初中数学特殊的平行四边形

合集下载

初中数学特殊平行四边形知识点总结

初中数学特殊平行四边形知识点总结

特殊的平行四边形一、平行四边形(复习):中心对称图形,非轴对称图形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

补充:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

(3)平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。

推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

平行四边形的面积:S平行四边形=底边长×高=ah二、菱形:特殊平行四边形,有平行四边形一切性质菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

初中数学_特殊的平行四边形教学设计学情分析教材分析课后反思

初中数学_特殊的平行四边形教学设计学情分析教材分析课后反思

教学过程设计:问题与情境设计意图活动一、归纳整理,形成认知体系1.复习概念,理清关系活动二:基础训练一、选择:1、正方形具备而菱形不一定具备的性质是() A、四边都相等 B、对角线互相垂直且平分 C、对角线相等D、对角线平分一组对角2、下列命题中()是假命题.A、对角线互相平分的四边形是平行四边形.B、两条对角线相等的四边形是矩形.C、两条对角线互相垂直的矩形是正方形. 通过知识梳理,让学生对特殊平行四边形的定义、性质、判定从理论上巩固,同时明确:(1)性质和判定之间是互逆的关系,(2)对其他特殊的四边形也可以按照边、角、对角线三方面归纳整理。

通过“基础训练”,进一步理解并灵活运用特殊平行四边形的性质和判定。

D、两条对角线相等的菱形是正方形.二、填空:1、菱形的对角线长为6和8,则菱形的边长___,面积是___.2、矩形的对角线长为8,两对角线的夹角为60º,则矩形的两邻边分别长___和___.三、抢答:要使 ABCD成为矩形,需增加的条件是____要使 ABCD成为菱形,需增加的条件是____要使矩形ABCD成为正方形,需增加的条件是____要使菱形ABCD成为正方形,需增加的条件是____四、典例探究4、如图,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连结CP,试判断四边形CODP的形状.1)如果题目中的矩形变为菱形(图一),结论应变为什么?2)如果题目中的矩形变为正方形(图二),结论又应变为什么?通过典例探究培养学生的综合能力,使平行四边形及特殊的平行四边形知识得以相互融合。

三、生活中的应用1、一位女士想买一条方纱巾,有一天她在商店里看到一块漂亮的纱巾,非常想买,但她拿起来看时感觉纱巾不太方,商店老板看她犹豫不决的样子,马上过来拉起一组对角,让女士看另一组对角是否对齐,如图所示,女士还有些疑惑,老板又拉起另一组对角让女士检验,女士终于买下这块纱巾,你认为女士买的这块纱巾是正方形的吗?当时采用什么方法可以检验出来?2、我校买了四棵树,准备栽在办公楼前花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?同步练习:如图,Rt△OAB的两条直角边在坐标轴上,已知点A(0,2),点B(3,0),则以点O,A,B为其中三个顶点的平行四边形的第四个顶点C的坐标为_________________。

初中数学 平行四边形的定义是什么

初中数学 平行四边形的定义是什么

初中数学平行四边形的定义是什么平行四边形是一个特殊的四边形,它具有一些特定的性质和定义。

下面将详细介绍平行四边形的定义和相关性质。

定义:平行四边形是一个具有两对对边分别平行的四边形。

性质:1. 对边平行性质:平行四边形的对边是平行的。

具体来说,平行四边形的相对边是平行的。

例如,如果ABCD是一个平行四边形,那么AB || CD,AD || BC。

2. 对角线性质:平行四边形的对角线彼此平分,即对角线互相垂直且长度相等。

具体来说,平行四边形的两条对角线相等且互相垂直。

例如,如果ABCD是一个平行四边形,那么AC = BD,且AC ⊥ BD。

3. 同位角性质:平行四边形的同位角是相等的。

具体来说,平行四边形的同位角是指位于相同边的两个内角或外角。

如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。

4. 交替内角性质:平行四边形的交替内角是相等的。

具体来说,平行四边形的交替内角是指位于不同边的两个内角。

如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。

5. 互补性质:平行四边形的内角和为180°。

具体来说,平行四边形的两个对角线相交处的内角和为180°。

如果ABCD是一个平行四边形,那么⊥A + ⊥B + ⊥C + ⊥D = 180°。

6. 对边长度性质:平行四边形的对边长度相等。

具体来说,平行四边形的相对边长度相等。

如果ABCD是一个平行四边形,那么AB = CD,AD = BC。

7. 长方形和菱形的特殊情况:长方形和菱形是平行四边形的两种特殊情况。

长方形是具有相等对边且内角为90°的平行四边形。

菱形是具有相等对边且内角为60°或120°的平行四边形。

以上是平行四边形的定义和相关性质。

这些性质对于初中数学的学习和应用具有重要的意义。

通过理解和掌握这些性质,学生可以解决平行四边形的问题,进行证明和推理,并将其应用于其他几何形状的研究和分析中。

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》
满足什么条件的菱形是正方形? 定理:有一个角是直角的菱形是正方形.
请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形

初中数学:《特殊平行四边形》大单元教学设计

初中数学:《特殊平行四边形》大单元教学设计
有一组邻边相等的平行四边形叫做菱形.
A
D
符号语言
B
C
四边形ABCD是平行四边形,且AB AD ABCD是菱形.
猜想:对角线互相垂直的平行四边形是菱形.
已知:在 ABCD 中,AC ⊥ BD,
求证:四边形ABCD是菱形。
证明:∵四边形ABCD是平行四边形,
A
∴OA=OC. ∵ AC ⊥ BD, ∴BD垂直平分AC
学习活动设计
【活动步骤】 1.提出问题:菱形的性质有对边平行且相等,四条边都相等.那么什么样 的平行四边形是菱形 2.提出问题:菱形的性质有对角线互相平分且垂直,那么什么样的平行 四边形是菱形? 3.指导学生探究,交流。 4.进一步提出问题:四边形能转化成菱形吗? 5.指导学生探究,交流.
定义法:
学习活动设计
第二课时:矩形的判定
活动一:探究平行四边形到矩形的转化 【活动步骤】 1. 提出问题:矩形的性质有:四个角都是直角,对角线相等且
互相平分,那么什么样的平行四边形是矩形? 2.指导学生探究,交流.
矩形的判定方法1:
有一个角是直角的平行四边形是矩形.
几何语言:
A
D
∵四边形ABCD为平行四边形
8.类比:如何把菱形转化为正方形?如何判断一个菱形是正方形? 如何 把矩形转化为正方形?如何判断一个矩形是正方形?
专题划分
专题一
01
菱形的性质及判定
(3课时)
02
专题三
03
正方形的性质及判定 (2课时)
专题二
矩形的性质及判定 (3课时)
1
专题一
菱形的性质及判定
(3课时)
专题学习目标
1.理解和掌握菱形作为特殊的平行四边形,不仅具有平行四边形的所有性质,还具有 其特有性质. 2.系统掌握菱形的性质和判定,并能运用有关知识进行推理证明和计算; 3. 通过探索、归纳菱形的特征,识别、了解它与平行四边形之间的包含关系. 4.让学生在探索知识之间的相互联系及应用的过程中,体验并获取推理的方法和技巧. 5.通过探索、观察、猜想、分析、归纳、推理,培养并提高学生分析问题,解决问题的 能力.态

特殊的平行四边形初中数学知识点总结

特殊的平行四边形初中数学知识点总结

特别的平行四边形初中数学知识点总结一、特别的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线均分且相等。

(3)判断定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

2.菱形:(1)定义:邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线相互垂直,而且每一条对角线均分一组对角。

(3)判断定理:①一组邻边相等的平行四边形是菱形。

②对角线相互垂直的平行四边形是菱形。

③四条边相等的四边形是菱形。

(4)面积:3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。

(2)性质:四条边都相等,四个角都是直角,对角线相互垂直均分。

正方形既是矩形,又是菱形。

(3)正方形判断定理:①对角线相互垂直均分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线相互垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。

二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特别的平行四边形,其性质都是在平行四边形的基础上扩大来的。

矩形是由平行四边形增添“一个角为90°”的条件获得的,它在角和对角线方面拥有比平行四边形更多的特征;菱形是由平行四边形增添“一组邻边相等”的条件获得的,它在边和对角线方面拥有比平行四边形更多的特征;正方形是由平行四边形增添“一组邻边相等”和“一个角为90°”两个条件获得的,它在边、角和对角线方面都拥有比平行四边形更多的特征。

2.矩形、菱形的判断能够依据出发点不一样而分红两类:一类是以四边形为出发点进行判断,另一类是以平行四边形为出发点进行判断。

而正方形除了上述两个出发点外,还能够从矩形和菱形出发进行判断。

初中数学特殊平行四边形解题模型

初中数学特殊平行四边形解题模型

1. 我们知道平行四边形的对边平行,因此可以利用相邻角的性质来解题。

2. 如题目给出平行四边形ABCD,我们要证明AD//BC。

3. 根据相邻角的性质,∠ABD和∠BCD是相邻角,因此它们的和为180°。

4. 又因为平行四边形的对边分别平行,所以∠ABD=∠BCD,即两个角相等。

5. 那么根据相等角的性质,∠ABD+∠BCD=180°,即AD//BC成立。

模型二:利用对角线的性质1. 对角线的性质是解决平行四边形问题的另一个重要方法。

2. 给定平行四边形ABCD,我们要证明对角线AC和BD相交于一点O。

3. 因为平行四边形的性质是,对角线互相平分,所以BO=OD,AO=OC。

4. 根据三角形的性质,两边相等且夹角相等,则两个三角形全等。

因此△BOA≌△COD。

5. 根据全等三角形的性质,可以知道∠BOA=∠COD,所以AC与BD 相交于一点O。

1. 辅助线是解决平行四边形问题常用的方法之一。

2. 给定平行四边形ABCD,我们要证明AB//CD。

3. 可以作线段AC的中线,即连接BD的中点M和连接BA的中点N。

4. 根据线段的中线定理,中线等分基底并平行于两个底部,即AM=MC,BN=ND,并且AM//CD,BN//CD。

5. 根据平行线的性质,AB//CD成立。

模型四:利用平移、旋转和对称的方法1. 平移、旋转和对称是解决平行四边形问题中比较灵活的方法。

2. 给定平行四边形ABCD,我们要证明ABCD是一个菱形。

3. 可以将平行四边形ABCD沿着AB向右平移,得到A'B'CD。

4. 然后我们发现A'B'CD是ABCD的旋转图形,它们是共外部定点的两个同圆的切线。

5. 根据旋转体的性质,AB=BC=CD=DA,所以ABCD是一个菱形。

结论:不同的解题模型可以让我们更灵活地应对不同类型的题目,并且提高解题的效率。

通过掌握这些解题模型,我们可以更加轻松地解决平行四边形的相关问题。

初中数学8年级下册《特殊的平行四边形》导学案

初中数学8年级下册《特殊的平行四边形》导学案

课题 19.2 特殊的平行四边形课时:五课时第一课时 19.2.1 矩形的性质【学习目标】1.掌握矩形的性质定理及推论。

2.能熟练应用矩形的性质进行有关证明和计算。

【重点难点】重点:掌握矩形的性质定理。

难点:利用矩形的性质进行证明和计算。

【导学指导】阅读教材P94-P96相关内容,思考、讨论、合作交流后完成下列问题:1.什么是矩形?2.矩形是特殊的平行四边形,平行四边形具有的性质它有没有?平行四边形的边有什么性质?角呢?对角线呢?那么它特殊在什么地方?所以它有什么性质?如何记住它呢?3.矩形的一条对角线把它分成了两个什么三角形?由矩形的性质,你可以得到这个三角形的什么性质?【课堂练习】1.教材P95练习第1,2,3题。

