版下册2.《初等数论》程开甲著。

同余的基本概念和性质

同余的基本概念和性质

模相等的同余关系的运算性质
模相等的同余关系满足交换律和结合律 模相等的同余关系满足消去律 模相等的同余关系满足分配律 模相等的同余关系满足幂等律
同余的应用
同余在模方程中的应用
模方程的同余解法 同余在模方程中的应用实例 同余在模方程中的求解步骤 同余在模方程中的优势与局限性
同余在数论中的应用
整除理论:同余是整除理论中的重要概念,用于研究整数之间的除法关系。
● - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 ● - 同余关系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 ● - 同余关系具有传递性,即如果a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 ● - 对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。
同余的性质
模相等的同余关系
● 定义:如果两个整数a和b除以同一个正整数m的余数相同,则称a和b对模m同余,记作 a≡b(mod m)。
● 性质: - 同余关系具有反身性,即任意整数a都与自身对模m同余,即a≡a(mod m)。 - 同余关 系具有对称性,即如果a≡b(mod m),则b≡a(mod m)。 - 同余关系具有传递性,即如果 a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。 - 对于任意整数a、b和c,若a≡b(mod m)且 b≡c(mod m),则a≡c(mod m)。
同余的基本概念和性质
汇报人:XX
目录
同余的定义
同余的性质
01
02
同余的应用
同余的证明方法
03
04
同余的定义
什么是同余
同余的定义:两个整数除以某 个固定整数得到的余数相同, 则称这两个整数同余。

同余的概念与性质

同余的概念与性质

同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。

性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。

性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。

性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。

(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。

性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。

性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。

性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。

性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。

同余的概念及其基本性质

同余的概念及其基本性质

学院学术论文题目: 同余的概念及其基本性质学号:学校:专业:班级:姓名:指导老师:时间:摘要:初等数论是研究数的规律,特别是整数性质的数学分支。

它以算术方法为主要研究方法,在日常生活中,我们所要注意的常常不是某些整数,而是这些数用某一固定的数去除所得的余数。

同余概念的产生可以说大大丰富了数学的内容。

同余是数论中的一个基本概念,同余的应用,一:检查因数的一些方法;二:弃九法。

在本专题的学习中,培养我分析推理解决问题的能力,理解问题的实质。

关键字:同余整数算术Summary:The number of elementary number theory is to study the law, in particularinteger nature of the branch of mathematics. It arithmetic method as the main research methods in their daily lives, we are often not to pay attention to some integer, but these numbers with a fixed a number of removal from the remainder. I created the concept of the same can be said to have greatly enriched the content of mathematics. Number theory congruence is a basic concept of the application with more than one: Check factor of some of the ways; 2: abandoned nine law. In the topic of study, training my analysis reasoning ability to solve problems, understand the essence of the problem.Keyword :Congruence Integer Arithmetic引言数论是研究整数性质的一门学科,它是数学中最古老的分支之一,内容极为丰富,曾被数学家说成是数学的皇后。

数学竞赛精讲精练专题—初等数论中的同余问题_1

数学竞赛精讲精练专题—初等数论中的同余问题_1



(
pk k
)

pk k
[
pk k p
]
pk k

pk 1 k


(m)


(
p1 1
)
(
p2 2
)

(
pk k
)

(
p1 1

p1 1
1
)(
p2 2

p2 2
1
)
(
pk k

pk k
1
)

p1 1
(1

p11
)
p2 2
(1

p21)
pk k
(1
又 p 为奇素数, p 1为偶数,∴ ( p 1)!1 0(mod p) ,得证.
6、设 a 为整数, p 为正整数,若存在 x Z ,使得 x2 a(mod p) ,则称 a 为模 p 的二
次剩余,否则,称 a 为模 p 的二次非剩余.
p1
设 p 为奇素数,a Z 且 p a ,证明:a 是模 p 的二次剩余充要条件是 a 2 1(mod p) ;
若 a b(mod m) , c d(mod m) , n N* 则 a c b d(mod m) , a c b d(mod m) ac bd(mod m) , an bn (mod m) .
3)除法运算:
ac bc(mod m) ,则 a b(mod m ) . (c, m)
(1)k m p1 p2 pk
k
m(1
1
1 (1)k 1 )
p p p i1 i 1i jk i j

