初级中学数学定义,定理(全套汇编)

合集下载

初中数学定义、定理汇总

初中数学定义、定理汇总
初中数学定义、定理超级大全
1.1有理数 1.1.1有理数的定义:整数和分数的统称。 1.1.2有理数的分类: (1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。 (2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分 数。 1.1.3数轴 1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。 1.1.3.2数轴的三要素:①原点②正方向③单位长度 1.1.3.3每个有理数都能用数轴上的点表示 1.1.4相反数 1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0 1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数 1.1.4.3相反数的判别 (1)若 ,则 、 互为相反数 (2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。 1.1.5倒数 1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数) 注:零没有倒数。 1.1.6绝对值 1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣) 1.1.6.2绝对值的性质:∣a∣≥0 1.1.7有理数大小的比较 1.1.7.1正数大于0,负数小于0 1.1.7.2正数大于负数 1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数 就小,绝对值小的这个数就大。 1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则 减数大。 1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个 数相等;若小于1,则除数大。 1.1.8有理数的加法 1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异 号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个 数相加等于0)③任何有理数加0仍等于这个数。 1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a 1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c 1.1.9有理数的减法 1.1.9.1运算法则:减去一个数等于加上这个数的相反数 1.1.9.2有理数减法—转化→有理数加法 1.1.10有理数的乘法 1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负 负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号 由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。 1.1.10.2乘法交换律在有理数乘法中仍然适用,即 1.1.10.3乘法结合律在有理数乘法中仍然适用,即

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

数学定义定理公式大全

数学定义定理公式大全

数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。

•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。

•空集:不含任何元素的集合,记作∅或{}。

•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。

1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。

•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。

•有理数:可以写成两个整数的比的数,记作Q。

•实数:包含有理数和无理数的数,记作R。

1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。

•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。

•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。

•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。

2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。

•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。

•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。

•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。

2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理初中数学是学生接触的第一门高等数学课程,其中涵盖了许多重要的公式,定义,性质和定理。

这些数学概念和结果将帮助学生发展数学思维,提高解决问题的能力。

本文将介绍常见的初中数学公式、定义、性质和定理,帮助学生更好地理解和应用数学知识。

一、数学公式1.一次方程求解公式一次方程是形如ax+b=0的方程,其中a和b是实数且a≠0。

一次方程的求解公式为x=-b/a。

2.二次方程求根公式二次方程是形如ax²+bx+c=0的方程,其中a、b和c是实数且a≠0。

求根公式为x=(-b±√(b²-4ac))/2a。

3.相似三角形比例公式对于两个相似三角形,它们对应边的比例相等。

设两个相似三角形的对应边长度分别为a、b、c和x、y、z,则有a/x=b/y=c/z。

4.正弦定理正弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。

定理表述为a/sinA=b/sinB=c/sinC。

5.余弦定理余弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。

定理表述为c²=a²+b²-2abcosC。

6.圆的周长公式二、数学定义1.有理数有理数是可以表示为两个整数的比值的数。

有理数包括整数、分数和小数。

2.无理数无理数是不能表示为有理数的小数。

例如,π和√2都是无理数。

3.等差数列等差数列是指数列中相邻两个数之差都相等的数列。

公差是等差数列中相邻两个数之差的值。

4.等比数列等比数列是指数列中相邻两个数之比都相等的数列。

公比是等比数列中相邻两个数之比的值。

5.直角三角形直角三角形是其中一个角为90度的三角形。

直角三角形的斜边是两条直角边的最长边。

三、数学性质1.乘法交换和结合律乘法满足交换律和结合律,即对于任意实数a、b和c,有a*b=b*a,(a*b)*c=a*(b*c)。

2.加法交换和结合律加法满足交换律和结合律,即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式第二版逻辑与命题1.仅凭实验、观察、操作得到的结论有时是不深入的、不全面的,甚至是错误的。

