吸波材料ppt课件
吸波复合材料培训讲义PPT(共41页)
(3)纳米材料:材料组分特征尺寸在0.1-100nm,它具有极好的吸波特性,频 带宽、兼容性好、质量小和厚度薄,对电磁波的透射率及吸收率比微米级粉 体要大得多。
(4)磁纤维吸波涂层:吸波涂层材料中所使用的球状磁性吸收剂很难满足装 备对吸波涂层的苛刻要求。由铁、镍、钴及其合金制成的一种多层磁纤维吸 波涂层,其中纤维可通过多种吸波机制来损耗微波能量,因而可在较宽频带 内实现高吸收,且重量可减轻40-60%。其中,多晶铁纤维在微波低频段的吸 波性能尤为突出。
雷达隐身材料(也称吸波材料)能吸收雷达波,使反射波 减弱甚至不反射雷达波,从而达到隐身的目的。
吸波材料的早期应用
• 一战时,德国空军曾用透明材料制造过飞机,使地面人员难 以发现它们
• 1945年——雷达发明之后,美国研制出一种吸收雷达波的涂 料,代号为MX-40,据说使用效果很好。
• 1954年——U-2,设计时考虑了隐身,如在机身上涂满黑色 的可降低雷达波散射程度的“铁漆”涂料。
涂敷型吸波材料
将吸波涂料分散在有机高分子材料的黏结剂中,同时 加入一些其它附加物,采用涂刷或喷涂方法加工,经常温 固化形成涂层结构。该涂层适用于复杂曲面形体,且耐候 性及综合机械性能良好。涂敷型吸波材料工艺简单、使用 方便、容易调节。
(1)铁氧体吸波涂料:是把铁氧体分散在有机高分子材料的黏 结剂中,同时还加入一些其它附加物。铁氧体可分为尖晶石型、 石榴石型和磁铅石型。自然共振是铁氧体吸收电磁波的主要机 制。自然共振是指铁氧体在不加外恒磁场的情况下,由入射的 交变磁场和晶体的磁性各向异性等共同作用产生的共振。由于 铁氧体既是磁介质又是电介质,具有磁吸收和电吸收两种功能, 是性能极佳的吸波材料,与其它吸波材料相比,它还具有体积 小、吸波效果好、成本低的特点。但它也具有密度大、高温特 性差等缺点。
吸波材料 ppt课件
PPT课件
12
吸波材料有哪些?
根据成型工艺
涂敷型——吸收剂和粘合剂混合后涂敷于目标表面。铁氧 体吸收材料、金属微粉吸收材料、多晶铁纤维 吸收材料等。
结构型——将吸收剂分散在特种纤维增强的结构材料中所 形成的结构复合材料。承载+吸收电磁波 常用纤维:玻纤、碳纤、碳化硅纤维等。
根据研究时期
传统吸波材料:金属微粉、石墨、钛酸钡等。 新型吸波材料:纳米吸波材料、导电高聚物、多晶纤维、
性能,用氢氧化钾对碳纳米管进行活化处理后,吸 收频带展宽、吸收加强。
原因:活化碳纳米管具有丰富的孔结构,电磁波在 这些孔结构中反复地被反射、散射, 从而消耗电磁 波能量。
PPT课件
19
碳纳米管/聚合物基复合吸波材料
由于碳纳米管尺寸小、比表面积大,具有良好的 导电性,在与聚合物混合物制备成复合材料能够 形成导电网络,而且能够提高复合材料强度,是 一种综合性能优良的电损耗型复合吸波材料。
PPT课件
16
碳纳米管薄膜
研究表明,在Si 基底上定向生长的碳纳米管基本 没有吸波性能,而在Cu 基底上定向生长的管径 30nm、长度5μm、间距150nm 的碳纳米管薄膜 对红光和红外激光的吸收高达98%,对10GH z 的微波有50% 的吸收。
该材料密度小、吸收强, 对微波和红外激光均能吸 收, 主要应用于军事领域。
手性吸波材料等。
PPT课件
13
传统吸波材料
金属微粉:主要通过磁滞损耗、涡流损耗等吸收衰减电磁波, 主要包括金属铁粉、铁合金粉、羰基铁粉等。 抗氧化、抗酸碱能力差!介电常数大!而且密度大!
