《固体物理》考试知识点.
固体物理考试重点(广工版、复习资料)
一、晶体宏观特征(必考其一)1.晶体的自限性(自范性):自发形成封闭几何外形的能力。
2.晶面角守恒定律:同一种晶体在相同的温度和压力下,对应晶面之间的夹角不变。
3.晶体的解理性(Cleave property):晶体受到外力作用时会沿着某一个或几个特定的晶面劈裂开的性质称为解理性。
4-晶体的各向异性(anisotropy):沿晶体内部的不同方向上有不同的物理性质。
5.晶体的均匀性(homogeneity ):内部各部分的宏观性质相同。
6.晶体的对称性(symmetry):由于内部质点有规则排列而形成的特殊性质。
7.晶体的稳定性:与同种物质的其他形态(气态、液态、非晶态、等离子态等)相比,晶体的内能最小、最稳定。
晶体具有固定的熔点,而非晶体则没有固定的熔点。
二、空间点阵(基元、原胞(primitive cell)> 晶胞(conventional cell)> B 格子、WS 原胞)1.基元:组成晶体的最小结构单元。
2.初基原胞(原胞):一个晶格最小的周期性单元,称为原胞。
3.惯用原胞(晶胞):能使原胞同时反映晶体对称性和周期性特征的重复单元,称为晶胞。
4.B格子:如果晶体只由一种原子构成,且基元是一个原子,则原子中心与阵点重合,这种晶格称为布拉菲格子,或称B格子。
5.WS原胞:WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以该点为中心的凸多面体即为该点的WS原胞。
作法:(1)任选一格点为原点;(2)将原点与各级近邻的格点连线,得到几组格矢;(3)作这几组格矢的中垂面,这些中垂面绕原点围成的最小区域称W-S原胞。
三、第一布里渊区(二维):从倒格子点阵的原点出发,作出它最近邻点的倒格子点阵矢量,并作出每个矢量的垂直平分面,可得到倒格子的WS原胞,称为第一布里渊区。
注:写出二维坐标系j> b P b2( b为倒格子基矢)。
四、晶体的对称性、晶系、密堆积、配位数(一至二);1.晶体的对称性:晶体经过某种对称操作后物体能自身重合的性质,2.晶系:根据晶体空间点阵中6个点阵参数之间相对关系的特点而将其分为7类,各自称一晶系。
固体物理试题库汇总.
固体物理试题库汇总.一、名词解释1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
4.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。
5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。
6.理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。
7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。
8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。
9.点阵常数(晶格常数)--惯用元胞棱边的长度。
10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。
11.配位数—晶体中和某一原子相邻的原子数。
12.致密度—晶胞内原子所占的体积和晶胞体积之比。
13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能)14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。
15.费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。
16.色心--晶体内能够吸收可见光的点缺陷。
17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。
18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。
19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。
20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。
21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。
22.德拜频率ωD── Debye模型中g(ω)的最高频率。
固体物理知识点
1. 稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很 大差异?同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同2. 固体分为晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的 宏观特性有哪些?晶体有哪些分类?晶体长程有序, 非晶体短程有序, 准晶体具有长程取向性, 没有长程的平移对 称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性, 对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进 行分类。
