浙江省宁波市2019年中考数学试卷

合集下载

2019年浙江省宁波市中考数学试卷 解析版

2019年浙江省宁波市中考数学试卷 解析版

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年浙江省宁波市中考数学试卷及答案解析

2019年浙江省宁波市中考数学试卷及答案解析

2019年浙江省宁波市中考数学试卷及答案解析(满分150分,考试考试时间时间120分钟)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均计零分 1.(2019浙江宁波,1题,4分)-2的绝对值为的绝对值为A.-12B.2C.12D.-2【答案】B【解析】负数的绝对值是它的相反数,|-2|=2,故选B. 【知识点】绝对值2.(2019浙江宁波,2题,4分)下列计算正确的是 A.a 2+a 3=a 5 B.a 3·a 2=a 6 C.(a 2)3=a 5 D.a 6÷a 2=a 4 【答案】D【解析】A.不是同类项,不能计算,故A 错误;B.a 3·a 2=a 5,故B 错误;C.(a 2)3=a 6,故C 错误;D.a 6÷a 2=a 4,故D 正确;故选D.【知识点】同底数幂的乘除,幂的乘方,积的乘方,合并同类项3.(2019浙江宁波,3题,4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000.数1 526 000 000用科学记数法表示为用科学记数法表示为 A.1.526×108 B.15.26×108 C.1.526×109 D.1.526×1010 【答案】C【解析】1 526 000 000=1.526×109,故选C. 【知识点】科学记数法科学记数法4.(2019浙江宁波,4题,4分)若分式12x 有意义,则x 的取值范围是的取值范围是 A.x>2 B.x ≠2 C.x ≠0 D.x ≠-2【答案】B【解析】要使分式有意义,需要使分母不为零,即x -2≠0,∴x ≠2,故选B. 【知识点】分式分式5.(2019浙江宁波,5题,4分)如图,下列关于物体的主视图画法正确的是下列关于物体的主视图画法正确的是第5题图题图 【答案】C【解析】如图所示是一个空心圆柱,其左视图轮廓应该是长方形,内部的两条线段看不到,应该用虚线表示,故选C. 【知识点】三视图的画法三视图的画法6.(2019浙江宁波,6题,4分)不等式32xx ->的解为的解为A.x<1B.x<-1C.x>1D.x>-1 【答案】A【解析】不等式两边同乘2,得3-x>2x,移项,合并,得3>3x,∴x<1,故选A.【知识点】解不等式解不等式7.(2019浙江宁波,7题,4分)能说明命题”关于x 的方程x 2-4x+m =0一定有实数根”是假命题的反例为题的反例为A.m =-1B.m =0C.m =4D .m =5 【答案】D【解析】方程的根的判别式∆=(-4)2-4m =16-4m,当∆<0时,方程无实数根,∴应使16-4m<0,即m>4,可得原方程无实数根,四个选项中,只有m =5符合条件,故选D. 【知识点】一元二次方程根的判别式,解不等式,反例反例8.(2019浙江宁波,8题,4分)去年某果园随机从甲,乙,丙,丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如下表所示:甲 乙 丙 丁 x24 24 23 20 S 22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是应选的品种是 A.甲 B.乙 C.丙 D.丁 【答案】B 【解析】方差体现的是一组数据的稳定情况,方差越小,越稳定,故选乙和丁,二者的平均产量乙大于丁,故应选乙进行种植,故选B. 【知识点】方差,平均数平均数 9.(2019浙江宁波,9题,4分)已知直线m ∥n,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D.若∠1=25°,则∠2的度数为的度数为A.60°B.65°C.70°D.75°第9题图题图 【答案】C 【解析】∵∠B =45°,∠1=25°,∴∠3=∠1+∠B =70°,∵m ∥n,∴∠2=∠3=70°,故选C.第9题答图题答图【知识点】三角形的外角,平行线的性质平行线的性质10.(2019浙江宁波,10题,4分)如图所示,矩形纸片ABCD 中,AD =6cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB 的长为的长为 A.3.5cm B.4cmC.4.5cmD.5cm第10题图题图 【答案】B【解析】»AE =124AB π⋅⋅,右侧圆的周长为DE π⋅,∵恰好能作为一个圆锥的底面和侧面,∴124AB π⋅⋅=DE π⋅,AB =2DE,即AE =2ED,∵AE+ED =AD =6,∴AB =4,故选B. 【知识点】弧长,圆锥展开图圆锥展开图11.(2019浙江宁波,11题,4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元,若只买8支玫瑰,则她所带的钱还剩下钱还剩下A.31元B.30元C.25元D.19元 【答案】A 【解析】设一支玫瑰x 元,一支百合y 元,小慧带了z 元,根据题意得:5x+3y =z -10,3x+5y =z+4,∴x+y =34z -, ∴3x+3y =394z -,∴2x =314z -,∴8x =z -31,即小慧买8支玫瑰后,还剩31元,故选A. 【知识点】二元一次方程组,消元法消元法12.(2019浙江宁波,12题,4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积直角三角形的面积B.