2.判断某一件事情的句子叫做命题。

3.如果条件成立,那么结论成立,像这样的命题叫做真命题。

4.条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题。

5.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题。

其中一个命题称为另一个命题的逆命题。

数系及运算1.正数是比0大的数。

2.负数是比0小的数。

3.0既不是正数,也不是负数。

4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。

6.0的相反数是0。

7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数和为0。

一个数与0相加,仍得这个数。

9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。

11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0。

12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。

15.16.正数的任何次幂都是正数。

负数的奇数次幂是负数,负数的偶数次幂是正数。

17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。

18.有理数混合运算顺序先乘方,再乘除,最后加减。

初中数学定义、定理及性质全集

初中数学定义、定理及性质全集

1、直线的性质:两点确定一条直线。

2、两点的所有连线中,线段最短。

(即两点之间,线段最短。

)3、余角定义:如果两个角的和等于90̊,就说这两个角互为余角。

性质:等角的余角相等。

【补角定义、性质略】4、垂线的性质(1):过一点有且只有一条直线与已知直线垂直。

(2):垂线段最短。

5、平行公理(1):经过直线外一点,有且只有一条直线与这条直线平行。

(2):如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

6、平行线的判定:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

7、平行线的性质:(1)两直线平行,同位角相等。

(2)、(3)略。

8、几个距离:(1)两点之间的距离。

(2)点到直线的距离。

(3)两条平行线的距离。

9、几种图形变换:平移、旋转、轴对称。

10、三角形三边关系定理:三角形两边的和大于第三边。

11、三角形的内角和定理:三角形的内角和等于180º。

多边形的内角和等于(n-2)・180°;多边形的外角和等于360º;12、三角形的外角定理:(1)三角形的一个外角等于与它不相邻的两个内角的和。

(2)三角形的一个外角大于与它不相邻的任何一个内角。

13、全等三角形的性质:全等三角形的对应边相等、对应角相等。

全等三角形的判定:SSS 、SAS 、ASA 、AAS 、HL(Rt∆专用)。

14、角平分线的性质:角平分线上的点到角的两边的距离相等。

角平分线的判定:到角的两边距离相等的点在角的平分线上。

15、线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

16、等腰三角形的性质:(1)等边对等角。

(2)等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合。

判定:等角对等边。

17、等边三角形的性质:等边三角形的三个内角都相等,并且每个都等于60°;判定:(1)三个角都相等的三角形是等边三角形。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。

2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。

3、元素:又称成员,是组成集合的基本和最小单位。

4、空集:没有任何元素的集合称为空集,表示为∅。

5、并集:两个集合的所有元素的结合体。

表示为A∪B,即A和B的“或”集合。

6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。

7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。

8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。

9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。

10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。

二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。

(完整版)初中数学定义、定理(大全)

(完整版)初中数学定义、定理(大全)

第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

27条初中数学公式定理集锦

27条初中数学公式定理集锦

一、有理数1、相反数与绝对值(1)数a的相反数是-a。

若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。

初中数学概念定理公式大全

初中数学概念定理公式大全

初中数学概念定理公式大全初中数学涉及的概念、定理和公式非常多,下面是一些常见的数学概念、定理和公式:一、数的性质和运算1.基本运算:加法、减法、乘法、除法2.数的性质:整数、自然数、有理数、无理数、实数、虚数3.质数和合数:质数的定义、判断质数和合数的方法4.互质和最大公约数:互质的定义、最大公约数的概念、求最大公约数的方法5.奇数和偶数:奇数和偶数的性质、相邻奇偶数之和的规律6.分数和比例:分数的概念、比例的概念、比例的性质、比例的延伸应用二、代数运算1.代数式的定义:代数式的定义、代数式的常见形式2.代数式的运算:-合并同类项:合并同类项的概念、合并同类项的方法-因式分解:因式分解的概念、因式分解的方法-展开式:展开式的概念、展开式的方法-化简式:化简式的概念、化简式的方法三、方程与不等式1.一元一次方程:一元一次方程的定义、解一元一次方程的方法2.一元二次方程:一元二次方程的定义、求解一元二次方程的方法3.一元一次不等式:一元一次不等式的概念、解一元一次不等式的方法4.一元二次不等式:一元二次不等式的概念、解一元二次不等式的方法5.消元法:消元法的概念、使用消元法解方程和不等式四、几何1.点、线和面:点、线、面的概念及基本性质2.图形的构造:用尺规作图和量角器作图3.圆的性质:圆的定义、圆的性质、判定两条线段相等的方法4.三角形的性质:三角形的定义、三角形的性质、特殊三角形的性质5.直线和平面的相交关系:相交、平行和垂直的概念及判定方法6.三角形的面积和周长:三角形的面积公式、三角形的周长公式、特殊三角形的面积和周长公式五、统计与概率1.平均数:算术平均数、几何平均数、调和平均数的概念和计算方法2.概率:概率的概念、事件的概念、计算概率的方法3.统计图表:频数、频率、统计表和统计图的基本概念及应用六、计算器使用技巧1.整数运算:整数加减乘除的计算方法2.分数运算:分数加减乘除的计算方法、混合数的运算方法3.平方根和立方根:平方根和立方根的计算方法4.百分数的计算:百分数的计算方法、提高和降低百分数的计算方法。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