原胞是一个晶格中最小的重复单元, 体积最小,格点只在顶角上, 面上和内部 不含格点。
晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。
3. 简单晶格与复式晶格的区别?简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相 同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同 的网格,这些网格的相对位移形成复式晶格24 3a 3=V 1 3 4 3a5. 晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征 (把基矢看做单 位矢量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的 余弦来表示。
晶面的法线方向与三个坐标轴的夹角的余弦之比, 等于晶面在三个轴上的截距 的倒数之比。
晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。
6. 简立方 [110]等效晶向有几个 ,表示成什么?110随机排列,任意取负,共 12种,表示为 <110>。
7. 倒格子矢量 Kh=h1b1+h2b2+h3b3 的大小,方向和意义 (矢量 Kh 这里 h 为下标, h1, b1, h2, b2, h3, b3里的数字均为下标, b1, b2, b3 为倒格子原胞基矢 ),提示: 从倒格子性质中找答案。
大小为 2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立 叶空间的周期性排列8. 倒格子和正格子之间的关系有哪些?1. 正格子基矢与倒格子基矢点乘2.正格矢与倒格矢的点乘为定值3.倒格子 原胞体积反比于正格子原胞体积4.倒格矢与正格中晶面族正交5.正格子与 倒格子互为对方的倒格子9. 证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢4.假设体心立方边长是 a,格点上的小球半径为 N=1884R 3a1=2 单胞中原子所占体积为 V 1=N体心立方体体积为 V 2R , 4求体心立方致密度。
固体物理复习考点
1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为:晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=aa.(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a ==晶胞体积 V = 222360sin ca ca=,一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=caa .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积 3a V =一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa .5.证明在立方晶体中,晶列[hkl ]与晶面(hkl )正交,并求晶面(111l k h ) 与晶面(222l k h )的夹角。
固体物理各章节知识点详细总结
3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32
由
2π Kh
d h1h2h3
2π
d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···
考试固体物理
考试固体物理1.晶体的结合能,晶体的内能,原子间的相互作用势能有什么区别?答:自由粒子结合成晶体过程中释放出的能量,或者把晶体拆散成一个个自由粒子所需要的能量称为晶体的结合能。
原子的动能与原子间的相互作用势能之和称为晶体的内能。
在0K时,原子有零点振动能。
但原子的零点振动与原子间的相互作用势能的绝对值相比小得多。
所以,在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能。
2.简述线缺陷的类型和区别,并说明理论上临界切应力比实验值大3-4个数量级的原因?答:(1)刃位错,螺位错螺位错线与滑移方向平行,刃位错线与滑移方向垂直。
3.试述导体,半导体和绝缘体能带结构的基本特征?以及在外电场下,为什么他们的导电特性会有不同?答:导体:两种情况:第一,价带未填满而成为导带;第二,价带虽已填满,但禁带宽度为零,满带与导带部分重叠。
除去完全充满的一系列能带外,还有只是部分地被电子填充的能带,后者可以起导电作用,称为导带。
半导体:价带已填满,禁带宽度较小,满带中的电子在不很强的外界影响下即可进入空带,参与导电,同时满带中留下的空穴也可参与导电。