2.Rt△ABC中,两条直角边分别为6和8,则斜边上的中线长为。

【要点归纳】今天你有什么收获?与同伴交流一下。

【拓展训练】1. 将矩形纸片ABCD 沿对角线BD 对折,再折叠使AD 与对角线BD 重合,得折痕DG ,若AB=8,BC=6,求AG 的长。

2. 在四边形ABCD 中,∠ABC=∠ADC=90°,E 是AC 的中点,EF 平分∠BED 交BD 于点F 。

(1) 猜想:EF 与BD 具有怎样的关系?(2) 试证明你的猜想。

ABD第二课时矩形的判定【学习目标】1.理解并掌握矩形的判定方法。

2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养分析能力。

【重点难点】重点:矩形的判定定理及推论。

难点:定理的证明方法及运用。

【导学指导】复习旧知:1.什么是平行四边形?什么是矩形?2.矩形有哪些性质?你能猜想如何判定矩形吗?学习新知:阅读教材P95-P96相关内容,思考、讨论、合作交流后完成下列问题:1.利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?2.还有哪些方法可以证明一个四边形是矩形?如何证明?试一试。

【课堂练习】1.教材P96练习第1,2题。

初中数学 平行四边形有哪些全等性质

初中数学 平行四边形有哪些全等性质

初中数学平行四边形有哪些全等性质平行四边形是一种特殊的四边形,具有一些全等性质。

以下是关于平行四边形全等性质的详细解释:1. 边边边(SSS)全等性质:如果两个平行四边形的对应边分别相等,则这两个平行四边形全等。

也就是说,如果平行四边形ABCD的边长等于平行四边形EFGH的边长,即AB = EF,BC = FG,CD = GH,DA = HE,那么平行四边形ABCD和平行四边形EFGH全等。

如果已知两个平行四边形的对应边长相等,那么它们满足SSS全等性质,可以判断它们全等。

2. 边角边(SAS)全等性质:如果两个平行四边形的一对对边和夹角分别相等,则这两个平行四边形全等。

也就是说,如果平行四边形ABCD的边长AB = EF,AD = EH,且∠BAD = ∠FEH,那么平行四边形ABCD和平行四边形EFGH全等。

如果已知两个平行四边形的一对对边和夹角相等,那么它们满足SAS全等性质,可以判断它们全等。

3. 对角全等性质:如果两个平行四边形的对角线互相相等,则这两个平行四边形全等。

也就是说,如果平行四边形ABCD的对角线AC = EG,BD = FH,那么平行四边形ABCD和平行四边形EFGH全等。

如果已知两个平行四边形的对角线相等,那么它们满足对角全等性质,可以判断它们全等。

根据上述全等性质,我们可以根据给定的条件来逐一比较平行四边形的对应边长、夹角和对角线长度是否满足全等性质。

如果这些条件都满足,就可以断定这两个平行四边形全等。

需要注意的是,判断两个平行四边形全等时,要确保给定的条件准确无误,并且提供了足够的信息。

有时候可能需要使用多个全等性质来判断全等关系。

同时,绘制图形可以帮助我们更好地理解和比较平行四边形的各个部分。

总结起来,我们可以根据平行四边形的边长、夹角和对角线长度来判断两个平行四边形是否全等。

根据边边边全等性质、边角边全等性质和对角全等性质,我们可以逐一比较平行四边形的对应边长、夹角和对角线长度是否相等,从而判断两个平行四边形是否全等。

初中数学特殊的平行四边形学案练习题

初中数学特殊的平行四边形学案练习题

第六章 特殊的平行四边形1.能说出菱形的定义,会判断是否为菱形2.能说出菱形的性质,并能灵活应用菱形的性质解题1. 平行四边形的定义:2. 平行四边形的性质 边 :① ② 角 :① ② 对角线:情景一:将一张长方形的纸横对折,再竖对折,然后沿图中的虚线剪下;情景二:两张等宽的纸条交叉重叠在一起,得到重叠的部分四边形ABCD;学习目标复习回顾新课引入情景三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开;知识点一 菱形的定义 平行四边形叫做菱形.知识点二 菱形的性质1.定理1:菱形的四条边都2.定理2:菱形的对角线3.对称性:菱形既是 图形,又是 图形,对称轴是两条对角线所 在的直线知识点三 菱形的面积重点1 利用菱形的性质求线段长例1 如图,四边形ABCD 是菱形,对角线AC 与BD 相交于O ,菱形ABCD的周长是20,BD=6(1)求AC 的长(2)求菱形ABCD 的高DE 的长变式1 已知一个菱形的面积为cm 2 ,且两条对角线的长度比为1:,则菱形的边长为变式2 如图,菱形的周长为20cm ,相邻两内角的度数之比为1:2,求菱形的两条对角线的长及面积。

新知探究巩固新知重点2 利用菱形的性质求角度例2 在菱形ABCD中,E,F分别是边BC,CD上的点,且AE=EF=AF=AB, 则∠C 的度数为()A 120ºB 100ºC 80ºD 60º变式3 如图,在菱形ABCD中,∠BAD=100º,AB的垂直平分线交对角线AC于点E,F为垂足,连接DF,∠CDF等于变式4 如图,在菱形ABCD中,点E,F分别是BC,CD上的点,且∠B=EAF=60º∠(1)求证:△AEF是等边三角形(2)若∠BAF=37º,求∠CEF的度数重点3 利用菱形的性质求面积例3 如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是40cm,求:(1)两条对角线AC,BD的长度(2)菱形ABCD的面积变式5 已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120º,AC=4,则该菱形的面积是( )A B C D 8重点4 利用菱形的性质进行证明例4 如图所示,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD 的中点(1)请判断△OEF的形状,并证明你的结论(2)若AB=13,AC=10,请求出线段EF的长变式6 如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE达标测评1.下列性质中,菱形对角线不具有的是( )A 对角线互相垂直B 对角线所在的直线是对称轴C 对角线相等D 对角线互相平分2.如图,菱形ABCD的对角线AC,BD相交于点O,有下列结论:①OA=OD;AC BD;②⊥③∠∠④菱形ABCD =AC BD1=2;S,其中正确的序号是( )ArrayA ①②B ③④C ②④D ②③3.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是的坐标为( )1,则点B ArrayA (3,1)B (3,-1)C (1,-3)D (1,3)4.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若FE=, BD=2,则菱形ABCD的面积为( ) A B C D如图1所示,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连接DE 并延长交射线AB 于点F ,连接BE.(1)求证:∠F=EBC∠(2)若,当△BEF 为等腰三角形时,求的度数(如图2所示)创新培养菱形的判定学习目标1. 能说出菱形的判定定理2. 能利用菱形的判定定理证明菱形课前诊断1.菱形的性质菱形的四条边都 ,菱形的对角线 ,菱形既是 图形,又是 图形,对称轴是 .2.如图所示,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为()A. 5cmB. 10cmC. 14cmD. 20cm3.在菱形ABCD 中,,AB=2,则菱形ABCD的面积为新知探究活动一 定义法问题: 如果一个四边形是一个平行四边形,只要再添加一个什么条件就可以判定它是一个菱形?依据是什么?【归纳定理】小试牛刀如图所示,在Rt△ABC中,,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.活动二 菱形的第二个判定方法【操作探究】用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。

初中数学教学课例《特殊的平行四边形(矩形)》课程思政核心素养教学设计及总结反思

初中数学教学课例《特殊的平行四边形(矩形)》课程思政核心素养教学设计及总结反思
的困惑,保证每一位同学都能快乐地完成自己的目标。
(2)组织好小组展示和跨组自由交流,注意学习
时间分配,展示的质量和效率。
(3)组织小组同学交堂每时每刻学生的
动态,对发现的问题和讨论、交流等方面及时指导培训。
二、课堂流程
1.课堂导入----以活动的平行四边形的变化过程
完善学生的认知能力与应用水平。
通过图形性质定理的逆命题,先猜想提出判定图形是否成立的命题,然后运用演绎推理证明这些命题的真伪,得出图形的判定定理,进一步明确矩形的性质定理与判定定理之间的关系:从命题角度来说,判定定理与
相应的性质定理之间是互逆的。
教学目标
1.说出生活中的矩形实例,从边、角、对角线及对
称的角度总结矩形的性质与判定定理。
2.经历类比、猜想、发现结论、验证结论的过程,
形成研究特殊平行四边形的常用方法。
3.在探究的过程中体会类比与划归的数学思想,体
会数学与生活的紧密联系。
学生学习能
力分析
学生在小学阶段对长方形的学习与了解、从七年级开始数学说理的学习、以及前一节平行四边形内容的学习,都为本节课的学习打下了很好的学习基础与方法。学生动手能力和应用能力不强,说理过程的书写格式也有待于进一步规范。在小学阶段,学生对矩形虽有一定的学习与了解,但更多的是停留在表面的记忆和理解,
7.教师寄语以方形人生的小短句作为结束。使数学
中死板的图性变得有灵动性
课例研究综