最大正方形的面积最大正方形的面积C.较小两个正方形重叠部分的面积较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和第12题图题图 【答案】C 【思路分析】由勾股定理可知,两个小正方形面积和等于大正方形面积,表示出阴影部分面积,即可得到结论.【解题过程】设图中三个正方形边长从小到大依次为:a,b,c,则S 阴影=c 2-a 2-b 2+b(a+b -c), 由勾股定理可知,c 2=a 2-b 2,∴S 阴影=c 2-a 2-b 2+S 重叠=S 重叠,即S 阴影=S 重叠,故选C.第12题答图题答图 【知识点】勾股定理,阴影面积阴影面积二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分. 13.(2019浙江宁波,13题,4分)请写出一个小于4的无理数:________. 【答案】π【解析】常见无理数有π,开方开不尽的数,故本题可填π,2,…,15,32,…,365等. 【知识点】无理数14.(2019浙江宁波,14题,4分)分解因式:x 2+xy =________. 【答案】x(x+y)【解析】利用提公因式法分解因式,可得x 2+xy =x(x+y). 【知识点】提公因式法分解因式15.(2019浙江宁波,15题,4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.【答案】58【解析】袋中共有8个球,任意摸一次,有8中等可能的结果,其中,摸到红球的结果有5中, ∴摸出的球是红球的概率=58【知识点】概率16.(2019浙江宁波,16题,4分)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为________米.第16题图题图【答案】566【解析】在Rt △AOH 中,OH =AOcos45°=2002,在Rt △BOH 中,BO =4002566cos60OH=≈o.第16题答图题答图【知识点】三角函数17.(2019浙江宁波,17题,4分)如图,Rt △ABC 中,∠C =90°,AC =12 ,点D 在边BC 上,CD =5,BD=13.点P 是线段AD 上一动点,当半径为6的e P 与△ABC 的一边相切时,AP 的长为________.第17题图题图【答案】132或313 【解析】半径为6的e P 与△ABC 的一边相切,可能与AC,BC,AB 相切,故分类讨论:①当e P 与AC 相切时,点P 到AC 的距离为6,但点P 在线段AD 上运动,距离最大在点D 处取到,为5,故这种情况不存在;②当e P 与AC 相切时,点P 到BC 的距离为6,如图PE =6,PE ⊥AC, ∴PE 为△ACD 的中位线,点P 为AD 中点,∴AP =113=22AD ;③当e P与AB相切时,点P到AB的距离为6,即PF=6,PF⊥AB,过点D作DG⊥AB于点G,∴△APF∽△ADG∽△ABC,∴PF ACAP AB=,其中,PF=6,AC=12,AB=22AC BC+=613,∴AP=313;综上所述,AP的长为132或313.【知识点】切线性质,中位线,相似三角形,勾股定理18.(2019浙江宁波,18题,4分)如图,过原点的直线与反比例函数kyx=(k>0)的图象交于A,B两点,点A在第一象限,点C在x轴正半轴上,连接AC交反比例函数图象于点D.AE为∠BAC 的平分线,过点B作AE的垂线,垂足为E,连接DE,若AC=3DC,△ADE的面积为8,则k的值为________.第18题图题图【答案】6【思路分析】连接OE,利用直角三角形斜边中线等于斜边一半,得到等腰三角形,结合平分线得到平行,将△ADE的面积转化为△ADO的面积,再利用反比例函数的性质,将△ADO的面积转化为梯形AMND的面积,再根据相似三角形和反比例函数的性质,可依次得到△AMC和△AOM的面积,则k值可求.【解题过程】连接OE,在Rt△ABE中,点O是AB的中点,∴OE=12AB=OA,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴AD∥OE,∴S△ADE=S△ADO, 过点A作AM⊥x轴于点M,过点D作DN⊥x轴于点N,易得S梯AMND=S△ADO,∵△CAM∽△CDN,CD:CA=1:3,∴S△CAM=9,延长CA交y轴于点P,易得△CAM∽△CPO,可知DC=APAP, ,∴CM:MO=CA:AP=3:1,∴S△CAM:S△AMO=3:1,∴S△AMO=3,∵反比例函数图象在一,三象限,∴k=6.题答图第18题答图【知识点】直角三角形斜边中线等于斜边一半,等边对等角,平行线判定,反比例函数k的几何意义,三角形面积转化,相似三角形的性质三、解答题:本大题共8小题,满分78分,要写出必要的文字说明、证明过程或演算步骤. 19.(2019浙江宁波,19题,6分)先化简,再求值:(x-2)(x+2)-x(x-1),其中,x=3.【思路分析】先进行化简,然后将a的值代入化简结果,进行计算.【解题过程】原式=x2-4-x2+x=x-4,当x=3时,原式=x-4=3-4=-1【知识点】整式化简求值,平方差公式20.(2019浙江宁波,20题,8分)图1,图2都是有边长为1的小等边三角形构成的网格,每个网格图中由5个小等边三角形已图上阴影,请在余下的空白小等边三角形中,按下列要求选取一个图上阴影:(1)使得6个阴影小等边三角形中组成一个轴对称图形;(2)使得6个阴影小等边三角形中组成一个中心对称图形;(请将两个小题一次作答在图1,图2中,均只需画出符合条件的一种情形)题图第20题图【思路分析】(1)找到原图形的对称轴,在对称轴上增加三角形即可;(2)将原图形补成平行四边形,即为中心对称图形.