绝缘体:价带已被电子填满,成为满带,在满带和空带之间的禁带宽度很大,满带中很少有电子能被激发到空带中去,在外电场作用下,参与导电的电子极少。
4.金属自由电子论在空间的等能面和费米面是何形状?费米能量与哪些因素有关?在低温下比热容比经典理论给出的结果小得多,为什么?答:(1)都是球形(2)与电子密度和温度有关(3)因为在低温时,大多数电子的能量远低于费米能级,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
5.晶体结构是如何区分Bravais格子和复式格子的?答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表原子,这种晶体结构就称为简单格子或布拉菲格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网络,这些格子相互错开一定距离套构在一起,这种晶体结构叫做复式格子。
固体物理复习要点
固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。
2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。
7、晶体中传播的格波和普通连续媒质中传播的机械波如声波、水波等有何不同?导致这种不同的根源又是什么?8、晶格热容的爱因斯坦模型和德拜模型各自的假设是什么?两个模型各自的优缺点分别是什么?10、能带理论中的近自由电子近似和紧束缚近似的基本假设各是什么?两种近似方法分别适合何种对象?11、以一维简单晶格和三维简单立方晶格为例,给出它们的第一布里渊区。
12、以简单立方晶格为例,给出它的晶向标志和晶面标志(密勒指数)。
13、试证明任何晶体都不存在宏观的5次对称轴。
14、在运用近自由电子模型计算晶体中电子能级(能带)时为什么同时用到简并微扰和非简并微扰?。
15、给出导体,半导体和绝缘体的能带填充图,并以此为基础说明三类晶体的导电性。
k=)波函数在点群操16、给出简单立方晶格中Γ点(其波矢(0,0,0)作下的变换规律。
17、简要叙述能带的近自由电子近似法和紧束缚近似法的区别。
18、给出Bloch能带理论的基本假设。
24、引入伯恩-卡门条件的理由是什么?25、在布里渊区边界上电子的能带有什么特点?26、原子结合成固体有哪几种基本形式?其本质是什么?27、画出二维正方晶格的第一和第二布里渊区。
计算回答题1、 求六角密排结构的堆积比(刚球所占体积与总体积之比)。
2、 求体心立方结构中具有最大面密度的晶面族,并求出这个最大面密度的表达式。
固体物理知识点
第一章 总结1 晶格的周期性晶体的特征是内在结构的长程有序。
基元是晶体的周期性结构单元,布拉伐格子反映晶格的周期性。
晶体结构=基元+布拉伐格子。
原胞是一个平行六面体,它只含一个布拉菲格点。
原胞中的原子排布给出基元,而其三个棱反映了周期性。
原胞只含一个原子的是简单格子,否则是复式格子。
晶胞(单胞)也是一个平行六面体,它不但反映周期性,也反映晶体的对称性,它不一定是晶体的最小重复单元。
常见晶格结构的布拉菲格子、原胞及晶胞。
简单立方、面心立方、体心立方、六角密排、金刚石、NaCl 、CsCl 、ZnS 、等等 2 晶向指数和晶面指数晶向指数[l 1l 2l 3]是标志晶列方向的;晶面指数(h 1h 2h 3)是标志晶面方位的。
以晶胞基矢a,b,c 为坐标系给出的晶面指数(hkl )称为密勒指数。
这些指数都分别是互质整数,指数简单的晶列或晶面是最重要的。
3 倒格子与布里渊区定义:对于一个特定晶格,根据原胞基矢a 1,a 2,a 3,可以定义三个新的矢量 1232()π=⨯Ωb a a ,2312()π=⨯Ωb a a ,3122()π=⨯Ωb a a ,其中123()Ω=∙⨯a a a我们称b 1,b 2,b 3为倒矢量。
以b 1,b 2,b 3为基矢进行平移可以得到一个周期点阵,称为倒易点阵,或倒格子。
因此,b 1,b 2,b 3也叫做倒格子基矢。
性质:正格子基矢与倒格子基矢之间满足2,i=j ij 0 , i j 2={i j ππδ≠∙=a b倒格子原胞体积与正格子原胞体积互为倒数。
正格矢与倒格矢的点积为2π的整数倍。
以晶面族晶面指数为系数构成的倒格矢恰为晶面族的公共法线方向。
晶面族的面间距为2||h h d π=G 布里渊区:倒格子空间某格点与近邻格点连线的垂直平分面所围成的区域。
所有布里渊区的大小相同每个布里渊区只包含一个格点。
4. 晶体的对称性晶体的对称性是指经过某种操作之后晶体自身重合(晶格整体不变)的性质,这种操作就是对称操作,对称操作数目多的晶体称为对称性高。
《固体物理》期末复习要点
《固体物理》期末复习要点第一章1.晶体、非晶体、准晶体定义晶体:原子排列具有长程有序的特点。
非晶体:原子排列呈现近程有序,长程无序的特点。
准晶体:其特点是介于晶体与非晶体之间。
2.晶体的宏观特征1)自限性2)解理性3)晶面角守恒4)各向异性5)均匀性6)对称性7)固定的熔点3.晶体的表示,什么是晶格,什么是基元,什么是格点晶格:晶体的内部结构可以概括为是由一些相同的点在空间有规则地做周期性无限分布,这些点的总体称为晶格。