初中数学公式定理大全一、锐角三角函数:①∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:,∠A的余弦:,sin A =∠A 的对边斜边cos A =∠A 的邻边斜边∠A 的正切:; 并且sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0.tan A =∠A 的对边∠A 的邻边∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.②余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .③斜坡的坡度:i =.设坡角为α,则i =tan α=.铅垂高度水平宽度=ℎl ℎl ④特殊角的三角函数值:a sina cosa tana cota 30°123233345°22221160°321233390°1不二、二次函数:1.定义:一般地,如果,那么y 叫做x 的二次函数.y =ax 2+bx +c(a,b,c 是常数,a ≠0)2.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、a a >0a <0|a |形状相同。

②平行于y 轴(或重合)的直线记作特别地,y 轴记作直线。

x =ℎ,x =0几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标Y=ax 2X=0(y 轴)(0,0)Y=ax 2+k X=0(y 轴)(0, k)Y=a(x-h)2X=h (h,0)Y=a(x-h)2+k X=h (h,k)Y=ax 2+bx+c当a 时>0开口向上当a 时<0开口向下X=‒b2a()‒b 2a ,4ac ‒b 24a 3.求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线y =ax 2+bx +c =a (x +b 2a )2+4ac ‒b 24a (‒b2a, 4ac ‒b 24a )x =‒b 2a(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(h,k),对称轴是直y =a (x ‒ℎ)2+k 线x =ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)初中数学概念、定义、定理、公式第二版逻辑与命题实验、观察、操作得出的结论有时不够深入、全面,甚至是错误的。

因此,判断某一事情的句子称为命题。

如果条件成立,那么结论也成立,这样的命题称为真命题。

但条件成立时,结论不一定总是正确,这样的命题称为假命题。

如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题称为互逆命题。

其中一个命题称为另一个命题的逆命题。

数系及运算正数是比大的数,负数是比小的数,零既不是正数也不是负数。

数轴上表示一个数的点与原点的距离,称为这个数的绝对值。

如果两个数的符号不同而绝对值相同,那么它们互为相反数,其中一个是另一个的相反数。

例如,3和-3是互为相反数的。

一个数的相反数是它的相反数。

例如,-5的相反数是5.两个正数相加,绝对值大的正数大;两个负数相加,绝对值大的负数反而小。

有理数加法的法则是:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数和为0;一个数与0相加,仍得这个数。

有理数加法满足交换律和结合律。

减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0.有理数乘法满足交换律、结合律和分配率。

除以一个不等于0的数等于乘这个数的倒数。

幂是指相同因数的积的运算,乘方运算的结果称为幂。

正数的任何次幂都是正数。

负数的奇数次幂是负数,偶数次幂是正数。

科学计数法是一种表示大于10的数的方法,其中1≤a <10,n是正整数。

有理数混合运算的顺序是先乘方,再乘除,最后加减。

如果有括号,先进行括号内的运算。

幂的乘方,底数不变,指数相乘。

(m、n是正整数)积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。

(n是正整数)同底数幂相除,底数不变,指数相减。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式第二版逻辑与命题1.仅凭实验、观察、操作得到的结论有时是不深入的、不全面的,甚至是错误的。