本节课主要是与学生为主体,从课前的预习到课上的自主探究都体现出学生的自主性,其次从教室中的常
见图形抽象到我们的矩形,让学生体会到数学来源于生
活,最后利用所学知识解决生活中的实际问题,恰好体现了数学又应用于生活之中。探究过程中也强调了合作探究的重要性,整节课注重联系实际,拓展学生知识,

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。

初中数学-九年级(初三)数学-平行四边形章节-特殊的平行四边形(矩形、菱形、正方形)的思维导图

初中数学-九年级(初三)数学-平行四边形章节-特殊的平行四边形(矩形、菱形、正方形)的思维导图
2.4.
轴对称图形.
中心对称图形.
3.
3.1.
有一组邻边相等,且有一个角是直角的平行四边形叫做正方形.
3.2.
边的性质:对边平行,四条边都相等.
角的性质:四个角都是直角.
对角线性质:
两条对角线互相垂直平分.
每条对角线平分一组对角.
3.3.
①有一组邻边相等的矩形是正方形.
②有一个角是直角的菱形是正方形.
平行四边形章节
特殊的平行四边形知识点目录
1.
1.1.
有一个角是直角的平行四边形叫做矩形.
1.2.
边的性质:对边平行且相等.
角的性质:四个角都是直角.
对角线性质:对角线互相平分且相等.
1.3.Biblioteka ①有一个角是直角的平行四边形是矩形.
②对角线相等的平行四边形是矩形.
③有三个角是直角的四边形是矩形.
1.4.
3.4.
轴对称图形.
中心对称图形.
轴对称图形.
中心对称图形.
2.
2.1.
有一组邻边相等的平行四边形叫做菱形.
2.2.
边的性质:对边平行且四边相等.
角的性质:邻角互补,对角相等.
对角线性质:
两条对角线互相垂直平分.
每条对角线平分一组对角.
2.3.
①一组邻边相等的平行四边形是菱形.
②对角线互相垂直的平行四边形是菱形.
③四条边都相等的四边形是菱形.

初中数学《特殊的平行四边形》单元教学设计以及思维导图01

初中数学《特殊的平行四边形》单元教学设计以及思维导图01

特殊的平行四边形适用年八年级下册级所需时8课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500) 平行四边形是人们日常生活和生产实践中应用广泛的一种图形,本单元是在学生已经学习了三角形相关知识、平行四边形的定义、性质及判定的基础上进行学习的。

平行四边形的性质和判定定理以及探究的模式为进一步学习特殊四边形奠定了基础。

本单元的主要内容有矩形、菱形、正方形、梯形的概念、性质和判断四边形是矩形、菱形、正方形及等腰梯形的条件。

有些内容在前两个学段学生已有接触,但还十分肤浅。

本单元不是对以前知识的简单复习,而是同类知识的螺旋上升。

特殊平行四边形与梯形的概念与性质是学好本单元的关键,也是为学好整个平面几何打下一个坚实的基础,是本单元的教学重点。

与基本图形(矩形、菱形、正方形、梯形)的概念、性质及其相互关系随之而来的是几何证明,学生要正确理解证明的本身,需要一个较长的过程,是本章主要的教学难点。

本单元包括个专题:专题一:矩形、菱形、正方形的性质及判定;专题二:梯形的性质及判定。

主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、经历探索、猜测、证明的过程,进一步发展学生的推理论证能力。