画出下列其中一种即可【解题过程】(1)画出下列其中一种即可(2)画出下列其中一种即可画出下列其中一种即可【知识点】轴对称图形,中心对称图形.21.(2019浙江宁波,21题,8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表. 100名学生知识测试成绩的频数表名学生知识测试成绩的频数表成绩a(a(分分) 频数频数((人)50≤a<60 10 60≤a<70 15 70≤a<80m 80≤a<90 4090≤a<10015100名学生知识测试成绩的频数直方图名学生知识测试成绩的频数直方图第21题图题图由表中给出的信息回答下列问题:由表中给出的信息回答下列问题: (1)m =________,并补全频数直方图;(2)小明在这次测试成绩中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.【思路分析】(1)总人数减去其他成绩范围的人数即为70≤a<80分数段的人数m;(2)根据中位数的定义,为第50和51名成绩的平均数,但这两个成绩并不确定,故不一定;(3)根据样本百分数估计总体.【解题过程】(1)m =20,频数直方图如图所示:第21题答图(1)(2)不一定是,理由如下:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<0≤a<9090中,但他们的平均数不一定是85分,∴85分不一定是这100名学生知识测试成绩的中位数;(3)49151200660100+⨯=(人),答:全校1200名学生中,成绩优秀的约有660人. 【知识点】频数,频数直方图,中位数,样本估计总体22.(2019浙江宁波,22题,10分)如图,已知二次函数y =x 2+ax+3的图形经过点P(-2,3).(1)求a 的值和图象的顶点坐标; (2)点Q(m,n)在该二次函数图象上: ①当m =2时,求n 的值; ②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.【思路分析】(1)将点P 坐标代入解析式,可得a 的值,进而求得顶点坐标;(2)①将m =2代入解析式即可求得n 的值;②点Q 到y 轴的距离小于2,即-2<m<2,求出函数值的范围,即可得n 的取值范围.【解题过程】(1)把P(-2,3)代入y =x 2+ax+3,得3=(-2)2+a(-2)+3,解之,得a =2, ∴y =x 2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2);(2)①把x =2代入y =x 2+2x+3,得y =11,∴当m =2,时,n =11;②当点Q 到y 轴的距离小于2时,即-2<m<2,函数可以取得最小值为2,当x =-2时,y =3,当x =2时,y =11,∴n 的取值范围为2≤n<11.【知识点】二次函数解析式,求函数值,二次函数的最值二次函数的最值23.(2019浙江宁波,23题,10分)如图,矩形EFGH 的顶点E,C 分别在菱形ABCD 的边AD,BC 上,顶点F ,H 在菱形ABCD 的对角线BD 上.(1)求证:BG =DE;(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.第23题图题图【思路分析】(1)由菱形和矩形的性质,得到对应边,对应角相等,从而证明全等,得到结论;(2)连接EG,由矩形性质得到EG =FH,证明四边形AEGB 和四边形EGCD 都是平行四边形,得到菱形边长,则周长可得.【解题过程】(1)在矩形EFGH 中,EH =FG,EH ∥FG,∠GFH =∠EHF .∠BFG =180°-∠GFH,∠DHE =180°-°-∠EHF ,∠BFG =∠DHE,在菱形ABCD 中,AD ∥BC,∠GBF =∠EDH,△BGF ≌△DEH(AAS),BG =DE; (2) 如图,连接EG,在菱形ABCD 中,AD ∥BC,AD =BC,∵E 为AD 中点,AE =ED,BG =DE,∴AE =BG, ∴四边形ABGE 是平行四边形,∴AB =EG,在矩形EFGH 中,EG =FH =2,AB =2,∴菱形周长为8. 【知识点】矩形性质,菱形性质,全等三角形,平行四边形的判定平行四边形的判定24.(2019浙江宁波,24题,10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口除法,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计),第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车,小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处除法,沿该公路步行25分钟后到达塔林,离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式; (2)求第一班车从入口处到达塔林所需的时间;(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)第24题图题图【思路分析】(1)利用待定系数法,将两点坐标代入解析式,即可求解析式;(2)将1500代入解析式,即可求出所需时间;(3)根据题意列出不等式,求得小聪坐的车,然后分别算出坐车和步行到草甸的时间,即可求出二者相差的时间【解题过程】(1)由题意可设,函数表达式为y =kx+b(b ≠0),把(20,0),(38,2700)代入,可得020 270038k b k b =+⎧⎨=+⎩,解得150 3000k b =⎧⎨=-⎩,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y =150x -3000(20≤x ≤38);(2)把y =1500代入y =150x -3000,解得x =30,30-20=10(分),∴第一班车到塔林所需时间为10分钟;(3)设小聪坐上第n 班车,30-25+10(n -1)≥40,解得n ≥4.5,∴小聪最早坐上第5班车,等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分),∴小聪坐班车到草甸比他游玩结束后立即步行到草甸提早了7分钟. 