2.判断某一件事情的句子叫做命题。

3.如果条件成立,那么结论成立,像这样的命题叫做真命题。

4.条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题。

5.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题。

其中一个命题称为另一个命题的逆命题。

数系及运算1.正数是比0大的数。

2.负数是比0小的数。

3.0既不是正数,也不是负数。

4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。

6.0的相反数是0。

7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数和为0。

一个数与0相加,仍得这个数。

9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。

11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0。

12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。

15.16.正数的任何次幂都是正数。

负数的奇数次幂是负数,负数的偶数次幂是正数。

17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。

18.有理数混合运算顺序先乘方,再乘除,最后加减。

初中数学公式定义大全

初中数学公式定义大全

初中数学常见定理和公式大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1 直角三角形的两个锐角互余19.推论2 三角形的一个外角等于和它不相邻的两个内角的和20.推论3 三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS) 有三边对应相等的两个三角形全等26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27.定理1 在角的平分线上的点到这个角的两边的距离相等28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3 等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1 三个角都相等的三角形是等边三角形36.推论2 有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1 关于某条直线对称的两个图形是全等形43.定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1 平行四边形的对角相等53.平行四边形性质定理2 平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3 平行四边形的对角线互相平分56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60.矩形性质定理1 矩形的四个角都是直角61.矩形性质定理2 矩形的对角线相等62.矩形判定定理1 有三个角是直角的四边形是矩形63.矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1 四边都相等的四边形是菱形68.菱形判定定理2 对角线互相垂直的平行四边形是菱形69.正方形性质定理1 正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1 关于中心对称的两个图形是全等的72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3 三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2 相似三角形周长的比等于相似比98.性质定理3 相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。

初中数学公式定理大全(高清完整版)

初中数学公式定理大全(高清完整版)

①同分母:ba
c b
a
b
c
(b
0)
②异分母:ba
c d
ad bd
bc bd
ad bc (b bd
0, d
0)
(5)分式的乘方: ( a )n b
an bn
(b
0, n是正整数)
(6)同底数幂的除法: am an amn (a 0, m, n都是正整数)
(7)零指数幂:a0=1(a≠0)
(8)负整指数幂:
5.数据分析
平均数与方差公式
名称
公式
平均数
x
1 n
( x1
x2
...
xn
)
加权平均数
x1w1 x2w2 ... xnwn w1 w2 ... wn
方差
s2
1 n
[(x1
x)2
(x2
x)2
...
(xn
x)2 ]
6.分式的运算
(1) 分式的基本性质:① a c a (b 0,c 0) bc b
若 a b,c 0 ,则 a b cc
不等式的性质 反对称性:若 a b ,则 b a 传递性:若 a b,b c ,则 a c
性质 1:若 a b ,则 a >c b c
性质 2:若 a b,c 0 ,则 ac bc, a b cc
性质 3:若 a b,c 0 ,则 ac bc, a b cc
I
初中数学公式定理大全
1.有理数的分类 (1)按数的“整分性”分类 正整数 整数零 有理数 负整数 分数负正分分数数
2.绝对值
数学部分
(2)按数的“正负性”分类 正有理数正 正分 整数 数
有理数 零 负有理数负 负分 整数 数