基元:若晶体有多种原子组成,通常把由这几种原子构成晶体的基本结构单元称为基元。
格点:格点代表基元的重心的位置。
4.正格和倒格之间的关系,熟练掌握典型晶体的倒格矢求法5.典型晶体的结构及基矢表示6.熟练掌握晶面的求法、晶列的求法,证明面间距公式7.什么是配位数,典型结构的配位数,如何求解典型如体心、面心的致密度。
一个粒子周围最近邻的粒子数称为配位数。
面心:12 体心:8 氯化铯(CsCl):8 金刚石:4 氯化钠(NaCl):6 8.什么是对称操作,有多少种独立操作,有几大晶系,有几种布拉维晶格,多少个空间群。
对称操作:使晶体自身重合的动作。
根据对称性,晶体可分为7大晶系,14种布拉维晶格,230个空间群。
9.能写出晶体和布拉维晶格10.了解X射线衍射的三种实验方法及其基本特点1)劳厄法:单晶体不动,入射光方向不变。
2)转动单晶法:X射线是单色的,晶体转动。
3)粉末法:单色X射线照射多晶试样。
11.会写布拉格反射公式12.什么是几何结构因子。
几何结构因子:原胞内所有原子的散射波,在所考虑方向上的振幅与一个电子的散射波的振幅之比。
第二章1.什么结合能,其定位公式晶体的结合能就是将自由的原子(离子或分子) 结合成晶体时所释放的能量。
2.掌握原子间相互作用势能公式,及其曲线画法。
3.什么叫电离能、亲和能、负电性电离能:中性原子失去电子成为价离子时所需要的能量。
电子亲和能:中性原子获得电子成为-1价离子时所放出的能量。
固体物理知识点总结(考试必备)
10.为什么许多金属为密积结构? [解答] 金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑 能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠 得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构. 5. 晶体中声子数目是否守恒? 频率为w的格波平均声子数为
倒格
2π a2 a3 Ω 2π b2 a 3 a1 Ω 2π b3 a1 a 2 Ω b1
其中
a1 , a是正格基矢, 2 , a3
Ω a1 a 2 a 3
是固体物理学原胞体积。
与
, h3 为 整 数) K n h1 b 1 h2 b 2 h3 b 3 ( h1 , h2
M e 0 e m
2 iaq 1 2 1 2 iaq 2 1 2 1 2
1 2eiaq A 2 1 m 2 B 0
解得:
1 2 16m 2 1 2 2 aq 2 2 m ( 2 m ) sin 2 2m 2 ( ) 2 1 2
2019-2-26 2
19. 在绝对零度时还有格波存在吗? 若存在, 格波间还有能量交换吗? [解答] 频率为 w的格波的振动能为 其中 是由 个声子携带的热振动能, ( )是零点振动能, 声子数为 绝对零度时, =0. 频率为 的格波的振动能只剩下零点振动能. 格波间交换能量是靠声子的碰撞实现的. 绝对零度时, 声子消失, 格波间不再交换 能量. 6. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多? [解答] 频率为 的格波的(平均) 声子数为 因为光学波的频率 比声学波的频率 高, ( )大于 ( ), 所以在温度一定情况下, 一个光学波的声子数目少于 一个声学波的声子数目.
固体物理学考试重点
固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。
3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。
4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。
5.点阵:格点的总体称为点阵。
6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。
7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。
8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。
9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。
11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。
CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。
13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。
14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。
固体物理重点知识点总结——期末考试、考研必备!!
固体物理概念总结——期末考试、考研必备!!第一章1、晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。