【知识点】待定系数法求一次函数解析式,一元一次方程,不等式的应用不等式的应用25.(2019浙江宁波,25题,12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC,AD 是△ABC 的角平分线,E,F 分别是BD,AD 上的点.求证:四边形ABEF 是邻余四边形;(2)如图2,在5×4的方格纸中,A,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E,F 在格点上;(3)如图3,在(1)的条件下,取EF 中点M,连接DM 并延长交AB 于点Q,延长EF 交AC 于点N.若N 为AC 的中点,DE =2BE,求邻余线AB 的长.第25题图题图【思路分析】(1)由等腰三角形三线合一可得AD⊥BD,∴∠FAB与∠EBA互余,进而得到邻余四边形;(2)采用类似(1)问的方法,将∠A和∠B放在同一个直角三角形中,即可得到图形;(3)直角三角形斜边中线等于斜边一半,可得ME=MD,∠MDE=∠MED,证得△DBQ∽△ECN,进而由图形中线段的等量关系,结合相似比例式,可得邻余线AB的长度.【解题过程】(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余.∴四边形ABEF是邻余四边形;(2)如图所示,四边形ABEF即为所求.(答案不唯一)第25题答图题答图(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M为EF的中点,∴DM=ME.∴∠MDE=∠MED.∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【知识点】等腰三角形三线合一,直角三角形两锐角互余,直角三角形斜边上的中线等于斜边的一半,等边对等角,相似三角形26.(2019浙江宁波,26题,14分)如图1,e O经过等边三角形ABC的顶点A,C(圆心O在△ABC 内),分别与AB,CB的延长线交于点D,E,连接DE,BF⊥EC交AE于点F.(1)求证:BD=BE;(2)当AF:EF=3:2,AC=6时,求AE的长;(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连接OF ,OB,若△AEC 的面积是△OFB 面积的10倍,求y 的值.第26题图题图【思路分析】(1)利用等边三角形的性质和圆周角定理,得到∠BED =∠BDE,由等角对等边,得到结论;(2)由三线合一求出AG,BG 长,利用平行线分线段成比例,求得EB,进而通过勾股定理得到AE 的长;(3)①构造直角三角形,利用比例关系,写出EH,AH 的代数式,进而求得y 关于x 的表达式;②构造相似,得到比例式,表示出两个三角形的面积,根据10倍关系,得到方程,即可解得y 的值.【解题过程】(1)∵△ABC 为等边三角形,∴∠BAC =∠C =60°,∠DEB =∠BAC =60°,∠D =∠C =60°,∠DEB =∠D,BD =BE. (2)如图,过点A 作AG ⊥EC 于点G, ∵△ABC 为等边三角形,AC =6,∴BG =12BC =12AC =3, 在Rt △ABG 中,AG =3BG =33,∵BF ⊥EC,∴BF ∥AG,∴=AF BG EFEB,∵AF:EF =3:2,∴BE =23BG =2,∴EG =BE+BG =3+2=5, ∴在Rt △AEG 中,AE =22213AG EG +=;第26题答图(1)(3)①如图,过点E 作EH ⊥AD 于点H,∵∠EBD =∠ABC =60, 在Rt △BEH 中,EH EB=sin60=32,EH =32BE,BH =12BE,=BG AF EBEF=x,BG =xBE,AB =BC =2BG=2xBE,AH =AB+BH =2xBE+12BE =(2x+12)BE,Rt △AHE 中,tanEAD =332=14122BEEH AH x x BE=+⎛⎫+ ⎪⎝⎭,∴y =341x +;第26题答图(2)②如图,过点O 作OM ⊥EC 于点M,设BE =a, ∵=BG AFEB EF=x,∴CG =BG =xBE =ax,∴EC =CG+BG+BE =a+2ax, ∴EM =12EC =12a+ax,∴BM =EM -BE =ax -12a, ∵BF ∥AG,∴△EBF ∽△EGA,∴1===1BF BE a AG EG a ax x++, ∵AG =3BG =3ax,∴BF =11x+AG =31ax x +,△OFB的面积=1312212BF BM ax ax a x ⋅⎛⎫=⨯- ⎪+⎝⎭,△AEC 的面积=()13222EC AG ax a ax ⋅=⨯+, ∵△OFB 的面积是△AEC 的面积的10倍, ∴13110212ax ax a x ⎛⎫⨯⨯- ⎪+⎝⎭=()1322ax a ax ⨯+,∴2x 2-7x+6=0,解之,得x 1=2,x 2=32,y =39或37.第26题答图(3)【知识点】等边三角形的性质,圆周角定理,等角对等边,三线合一,平行线分线段成比例,勾股一元二次方程 定理,三角函数,相似三角形,一元二次方程。