同余关系的概念与定理

同余关系的概念与定理

同余关系的概念与定理同余关系是离散数学中一个重要的概念,它在数论、代数和密码学等领域有着广泛的应用。

本文将介绍同余关系的概念和相关定理。

一、同余关系的概念同余关系是数论中的一个基本概念,它描述了两个数之间的整除关系。

具体来说,给定两个整数a和b,如果它们除以一个正整数m所得的余数相同,即a和b对m同余,记作a≡b(mod m),则称a和b关于模m同余。

二、同余关系的性质同余关系具有以下三个性质:1.自反性:对于任意整数a,a≡a(mod m)恒成立。

即任意整数与自身关于模m同余。

2.对称性:对于任意整数a和b,若a≡b(mod m),则b≡a(mod m)。

即若a与b关于模m同余,则b与a关于模m同余。

3.传递性:对于任意整数a、b和c,若a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

即若a与b关于模m同余,且b与c关于模m同余,则a与c关于模m同余。

三、同余关系的定理1. 除法定理:对于任意整数a和正整数m,存在唯一的整数q和r,使得a=qm+r,其中0≤r<m。

即任意整数a可以表示为以m为模的除法形式。

2. 模运算性质:- 同余类的性质:对于任意整数a和正整数m,a关于模m的同余类可以表示为[a]m={b∈Z | b≡a(mod m)},其中Z表示整数集合。

同余类[a]m是所有与a关于模m同余的整数构成的集合。

- 同余的运算性质:对于任意整数a、b和正整数m,若a≡a' (mod m)且b≡b' (mod m),则有a+b≡a'+b' (mod m),a-b≡a'-b' (mod m),ab≡a'b' (mod m)。

3. 唯一性定理:对于给定的整数a、b和正整数m,存在整数x,使得a≡b (mod m)的充分必要条件是a和b对m的余数相同。

即a和b关于模m同余的充分必要条件是它们对m的余数相同。

4. 同余定理:对于任意整数a、b和正整数m,若a≡b (mod m),则a^n≡b^n (mod m),其中n是正整数。

同余

同余

a 用a modm表示余数r,则 a [ ]m ( a m odm ) m
定理3 整数a, b模m 同余 a modm=b modm
ab (modm) m|a-b a modm=b modm
a=b+km
性质:
(1) ( 2) ( 3)
[(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm [(a modm ) (b modm )]modm (a b) modm
(r r ) a b (q q)m
m a b的充分必要条件是 m r r. 但因为 0 r r m , 因此,
且 m r r 的充分必要条件是 r r 0 ,所以 m a b 的充分必 要条件是 r r 0. 这就是定理的结论.
2
2003
2

22 1 4 4(mod 7).
故第 22003 天是星期二。 定理5 若 x y(mod m),
ai bi (mod m),
0 i k, 则 0 i k.
a0 a1 x ak x k b0 b1 y bk yk (mod m).
故 3 n, 9 | n.
k 定理7 设 n ak 1000 a11000 a0 , 0 ai 1000. 则7或11,或
13 n 7或11或 13 a0 a2 - a1 a3 .
例4 设 n 637693.
例5 设n 75312289.
定理10 设a b ( mod m) . 若d | m, 则a b ( mod d) .