2、进一步掌握矩形、菱形以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。

3、体会在证明的过程中所运用的归纳、类比、转化等数学思想方法。

过程与方法:1、经历探索菱形、矩形、正方形的形成过程,培养观察能力及信息技术应用能力。

2、经历探索并证明各种特殊平行四边形,体会并掌握转化、归纳、类比等数学思想方法。

情感态度与价值观:1.通过特殊平行四边形的学习,体会数学在生活中的应用的广泛性。

2.通过探索证明的不同思路和方法,并进行适当的比较和讨论,培养学生的思维能力。

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明及详细答案

初中数学特殊平行四边形的证明一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC中, ∠ACB=90°, BC的垂直平分线DE交BC于D, 交AB于E, F在DE上, 并且AF=CE.(1)求证: 四边形ACEF是平行四边形;(2)当∠B满足什么条件时, 四边形ACEF是菱形?请回答并证明你的结论.2.(2019•福建模拟)已知: 如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.求证: 四边形BCFE是菱形.3.(2019•深圳一模)如图, 四边形ABCD中, AB∥CD, AC平分∠BAD, CE∥AD交AB于E.(1)求证: 四边形AECD是菱形;(2)若点E是AB的中点, 试判断△ABC的形状, 并说明理由.4.(2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证: EB=EC.5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α, 且cosα= , AB=4, 则AC的长为多少?6. (2019春•宿城区校级月考)如图, 四边形ABCD是矩形, 对角线AC、BD相交于点O, BE ∥AC交DC的延长线于点E. 求证:BD=BE.7.(2019•雅安)如图:在▱ABCD中, AC为其对角线, 过点D作AC的平行线及BC的延长线交于E.(1)求证: △ABC≌△DCE;(2)若AC=BC, 求证: 四边形ACED为菱形.8.(2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)若BC=8, AC=6, 求四边形ABCF的周长.9.(2019•遂宁)已知:如图, 在矩形ABCD中, 对角线AC、BD相交于点O, E是CD中点, 连结OE.过点C作CF∥BD交线段OE的延长线于点F, 连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.10. (2019•宁德)如图, 在梯形ABCD中, AD∥BC, 点E是BC的中点, 连接AC, DE, AC=AB, DE∥AB. 求证: 四边形AECD是矩形.11. (2019•钦州)如图, 在正方形ABCD中, E、F分别是AB、BC上的点, 且AE=BF. 求证:CE=DF.12.(2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E 作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;(2)当AB=2时, 求BE2的值.13.(2019•吴中区一模)已知:如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF;(2)若AE垂直平分BC, AF垂直平分CD, 求证: △AEF为等边三角形.14. (2019•新乡一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形, 点C在AF上, 点E, G分别在BC, CD上, 若∠BAD=135°, ∠EAG=75°, AE=100cm, 求菱形ABCD的边长.15. (2019•槐荫区三模)如图, 菱形ABCD的边长为1, ∠D=120°. 求对角线AC的长.16. (2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm, AE ⊥BC于点E, 求AE的长.17.(2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC、FC(1)求证: EC=FC;(2)若AE=2, ∠A=60°, 求△AEF的周长.18.(2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证: 四边形ADEF是菱形.19. (2019春•防城区期末)如图, 已知四边形ABCD是平行四边形, DE⊥AB, DF⊥BC, 垂足分别是为E, F, 并且DE=DF. 求证:四边形ABCD是菱形.20.(2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH的面积.21.(2019•顺义区二模)如图, 在△ABC中, D、E分别是AB.AC的中点, BE=2DE, 过点C 作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若CE=4, ∠BCF=120°, 求菱形BCFE的面积.22.(2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE∥AC, CE∥BD.(1)求证: 四边形OCED是菱形.(2)若AB=6, BC=8, 求四边形OCED的周长.23. (2019•荔湾区校级一模)已知点E是矩形ABCD的边AD延长线上的一点, 且AD=DE, 连结BE交CD于点O, 求证:△AOD≌△BOC.24.(2019•东海县二模)已知:如图, 在正方形ABCD中, 点E、F在对角线BD上, 且BF=DE, (1)求证: 四边形AECF是菱形;(2)若AB=2, BF=1, 求四边形AECF的面积.25.(2019•玉溪模拟)如图, 正方形ABCD的边CD在正方形ECGF的边CE上, 连接BE、DG.求证: BE=DG.26.(2019•工业园区一模)已知:如图正方形ABCD中, E为CD边上一点, F为BC延长线上一点, 且CE=CF(1)求证: △BCE≌△DCF;(2)若∠FDC=30°, 求∠BEF的度数.27.(2019•深圳模拟)四边形ABCD是正方形, E、F分别是DC和CB的延长线上的点, 且DE=BF, 连接AE、AF、EF.(1)求证: △ADE≌△ABF;(2)若BC=8, DE=6, 求△AEF的面积.28. (2019•碑林区校级模拟)在正方形ABCD中, AC为对角线, E为AC上一点, 连接EB、ED. 求证:∠BEC=∠DEC.29.(2019•温州一模)如图, AB是CD的垂直平分线, 交CD于点M, 过点M作ME⊥A C, MF ⊥AD, 垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°, 求证: 四边形AEMF是正方形.30.(2019•湖里区模拟)已知:如图, △ABC 中, ∠ABC=90°, BD 是∠ABC 的平分线, DE⊥AB 于点E, DF ⊥BC 于点F .求证:四边形DEBF 是正方形.初中数学 特殊平行四边形的证明参考答案及试题解析一. 解答题(共30小题)1.(2019•泰安模拟)如图, 在△ABC 中, ∠ACB=90°, BC 的垂直平分线DE 交BC 于D, 交AB 于E, F 在DE 上, 并且AF=CE .(1)求证: 四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF是菱形?请回答并证明你的菱形的判定;线段垂直平分线的性质;平行四边形的判定. 菁优网版权所有结论.考点:考点:专题:证明题.(1)ED是BC的垂直平分线, 根据中垂线的性质: 中垂线上的分析:点线段两个端点的距离相等, 则EB=EC, 故有∠3=∠4, 在直角三角形ACB中, ∠2及∠4互余, ∠1及∠3互余, 则可得到AE=CE, 从而证得△ACE和△EFA都是等腰三角形, 又因为FD⊥BC, AC⊥BC, 所以AC∥FE, 再根据内错角相等得到AF∥CE, 故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形, 当∠1=60°时△ACE是等边三角形, 有AC=EC, 有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF是菱形.解: (1)∵ED是BC的垂直平分线解答:∴EB=EC, ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2及∠4互余, ∠1及∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时, 四边形ACEF是菱形. 证明如下: ∵∠B=30°, ∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.点评:本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解, 有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.2. (2019•福建模拟)已知: 如图, 在△ABC中, D.E分别是AB.AC 的中点, BE=2DE, 延长DE到点F, 使得EF=BE, 连接CF.菱形的判定. 菁优网版权所有求证:四边形BCFE是菱形.考点:考点:专题:证明题.分析:由题意易得, EF 及BC 平行且相等, ∴四边形BCFE 是平行四边形.又EF=BE, ∴四边形BCFE 是菱形.解答: 解: ∵BE=2DE, EF=BE,∴EF=2DE. (1分)∵D.E 分别是AB.AC 的中点,∴BC=2DE 且DE ∥BC. (2分)∴EF=BC. (3分)又EF ∥BC,∴四边形BCFE 是平行四边形. (4分)又EF=BE,∴四边形BCFE 是菱形. (5分)∴四边形BCFE 是菱形.(5分)点评: 此题主要考查菱形的判定, 综合利用了平行四边形的性质和判定.3. (2019•深圳一模)如图, 四边形ABCD 中, AB ∥CD, AC 平分∠BAD, CE ∥AD 交AB 于E.(1)求证: 四边形AECD 是菱形;菱形的判定及性质. 菁优网版权所有(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.考点:考点:几何图形问题.专题:(1)利用两组对边平行可得该四边形是平行四边形, 进而证明分析:一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等, 进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.解: (1)∵AB∥CD, CE∥AD,解答:∴四边形AECD为平行四边形, ∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由: ∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.点评:考查菱形的判定及性质的应用;用到的知识点为:一组邻边相等的平行四边形是菱形;菱形的4条边都相等.4. (2019•济南模拟)如图, 四边形ABCD是矩形, 点E是边AD的中点.求证:矩形的性质;全等三角形的判定及性质. 菁优网版权所有EB=EC.考点:考点:专题: 证明题.分析: 利用矩形的性质结合全等三角形的判定及性质得出△ABE ≌△DCE(SAS), 即可得出答案.解答: 证明: ∵四边形ABCD是矩形,∴AB=DC, ∠A=∠D=90°,∵点E是边AD的中点,∴AE=ED,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴EB=EC.∴EB=EC.点评: 此题主要考查了全等三角形的判定及性质以及矩形的性质, 得出△ABE≌△DCE是解题关键.矩形的性质. 菁优网版权所有5. (2019•临淄区校级模拟)如图所示, 在矩形ABCD中, DE⊥AC于点E, 设∠ADE=α,且cosα= ,AB=4, 则AC的长为多少?考点:分析: 根据等角的余角相等, 得∠BAC=∠ADE=α;根据锐角三角函数定义可求AC的长.解答: 解: ∵四边形ABCD是矩形,∴∠ABC=90°, AD∥BC,∴∠EAD=∠ACB,∵在△ABC及△AED中,∵DE⊥AC于E, ∠ABC=90°∴∠BAC=∠ADE=α.∴cos∠BAC=cosα= ,∴AC= = .∴AC==.点评: 此题综合运用了锐角三角函数的知识、勾股定理、矩形的性质.矩形的性质;平行四边形的判定及性质. 菁优网版权所有6.(2019春•宿城区校级月图, 四边形ABCD是矩形, 对角线AC.BD相交于点O,BE∥AC交DC的延长线于点E. 求证:BD=BE.考点:考点:专题: 证明题.分析: 根据矩形的对角线相等可得AC=BD, 对边平行可得AB∥CD,再求出四边形ABEC 是平行四边形, 根据平行四边形的对边相等可得AC=BE, 从而得证.解答: 证明: ∵四边形ABCD 是矩形,∴AC=BD, AB ∥CD,又∵BE ∥AC,∴四边形ABEC 是平行四边形,∴AC=BE,∴BD=BE.∴BD=BE.点评: 本题考查了矩形的性质, 平行四边形的判定及性质, 熟记各性质并求出四边形ABEC 是平行四边形是解题的关键.7. (2019•雅安)如图: 在▱ABCD 中, AC 为其对角线, 过点D 作AC 的平行线及BC 的延长线交于E.(1)求证: △ABC ≌△DCE ;(2)若AC=BC, 求证:四边形ACED为菱菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形.考点:考点:专题: 证明题.分析: (1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形, 然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答: 证明: (1)∵四边形ABCD为平行四边形,∴AB∥CD, AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC及△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评: 本题考查了菱形的判定等知识, 解题的关键是熟练掌握菱形的判定定理, 难度不大.8. (2019•贵阳)如图, 在Rt△ABC中, ∠ACB=90°, D.E分别为AB, AC边上的中点, 连接DE, 将△ADE绕点E旋转180°得到△CFE, 连接AF, AC.(1)求证: 四边形ADCF是菱形;(2)菱形的判定及性质;旋转的性质. 菁优网版权所有若BC=8,AC=6,求四边形ABCF的周长.考点:考点:几何综合题.专题:(1)根据旋转可得AE=CE, DE=EF, 可判定四边形ADCF是平行分析:四边形, 然后证明DF⊥AC, 可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长, 再根据中点定义可得AD=5, 根据菱形的性质可得AF=FC=AD=5, 进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.(1)证明: ∵将△ADE绕点E旋转180°得到△CFE,解答:∴AE=CE, DE=EF,∴四边形ADCF是平行四边形,∵D.E分别为AB, AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解: 在Rt△ABC中, BC=8, AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.∴四边形ABCF的周长为8+10+5+5=28.此题主要考查了菱形的判定及性质, 关键是掌握菱形四边相点评:等, 对角线互相垂直的平行四边形是菱形.9. (2019•遂宁)已知: 如图, 在矩形ABCD中, 对角线AC.BD相交于点O, E是CD中点, 连结OE. 过点C作CF∥BD交线段OE的延长线于点F, 连结DF. 求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形. 考点: 考点:矩形的性质;全等三角形的判定及性质;菱形的判定. 菁优网版权所有专题: 证明题.