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.﹣B.2 C.D.﹣2【分析】根据绝对值的意义求出即可.【解答】解:﹣2的绝对值为2,故选:B.【点评】本题考查了对绝对值的意义的应用,能理解绝对值的意义是解此题的关键.2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【解答】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.【点评】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.3.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字1526000000科学记数法可表示为1.526×109元.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣2 【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【分析】根据主视图是从正面看到的图形,进而得出答案.【解答】解:物体的主视图画法正确的是:.故选:C.【点评】本题考查了三视图的知识,关键是找准主视图所看的方向.6.(4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣1 【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.7.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1 B.m=0 C.m=4 D.m=5【分析】利用m=5使方程x2﹣4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.【解答】解:当m=5时,方程变形为x2﹣4x+m=5=0,因为△=(﹣4)2﹣4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.故选:D.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24 24 23 20S2 2.1 1.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【解答】解:因为甲组、乙组的平均数丙组、丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED =70°.【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【分析】设AB=xcm,则DE=(6﹣x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.【点评】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.【分析】由于15<16,则<4.【解答】解:∵15<16,∴<4,即为小于4的无理数.故答案为.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.14.(4分)分解因式:x2+xy=x(x+y).【分析】直接提取公因式x即可.【解答】解:x2+xy=x(x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.【分析】直接利用概率公式求解.【解答】解:从袋中任意摸出一个球,则摸出的球是红球的概率=.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为456米.(精确到1米,参考数据:≈1.414,≈1.732)【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈456(米)故答案是:456.【点评】考查了解直角三角形的应用﹣方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3.【分析】根据勾股定理得到AB==6,AD==13,当⊙P 于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB 相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠PAG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.【点评】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.18.(4分)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A 在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC 的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为6.【分析】连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件AC=3DC,DH∥AF,可得3DH=AF,则点D(3m,),证明△DHC∽△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k++=12;即可求解;【解答】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+×2m+=k++=12,∴2k=12,∴k=6;故答案为6;【点评】本题考查反比例函数k的意义;借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.【分析】根据平方差公式、单项式乘多项式的法则把原式化简,代入计算即可.【解答】解:(x﹣2)(x+2)﹣x(x﹣1)=x2﹣4﹣x2+x=x﹣4,当x=3时,原式=x﹣4=﹣1.【点评】本题考查的是整式的化简求值,掌握整式的混合运算法则是解题的关键.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【分析】(1)直接利用轴对称图形的性质分析得出答案;(2)直接利用中心对称图形的性质分析得出答案.【解答】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<60 1060≤a<70 1570≤a<80 m80≤a<90 4090≤a≤10015由图表中给出的信息回答下列问题:(1)m=20,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a≤90中,当他们的平均数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×=660(人).【点评】本题考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【分析】(1)把点P(﹣2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得﹣2<m<2,在此范围内求n即可;【解答】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG =∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点评】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y=1500代入(1)的结论即可;(3)设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【解答】解:(1)由题意得,可设函数表达式为:y=kx+b(k≠0),把(20,0),(38,2700)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);(2)把y=1500代入y=150x﹣3000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.【点评】本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)AB=AC,AD是△ABC的角平分线,又AD⊥BC,则∠ADB=90°,则∠FBA 与∠EBA互余,即可求解;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)证明△DBQ∽△ECN,即可求解.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.【点评】本题为四边形综合题,涉及到直角三角形中线定理、三角形相似等知识点,这种新定义类题目,通常按照题设顺序逐次求解,较为容易.26.(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【分析】(1)根据等边三角形的性质和圆周角定理解答即可;(2)过点A作AG⊥BC于点G,根据等边三角形的性质和勾股定理解得即可;(3)①过点E作EH⊥AD于点H,根据三角函数和函数解析式解得即可;②过点O作OM⊥BC于点M,根据相似三角形的判定和性质解答即可.【解答】证明:(1)∵△ABC是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,【点评】此题是圆的综合题,关键是根据等边三角形的性质、勾股定理和相似三角形的判定和性质解答.。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅ 【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101πa ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1 x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。