同余的运算法则

同余的运算法则

同余的运算法则全文共四篇示例,供读者参考第一篇示例:同余的概念最早出现在数论领域,是一种描述整数间的模运算关系的数学概念。

同余的运算法则涉及到模运算的一系列性质和规律,对于解决一些数论问题和密码学中的加密算法起着至关重要的作用。

本文将介绍同余的概念及其运算法则,并讨论其在数学和应用方面的重要性。

1. 同余的定义在数论中,我们通常使用符号“≡”表示同余关系。

如果两个整数a和b除以一个正整数m的余数相等,即a除以m和b除以m的余数相等,我们就说a与b关于模m同余,记为a≡b(mod m)。

简单来说,同余就是指两个数除以同一个数的余数相等。

12和22关于模5同余,因为12除以5的余数为2,22除以5的余数也为2,即12≡22(mod 5)。

2. 同余的运算法则在模运算中,同余有着一系列的运算法则。

我们可以根据这些法则来简化模运算的计算,并处理一些复杂的数论问题。

(1)同余的传递性如果a≡b(mod m)且b≡c(mod m),那么可以推出a≡c(mod m)。

这就是同余关系的传递性,即如果两个数与同一个模同余,那么它们之间也是同余的。

举例来说,如果5≡15(mod 10)且15≡25(mod 10),那么可以推出5≡25(mod 10)。

(2)同余的对称性和反对称性(3)同余的加法和乘法性质对于同余关系来说,加法和乘法都具有良好的性质。

(4)同余的幂运算性质如果a≡b(mod m),那么对于任意正整数n,有a^n≡b^n(mod m)。

即同余数的幂运算后依然同余。

(5)同余的逆元如果a在模m下存在逆元,即存在整数b使得ab≡1(mod m),那么我们称b是a的逆元。

对于素数模m来说,任意整数a在模m下都有逆元。

同余的概念在数论和密码学领域有着广泛的应用。

(1)同余在数论中的应用在数论中,同余可以用来证明一些整数性质和解决一些数论问题。

在证明费马小定理和欧拉定理等定理时就会用到同余的性质。

在密码学中,同余的概念有着重要的应用。

同余的 概念与性质

同余的 概念与性质


由上例可知,同样的两个数关于不同的模同余关系可能不相同.
例3. 2 求证:(1) 如果a除以m的余数为r(0≤r<m), 那么 a≡r (modm); (2)如果a ≡r (modm),0≤r<m,那么a 除以m的 余数为r。
证明 (1) 由题意得可设, a=mq+r ( 0≤r<m ) . 由于0≤r<m ,所以r除以m的不完全商为0,余数为r,即 r =m· 0+r ( 0≤r<m ) . 根据同余概念,可得a≡r(modm); (2) 因为a ≡ r(modm),所以由同余概念可得· a=mq1+R , r=mq2+R,( 0≤R<m ), 又因为0≤r<m,所以q2=0,即R=r. 因此 得 a=mq1+r (0≤r<m).即a被m除,所得的余数为r.
例3. 12 把由1开始的自然数依次写下来,直写到 第201位为止,就是 201位
12345678910111213…
试问这个数除以3的余数等于几?


解 因为1~9写在一起构成九位数,10~99写在一 起为90 X 2=180位数,所以由1开始的自然数依 次写到99,合计为189位数,由于201-189=12, 因此只需在1写到99后再写上100,101,102,103 四个数.即从1开始的自然数依次写到103就构成 一个201位数(由103个连续的自然数组成). 因为每三个连续自然数的各位数字之和能被3除, 103≡1(mod3),所以这个数除以3的余数为1.
从例3.6的证明,还可以得出如下的结论:
如果 a ≡ b (modm),又d 能整除m以及整除a,b两 个数中的一个,则d 必能整除a,b中的另一个.