石墨:密度低,电阻是衰减电磁能的主要方式。 高温抗氧化性差!式
铁氧体:具有吸收率高、涂层薄和频带宽等优点。 密度大! 饱和磁化强度低!高温稳定性差!
吸波复合材料_图文
(2)超微磁性金属粉:磁性金属、合金粉末具有温度稳定性能 好,磁导率、介电常数大,电磁损耗大,有利于达到阻抗匹配 和展宽吸收频带等优点,是其成吸收材料的主要发展方向。而 超微磁性金属粉材料就是将超细磁性金属粉末与高分子黏结剂 复合而成,可通过多相超细磁性金属粉末的混合比例等调节电 磁参数,达到较为理想的吸波效果。金属微粉吸波材料主要有 两类:一是羰基金属微粉吸波材料;二是通过蒸发、还原、有 机醇盐等工艺得到的磁性金属微粉吸波材料。金属微粉吸波材 料微波磁导率较高、温度稳定性好,但抗氧化、耐酸碱能力差 ,远不如铁氧体;介电常数较大且频谱特性差,低频段吸收性 能较差;密度较大。
飞机上采用的一些吸波结构形式
(1)波纹夹层结构
波纹板可用吸波材料组成, 也可在波纹板上涂覆吸波涂料。波纹板 为两个斜面相交的结构.有利于多次吸波。
(2)角锥夹层结构
作为夹层的角锥是吸波材料,也可涂驻波涂料。角锥四个斜面相交。 角锥高度(吸收体厚度)不同,有效吸波范围不同。把碳粉或金属粉分 散于橡胶中压制成的角锥空心结构,其吸波范围随角锥高度变化。角 锥夹层的顶角一般在40。左右。
涂敷型吸波材料
将吸波涂料分散在有机高分子材料的黏结剂中,同时 加入一些其它附加物,采用涂刷或喷涂方法加工,经常温 固化形成涂层结构。该涂层适用于复杂曲面形体,且耐候 性及综合机械性能良好。涂敷型吸波材料工艺简单、使用 方便、容易调节。
(1)铁氧体吸波涂料:是把铁氧体分散在有机高分子材料的黏 结剂中,同时还加入一些其它附加物。铁氧体可分为尖晶石型 、石榴石型和磁铅石型。自然共振是铁氧体吸收电磁波的主要 机制。自然共振是指铁氧体在不加外恒磁场的情况下,由入射 的交变磁场和晶体的磁性各向异性等共同作用产生的共振。由 于铁氧体既是磁介质又是电介质,具有磁吸收和电吸收两种功 能,是性能极佳的吸波材料,与其它吸波材料相比,它还具有 体积小、吸波效果好、成本低的特点。但它也具有密度大、高 温特性差等缺点。
吸波材料的制备及其研究方法方案课件
VS
详细描述
气相沉积法是一种制备吸波材料薄膜的方 法。通过将反应气体在一定条件下进行化 学反应,如热分解、化学合成等,使气体 中的金属元素或非金属元素转化为固态薄 膜,形成具有特定结构和性能的吸波材料 薄膜。这种方法可以制备出高质量、高性 能的吸波材料薄膜。
其他制备方法
总结词
除了上述几种制备方法外,还有许多其他制 备吸波材料的方法,如物理气相沉积、电化 学沉积、模板法等。
吸波材料的制备及其研究方法方案
目录
• 吸波材料概述 • 吸波材料的制备方法 • 吸波性能研究方法 • 吸波材料研究进展 • 吸波材料制备及其研究展望
01 吸波材料概述
吸波材料的定义与分类
吸波材料的定义
吸波材料是指能够吸收、散射和干涉电磁波,将电磁能转化为热能或其形式的 能量的材料。
吸波材料的分类
复合吸波材料
利用不同材料的复合,实现宽频范围的电磁波吸收和转化。
周期性结构吸波材料