初中几何定义、定理汇总

初中几何定义、定理汇总

初中几何定义、定理汇总 姓名________第 1 页 共 5 页l知识点1 相交线与平行线对顶角相等(隐含条件,可以直接用) 同位角、内错角、同旁内角同位角像英文字母“F ”,内错角像英文字母“Z ”或“N ”,同旁内角像英文字母“U ”. 平行线的性质两直线平行,同位角相等,内错角相等,同旁内角互补. 平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 知识点2 三角形三角形的三边关系:两边之和大于第三边,两边之差小于第三边.与三角形有关的线段:三角形的高、中线、角平分线 书写格式:如图3,⑴∵AD 是高, ∴∠ADB=∠ADC=90°. 如图4, ⑵∵AD 是中线, ∴BD=DC=21BC . 如图5,⑶∵AD 是角平分线, ∴∠BAD=∠CAD=21∠BAC .图3 图4 图5 三角形的内角和定理:三角形的内角和等于180° 直角三角形的性质书写格式: ∵∠B=90°, ∴∠A+∠C=90°.直角三角形的判定书写格式: ∵ ∠A+∠C=90° ∴∠B=90°(或△ABC 为直角三角形). 三角形的外角定义及性质书写格式:∵∠ACD 是△ABC 的外角, ∴∠ACD=∠A +∠B 知识点3 全等三角形 全等三角形的性质书写格式: ∵△ABC ≌△DEF ,∴AB =DE ,BC =EF ,AC =DF ,∠A =∠D , ∠B =∠E ,∠C =∠F .知识点7 全等三角形的判定“SSS”、“SAS”、“ASA”、“AAS”、“HL” 书写格式:⑴∵AB=DE ,AC=DF ,BC =DF , ∴△ABC ≌△DEF (SSS )⑵∵ AB=DE ,∠A =∠D ,AC=DF , ∴△ABC ≌△DEF (SAS )⑶∵ ∠A =∠D , AB=DE , ∠B =∠E , ∴△ABC ≌△DEF (ASA )⑷∵ ∠A =∠D , ∠B =∠E ,BC =EF , ∴△ABC ≌△DEF (AAS )直角三角形全等的判定书写格式:在R t△ABC 与R t△DEF 中, ∵AB =DE ,AC =DF ,∴ R t△ABC ≌ R t△DEF (HL ) 角平分线的性质:角的平分线上的点到角的两边的距离相等.用数学语言表示如下: 如图,∵OP 平分∠AOB , PE ⊥OA ,PF ⊥OB , ∴PE =PF . 角平分线的判定: 角的内部到角的两边的距离相等的点在角的平分线上.用数学语言表示如下:如图,∵PE ⊥OA ,PF ⊥OB ,PE =PF , ∴OP 平分∠AOB . 知识点4 轴对称 轴对称的性质∵△ABC 与△A′B′C′关于直线l 对称, ∴ △ABC ≌△A′B′C′, l 垂直平分AA′. 线段的垂直平分线定义:经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,简称中垂线.性质:线段的垂直平分线上的点与这条线段的两个端点的距离相等.判定:与一条线段的两个端点距离相等的点,在这条线段的垂直平分线上. 用数学语言表示如下:如图,(1)∵直线l 垂直平分AB ,点P 在直线l 上,∴PA =PB .﹙中垂线的性质﹚DCBADCBADCBAEFP O BAAO=BO ,AOP BOP ∠=∠(中垂线的定义) (2)∵PA =PB , ∴点P 在线段AB 的中垂线上.﹙中垂线的判定﹚ 等腰三角形的性质:等边对等角(1)∵AB =AC ,∴∠B =∠C (等边对等角). 等腰三角形的性质:三线合一 ①∵AB =AC ,AD 平分∠BAC , ∴AD ⊥BC ,BD =CD . ②∵AB =AC ,BD =CD ,∴AD 平分∠BAC ,AD ⊥BC . ③∵AB =AC ,AD ⊥BC , ∴AD 平分∠BAC ,BD =CD . 等腰三角形的判定:(1)∵∠B =∠C ,∴AB =AC (或△ABC 为等腰三角形).(等角对等边)(2)∵AB=AC ,∴△ABC 为等腰三角形. 等边三角形的性质用数学语言表示为: ∵△ABC 是等边三角形,∴AB =AC =BC ,∠A =∠B =∠C=60°. 等边三角形的判定用数学语言表示为: ①∵AB =BC =AC∴△ABC 是等边三角形. ②∵∠A =∠B =∠C ∴△ABC 是等边三角形.③∵∠A =60°﹙或∠B =60°或∠C =60°﹚,AB =AC , ∴△ABC 是等边三角形. 等边三角形性质推论在直角三角形中,30°的角所对的直角边是斜边的一半. (1)∵∠C=90°,∠B=30°, ∴AC=21AB . 在直角三角形中,如果一条直角边是斜边的一半,那么这条直角边所对的锐角等于30°.(2)∵∠C=90°, AC=21AB ,∴ ∠B=30°. 