初等数论期末复习

初等数论期末复习

2015年5月8日9时1分
二、剩余类与剩余系
定理2.2.1 设m为正整数,则全部整数可分成m个 集合,记作[0],[1],…,[m-1],其中[r] (0 ≤ r ≤m-1)是由一切形如 mq + r (q∈Z) 的整数所组 成的,并且具有下列性质: (1)每一整数必包含在而且仅在上述的一个集合中.
(2) x3 + 2x-12≡0 (mod7). 0, 1, …, 6逐一代入(2) 求解
定义: 如果 a , b 都是整数, m 是一个正整数,那么 当 a ≡ 0 ( mod m)时,我们把 ax ≡ b ( mod m ) 叫做 模m的一次同余方程(或同余式) . 定理 3.1.1 若设m为正整数, a , b为整数, (a,m)=1,
一次同余方程有解的解法 一、欧拉定理法解一次同余方程
定理 3.1.2 若 m 为正整数, a , b为整数, (a, m)=1,则一次同余方程ax ≡ b ( mod m )的唯 m 1 一解为 x ba mod m .
二.同余变形法(系数消去法)
根据同余性质,施行适当的变形求解a≡b(modm):
第二章
同余
一、同余的概念及基本性质
1、同余的概念:
定义2. 1
设m为正整数,称为模。若用m去除两 个整数 a 和 b 所得的余数相同,则称a 和b 对模 m 同余, 记作 a ≡b (mod m). ( 1) 读作a 同余于b 模m。 若a 和b 除以m 所得余数不同,则称a, b 对模m 不同余,记作 a b (mod m).
2015年5月8日9时1分
E
New
弃九法
正整数四则运算(含乘方) 的快速验算方法
若通过计算,a、b的和与积分别是s与p. 而r1、r2、

同余的概念及其基本性质

同余的概念及其基本性质
由100 1(mod101) 102 1(mod101),104 1(mod101)L 101 a 101 a1a0 a3a2 a5a4 L
4.证明:641 232 1 解:依次计算对模641的同余数
22 4,24 16,28 256, 216 256 256 154(mod641) 232 154 154 1(mod641) 232 1 0(mod641)
5.设a为奇数,则a2n 1(mod 2n2 ) (n 1). 解:设a = 2m 1, 当n = 1时,有 a2 = (2m 1)2 = 4m(m 1) 1 1 (mod 23)(*)成立。 设式(*)对于n = k成立,则有
a2k 1(mod 2k2 ) a2k 1 q 2k2 所以 a2k1 (1 q 2k2 )2 1 q 2k3 q2 2(k2)2 记 1 q'2k3 1(mod 2k3 ),q' Z. 这说明式(*)当n = k 1也成立。由归纳法得证.
一般地,求a bc 对模m的同余的步骤如下: ① 求出整数k,使ak 1 (mod m);
② 求出正整数r,r < k,使得bc r (mod k);
③ abc ar (mod m)
——减小幂指数
练习:若a Z ,证明 10|a1985 a1949 . 提示:a5 a(mod10)
一、问题的提出 1、今天是星期一,再过100天是星期几? 再过1010 天呢? 2、3145×92653=2910 93995的横线处漏写了一个 数字,你能以最快的办法补出吗?
3、13511,13903,14589被自然数m除所得余数 相同,问m最大值是多少?

c++ 同余定理

c++ 同余定理

c++ 同余定理同余定理(Congruence theorem)是数论中的一个重要定理,描述了整数之间的一种等价关系。

它在数论、代数和密码学等领域中有广泛的应用。

本文将以简体中文详细介绍同余定理及其相关概念和性质。

1.同余关系同余关系是指给定两个整数a和b,如果它们之差能够被另一个整数m整除,那么就称a与b在模m意义下同余,记作a ≡ b (mod m)。

其中,“≡”表示同余关系,“mod”表示模运算符。

例如,假设a = 17,b = 10,m = 3。

那么17 ≡ 10 (mod 3),因为17 - 10 = 7能被3整除。

同样地,我们也可以写作17 mod 3 = 10 mod 3。

2.同余定理的基本性质同余定理可以表达为以下三个基本性质:(1)自反性:对于任意整数a,a ≡ a (mod m)。

(2)对称性:如果a ≡ b (mod m),那么b ≡ a (mod m)。

(3)传递性:如果a ≡ b (mod m)且b ≡ c (mod m),那么a ≡ c (mod m)。

这些性质与我们常见的相等关系有些相似,但同余关系相对更加松散。

我们可以将同余关系看作是模m下的一种等价关系。

3.同余类同余类是同余关系下的等价类,它将所有在模m意义下同余的整数划分为若干个集合。

每个集合称为一个同余类,其中包含了无限多个整数。

同余类的元素可以被任何一个模m同余的整数所代表。

以模5为例,我们可以将整数集合Z = {..., -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}划分为五个同余类:[0] = {..., -10, -5, 0, 5, 10, ...}[1] = {..., -9, -4, 1, 6, 11, ...}[2] = {..., -8, -3, 2, 7, 12, ...}[3] = {..., -7, -2, 3, 8, 13, ...}[4] = {..., -6, -1, 4, 9, 14, ...}每个同余类包含了模5意义下同余的整数。