从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这A. 165cm ,165cm B. 165cm ,170cm C. 170cm ,165cm D. 170cm ,170cm 【答案】B. 【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B. 考点:中位数;众数.8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为 A. 40° B. 50° C. 60° D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为 A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 2【答案】C. 【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm 2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D. 考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分)13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE=,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=xxy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOE BOD S S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOCBOD,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S .考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形; (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

2019年浙江宁波中考数学试题(解析版)

2019年浙江宁波中考数学试题(解析版)

F
C
(第 10 题图)
{答案}B
{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,
扇形的弧长等于圆周长.欲从矩形 CDEF 中裁出最大的圆,矩形的两条边 CD、EF 恰好与圆相切,
( ) 90° ×p x
即 DE 长是圆的直径,不妨设 AB=x,则扇形弧长为
,圆的周长为
正确,因此本题选 C.
{分值}4
{章节:[1-17-1]勾股定理}
c-a
c-a
c
c-a
c-ac-b
c-b
{考点:代数式} {考点:列代数式} {考点:勾股定理} {考点:勾股定理的应用} {考点:几何选择压轴} {类别:思想方法} {类别:数学文化} {类别:发现探究} {难度:4-较高难度}
{题型:2-填空题}二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.
{题目}11.(2019 年宁波)小慧去花店购买鲜花,若买 5 支玫瑰和 3 支百合,则她所带的钱还剩下 10
元;若买 3 支玫瑰和 5 支百合,则她所带的钱还缺 4 元.若只买 8 支玫瑰,则她所带的钱还剩下(
)
A.31 元
B.30 元
C.25 元
D.19 元
{答案}A {解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰 x 元,每支 百合 y 元,根据题意可列出方程:5x+3y+10=3x+5y-4,得 x-y=-7,若小慧只买 8 支玫瑰, 则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入 可得解是 31,因此本题选 A. {分值}4 {章节:[1-8-1]二元一次方程组} {考点:代数式} {考点:二元一次方程的解} {类别:思想方法} {类别:易错题} {难度:4-较高难度}

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

浙江省宁波市2019年中考数学试题(含答案解析)