分析: (1)根据两直线平行, 内错角相等可得∠ODE=∠FCE, 根据线段中点的定义可得CE=DE, 然后利用“角边角”证明△ODE和△FCE全等;(2)根据全等三角形对应边相等可得OD=FC, 再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形, 根据矩形的对角线互相平分且相等可得OC=OD, 然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.(2)根据全等三角形对应边相等可得OD=FC,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD,然后根据邻边相等的平行四边形是菱形证明即可.解答: 证明: (1)∵CF∥BD,∴∠ODE=∠FCE,∵E是CD中点,∴CE=DE,在△ODE和△FCE中,,∴△ODE≌△FCE(ASA);(2)∵△ODE≌△FCE,∴OD=FC,∵CF∥BD,∴四边形ODFC是平行四边形,在矩形ABCD中, OC=OD,∴四边形ODFC是菱形.∴四边形ODFC是菱形.点评: 本题考查了矩形的性质, 全等三角形的判定及性质, 菱形的判定, 熟记各性质及平行四边形和菱形的判定方法是解题的关键.10.矩形的判定. 菁优网版权所有(2019•宁德)如图, 在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.考点:考点:专题: 证明题.分析: 先判断四边形AECD为平行四边形, 然后由∠AEC=90°即可判断出四边形AECD是矩形.解答: 证明: ∵AD∥BC, DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC, 点E是BC的中点,∴AE⊥BC, 即∠AEC=90°.∴▱AECD是矩形.∴▱AECD是矩形.点评: 本题考查了梯形和矩形的判定, 难度适中, 解题关键是掌握平行四边形和矩形的判定定理.正方形的性质;全等三角形的判定及性质. 菁优网版权所有11.(2019•钦州)如图,在正方形ABCD中, E、F分别是AB.BC上的点, 且AE=BF.求证:CE=DF.考点:考点:专题: 证明题.分析: 根据正方形的性质可得AB=BC=CD, ∠B=∠BCD=90°, 然后求出BE=CF, 再利用“边角边”证明△BCE和△CDF全等, 根据全等三角形对应边相等证明即可.解答: 证明: 在正方形ABCD中, AB=BC=CD, ∠B=∠BCD=90°, ∵AE=BF,∴AB﹣AE=BC﹣BF,即BE=CF,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴CE=DF.∴CE=DF.点评: 本题考查了正方形的性质, 全等三角形的判定及性质, 熟记性质并确定出三角形全等的条件是解题的关键.12. (2019•贵港)如图, 在正方形ABCD中, 点E是对角线AC上一点, 且CE=CD, 过点E作EF⊥AC交AD于点F, 连接BE.(1)求证: DF=AE;正方形的性质;角平分线的性质;勾股定理. 菁优网版权所有(2)当AB=2时,求BE2的值.考点:考点:(1)连接CF, 根据“HL”证明Rt△CDF和Rt△CEF全等, 根分析:据全等三角形对应边相等可得DF=EF, 根据正方形的对角线平分一组对角可得∠EAF=45°, 求出△AEF是等腰直角三角形, 再根据等腰直角三角形的性质可得AE=EF, 然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC, 然后求出AE, 过点E作EH⊥AB于H, 判断出△AEH是等腰直角三角形, 然后求出EH=AH= AE, 再求出BH, 然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH= AE,再求出BH,然后利用勾股定理列式计算即可得解.(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.(1)证明: 如图, 连接CF,解答:在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解: ∵AB=2,∴AC= AB=2 ,∵CE=CD,∴AE=2 ﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH= AE= ×(2 ﹣2)=2﹣,∴BH=2﹣(2﹣)= ,在Rt△BEH中, BE2=BH2+EH2=()2+(2﹣)2=8﹣4 .本题考查了正方形的性质, 全等三角形的判定及性质, 等腰直点评:角三角形的判定及性质, 勾股定理的应用, 作辅助线构造出全等三角形和直角三角形是解题的关键.13. (2019•吴中区一模)已知: 如图, 菱形ABCD中, E、F分别是CB.CD上的点, ∠BAF=∠DAE.(1)求证: AE=AF ;(2)若AE 垂直平分BC, AF 垂直平分CD, 求证:△AEF 为等边三角形.考点:考点:菱形的性质;全等三角形的判定及性质;等边三角形的判定. 菁优网版权所有专题:证明题. 分析:(1)首先利用菱形的性质得出AB=AD, ∠B=∠D, 进而得出△ABE ≌△ADF (ASA ), 即可得出答案;(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形, 进而得出∠EAF=∠CAE+∠CAF=60°, 求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.(2)利用垂直平分线的性质得出△ABC 和△ACD 都是等边三角形,进而得出∠EAF=∠CAE+∠CAF=60°,求出△AEF 为等边三角形.解答: (1)证明: ∵四边形ABCD 是菱形,∴AB=AD, ∠B=∠D,又∵∠BAF=∠DAE,∴∠BAE=∠DAF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF;(2)解: 连接AC,∵AE垂直平分BC, AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形,∴∠CAE=∠BAE=30°, ∠CAF=∠DAF=30°,∴∠EAF=∠CAE+∠CAF=60°,又∵AE=AF,∴△AEF是等边三角形.点评: 此题主要考查了等边三角形的判定及性质以及全等三角形的判定及性质等知识, 熟练掌握全等三角形的判定方法是解题关键.14. (2019•新乡菱形的性质. 菁优网版权所有一模)小明设计了一个如图的风筝, 其中, 四边形ABCD及四边形AEFG都是菱形,点C在AF上, 点E, G分别在BC,CD上, 若∠BAD=135°, ∠EAG=75°,AE=100cm, 求菱形ABCD的边长.考点:考点:分析: 根据菱形的性质可得出∠BAE=30°, ∠B=45°, 过点E作EM⊥AB于点M, 设EM=x, 则可得出AB、AE的长度, 继而可得出的值, 求出AB即可.解答: 解: ∵∠BAD=135°, ∠EAG=75°, 四边形ABCD及四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°, ∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M, 设EM=x,在Rt△AEM中, AE=2EM=2x, AM= x,在Rt△BEM中, BM=x,则= = ,∵AE=100cm, ∴AB=50(+1)cm,∴菱形ABCD的边长为:50(+1)cm.点评: 本题考查了菱形的性质及解直角三角形的知识, 属于基础题, 关键是掌握菱形的对角线平分一组对角.15. (2019菱形的性质. 菁优网版权所有•槐荫区三模)如图,菱形ABCD的边长为1, ∠D=120°.求对角线AC的长.考点:考点:分析: 连接BD及AC交于点O, 根据菱形的性质可得AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD, 然后判断出△ABD是等边三角形, 根据等边三角形的性质求出AO, 再根据AC=2AO计算即可得解.解答: 解: 如图, 连接BD及AC交于点O,∵四边形ABCD是菱形,∴AB=AD, AC=2AO, ∠ADB= ∠ADC, AC⊥BD,∵∠D=120°,∴∠ADB=60°,∴△ABD是等边三角形,∴AO=AD×sin∠ADB= ,∴AC=2AO= .点评: 本题考查了菱形的性质, 等边三角形的判定及性质, 熟记性质并作辅助线构造出等边三角形是解题的关键.16.菱形的性质;勾股定理. 菁优网版权所有(2019•历城区一模)如图, 已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E, 求AE的长.考点:分析: 根据菱形的对角线互相垂直平分求出CO、BO, 再利用勾股定理列式求出BC, 然后利用菱形的面积等于底乘以高和对角线乘积的一半列出方程求解即可.解答: 解: ∵四边形ABCD是菱形,∴CO= AC=3cm, BO= BD=4cm, AO⊥BO,∴BC= = =5cm,∴S菱形ABCD= =BC•AE,即×6×8=5•AE,解得AE= cm.答:AE的长是cm.答: AE的长是cm.答:AE 的长是cm.点评: 本题考查了菱形的性质, 勾股定理, 熟记菱形的对角线互相垂直平分是解题的关键, 难点在于利用菱形的面积列出方程.17. (2019•湖南校级模拟)如图, AE=AF, 点B.D分别在AE、AF上, 四边形ABCD是菱形, 连接EC.FC(1)求证: EC=FC;(2)若菱形的性质;全等三角形的判定及性质. 菁优网版权所有∠A=60°,求△AEF的周长.考点:考点:分析: (1)连接AC, 根据菱形的对角线平分一组对角可得∠CAE=∠CAF, 然后利用“边角边”证明△ACE和△ACF全等, 根据全等三角形对应边相等可得EC=FC;(2)判断出△AEF是等边三角形, 然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.(2)判断出△AEF是等边三角形,然后根据等边三角形的三条边都相等解答.解答: (1)证明: 如图, 连接AC,∵四边形ABCD是菱形,∴∠CAE=∠CAF,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS),∴EC=FC;(2)解: 连接EF,∵AE=AF, ∠A=60°,∴△AEF是等边三角形,∴△AEF的周长=3AE=3×2=6.点评: 本题考查了菱形的性质, 全等三角形的判定及性质, 等边三角形的判定及性质, 熟记各性质并作出辅助线是解题的关键.18. (2019•清河区一模)如图, 在△ABC中, AB=AC, 点D.E、F分别是△ABC三边的中点.求证:菱形的判定;三角形中位线定理. 菁优网版权所有四边形ADEF是菱形.考点:专题: 证明题.分析: 利用三角形中位线的性质得出DE AC, EF AB, 进而得出四边形ADEF 为平行四边形., 再利用DE=EF 即可得出答案.解答: 证明: ∵D.E 、F 分别是△ABC 三边的中点,∴DE AC, EF AB,∴四边形ADEF 为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF 为菱形.∴四边形ADEF 为菱形.点评: 此题主要考查了三角形中位线的性质以及平行四边形的判定和菱形的判定等知识, 熟练掌握菱形判定定理是解题关键.19. (2019春•防城区期末)如图, 已菱形的判定;全等三角形的判定及性质;平行四边形的性质. 菁优网版权所有形ABCD是平行四边形, DE⊥AB,DF⊥BC, 垂足分别是为E, F,并且DE=DF.求证:四边形ABCD是菱形.考点:考点:专题: 证明题.分析: 首先利用已知条件和平行四边形的性质判定△ADE≌△CDF, 再根据邻边相等的平行四边形为菱形即可证明四边形ABCD是菱形.解答: 证明: 在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB, DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形.∴平行四边形ABCD是菱形.点评: 本题考查了平行四边形的性质, 全等三角形的判定和性质以及菱形的判定方法, 解题的关键是熟练掌握各种图形的判定和性质.20. (2019•通州区一模)如图, 在四边形ABCD中, AB=DC, E、F分别是AD.BC的中点, G、H分别是对角线BD.AC的中点.(1)求证: 四边形EGFH是菱形;(2)若AB=1, 则当∠ABC+∠DCB=90°时, 求四边形EGFH 的面积.考点:考点:菱形的判定及性质;正方形的判定及性质;中点四边形. 菁优网版权所有分析: (1)利用三角形的中位线定理可以证得四边形EGFH 的四边相等, 即可证得;(2)根据平行线的性质可以证得∠GFH=90°, 得到菱形EGFH 是正方形, 利用三角形的中位线定理求得GE 的长, 则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH 是正方形,利用三角形的中位线定理求得GE 的长,则正方形的面积可以求得.解答: (1)证明: ∵四边形ABCD中, E、F、G、H分别是AD.BC.BD.AC 的中点,∴FG= CD, HE= CD, FH= AB, GE= AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解: ∵四边形ABCD中, G、F、H分别是BD.BC.AC的中点,∴GF∥DC, HF∥AB.∴∠GFB=∠DCB, ∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG= AB= .∴正方形EGFH的面积=()2= .点评: 本题考查了三角形的中位线定理, 菱形的判定以及正方形的判定, 理解三角形的中位线定理是关键.21. (2019•顺义区二模)如图, 在△ABC中, D.E分别是AB.AC的中点, BE=2DE, 过点C作CF∥BE交DE的延长线于F.(1)求证: 四边形BCFE是菱形;(2)若菱形的判定及性质. 菁优网版权所有CE=4, ∠BCF=120°,求菱形BCFE的面积.考点:考点:分析: (1)由题意易得, EF及BC平行且相等, 故四边形BCFE 是平行四边形. 又麟边EF=BE, 则四边形BCFE是菱形;(2)连结BF, 交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度, 则BF=2BO.利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O. 利用菱形的性质和等边三角形的判定推知△BCE是等边三角形. 通过解直角△BOC求得BO的长度,则BF=2BO. 利用菱形的面积= CE•BF进行解答.(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE•BF进行解答.解答: (1)证明: ∵D.E分别是AB.AC的中点,∴DE∥BC, BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE, BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解: 连结BF, 交CE于点O.∵四边形BCFE是菱形, ∠BCF=120°,∴∠BCE=∠FCE=60°, BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评: 此题主要考查菱形的性质和判定以及面积的计算, 使学生能够灵活运用菱形知识解决有关问题.22. (2019•祁阳县校级模拟)如图, O为矩形ABCD对角线的交点, DE ∥AC, CE∥BD.矩形的性质;菱形的判定. 菁优网版权所有(1)求证: 四边形OCED是菱形.(2)若AB=6,BC=8,求四边形OCED的周长.考点:考点:分析: (1)根据矩形性质求出OC=OD, 根据平行四边形的判定得出四边形OCED是平行四边形, 根据菱形判定推出即可;(2)根据勾股定理求出AC, 求出OC, 得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.(2)根据勾股定理求出AC,求出OC,得出OC=OD=CE=ED=5,相加即可.解答: (1)证明: ∵四边形ABCD是矩形,∴AC=2OC, BD=2OD, AC=BD,∴OD=OC,∵DE∥AC, CE∥BD,∴四边形OCED是菱形.(2)解: ∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=6, BC=8,∴在Rt△ABC中, 由勾股定理得: AC=10,即OC= AC=5,∵四边形OCED是菱形,∴OC=OD=DE=CE=5,∴四边形OCED的周长是5+5+5+5=20.∴四边形OCED的周长是5+5+5+5=20.。