初中数学教案:同余与同余方程

初中数学教案:同余与同余方程

初中数学教案:同余与同余方程一、同余的概念及性质同余是数论中的一个重要概念,它描述了两个整数在某个特定的情况下具有相同的余数。

同余关系在数论、代数、密码学等领域中都有广泛的应用。

1. 同余的定义同余是指两个整数 a 和 b 在除以一个正整数 m 时得到相同的余数。

用符号表示为a ≡ b (mod m),读作“a 同余于 b 模m”。

2. 同余的性质(1)传递性:如果a ≡ b (mod m) 且b ≡ c (mod m),那么a ≡ c (mod m)。

(2)反身性:对于任意整数 a,有a ≡ a (mod m)。

(3)对称性:如果a ≡ b (mod m),那么b ≡ a (mod m)。

二、同余方程的求解方法同余方程是一种特殊的方程,它的未知数是整数,要求解方程时需要找到满足同余关系的整数解。

1. 一元一次同余方程一元一次同余方程形如ax ≡ b (mod m),其中 a、b 和 m 是已知的整数,要求解x。

方程的解可以用以下步骤求得:(1)对 m 进行质因数分解,得到 m 的素因数分解形式;(2)利用扩展欧几里得算法求出 ax + my = d 的整数解;(3)如果方程有解,则解为x ≡ b/d (mod m),其中 d 是 ax + my = d 的最大公约数。

2. 一元二次同余方程一元二次同余方程形如ax^2 + bx + c ≡ 0 (mod m),其中 a、b、c 和 m 是已知的整数,要求解 x。

对于一元二次同余方程,我们可以先尝试利用二次剩余判别法判断方程是否有解,然后再利用求根公式求解方程。

三、同余的应用同余在数论、代数和密码学等领域中具有重要的应用价值,下面介绍其中两个应用案例。

1. 时钟问题时钟问题是同余理论的一个典型应用案例。

以 12 小时制为例,假设现在是凌晨 12 点,需要求 n 小时后的时间。

根据同余关系,我们可以得到表达式n ≡ x (mod 12),其中 x 为 n 对 12 取模的余数。

同余

同余

或21+X+Y=36,X-Y+13=22
X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
例3 :求111 被7除的余数。
50
解:∵111111被7整除,

11 1
50
≡11(mod 7)≡4(mod 7)
即余数为4。
例4:求( 257
解: ( 257
i0
( 1 ) a i (mod
i
7)
n
即有7|a的充要条件是 7| 对模11和13同理可证。 注:这里用的是1000进制。
( 1) a i
i
i0
例1:1234567891011…2005 除以3的余数是多少.
解:因为一个数除以3的余数,即其各位数字和 除以3 的余数.所以所求余数
解:两边关于9同余,则有8*3 所以错误. 5,不成立
例判断 28997*39495=1114523641 5是否正确
解:两边关于9同余,则有8*3 所以错误. 5,不成立
定义:称k0 ,k1,…km-1叫做模m的剩余类,设 a0,a1…am-1是m个整数,并且其中任何两数都不 在一个剩余类里,则a0,a1…am-1叫做模m的一个 完全剩余系(简称完系)
第三章 同余
§1 同余的概念及其基本性质
在日常生活中,我们常接触到一些周 期为正整数性的问题.例如:问火车下午2 点从金华出发,30小时后到广州,则到广州 是几点?就是24去除30所得的余数6加2,即 晚上8点到广州,这就是同余问题.今天是星 期一,问过了100天后是星期几等…….,现 在同余理论已发展成为初等数论中内容丰
b. 由同余的定义可知: 相等必同余,同余未 必相等,不同余肯定不相等,这是一种很好 的方法,尤其在证明不相等时非常有用。