浙江省宁波市2019年中考数学试题(含答案解析)
25.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在 中, , 是 的角平分线, , 分别是 , 上的点.求证:四边形 是邻余四边形.
(2)如图2,在 的方格纸中, , 在格点上,请画出一个符合条件的邻余四边形 ,使 是邻余线, , 在格点上.
(3)如图3,在(1)的条件下,取 中点 ,连结 并延长交 于点 ,延长 交 于点 .若 为 的中点, , ,求邻余线 的长.
100名学生知识测试成绩的频数表
成绩 (分)
频数(人)
10
15
40
15
由图表中给出的信息回答下列问题:
(1) ________,并补全频数直方图________;
(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;
(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.
16.如图,某海防响所 发现在它的西北方向,距离哨所400米的 处有一般船向正东方向航行,航行一段时间后到达哨所北偏东 方向的 处,则此时这般船与哨所的距离 约为________米.(精确到1米,参考数据: , )
17.如图, 中, , ,点 在边 上, , .点 是线段 上一动点,当半径为6的圆 与 的一边相切时, 的长为________.
22.如图,已知二次函数 的图象经过点 .
(1)求 的值和图象的顶点坐标.
(2)点 在该二次函数图象上.
①当 时,求 的值;
②若 到 轴的距离小于2,请根据图象直接写出 的取值范围.
23.如图,矩形 的顶点 , 分别在菱形 的边 , 上,顶点 、 在菱形 的对角线 上.
(1)求证: ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】 B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵ ,∴此答案错误,不符合题意;C、∵ ,∴此答案错误,不符合题意;D、∵ ,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】 C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】 B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】 C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

【分析】简单几何体的三视图,就是分别从正面向后看,从左面向右看,从上面向下看得到的正投影,能看见的轮廓线需要画成实线,看不见但又存在的轮廓线需要画为虚线,故空心圆柱的主视图应该是一个长方形,加两条虚竖线。

6.不等式的解为()A. B. C. D.【答案】 A【考点】解一元一次不等式【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1.故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。

7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【考点】一元二次方程根的判别式及应用【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D【分析】由一元二次方程的根的判别式可知,当b²-4ac=(-4)²-4×1×m≥0时,方程有实数根,解不等式可得m的范围,则不在m的取值范围内的值就是判断命题是假命题的值。

8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲 B. 乙 C. 丙 D. 丁【答案】 B【考点】平均数及其计算,方差【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

故答案为:B【分析】因为平均数越大,产量越高,所以A和B符合题意;方差越小,波动越小,产量越稳定,所以B、D符合题意,综合平均数和方差可选B。

9.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A. 60°B. 65°C. 70°D. 75°【答案】 C【考点】平行线的性质,三角形的外角性质【解析】【解答】解:设直线n与AB的交点为E。

∵∠AED是△BED的一个外角,∴∠AED=∠B+∠1,∵∠B=45°,∠1=25°,∴∠AED=45°+25°=70°∵m∥n,∴∠2=∠AED=70°。

故答案为:C。

【分析】设直线n与AB的交点为E。

由三角形的一个外角等于和它不相邻的两个内角的和可得∠AED=∠B+∠1,再根据两直线平行内错角相等可得∠2=∠AED可求解。

10.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm【答案】 B【考点】圆锥的计算【解析】【解答】解:设AB=x,由题意,得,解得x=4.故答案为:B。

【分析】设AB=x,根据扇形的弧长计算公式算出弧AF的长,根据该弧长等于直径为(6-x)的圆的周长,列出方程,求解即可。

11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】 A【考点】三元一次方程组解法及应用【解析】【解答】解:设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,由题意,得,将两方程相减得y-x=7,∴y=x+7,将y=x+7代入5x+3y=a-10得8x=a-31,∴若只买8支玫瑰花,则她所带的钱还剩31元。

故答案为:A【分析】设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,根据若买5支玫瑰花和3支百合花所带的钱还剩10元,若买3支玫瑰花和5支百合花所带的钱还差4元,列出方程组,根据等式的性质,将两个等式相减即可得出y-x=7,即y=x+7,将y=x+7代入其中的一个方程,即可得出8x=a-31.从而得出答案。

12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A. 直角三角形的面积B. 最大正方形的面积C. 较小两个正方形重叠部分的面积D. 最大正方形与直角三角形的面积和【答案】 C【考点】勾股定理的应用【解析】【解答】解:根据勾股定理及正方形的面积计算方法可知:较小两个直角三角形的面积之和=较大正方形的面积,所以将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,所以知道了图2阴影部分的面积即可知道两小正方形重叠部分的面积。