晶体结构——晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。
金属及合金在大多数情况下都以结晶状态使用。
晶体结构是决定固态金属的物理、化学和力学性能的基本因素之一。
2、晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。
3、单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。
4、基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。
倒易点阵——是由被称为倒易点或倒易点的点所构成的一种点阵,它也是描述晶体结构的一种几何方法,它和空间点阵具有倒易关系。
倒易点阵中的一倒易点对应着空间点阵中一组晶面间距相等的点格平面。
5、原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。
6、晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。
7、原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。
8、布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。
9、简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。
固体物理期末复习提纲终极版
固体物理期末复习提纲终极版一、晶体的结构与晶胞1.晶体的定义和特点2.晶体的结构指数和晶系3.晶胞的定义和特点4.基元和晶格的概念二、晶体的对称性1.对称元素和操作2.空间群和点群3.空间群的表示方法4.特殊对称性的晶体结构三、晶体的晶格1.晶格的定义和特点2.布拉维格子和布里渊区3.第一布里渊区和倒格子4.倒格子和衍射四、晶体的X射线衍射1.X射线的特点和衍射现象2. Laue方程和Bragg法则3.X射线的衍射仪器4.逆格子和晶体结构的解析五、晶体的晶体缺陷1.点缺陷和芯片2.面缺陷和晶界3.体缺陷和空位4.缺陷的影响和应用六、晶体的晶格振动1.晶格振动的分类和特点2.声子和性质3.声子的产生和吸收4.热导率和声学性质七、电子与能带论1.自由电子气模型2.原子间作用和周期性势能3.能带的形成和分类4.能带的导电性八、半导体与绝缘体1.化学键与共价键2.半导体与绝缘体的能带结构3. pn结的形成和性质4.磁半导体和自旋电子学九、金属与超导体1.金属的电子气模型2.金属的导电性和热传导性3.超导体的发现和性质4.超导体的理论和应用十、晶体的光学性质1.基本光学现象和方程2.介质和折射率3.光在晶体中的传播和偏振4.光学谱和材料应用十一、纳米材料与表面物理1.纳米材料的特点和制备方法2.纳米材料的性质和应用3.表面物理和表面改性4.加工技术和纳米器件这是一个固体物理期末复习的终极版提纲,涵盖了晶体的结构与晶胞、晶体的对称性、晶体的晶格、晶体的X射线衍射、晶体的晶体缺陷、晶体的晶格振动、电子与能带论、半导体与绝缘体、金属与超导体、晶体的光学性质、纳米材料与表面物理等重要内容。
通过按照这个提纲进行复习,可以全面而系统地理解和掌握固体物理学的基本概念和相关知识,为期末考试做好充分的准备。
固体物理考试 复习
1、简立方原胞基矢 体心立方原胞基矢 面心立方原胞基矢kj i a a a a a a321)(2/)(2/)(2/321k j i a a k j i a a k j i a a)(2/)(2/)(2/a 321j i a a i k a a k j a2、试证面心立方的倒格子是体心立方证:设与晶轴a 、b 、c 平行的单位矢量分别为i 、j 、k 。
面心立方正格子的原胞基矢可取为)(2),(2),(2321j i a a i k a a k j a a由倒格子公式得][2,][2,][2213132321a a b a a b a a b 可得倒格基矢为: ),(2),(2),(2321k j i ab k j i a b k j i a b3、考虑晶格中的一个晶面(hkl ),证明:(a ) 倒格矢123h G hb kb lb u r r r r 垂直于这个晶面;(b ) 晶格中相邻两个平行晶面的间距为2hkl hd Gu r;(c ) 对于简单立方晶格有22222a d h k l 。
证明:(a )晶面(hkl )在基矢321a a a 、 、 上的截距为la k a h a 321、 、 。
作矢量: k a h a m 211,l a k a m 322 ,ha l a m 133 显然这三个矢量互不平行,均落在(hkl )晶面上(如右图),且022232132132121321211a a a a a la a a a a k a a a a a h k a h ab l b k b h k a h a G m h同理,有02 h G m ,03 h G m 所以,倒格矢 hkl G h 晶面。
(b )晶面族(hkl )的面间距为:hkl h a h a d 11(c )对于简单立方晶格:212222lk h a22222l k h a d4、一维简单格子,按德拜模型,求出晶格热熔,并讨论高低温极限。