初中数学重点梳理:同余式

初中数学重点梳理:同余式

同余式知识定位数论是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常发比例,其中同余理论是初等数论中的重要内容之一,其同余式概念及应用,剩余系概念要熟练掌握。

本文归纳总结了同余的若干性质,将通过例题来说明这些方法的运用。

知识梳理1、同余概念定义1:给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m 同余,记作a≡b(modm),并读作a同余b,模m。

(1)若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b。

反之,(2)若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2。

于是,我们得到同余的另一个等价定义:定义2:若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.2、同余定理定理1:(1)a≡a(modm).(2)若a≡b(modm),则b≡a(modm).(3)若a≡b(modm),b≡c(modm),则a≡c(modm).定理2:若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证:由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d),m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).定理3:若ac≡bc(modm),且(c,m)=1,则a≡b(modm).定理4: 若n ≥2,a ≡b(modm 1),a ≡b(modm 2),…………a ≡b(modm n ),且M=[m 1,m 2,…,m n ]表示m 1,m 2,…,m n 的最小公倍数,则a ≡b(modM)3、剩余类和完全剩余系全体整数集合可按模m 来划分:当且仅当()mod a b m ≡时,a 和b 属于同一类。

1.同余的概念-人教A版选修4-6初等数论初步教案

1.同余的概念-人教A版选修4-6初等数论初步教案

同余的概念-人教A版选修4-6 初等数论初步教案一、教学目标1.了解同余的定义和性质;2.掌握同余的运算规则和推论方法;3.运用同余理论解决实际问题。

二、教学重点1.同余的定义和性质;2.同余的运算规则;3.同余理论的应用。

三、教学难点1.同余的推论方法;2.同余理论在实际问题中的应用。

四、教学过程1. 导入(10分钟)首先引入同余的概念,让学生思考两个数之间应该满足什么条件才能说它们是同余的。

然后与学生一起探讨同余的含义和性质。

2. 定义和性质(20分钟)讲解同余的定义和性质,包括同余关系的传递性、对称性、反身性等,以及同余意义下的等式和不等式的特性。

在讲解的过程中,可以通过一些例子来加强学生的理解。

3. 运算规则(30分钟)讲解同余的运算规则,包括同余的加、减、乘、除、幂次等运算法则,以及同余的推论方法和定理。

在讲解的过程中,可以通过一些练习题来巩固学生的运算能力。

4. 应用实例(30分钟)将同余理论的应用与学生生活中的日常问题联系起来,让学生通过实际例子来理解同余理论的应用。

例如,用同余理论来解决生日问题、购物折扣问题等。

5. 总结归纳(10分钟)对课程内容进行总结归纳,让学生能够理解同余概念的重要性和实际应用的意义。

同时,让学生通过课程总结,确认对同余理论的掌握程度,进一步提高学习兴趣。

五、教学评价通过对学生的课堂表现和作业完成情况的评价,反馈学生对同余概念的掌握和运用能力。

同时,让学生知道如何运用同余理论来解决实际问题的方法和技巧。

六、教学反思在教学中,要注意让学生能够理解同余的含义和性质,并掌握运算规则和应用方法。

在讲解过程中,可以采用一些具体的例子来加深学生的理解,同时也要注意运用不同的教学方式和方法,以便能够满足不同学生的学习需求。

数论中的同余方程与同余式——数论知识要点

数论中的同余方程与同余式——数论知识要点

数论中的同余方程与同余式——数论知识要点数论是研究整数性质和整数运算规律的数学分支。

在数论中,同余方程与同余式是重要的概念和工具。

本文将介绍同余方程与同余式的基本概念、性质以及应用。

一、同余方程的定义与性质1. 同余关系的定义在数论中,对于给定的整数a、b和正整数m,如果m能整除a-b,即(a-b)是m 的倍数,我们称a与b对模m同余,记作a≡b(mod m)。