故答案为:C【分析】根据勾股定理及正方形面积的计算方法可知:将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,从而即可得出答案。

二、填空题(每小题4分,共24分)13.请写出一个小于4的无理数:________【答案】答案不唯一如,π等【考点】实数大小的比较,无理数的认识【解析】【解析】解:开放性的命题,答案不唯一,如等。

故答案为:不唯一,如等。

【分析】无理数就是无限不循环的小数,常见的无理数有三类:①开方开不尽的数,② 的倍数的数,③像0.1010010001…(两个1之间依次多一个0)这类有规律的数,根据定义,只要写出一个比4小的无理数即可。

14.分解因式:x2+xy=________.【答案】x(x+y)【考点】因式分解-提公因式法【解析】【解答】解:x2+xy=x(x+y).【分析】直接提取公因式x即可.15.袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.【答案】【考点】简单事件概率的计算【解析】【解答】解:.故答案为:.【分析】袋中有8个小球,它们除颜色不同外其他的都相同,其中红色的小球共有5个,故从中摸出一个共有8种等可能的结果,其中能摸出红球的只有5种等可能的结果,根据概率公式即可算出答案。

16.如图,某海防响所O发现在它的西北方向,距离哨所400米的A处有一般船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这般船与哨所的距离OB约为________米。

(精确到1米,参考数据:=1.414,≈1.732)【答案】 566【考点】解直角三角形的应用﹣方向角问题【解析】【解答】解:设AB与正北方向线相交于点C,根据题意OC⊥AB,所以∠ACO=90°,在Rt△ACO中,因为∠AOC=45°,所以AC=OC= ,Rt△BCO中,因为∠BOC=60°,所以OB=OC÷cos60°=400 =400×1.414≈566(米)。

故答案为:566 。

【分析】根据等腰直角三角形的性质得出,Rt△BCO中,根据锐角三角函数的定义,由OB=OC÷cos60°即可算出答案。

17.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.【答案】或【考点】勾股定理,切线的性质,相似三角形的判定与性质【解析】【解答】解:在Rt△ACD中,∠C=90°,AC=12,CD=5, ∴AD=13;在Rt△ACB中,∠C=90°,AC=12,BC=CD+DB=18, ∴AB=6 ;过点D作DM⊥AB于点M,∵AD=BD=13, ∴A M= ;在Rt△ADM中,∵AD=13,AM= , ∴DM= ;∵当点P运动到点D时,点P到AC的距离最大为CD=5<6,∴半径为6的⊙P不可能与AC相切;当半径为6的⊙P与BC相切时,设切点为E,连接PE,∴PE⊥BC,且PE=6,∵PE⊥BC,AC⊥BC,∴PE∥AC,∴△ACD∽△PED,∴PE∶AC=PD∶AD,即6∶12=PD∶13,∴PD=6.5,∴AP=AD-PD=6.5;当半径为6的⊙P与BA相切时,设切点为F,连接PF,∴PF⊥AB,且PF=6,∵PF⊥BA,DM⊥AB,∴DM∥PF,∴△APF∽△ADM,∴AP∶AD=PF∶DM即AP∶13=6∶ ,∴AP= ,综上所述即可得出AP的长度为:故答案为:【分析】根据勾股定理算出AD,AB的长,过点D作DM⊥AB于点M,根据等腰三角形的三线合一得出AM的长,进而再根据勾股定理算出DM的长;然后分类讨论:当点P运动到点D时,点P到AC 的距离最大为CD=5<6,故半径为6的⊙P不可能与AC相切;当半径为6的⊙P与BC相切时,设切点为E,连接PE,根据切线的性质得出PE⊥BC,且PE=6,根据同一平面内垂直于同一直线的两条直线互相平行得出PE∥AC,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△ACD∽△PED,根据相似三角形对应边成比例得出PE∶AC=PD∶AD,由比例式即可求出PD 的长,进而即可算出AP的长;当半径为6的⊙P与BA相切时,设切点为F,连接PF,根据切线的性质得出PF⊥BC,且PF=6,根据同一平面内垂直于同一直线的两条直线互相平行得出DM∥PF,根据平行于三角形一边的直线截其它两边,所截的三角形与原三角形相似得出△APF∽△ADM,根据相似三角形对应边成比例得出AP∶AD=PF∶DM,由比例式即可求出AP的长,综上所述即可得出答案。

相关文档
最新文档