初中数学_特殊的平行四边形教学设计学情分析教材分析课后反思

初中数学_特殊的平行四边形教学设计学情分析教材分析课后反思

特殊的平行四边形教学设计教学目标:1、理解矩形、菱形、正方形与平行四边形的关系。

2、掌握特殊平行四边形的有关性质及判定方法,并能应用所学知识解决相关问题。

教学过程:一、知识梳理1.特殊四边形的性质(1)要平行四边形ABCD成为矩形,需增加的条件是______ (2)要使平行四边形ABCD成为菱形,需增加的条件是______ (3)要使平行四边形ABCD成为正方形,需增加的条件是____ (4)使平行四边形ABCD成为正方形,需增加的条件是______A BC D例1.△ABC中,点O是AC边上的一个动点,过点O作直线M N∥BC,设M N交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论例2.2016.(聊城)如图,在Rt△ABC中,∠B=90°,点E是AC 的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形1、判断对错(1)一组对边平行,另一组对边相等的的四边形是平行四边形。

( ) (2)两条对角线相等的四边形是矩形。

( ) (3)一组邻边相等的的矩形是正方形。

( ) (4)对角线互相垂直的四边形是菱形。

( )(5)两条对角线互相平分的四边形是平行四边形。

( ) 2.试一试(1)若菱形的周长为20,两条对角线的长的比为4:3,则这个菱形的面积为__________cm 2(2)如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M、N分别为OB 、OC 的中点,则cos ∠OMN 的值为_______OABCDMN2(2)图2(3)(4)图3)、现将一张矩形的纸对折后再对折,然后沿着图中的虚线剪下,打开,得到的是( )A 、平行四边形B 、菱形C 、矩形D 、正方形4)、如上图,把一个长方形纸片对折两次,然后剪下一个角,为了得到一个正方形,剪刀与折痕所成的角的度数为:A、60°B、30°C、45°D、90°3.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA 的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由。

初中数学课堂评价.19.2.特殊的平行四边形

初中数学课堂评价.19.2.特殊的平行四边形

19.2 特殊平行四边形一、选择题(每题3分,共30分)1.下列判断正确的是()(A) 一组对边平行且另一组对边相等的四边形是平行四边形.(B) 对角线相等的四边形是矩形.(C) 一组对边平行且有一组对角相等的四边形是平行四边形.(D) 对角线互相垂直且相等的四边形是正方形.2.在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的三等分点,则四边形EFGH 是().(A) 正方形. (B) 菱形. (C) 矩形. (D) 平行四边形.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()(A) 88°,108°,88°. (B) 88°,104°,108°.(C) 88°,92°,92° . (D) 88°,92°,88°.4.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()(A) ∠A+∠C=180°. (B) ∠B+∠D=180°.(C) ∠A+∠B=180°. (D) ∠A+∠D=180°.5.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()(A) 一般平行四边形. (B) 菱形.(C) 矩形. (D) 正方形.6.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()(A) OA=OB=OC=OD,AC⊥BD.(B) AB∥CD,AC=BD.(C) AD∥BC,∠A=∠C.(D) OA=OC,OB=OD,AB=BC.7.下列命题中,真命题是()(A) 对角线互相垂直且相等的四边形是菱形.(B) 对角线互相垂直的平行四边形是菱形.(C) 对角线互相平分且相等的四边形是菱形.(D) 对角线相等的四边形是菱形.8.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()(A) 1个. (B) 2个. (C) 3个. (D) 4个.9.能够判别一个四边形是菱形的条件是( )(A) 对角线相等且互相平分. (B) 对角线互相垂直且相等.(C) 对角线互相平分. (D) 一组对角相等且一条对角线平分这组对角. 10.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC =AD ;④BC ∥AD .这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A) 3种.(B) 4种.(C) 5种.(D) 6种.二、填空题(每题3分,共30分)11.有一组邻边_______并且有一个角是________的平行四边形,叫做正方形.12.矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E 、F ,则四边形AFCE 的形状是______.13.延长等腰△ABC 的腰BA 到D ,CA 到E ,分别使AD =AB ,AE =AC ,则四边形BCDE 是________,其判别根据是_______.14.在一个正方形的四角各截去全等的等腰直角三角形而得到一个小正方形,若小正方形的边长为1,那么所截的三角形的直角边长是________.15.已知四边形ABCD 是菱形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可).16.四边形ABCD 中,对角线AC 、BD 相交于点O ,要判别它是平行四边形,从四边形的角的关系看应满足______________ ;从对角线看应满足______________.17.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______________.18.在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______.19.如图1,DE ∥BC ,AE =EC ,延长DE 到F ,使EF=DE ,连结AF 、FC 、CD ,则图中四边形ADCF 是______.图1 F EDCBAA CDE15图220. 如图2,正方形ABCD 的边长为3cm ,15ABE ∠=,且AB AE =,则DE = cm .三、解答题(共40分)21.在四边形ABCD 中,∠B =∠D =90°,且AB =CD ,四边形ABCD 是矩形吗?为什么? 22.已知如图2,在平行四边形ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.23.如图3,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E 、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.24.如图4,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?图3H GFE AOB DC 图2 OF CEDAB A BQ 图4DCNP M25.如图5,AD 是△ABC 的角平分线.DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .四边形AEDF 是菱形吗?说明你的理由.答案与提示一、选择题1.C ;提示:根据平行四边形、矩形、正方形的判定定理. 2.A ;提示:三角形全等和正方形的判定定理. 3.D ;提示:根据平行四边形的对角相等邻角互补.4.D ;提示:根据同旁内角互补证得AB//CD ,再根据平行四边形的定义证明为平行四边形5.C ;提示:根据矩形的判定定理. 6.A ;提示:依据正方形的判定定理. 7.B ;提示:根据菱形的判定定理. 8.C ;提示:根据平行四边形判定定理. 9.D ;提示:根据菱形的判定定理. 10.B ;提示:根据平行四边形的判定定理.二、填空题11.相等、直角;提示根据矩形的判定定理. 12.菱形;提示:根据菱形的判定定理.13.矩形、对角线互相平分且相等的四边形是矩形;提示根据矩形的判定定理. 14.2;提示:根据勾股定理,和正方形的性质定理.15.∠A =90°或∠B =90°或∠C =90°或∠D =90°中的任一条件即可; 16.∠A =∠C ,∠B =∠D OA =OC ,OB =OD ; 17.3;图5E FD CBA18.平行四边形;19.平行四边形;20.3;提示:根据正方形的性质和等腰三角形和等边的判定定理.三、解答题21.是矩形,连接AO,△ABC≌△CDA;22.线段AC与EF互相平分.理由是:因为四边形ABCD是平行四边形.所以AB∥CD,即AE∥CF,AB=CD,因为BE=DF,所以AE=CF,所以四边形AECF是平行四边形,所以AC与EF互相平分;23.是矩形,OE=OF=OG=OH;24.是平行四边形,四边形AMCN、BMDN是平行四边形;25.四边形AEDF是菱形,AE=ED;备注:本套题中,简单题为1,2,3,4,6,7,11,14,15,16,21,23题,中等难度题为8,9,10,12,13,17,18,22题,难题为19,20,24,25题,易中难的比例约为5:3:2.《特殊的平行四边形》学习评价表评价学生数学学习的方法是多样的,每种评价方式都有自己的特点,评价是应结合评价内容与学生学习特点合理进行选择.表一(自评)表二(小组互评)《特殊的平行四边形》学习评价研讨一、应用平行四边形性质计算与证明的研讨错误问题1:有关线段计算的问题的研讨(如3题,10题,)解决和特殊平行四边形有关的计算,关键是根据图形的特点结合矩形、菱形正方形的性质以及平行线的有关性质进行分析.有的问题还需要将平行四边形问题转化为特殊三角形的问题,借助勾股定理解决.错误问题2:利用矩形、菱形、正方形的性质证明的研讨(如9题,12题,14题,23题)主要原因是学生在使用矩形、菱形、正方形的性质定理证明时,各种它们概念交错,容易混淆,常会出现“张冠李戴”的现象.在应用它们的性质定理的时候,也常常会出现用错或多用或少用条件的错误.教学中要注意用“集合”的思想,结合教科书中的关系图,分清这些四边形的从属关系,并记住每种特殊的平行四边形自己在边、角、对角线独有的性质.二、判定四边形为平行特殊的平行四边形的研讨错误问题3:根据所给已知条件选择适合的证明方法(如2题,19题,24题, 25题)问题存在的主要原因是知识技能目标没有达成,判别一个四边形是矩形、菱形和正方形的有关题目时,依据已知条件以及图形的特征,思考可能涉及到的判别方法.从已知条件的边、角、对角线出发,可考虑一种合适的方法进行说理.错误问题4:考虑不全面的问题(如16题,117题,19题)全面思考问题是在循序渐进中逐步形成的,教师要详细启发学生的思考过程,让学生了解正确考虑问题的方法,增强他们对各种可能出现的情况进行分类讨论的意识. 将部分学生产生错误和发生遗漏作为反例,进一步强化思维全面性.三、几何证明过程规范性的的研讨错误问题5:书写严谨的几何推理过程的问题(如23题,24题,25题)在证明前找清题中所给的已知条件和结论,分析后选择合适的定理,在因为中一定摆出定理的条件所需要的条件才可以得到定理的结论.做到证明有理有据.。

数学九年级上册《特殊的平行四边形-复习课》教案

数学九年级上册《特殊的平行四边形-复习课》教案

五、教学过程教学过程教师活动学生活动应对措施预测用时设计意图及资源准备程序1:导入提问:判断四边形的形状?猜想、交流回答老师问题:哪个是平行四边形? 哪个是矩形 ? 哪个是长方形?哪个是正方形?面对开放式的问题思考、交流、讨论引领思考教师对课堂生成问题采取相应措施3分钟从生活中简单的图形出发,激发学生学习兴趣。