同余关系具有以下性质:(1)自反性:对于任意整数a,a≡a(mod m);(2)对称性:如果a≡b(mod m),则b≡a(mod m);(3)传递性:如果a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

2. 同余方程的定义同余方程是指形如ax≡b(mod m)的方程,其中a、b为已知整数,m为已知正整数,x为未知整数。

如果x是同余方程的解,则称x为同余方程的解集。

3. 同余方程的性质(1)等价方程:对于同余方程ax≡b(mod m),如果a≡a'(mod m)且b≡b'(mod m),则ax≡b(mod m)与a'x≡b'(mod m)是等价方程。

(2)解的存在性:同余方程ax≡b(mod m)有解的充分必要条件是gcd(a, m)能整除b,其中gcd(a, m)表示a和m的最大公约数。

(3)解的唯一性:如果同余方程ax≡b(mod m)有解,且x0是其解,则该方程的解集为{x0+k(m/gcd(a, m)) | k∈Z},其中Z表示整数集合。

二、同余式的定义与性质1. 同余式的定义同余式是指形如a≡b(mod m)的数学等式,其中a、b为整数,m为正整数。

同余式具有以下性质:(1)自反性:对于任意整数a,a≡a(mod m);(2)对称性:如果a≡b(mod m),则b≡a(mod m);(3)传递性:如果a≡b(mod m)且b≡c(mod m),则a≡c(mod m)。