知识点5 平行四边形平行四边形的性质:平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分. 平行四边形的判定:⑴两组对边分别平行的四边形为平行四边形. ⑵两组对边分别相等的四边形为平行四边形. ⑶一组对边平行且相等的四边形为平行四边形. ⑷对角线互相平分的四边形为平行四边形. ⑸两组对角分别相等的四边形为平行四边形. 平行四边形的性质书写格式:∵四边形ABCD 为平行四边形, ∴AB ∥CD,AD ∥BC,AB=CD,AD=BC, ∠BAD=∠BCD ,∠ABC=∠ADC ,∠ABC+∠BAD=180°,OA=OC ,OB=OD .平行四边形的判定书写格式: ⑴∵AB ∥CD,AD ∥BC , ∴四边形ABCD 为平行四边形. ⑵∵AB=CD,AD=BC,∴四边形ABCD 为平行四边形. ⑶∵AB ∥CD, AB=CD,∴四边形ABCD 为平行四边形. ⑷∵OA=OC ,OB=OD , ∴四边形ABCD 为平行四边形. ⑸∵∠BAD=∠BCD ,∠ABC=∠ADC ,∴四边形ABCD 为平行四边形.三角形的中位线定义:连接三角形任意两边中点的线段. 三角形的中位线定理:三角形的中位线平行于三角形的第三边并且等于第三边的一半. 书写格式:∵DE 是△ABC 的中位线,(或D ,E 分别是AB ,AC 的中点)∴DE ∥BC,DE=12 BC .矩形性质:(1)具有平行四边形的一切性质. (2)矩形的四个角都是直角. (3)矩形的对角线相等. (4)矩形是轴对称图形. 性质书写格式:如图,∵四边形ABCD 为矩形, ∴∠ABC=∠BCD=∠ADC=∠BAD=90°, AB ∥CD,AD ∥BC,AB=CD,AD=BC, AC=BD,OA=OB=OC=OD,矩形判定:(1)定义:有一个角是直角的平行四边形是矩形.(2)定理1:有三个角是直角的四边形是矩形. (3)定理2:对角线相等的平行四边形是矩形. 判定书写格式:⑴∵四边形ABCD 为平行四边形,∠ABC=90°, ∴四边形ABCD 为矩形.⑵∵∠BCD=∠ADC=∠BAD=90°, ∴四边形ABCD 为矩形.⑶∵四边形ABCD 为平行四边形,AC=BD, ∴四边形ABCD 为矩形.矩形性质推论:直角三角形斜边上的中线等于斜边的一半.书写格式:∵CD 为Rt △ABC 的斜边上的中线, ∴CD=AD=BD=21AB菱形定义:有一组邻边相等的平行四边形叫菱形.ODCB ADC BAODCBAD CBAE D CB AC BA菱形的性质:1.菱形具有平行四边形的一切性质; 2.菱形的四条边都相等; 3.菱形的对角线互相垂直,并且每一条对角线平分一组对角.性质书写格式:∵四边形ABCD 为菱形, ∴AB ∥CD ,AD ∥BC , OA=OC ,OB=BD ,AB=BC=CD=AD ,AC ⊥BD ,AC 平分∠BAD .菱形的判定:1.有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形;3.对角线互相垂直的平行四边形是菱形. 判定书写格式: ⑴∵AB=BC ,四边形ABCD 为平行四边形, ∴四边形ABCD 为菱形. ⑵∵AB=BC=CD=AD , ∴四边形ABCD 为菱形.⑶∵AC ⊥BD ,四边形ABCD 为平行四边形, ∴四边形ABCD 为菱形.正方形具有平行四边形、矩形、菱形的一切性质. 知识点6 圆垂经定理垂直于弦的直径平分弦,并且平分线的直径. 书写格式:∵CD ⊥AB ,CD 为直径, ∴AE=BE ,,AC BC AD BD ==.推论:①CD ⊥AB ,②CD 为直径,③AE=BE ,④ AC BC = ,⑤AD BD =以上五句任意两句成立,其余三句均成立. 弧、弦、圆心角在同圆或等圆中两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等. 书写格式:①∵ AB CD = , ∴,AB CD AOB COD =∠=∠. ②∵AB CD =,∴,AB CD AOB COD =∠=∠.③∵AOB COD ∠=∠, ∴ AB CD = ,AB CD =. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半. 书写格式:∵∠BOC 是BC 所对的圆心角,∠D 是BC 所对的圆周角, ∴∠D=21∠BOC . 圆周角定理的推论:(1)同弧或等弧所对的圆周角相等.书写格式:∵∠A 、∠D 为同弧所对的圆周角,∴∠A=∠D .(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 书写格式:①∵AB 为直径,∴∠C=90°. ②∵∠C=90°,∴弦AB 为直径. 