改变问题的呈现方式,调动学生的思维。

激发学生思考讨论、交流,培养逆向思维程序2:自主学习主题1 从图形识别开始,怎样的四边形是平行四边形?它的性质和判别是什么?并结合图形用几何语言表述.观看屏幕明确学习内容积极回忆学生代表发言在学案上用几何语言写出平行四边形的性质和判定,交流点成绩中等学生发言,有鼓励+督促意图配合学生回答,点击投影,与学生交流3分钟导入课题,板书:《特殊的平行四边形》复习课用几何语言表述平行四边形的性质和判定,有利于学生更好的理解定理,并且提高熟练运用的能力(这是我在长期教学一线,得出的辅助几何定理学习的方法,对学困生帮助作用是很明显的)(1)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?不一定!(2) 有一组对边平行,并且另外一组对边相等的四边形一定是平行四边形吗?不一定!等腰梯形平行四边形❖平行四边形性质平行四边形对边相等且平行、对角相等、对角线互相平分❖平行四边形判别一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形对角线互相平分的四边形是平行四边形AB CDO平行四边形❖平行四边形性质∵□ABCD∴AB=DC AD=BCAB∥DC AD∥BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD❖平行四边形判别∵AB=DC且AB∥DC ∴□ABCD∵AB∥DC AD∥BC ∴□ABCD∵AB=DC AD=BC ∴□ABCD∵OA=OC OB=OD ∴□ABCDAB CDO、观察图形怎样的四边形是矩形?它的性质和判别是什么?并结合图形用几何语言表述.菱形❖菱形性质菱形对边平行且四边相等、对角相等、对角线互相垂直平分且每一条对角线平分一组对角❖菱形判别一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形A BCD O 菱形❖菱形性质∵菱形ABCD∴AB ∥DC AD ∥BC 且AB =DC =AD =BC∠BAD=∠BCD ∠ABC=∠ADCOA=OC OB=OD 且AC ⊥BD , ∠DAO=∠BAO 等❖菱形判别∵在□ABCD 中AB=AD ∴菱形ABCD ∵在□ABCD 中AC ⊥BD ∴菱形ABCD ∵四边形ABCD 中AB =DC =AD =BC ∴菱形ABCDA BCD O 矩形❖矩形性质∵矩形ABCD∴AB=DC AD=BC 且AB ∥DC AD ∥BC∠BAD=∠BCD=∠ABC=∠ADC= 90°AC=BD 且OA=OC OB=OD❖矩形判别∵在□ABCD 中∠ABC= 90°∴矩形ABCD ∵在□ABCD 中AC=BD ∴矩形ABCD在四边形ABCD 中∠BAD=∠BCD=∠ABC= 90°∴矩形ABCDADCBO矩形❖矩形性质矩形对边相等且平行、四个角相等且等于90度、对角线相等且互相平分❖矩形判别有一个角是直角的平行四边形是矩形对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形A DCBO正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形你能用恰当的方式表示平行四边形,菱形,矩形,正方形之间的关系吗?正方形❖正方形性质正方形对边平行且四边相等四个角相等且等于90度对角线互相垂直平分且相等,每一条对角线平分一组对角❖正方形判别一组邻边相等的矩形是正方形有一个角是直角的菱形是正方形一组邻边相等、有一个角是直角的平行四边形是正方形ADCB O平行四边形要继续探索的问题?四边形两组对边分别平行平行四边形菱形矩形正方形11.如图,点E 、F 在正方形ABCD 的边BC 、CD 上,BE=CF.(1)AE 与BF 相等吗?为什么?(2)AE 与BF 是否垂直?说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊的平行四边形中考要求知识点睛1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:① 边的性质:对边平行且四边相等.② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.中点中点平行中点定理:三角形的中位线平行第三边且长度等于第三边的一半.5.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.6.正方形的性质正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质:① 边的性质:对边平行,四条边都相等.② 角的性质:四个角都是直角.③ 对角线性质:两条对角线互相垂直平分且相等,•每条对角线平分一组对角.④ 对称性:正方形是中心对称图形,也是轴对称图形.平行四边形、矩形、菱形和正方形的关系:(如图)正方形菱形矩形平行四边形7.正方形的判定判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.例题精讲板块一、菱形【例1】 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【解析】如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒ EDCBA【答案】150︒【例2】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA【解析】连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.ABCDEF【答案】18︒【例3】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值; ⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P【解析】省略【答案】⑴ 线段PG 与PC 的位置关系是PG PC ⊥;PGPC. ⑵ 猜想:⑴中的结论没有发生变化.证明:如图,延长GP 交AD 于点H ,连结CH CG ,. ∵P 是线段DF 的中点, ∴FP DP =.由题意可知AD FG ∥. ∴GFP HDP ∠=∠. 又∵GPF HPD ∠=∠,∴GFP HDP ∆∆≌,∴GP HP =,GF HD =.∵四边形ABCD 是菱形,∴CD CB =,60HDC ABC ∠=∠=︒.由60ABC BEF ∠=∠=︒,且菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,可得60GBC ∠=︒. ∴HDC GBC ∠=∠. ∵四边形BEFG 是菱形, ∴GF GB =,∴HD GB =.∴HDC GBC ∆∆≌,∴CH CG =,DCH BCG ∠=∠. ∴120DCH HCB BCG HCB ∠+∠=∠+∠=︒,即120HCG ∠=︒. ∵CH CG =,PH PG =,∴PG PC ⊥,60GCP HCP ∠=∠=︒.∴PGPC= ⑶PGPC=()tan 90α︒-.证明过程略. HP G FE D CB A【点评】 本题是一道探究性的几何综合题,本题的题干是以阅读材料的形式呈现,从而降低了题目的难度,本题应该是在05年大连中考压轴题的基础上改进而来的.【例4】 如图:菱形ABCD 由两个等边三角形组成,点P 是△ABD 内任一点,将△BPD 绕点B 旋转到△BQC的位置.则:(1)当四边形BPDQ 是平行四边形时,求∠BPD ; (2)当△PQD 是等腰直角三角形时,求∠BPD ; (3)若∠APB =100°,且△PQD 是等腰三角形时,求∠BPD .【答案】(1)连接PQ∵△ABD、△BCD都是等边三角形∴∠ABD=∠DBC=60°∵△BQC是由△BPD绕点B旋转得到∴∠PBD=∠QBC∴∠PBD+∠DBQ=∠QBC+∠DBQ∴∠PBQ=∠DBC=60°∴∠BPD=120°(2)分三种情况:①当∠DPQ=90°,PD=PQ时由题意,BP=BQ,由(1),∠PBQ=60°∴△BPQ为等边三角形,∴∠BPQ=60°∴∠BPD=∠BPQ+∠DPQ=60°+90°=150°②当∠PDQ=90°,DP=DQ时同理得△BPQ为等边三角形,∠BPQ=60°∴∠BPD=∠BPQ+∠DPQ=60°+45°=105°③当∠PQD=90°,DQ=PQ时同理得△BPQ为等边三角形,∠BPQ=60°∴∠BPD=∠BPQ+∠DPQ=60°+45°=105°(3)也分三种情况:①当PD=PQ时∵∠ABD=∠PBQ=60°,∴∠ABP=∠DBQ又AB=DB,PB=QB,∴△ABP≌△DBQ∴∠DQB=∠APB=100°∵∠PQB=60°,∴∠PDQ=∠PQD=40°∴∠DPQ=100°∴∠BPD=∠BPQ+∠DPQ=60°+100°=160°②当DP=DQ时则∠DPQ=∠DQP=40°∴∠BPD=∠BPQ+∠DPQ=60°+40°=100°ADCPQABDCPQ③当DQ =PQ 时则∠DPQ =∠PDQ =70°∴∠BPD =∠BPQ +∠DPQ =60°+70°=130°板块二、正方形【例5】 已知正方形ABCD ,在AD 、AC 上分别取E 、F 两点,使2ED AD FC AC =∶∶,求证:BEF ∆是等腰直角三角形.【解析】省略【答案】解法一:如图,过F 作HG CD ∥交AD 、BC 于H 、G ,显然AHF ∆、CGF ∆均为等腰直角三角形. ∴AH HF BG ==. ∵HG CD ∥,∴FC HDAC AD=. 又2ED FC AD AC =,∴2ED HDAD AD=. 故2ED HD =.∴EH HD CG FG ===,∴Rt Rt BGF FHE ∆∆≌,∴BF FE =,EFH GBF ∠=∠. 而90BGF BFG ∠+∠=︒,∴90EFH BFG ∠+∠=︒,∵90BFE ∠=︒, ∴BEF ∆为等腰直角三角形.解法二:如图,连接DF ,作FH ED ⊥于H . 显然由正方形对称性可知BF DF =,BFC DFC ∠=∠. ∵FH CD ∥,∴FC HDAC AD=. 又∵2FC EDAC AD=,∴2ED HD =,∴EH HD =, ∴EF DF =,EFH DFH ∠=∠.∴EF BF =.又DFH FDC ∠=∠,∴22BFD BFE DFH BFE FDC ∠=∠+∠=∠+∠. ∴902BFD FDC ∠=︒+∠,∴90BFE ∠=︒. ∴BEF ∆是等腰直角三角形.解法三:如图,过F 作FH DC ⊥于H .延长EF 、DC 交于G ,连接BG ,则FH AD ∥, ∴FH FCAD AC =. 又∵2ED FCAD AC=, ∴2ED FH =,即FH 为GDE ∆的中位线. ∴EF FG =,DH HG =.又∵FH HC =,∴2AE AD ED DC HC DH HC HG HC =-=-=-=-,∴AE CG =. ∴BE BG =,ABE CBG ∠=∠. ∴90EBG ABC ∠=∠=︒.∴BF 是等腰直角三角形BGE 斜边上的中线, ∴BF EF ⊥,BF EF =. 故BEF ∆是等腰直角三角形.解法四:如图,过F 作FG AC ⊥交BC 于G ,过E 作EH CD ∥交AC 于H ,连接HG .显然FGC ∆是等腰直角三角形,∴FC FG =,45FGC ∠=︒.∴135BGF ∠=︒. 又∵EH DC ∥, ∴135EHC BGF ∠=︒=∠,2ED HC FCAD AC AC==. ∴FH FC FG ==,∴HGC ∆是等腰直角三角形. ∴90HGC ∠=︒. ∴HG DC ∥. 