固体物理考试要点
1、凝聚态物质包括:液体、固体、软物质2、固体分为:晶体、准晶体、非晶体4、晶格:晶体中原子的规则排列;晶体结构:晶体中原子的具体排列形式5、常见晶体结构:简单立方晶体结构、体心立方晶体结构、密堆晶体结构、金刚石结构、NaCl结构、CsCl晶体结构、立方硫化锌结构、钙钛矿结构6、配位数:每个原子周围的最近邻原子数;简单立方结构:6;体心立方结构:8;面心立方体结构:12;六角密堆结构:12;金刚石结构:48、简单晶格举例:sc、bcc、fcc结构形成的晶体;复式晶格举例:NaCl结构、CsCl结构9、基元:使一个理想晶体在空间无限周期重复而得到的全同的结构单元;简单晶格的基元特点:只含一个原子;复式晶格的基元特点:含有两个以上的原子或离子10、结点:用来代表忽略结构中基元内原子分布细节的一个集合结构;点阵:晶格被抽象为一个纯粹的几何结构;点阵与晶体结构的逻辑关系:<点阵>+<基元>=<晶体结构>11、点阵的基矢:对于一个给定点阵选择三个不共面的基本平移矢量a1、a2、a3;破缺的平移对称性:只对一组离散的平移矢量Rl具有不变性12、对于一个点阵通常可以定义:初基元胞、单胞、W-S元胞三种元胞15、单胞:为直观反映点阵的宏观对称性而选择的一个非初基元胞;晶轴:单胞的三条棱a、b、c;晶格常数:长度a、b、c16、单胞和初基元胞的关系:sc点阵:一致;bcc点阵:单胞体积为初基元胞体积的两倍;fcc点阵:单胞体积为初基元胞体积的四倍17、简要说明W-S元胞的构造过程:把结点同所有其他结点用直线连接起来,做这些连线的中垂面,这些面包围的最小多面体,构成W-S元胞19、晶列:点阵的结点看成分布在一系列相互平行的直线上,这些直线称为晶列;晶向指数:第11页21、晶面:点阵的结点看成分布在一些列平行且等距的平面上,这些平面称为晶面26、晶面指数和密勒指数的不同:晶面指数:以基矢为坐标系,密勒指数:以单胞的三条棱为坐标系27、正空间:坐标空间;倒空间;坐标空间的傅里叶变换28、正点阵:晶体正空间的性质,由晶体的点阵来描述;倒点阵:正点阵的傅里叶变换33、宏观对称性/点对称性:晶体未作平移34、晶体的宏观对称性是破缺的:由于晶体中原子规则排列的结果35、宏观对称操作/点对称操作:包括绕某轴的转动操作和对某点的反演操作以及他们的组合操作37、对称素:一个物体借以进行对称操作的一根轴、一个平面、一个点38、n次旋转轴:如果一个物体绕某轴旋转2π/n及其倍数不变,该轴即n次旋转轴;对称心:如果一个物体对某点反演不变,该点为对称心;n次旋反演转轴:如果一个物体绕某轴旋转2π/n然后再反演不变,该轴即n次旋转反演轴44、晶体结构有:32种点群;230种空间群1、原子的电离能:基态原子失去一个价电子所必须的能量;它取决于:核电荷、原子半径、电子的壳层结构2、原子的亲和能:一个基态中性原子得到一个电子成为负离子所释放出的能量;元素周期表中原子的亲和能的变化趋势:亲和能随原子半径减小而增大3、原子的负电性:描述化合物分子中组成原子吸引电子倾向强弱的物理量;它的相关因素:原子的电离能、亲和能、价态4、负电性与电离能及亲和能之间是:负电性=Km/2(电离能+亲和能)5、晶体结合类型:金属结合、共价结合、离子结合、范德瓦耳斯结合、氢键、混合键7、金属的基本特性:高导电性、高导热性、大的延展性、金属光泽8、共价键:两个原子共有的自旋反平行的一对电子的结构;成键态:对于单态,EⅠ在R /a B=1.518 处有一极小值,对应两原子组成分子后相互吸引;反成键态:三重态EⅡ随R ab ab增加单调减小,EⅡ对应于原子间相互排斥,因而不能构成稳定分子9、共价键的饱和性:一个原子形成共价键的数目取决于这个原子壳层为填满的加点字数;共价键的方向性:一个原子总在电子波函数最大的方向成键11、极性共价键:当两个电负性不同的原子结合时,不再有这样的对称性要求,电子对将要靠近负电性大的原子一侧,分子显示电偶极距12、离子键:依靠正负离子间库伦吸引的结合17、结合能:原子结合成晶体后释放的能量W18、晶体的内能包括:吸引势能和排斥势能;吸引势能的本质:长程相互作用;排斥势能的本质:系统动能,是一种短程的相互作用;画图说明:19、决定晶体平衡体积的条件:dU/dV│vo=020、体积弹性模量:它反映晶体的性质:倔强性21、一个离子的静电吸引势能:22、马德龙常数:马德龙能:晶体所有平均每一个元胞所具有的长程库伦吸引势23、离子晶体的重叠排斥势:24、具有N个原胞的晶体的内能函数:27、勒纳-琼斯势:28、包含N个原子的惰性气体晶体的总内能:1、晶格动力学:从晶体中原子的振动出发去讨论晶体的宏观性质;热运动在晶体宏观性质上最直接的表现:比热容2、简正模:在简谐近似下讨论晶格的本征振动;格波:简正模对应一个振幅调制的平面波9、一维单原子晶体的波恩-卡曼边界条件:10、波矢密度:一维单原子晶体的波矢密度:15、声学支:特点:振动频率至于M有关;光学支:特点:频率只与m有关16、命名理由:声学支:对于小的q值,此时,波的群速=相速,,与频率无关,表现为长波长弹性波,纵波与声波等同;光学支:当q→0时,其振动频率由力常数β和折合质量决定,此频率恰好位于电磁波频谱的远红外区域。