圆内接四边形的性质:圆内接四边形的对角互补,一个外角等于它的内对角. 书写格式:∵四边形ABCD 为圆内接四边形, ∴∠A+∠BCD=180°,∠B+∠D=180°, ∠1=∠A. 点与圆的位置关系设⊙O 的半径为r ,点P 到圆心O 的距离为d ,则有: 点P 在圆外⇔d >r , 点P 在圆上⇔d =r , 点P 在圆内⇔d <r . 直线和圆的位置关系设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则有:直线l 和⊙O 相交⇔d <r , 直线l 和⊙O 相切⇔d =r , 直线l 和⊙O 相离⇔d >r ,相交 相切 相离 切线的性质:∵直线l 与⊙O 相切于点A , ∴OA ⊥l .切线的判定:∵OA ⊥l ,OA 是半径, ∴直线l 是⊙O 的切线. 切线长定理:∵PA 、PB 与⊙O 相切于点A 、B , ∴PA=PB ,OP 平分∠APB .内切圆的定义:与三角形的各边都相切的圆叫做三角形的内切圆.内心是三角形三条角平分线的交点. 外接圆、外心E BACDO BACOOCB APOBA经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外心是三角形三边的中垂线的交点. 圆与圆的位置关系设大圆的半径为R ,小圆的半径为r ,两圆的圆心距为d ,则有:若两圆外离⇔d >R+r ; 若两圆外切⇔d =R+r ;若两圆相交⇔ R-r <d <R+r ; 若两圆内切⇔d =R-r ; 若两圆内含⇔d <R-r .外离 外切 相交内切 内含 同心圆(内含的特殊形式) 正多边形和圆 扇形弧长和扇形面积扇形弧长:180Rn l π=,扇形面积:2R 1R 3602n S l ==π. 圆锥侧面积与全面积1S 22r R r R ππ=••=侧221S 22r R r rR r ππππ=••+=+全知识点7 三角形相似平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例. 书写格式:∵AB ∥CD ∥EF, ∴DE BD CF AC =,BE BD AF AC =,BEDEAF CF =. 把平行线分线段成比例的基本事实应用到三角形中,会出现下面两种情况:图1 图2把图1的4l 看成平行于ABC ∆的边BC 的直线;把图2的3l 看成平行于ABC ∆的边BC 的直线,那么我们可以得到结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 图1,4,,,AD AE AD AE BD CEl BC AB AC BD EC AB AC∴===等. 图2,3,,,AD AE AD AE BD CEl BC AB AC BD EC AB AC∴===相似三角形的定义:三边的比相等、对应角相等的三角形叫相似三角形,对应边的比叫相似比. 相似三角形的性质:相似三角形的对应边的比相等、对应角相等,周长的比都等于相似比,面积的比等于相似比的平方. 书写格式:∵△ABC ∽△DEF,∴EFBCDF AC DE AB ==, ∠A=∠D,∠B=∠E,∠C=∠F ,ABC DEF C C ∆∆=DE AB EF DF DE BC AC AB =++++,2DEF ABC DE AB S S ⎪⎭⎫⎝⎛=∆∆ 性质推论:相似三角形对应中线的比、对应高的比、对应角平分线的比都等于相似比. 书写格式:如图,∵△ABC ∽△DEF, AM 、DN 是对应角的角平分线, ∴DEABDN AM =. 如图,∵△ABC ∽△DEF, AM 、DN 是对应边上的高,∴DEABDN AM = 如图,∵△ABC ∽△DEF, AM 、DN 是对应边上的中线,∴DEABDN AM =边心距r半径R中心角O 2πr2πrrO n R FED C B A FEDC BAN M FEDC B AN M FE DC B ANMFEDC BA相似三角形的判定: (1)定义法 (2)平行法如图1, ①∵MN ∥BC , ∴△AMN ∽△ACB . ②∵GH ∥BC ,∴△AGH ∽△ABC . 图1 (3)SSS 法:如图2,∵EFBCDF AC DE AB ==, ∴△ABC ∽△DEF .图2(4)SAS 法:如图2,∵DFACDE AB =,∠A=∠D, ∴△ABC ∽△DEF .(5)AA 法:如图2,∵∠A=∠D,∠B=∠E , ∴△ABC ∽△DEF . (6)HL 法:如图3,∵DFACDE AB =, ∴R t △ABC ∽t R △DEF .图3 几何证明中常用的隐含条件:①公共边;②公共角;③对顶角;④平角;⑤三角形及四边形内角和;⑥半径相等;⑦同弧所对的圆周角相等;⑧一条弧所对的圆周角是该弧所对的圆心角的一半;⑨圆内接四边形的对角互补.。