又EH DC ∥, ∴E 、H 、G 共线. ∴BG AE EH ==. ∴BGF EHF ∆∆≌,有BF EF =,BFG EFH ∠=∠.又90BFG AFB ∠+∠=︒.∴90EFH AFB ∠+∠=︒, 即90BFE ∠=︒.∴BEF ∆是等腰直角三角形.GE H D FCBAE H D FCBAGH ABCFDEHGAB CFDE【例6】 如图,四边形ABCD 为正方形,以AB 为边向正方形外作正方形ABE ,CE 与BD 相交于点F ,则AFD ∠=FEDCBA【解析】1809060152AFB CFB FAB FCB ︒-︒-︒∆∆∠=∠==︒≌,,故451560AFD ∠=︒+︒=︒【解析】60︒【例7】 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______. ABCDEF【解析】省略【答案】连接CE ,作过B 、E 点的AC 垂线,垂足分别为H ,G ,则四边形BEGH 是矩形,1122GE BH AC AE ===, 所以30GAE ∠=︒,所以15EAB ∠=︒.AB CDEFG H【例8】 如图,点M N ,分别在正方形ABCD 的边BC CD ,上,已知MCN ∆的周长等于正方形ABCD 周长的一半,求MAN ∠的度数NMDCBA【解析】省略【答案】MN BM DN =+,延长CD 至'M ,使'M D BM =,证明''ADM ABM AM N AMN ∆∆∆∆≌,≌,测得1''452MAN M AN M AM ∠=∠=∠=︒【例9】 如图所示,在直角梯形ABCD 中,AD BC ∥,90ADC ∠=︒,l 是AD 的垂直平分线,交AD 于点M ,以腰AB 为边作正方形ABFE ,作EP l ⊥于点P ,求证22EP AD CD +=.lPM FE DC BA【解析】省略【答案】直接证明22EP AD CD +=不太可行,可转化成证明12EP AD CD +=,而12AD AM =,故进而考虑到将AM 、EP 集中到一条线段上,然后将CD 也平移过来.我们将视线集中在正方形ABFE 之中,通过ABG EHA ∆∆≌可以得证.过A 点作BC 的垂线,过P 作AG 的垂线,垂足分别为G 、H ,则有HGPN 为矩形,90BAG EAH AEH ∠=︒-∠=∠.90ABG BAG EAH ∠=∠︒-∠=∠.又因为AB AE =,所以ABG EHA ∆∆≌. 所以2222EP AD HR AG CD +===【例10】 如图,ABCD 是边长为1的正方形,EFGH 是内接于ABCD 的正方形,AE a AF b ==,,若23EFGH S =,则b a -=H GFEDCBA【解析】AEF DHE AF DE ∆∆=≌,,则22123a b a b +=⎧⎪⎨+=⎪⎩,所以得到b a -=【例11】 如图,若在平行四边形ABCD 各边上向平行四边形的外侧作正方形,求证:以四个正方形中心为顶点组成一个正方形.MFENSRQPDCBA【解析】省略【答案】证法一:先证明ABF EDA ∆∆≌(如图阴影的两个三角形所示).设平行四边形ABCD 的中心为O ,AB ,BC ,CD ,DA 边上的正方形的中心分别为P ,Q ,R ,S .由平行四边形及正方形的性质知 AB CD DE ==, BF BC AD ==.因为FBM ∠与NDE ∠的两双对边反向平行,所以FBM NDE ∠=∠,ABF ADE ∠=∠(在上式两边各加90︒), ABF EDA ∆∆≌,AF AE =.又由于ED AB ⊥及DEA BAF ∠=∠,所以AE AF ⊥(若等角的一组对边互相垂直,则另一组对边也互相垂直). 因为OR AE ∥且12OR AE =, 所以OQ AF ∥且12OQ AF =, OR OQ =且OR OQ ⊥.用同样方法可以证明: OP OQ OR OS ===,且OR与OS,OS与OP,OP与OQ也两两垂直,从而P O Q,,,及Q,O,S三点共线,进而PR 与QS互相垂直平分于O点,且PR QS=,故四边形PQRS是正方形.如果我们从证明QCR SDR∆∆≌下手,可得到证明二:因为QC SD=,RC RD=,DCB EDN∠=∠,QCR SDR∠=∠,所以QCR SDR∆∆≌,从而QR RS=.同证法一一样,因QRC SRD∠=∠及CR DR⊥,所以QR RS⊥.用同样的方法可以证明QR RS SP PQ===,结合QR RS⊥,四边形PQRS为正方形.正方形除了具有平行四边形的一般性质外,要特别注意利用直角条件【例12】如图,已知四边形ABDE、ACFG都是△ABC外侧的正方形,连接DF,若M、N分别为DF、BC的中点,求证:MN⊥BC且MN=12BC.【答案】分别过点D、A、F作直线BC的垂线,垂足分别为P、R、Q ∵四边形ABDE为正方形,∴AB=BD,∠ABD=90°∴∠DBP=∠BAR,∴Rt△DPB≌Rt△BAR∴DP=BR,PB=AR,同理CQ=AR,CR=FQ∴PB=CQ又N为BC的中点,∴BN=NC∴PB+BN=CQ+NC,即PN=QN在直角梯形DPQF中,M为DF的中点,N为PQ的中点AFD EG M∴MN ∥DP ,MN =12(DP +FQ)=12(BR +CR)=12BC又DP ⊥BC ,∴MN ⊥BC 即:MN ⊥BC 且MN =12BC【例13】 如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 3;(2)设正方形ABCD 的面积为S ,求证:S =(h 1+h 2)2+h 12;(3)若 32h 1+h 2=1,用1h 的代数式表示正方形ABCD 的面积为S .【答案】(1)设AD 与l 2交于点E ,BC 与l 3交于点F由已知BF ∥ED ,BE ∥FD∴四边形BEDF 是平行四边形,∴BE =DF 又AB =CD ,∴Rt △ABE ≌Rt △CDF ,∴h 1=h 3 (2)作BG ⊥l 4,DH ⊥l 4,垂足分别为G 、H 在Rt △BGC 和Rt △CHD 中∵∠BCG +∠DCH =180°-∠BCD =90°,∠CDH +∠DCH =90° ∴∠BCG =∠CDH又∠BGC =∠CHD =90°,BC =CD ∴Rt △BGC ≌Rt △CHD ,∴CG =DH =h 3又BG =h 2+h 3,∴BC 2=BG 2+CG 2=(h 2+h 3)2+h 32=(h 1+h 2)2+h 12∴S =BC 2=(h 1+h 2)2+h 12(3)∵32h 1+h 2=1,∴h 2=1-32h 1∴S =(h 1+1- 3 2 h 1 )2+h 12= 5 4h 12-h 1+1【例14】 在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,如图1.(1)将图1中的△BEF 绕点B 逆时针旋转90°,取DF 的中点G ,连接EG ,CG ,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想;(2)将图1中的△BEF 绕点B 逆时针旋转180°,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 有怎样的数量关系和位置关系?请写出你的猜想,并加以证明;l l l ll l l l(3)将图1中的△BEF 绕点B 逆时针旋转任意角度,取DF 的中点G ,连接EG ,CG ,如图3,则线段EG 和CG 又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.【答案】(1)EG =CG ,EG ⊥CG(2)EG =CG ,EG ⊥CG证明:如图3,延长FE 交DC 延长线于H ,连接GH ∵∠AEH =90°,∠EBC =90°,∠BCH =90° ∴四边形BEHC 是矩形,∴BE =CH ,∠EHC =90° 又∵BE =EF ,∴EF =CH∵∠EHC =90°,FG =DG ,∴HG =12DF =FG∵BC =EH ,BC =CD ,∴EH =CD ∵EF =CH ,∴FH =DH ,∴∠F =45° 又FG =DG ,∴∠CHG = 12∠EHC =45°∴∠F =∠CHG ,∴△EFG ≌△CHG ∴EG =CG ,∠EGF =∠CGH∵∠FHC =90°,FH =DH ,FG =DG ,∴HG ⊥DF ∴∠EGF +∠EGH =90°∴∠CGH +∠EGH =90°,即∠EGC =90° ∴EG ⊥CG (3)EG =C G ,EG ⊥CGC ABDEGF 图4CAB DEG F图3C ADGF 图2C ADE F图1CD图2H CD图3证明:如图4,延长CG至H,使GH=CG,连接HF、HE、EC∵GF=GD,∠HGF=∠CGD,GH=GC,∴△HFG≌△CDG∴HF=CD,∠GHF=∠GCD,∴HF∥CD∵正方形ABCD,∴HF=BC,HF⊥BC∵△BEF是等腰直角三角形,∴EF=BE,EF⊥BE∴∠HFE=∠CBE,∴△HFE≌△CBE∴EH=EC,∠FEH=∠BEC,∴∠HEC=∠BEF=90°∴△ECH为等腰直角三角形又∵GH=GC∴EG=CG,EG⊥CG【例15】如图,正方形ABCD的边长为2,以对角线BD为边作菱形BEFD,点C、E、F在同一直线上.(1)求∠EBC的度数;(2)求CE的长.【解析】(1)设O为正方形ABCD的中心,过E作E G⊥BD于G则CO⊥BD,∠DBC=45°∵菱形BEFD,点C、E、F在同一直线上∴CF∥BD,BE=EF=DF=BD∴E G=CO=12BD=12BE,∴∠DBE=30°∴∠EBC=15°(2)在BE上取点K,使BK=CK,设CE=x则∠KCB=∠KBC=15°,∴∠EKC=30°∵CF∥BD,∴∠BEC=∠DBE=30°∴BK=CK=CE=x,∴EK=3x,∴BE=(3+1)x过E作E H⊥BC于H,则CH=EH=22x,BH=2+22x在Rt△BEH中,BE2=BH2+EH2∴[(3+1)x]2=(2+22x)2+(22x)2解得x=6-2,即CE的长为6- 2 ACDEFBCD图4ACDEF BOKH【例16】如图,将边长为a的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、DC上),使点B落在AD边上的点G处,点C落在点H处,GH与DC交于点M,连接BG与EF交于点N.(1)求证:①BG=EF;②△DGM的周长为定值;(2)当四边形AEFD的面积最大时,求AG的长.【答案】(1)①证明:过F作FK⊥AB于K,由题意知BG⊥EF于N∴∠GBA=∠EFK又AB=KF,∠A=∠EKF=90°,∴△ABG≌△KFE∴BG=EF②设AG=x,在Rt△AEG中,AE2+AG2=GE2∴AE2+x2=(a-AE)2,得AE=a2-x2 2a∵∠MGE=90°,∴Rt△DGM∽Rt△AEG设△DGM和△AEG的周长分别为C△DGM、C△AEG则C△DGMC△AEG=DGAE,即C△DGMa+x=a-xa2-x22a∴C△DGM=2a故△DGM的周长为定值(2)解:设AG=x,在Rt△AEG中,GE2=AE2+AG2即(a-AE)2=AE2+x2,解得AE=a2-x2 2a在正方形ABCD中,KF=BC=AB,EKF=∠A=90°∴△KFE≌△ABG,∴EK=AG=x,AK=AE+EK=AE+AG=a2-x22a+xS梯形AEFD=12(AE+DF)·AD=12(AE+AK)·AD=12(a2-x22a+a2-x22a+x)·a=-12(x-12a)2+58a2(0<x<a)当x=12a,即AG的长为12a时,四边形AEFD的面积最大,为58a2.A BEFC C D MCGCHCNKA BEFC CD MCGCHCNK。

相关文档
最新文档