固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念和基本理论和知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体和非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴)为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子看成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
固体物理知识点总结
一、考试重点晶体结构、晶体结合、晶格振动、能带论的基本概念与基本理论与知识二、复习内容第一章晶体结构基本概念1、晶体分类及其特点:单晶粒子在整个固体中周期性排列非晶粒子在几个原子范围排列有序(短程有序)多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积准晶体粒子有序排列介于晶体与非晶体之间2、晶体的共性:解理性沿某些晶面方位容易劈裂的性质各向异性晶体的性质与方向有关旋转对称性平移对称性3、晶体平移对称性描述:基元构成实际晶体的一个最小重复结构单元格点用几何点代表基元,该几何点称为格点晶格、平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量基矢元胞以一个格点为顶点,以某一方向上相邻格点的距离为该方向的周期,以三个不同方向的周期为边长,构成的最小体积平行六面体。
原胞就是晶体结构的最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。
每个原胞含1个格点,原胞选择不就是唯一的晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成的平行六面体称为晶胞。
晶格常数WS元胞以一格点为中心,作该点与最邻近格点连线的中垂面,中垂面围成的多面体称为WS原胞。
WS原胞含一个格点复式格子不同原子构成的若干相同结构的简单晶格相互套构形成的晶格简单格子点阵格点的集合称为点阵布拉菲格子全同原子构成的晶体结构称为布拉菲晶格子。
4、常见晶体结构:简单立方、体心立方、面心立方、金刚石闪锌矿铅锌矿氯化铯氯化钠钙钛矿结构5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成的三维结构称为密堆积。
六脚密堆积密排面按AB\AB\AB…堆积立方密堆积密排面按ABC\ABC\ABC…排列5、晶体对称性及分类:对称性的定义晶体绕某轴旋转或对某点反演后能自身重合的性质对称面对称中心旋转反演轴8种基本点对称操作14种布拉菲晶胞32种宏观对称性7个晶系6、描述晶体性质的参数:配位数晶体中一个原子周围最邻近原子个数称为配位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理》考试知识点
第一章:晶体结构
1、基本概念:基元,结点,点阵,晶格,简单格子,复式格子,原胞,固体物理学原胞,结晶学原胞,基矢,格矢,空间点阵学说的基本内容等。
2、基本知识点:立方晶系固体物理学原胞的惯用取法;NaCl、CsCl、金刚石、闪锌矿、钙钛矿结构、密堆积结构等常见晶体结构、七大晶系的基本特征;晶列的定义、性质和描述方法;晶面的定义、性质和描述方法;引入倒格子的目的;倒格子的性质;倒格子基矢与正格子基矢的解析关系。
3、基本技巧:会画特定晶面的原子排列状况;给出晶向指数和晶面指数,会画晶向和晶面;会计算晶面间距;会计算倒格子原胞基矢;会利用倒格子性质处理晶体学问题。
第二章、晶体的结合
了解晶体结合的基本类型、特点以及结合力的一般性质。
第三章、晶格振动和晶体的热学性质
1、基本概念:格波;声子
2、基本知识点:格波波矢的取值范围和取值个数;格波与连续介质弹性波之间的比较;晶格振动的格波支数、本征频率数遵从的规律;为什么晶格振动问题必须用量子力学来处理;为什么说声子不是物理实在;经典理论在处理固体比热时遇到了什么样的困难;爱因斯坦模型和德拜模型的基本假设。
3、基本技巧:会计算一维原子链晶格振动的色散关系;会计算晶格振动的频率分布函数(即:格波态密度);会采用爱因斯坦模型、德拜模型、及在已知某种色散关系的前提下求解晶格比热。
第四章、晶体缺陷
了解晶体缺陷的基本概念、类型及位错的形态;会热缺陷的统计计算
第五章、金属自由电子理论
1、基本概念:费米面、功函数、接触电势差
2、基本知识点:金属中存在大量的自由电子,为什么电子气对比热的贡献却很小;
3、基本技巧:会采用自由电子理论计算单位能量间隔内所能容纳电子数目;会计算金属中电子气的比热。
第六章、固体的能带理论
1、基本概念:能带;有效质量
2、基本知识点:Bloch定理;周期性势场中电子的E(K)关系特征;电导与能带的关系;导体、半导体、绝缘体导电性质差异的起源。
3、基本技巧:会使用紧束缚近似计算S电子的能量表达式;会计算电子的有效质量。
参考书目:《固体物理》,高等教育出版社,黄昆著,韩汝琪改编。