2. 同余式的运算性质(1)加法性质:如果a≡b(mod m)且c≡d(mod m),则a+c≡b+d(mod m);(2)减法性质:如果a≡b(mod m)且c≡d(mod m),则a-c≡b-d(mod m);(3)乘法性质:如果a≡b(mod m)且c≡d(mod m),则ac≡bd(mod m)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 同余§1 同余的概念及其基本性质定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作()\mod a b m ≡.甲 ()mod .a a m ≡(甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.)乙 若()mod ,a b m ≡则()mod .b a m ≡丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡⇔-证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是,()12,|.a b m q q m a b -=--反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是,()()1221.r r m q q a b -=-+-故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡±证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-戊 若()()1122mod ,mod ,a b m a b m ≡≡则()1212mod .a a bb m ≡ 证 因()()1122mod ,mod a b m a b m ≡≡,故1122|,|.m a b m a b --又因()()()1212111212211122,a a bb a b b a bb a a b b a b -=-+-=-+-故()12121212|,mod .m a a bb a a bb m -≡ 定理2 若()()11mod ,mod ,1,2,,,kki i A B m x y m i k αααα≡≡=则()11111111,,,,mod .k k k kkkk k A xx B y y m αααααααααααα≡∑∑特别地,若()mod ,0,1,,i i a b m i n ≡=,则()111010mod .n n n n n n n n a x a x a b x b x b m ----+++≡+++证 因()mod ,1,2,,i i x y m i k ≡=故,1,2,,iii i x y i k αα≡=,从而()1111mod .k k k k x x y y m αααα≡又因()11mod kkA B m αααα≡,故()()111111111111111,,,,mod ,mod .k k kk k k kkkk k k k A xx B y y m A xx B y y m αααααααααααααααααααα≡≡∑∑己 若()()mod ,,1,ka kb m k m ≡=则()mod .a b m ≡证 因()mod ka kb m =,故()|.m ka kb k a b -=-又因(),1k m =,故()|,mod .m a b a b m -≡庚 (ⅰ)若()mod ,0,a b m k ≡>则()mod .ka kb km ≡ (ⅱ)若()mod ,|,|,|,0,a b m d a d b d m d ≡>则mod .a b m d d d ⎛⎫≡ ⎪⎝⎭证 (ⅰ)因()mod ,0a b m k ≡>,故()()|,|,mod .m a b km k a b ka kb ka kb km --=-≡(ⅱ)因()mod ,a b m ≡故|,.m a b a b mq --=又因|,|,|,0d a d b d m d >111111,,,0,0,0a da b db m dm a b m ===>>>. 于是()111111111,,mod ,mod .a b m da db dm q a b m q a b m d d d ⎛⎫-=-=≡≡ ⎪⎝⎭辛 若()mod ,1,2,,i a b m i k ≡=,则[]()12mod ,,,.k a b m m m ≡证 因()mod ,1,2,,i a b m i k ≡=,故|,1,2,,.i m a b i k -=于是,[][]()1212,,,|,mod ,,,.k k m m m a b a b m m m -≡附记 最小公倍数的一个常用性质是,若12|,|,,|k m a m a m a ,则[]12,,,|.k m m m a证 由带余除法,设[][]1212,,,,0,,,k k a m m m q r r m m m =+≤<,则12|,|,,|k m a m a m a 及12|,|,,|k m a m a m a 得, |,1,2,,.i m r i k =但[]12,,,k m m m 是12,,,k m m m 的最小公倍数,故[]120,,,,|.k r m m m a =壬 若()mod ,|,0,a b m d m d ≡>则()mod .a b d ≡证 因()mod ,a b m ≡故|.m a b -又因|,0d m d >,故()|,mod .d a b a m d -≡ 癸 若()mod a b m ≡,则()(),,.a m b m =证 因()mod a b m ≡,故|.m a b -于是,存在整数t 使得.a b mt -=故.a mt b =+故()(),,.a m b m =例 一个整数0a >被9整除的充分必要条件是n 的各位数字(十进制)的和倍9整除.证 设1101010,010n n n n i a a a a a --=+++≤<.因()101mod9≡,故()()101mod9,10mod9,0,1,,.i i i i a a i n ≡≡=于是,()010mod 9.n nii i i i a a a ===≡∑∑故9|a 的充分必要条件是09|.ni i a =∑作业 P53:2,3,4,5.习题选解2.设正整数1101010,010,n n n n i a a a a a --=+++≤<证明11整除a 的充分必要条件是11整除()01.niii a =-∑证 因为()101mod11≡-,故()()()()101mod11,101mod11,0,1,,.i ii i i i a a i n ≡-≡-=.于是,()()0101mod11.n nii iii i a a a ===≡-∑∑由此可得,11|a 的充分必要条件是()0111.nii i a =-∑3.找出能被37,101整除的判别条件来.解 (ⅰ)因()10001mod37≡,故()()10001mod370.ii ≡≥设11010001000,01000.n n n n i a a a a a --=+++≤<则由()10001mod37i≡得()1000mod37,0,1,,ii i a a i n ≡=,故()01000mod 37.n nii i i i a a a ===≡∑∑由此可得,37|a 的充分必要条件是037.ni i a =∑(ⅱ)因()1001mod101≡-,故()()()1001mod1010.iii ≡-≥ 设110100100,0100,n n n n i a a a a a --=+++≤<则由()()1001mod101ii ≡-得()()1001mod101,0,1,,ii i i a a i n ≡-=,故()01001.n niii i i i a a a ===≡-∑∑由此可得,101|a 的充分必要条件是()01011.niii a =-∑4.证明52641|2 1.+ 证 因()()8163222256,265536154mod 641,2154237166401mod 641,==≡≡=≡≡-故52641|2 1.+5.若a 是任一奇数,则()()221mod 21.nn a n +≡≥证 对n 作数学归纳法.当1n =时,因a 为奇数,故可设121a a =+,则()()2221111112114441a a a a a a -=+-=+=+.而()111a a +是两个连续两个整数的积,一定是2的倍数,从而()122128|1,1mod 2,a a +-≡即1n =时结论正确.假设对()12n n -≥结论正确,即()12121mod 2.n n -+≡下面说明在此假设下,对n 结论正确.因()()()111222221111nn n n a aa a ----=-=-+,而由归纳假设得121n a--是12n +的倍数,又因a 为奇数,故121n a -+也为奇数,于是()()112211n n a a ---+是22n +的倍数,故()221mod 2.nn a +≡。

相关文档
最新文档