初中数学常见的概念定理公式汇编需打印

初中数学常见的概念定理公式汇编需打印

初中数学常见的概念定理公式汇编〔未审〕目录第一局部数与代数3一、数与式3〔一〕实数3〔二〕代数式4〔三〕整式4〔四〕分式5二、方程与不等式6〔一〕一元一次方程6〔二〕二元一次方程〔组〕6〔三〕分式方程6〔四〕一元二次方程7〔五〕一元一次不等式(组) (7)〔六〕一元二次方程根的判别式8三、函数8〔一〕平面直角坐标系8〔二〕一次函数8〔三〕反比例函数9〔四〕二次函数9〔五〕二次函数的图象与一元二次方程的根的关系10〔六〕二次函数的三类解析式10第二局部空间与图形10一、图形的认识10〔一〕点、线、面、体10〔二〕角10〔三〕相交线与平行线11〔四〕三角形11〔五〕四边形12〔六〕圆13〔七〕尺规作图14〔八〕视图与投影14二、图形与变换14〔一〕图形的轴对称14〔二〕图形的平移14〔三〕图形的旋转14〔四〕图形的相似和位似14第三局部概率与统计15一、统计15二、概率16第一局部 数与代数一、数与式 〔一〕实数1、实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。

有理数如:-8,0.3345,0.7373737……等;无限不环循小数叫做无理数。

无理数如:π,2,0.1010010001,……(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2、数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3、绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作 a 。

公式:a =⎩⎪⎨⎪⎧a a >00a =0-aa <0如:-π =π;3.14-π =-〔3.14-π〕=π-3.14;π-3.14 =π-3.14 4、相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

0的相反数是0。

a 的相反数是-a 。

假设a 与b 互为相反数,那么a +b =0。

5、假设两个数的积是1,那么两个数是互为倒数。

假设a 与b 互为倒数,那么ab =1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如:π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨- _丨= ;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2.15.二次根式:(1)定义:___________________________________________________叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.26.有理数的运算律:加法交换律:为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

单独一个数或一个字母也是代数式。

(2)同类项:是指所含字母相同,并且相同字母的指数也相同的项。

合并同类项的法则:系数相加作系数,字母和字母的指数不变。

三.整式1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);④零指数:(a≠0);⑤负整数指数:(a≠0,n为正整数);2.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.⑤平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑥完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即3.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式;5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.⑶分解不彻底,如保留中括号形式,还能继续分解等四.分式1.分式:整式A除以整式B,可以表示成的形式,如果除式B中含有字母,那么称为分式.注:(1)若B≠0,则有意义;(2)若B=0,则无意义;(2)若A=0且B≠0,则=02.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.3.约分:把一个分式的分子和分母的公团式约去,这种变形称为分式的约分.4.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.5.分式的加减法法则:(1)同分母的分式相加减,分母不变,把分子相加减;(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.6.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.7.通分注意事项:(1)通分的关键是确定最简公分母,最简公分母应为各分母系救的最小公倍数与所有相同因式的最高次幂的积;(2)易把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,第二节方程与不等式一、一元一次方程1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax+b=0(a≠0)3.解一元一次方程的一般步骤及注意事项:二、二元一次方程(组)1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.三、分式方程1.分式方程:分母中含有未知数的方程叫做分式方程.2.解分式方程的步骤:①去分母,化为整式方程;②解整式方程;③验根;④下结论.3.分式方程的增根问题:⑴增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l增根;⑵验根:因为解分式方程可能出现增根,所以解分式方程必须验根.四、一元二次方程1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)2.一元二次方程的解法:⑴配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是(b2-4ac≥0)⑶因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x的方程(k2-1)x2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a、b、c的值;③求出b2-4ac的值;④若b2-4ac≥0,则代人求根公式,求出x1 ,x2.若b2-4a<0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4)⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.五、一元一次不等式(组)1.不等式:用不等号(“<”“≤”“>”“≥”)表示不等关系的式子.2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.5.解不等式:求不等式解集的过程叫做解不等式.6.一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不为零的不等式叫做一元一次不等式.7.解一元一次不等式易错点:(1)不等式两边部乘以(或除以)同一个负数时,不等号的方向要改变,这是同学们经常忽略的地方,一定要注意;(2)在不等式两边不能同时乘以0.8解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为1 9.求不等式的正整数解,可负整数解等特解,可先求出这个不等式的所有解,再从中找出所需特解.10.一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.11.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.12.解不等式组:求不等式组解集的过程,叫做解不等式组.13.不等式组的分类及解集(a<b).14.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。

相关文档
最新文档