通过设计周期性结构,利用共振和干涉等效应,实现宽频范围的电 磁波吸收。
多功能吸波材料研究进展
温度敏感性吸波材料
利用温度敏感性材料,实现电磁波吸收与温度调控的 结合。
光响应性吸波材料
利用光响应性材料,实现电磁波吸收与光调控的结合 。
用于电磁辐射防护、电子设备散热、 微波暗室等领域,提高设备性能和安 全性。
吸波材料的发展趋势
多频谱兼容性
随着雷达和通信技术的发展,吸波材料需要具备更强的多频谱兼容性 ,以满足不同频段的吸收需求。
超薄轻量化
随着武器装备和电子设备的小型化,吸波材料需要具备更薄的厚度和 更轻的重量,以提高设备的机动性和作战能力。
详细描述
溶胶-凝胶法是一种制备吸波材料的常用方法。首先将金属盐溶液进行浓缩,加入适量的聚合剂如醇、醚等,使 溶液中的金属离子形成溶胶。然后通过干燥、热处理等手段使溶胶中的金属离子进一步聚合、缩聚,最终形成具 有特定结构和性能的吸波材料。
科普——什么是吸波材料
第八章隐身技术及隐身材料简介§8.1 雷达隐身技术及吸波材料§8.1.1 雷达隐身技术现代军事技术的迅猛发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。
因而,武器的隐身得到了广泛的重视,并迅速发展,形成一项专门技术——隐身技术(stealth technology)。
它作为一项高技术,与激光武器、巡航导弹被称为军事科学上最新的三大技术成就。
隐身技术是指在一定范围内降低目标的可探测信号特征,从而减小目标被敌方信号探测设备发现概率的综合性技术。
现代隐身技术按目标特征分类,可分为可见光隐身技术、雷达或微波隐身技术、红外隐身技术、激光隐身技术和声波隐身技术,其中雷达隐身占60%以上,因而雷达波隐身技术是当前隐身技术研究的重点[1]。
雷达隐身涂料的发展使得隐身目标的战场生存能力和武器系统的突防能力得到了极大的提高,并在近十年的局部战争中发挥了重大作用,影响了现代战争的模式和概念。
早在20世纪30年代,荷兰就首先将吸波材料用于飞机隐身[2]。
其后,德、美等国也将吸波材料用于飞机和舰艇。
到60年代,美国将吸波材料用于U-2、F-117等飞机上。
80年代中后期相继面世的美国隐形飞机无疑代表了吸波材料实际应用的巨大成就。
其中,最有代表意义的是F-117、B-2、F-22等隐形飞机。
F-117隐身战斗机成功并系统地运用了各种缩减雷达散射截面的措施,使其RCS值减小到0.025m2;B-2隐形轰炸机的RCS值为0.1m2;而人的RCS值为1m2[3]。
雷达隐身技术的核心是缩减目标的雷达截面积(RCS)。
减少武器RCS值的途径主要有三条:(1)外形隐身技术。
通过外形设计来消除或减弱散射源,特别是强散射源。
(2)阻抗加载技术。
通过加载阻抗的散射场和武器的总散射场互相干涉来减少RCS。
(3)材料隐身技术。
通过材料吸收或透过雷达波来减少RCS值。
纳米吸波材料 PPT课件
三、纳米吸波材料分类及应用
3、纳米氧化物吸波材料
纳米氧化物吸波材料主要有Fe,Mo,Ti,W, Ni,Sn等的氧化物和复合氧化物,如Fe2O3, Fe3O4,TiO2,LaFeO3,SnO2等纳米粉体。它们 不仅吸波性能良好,还兼有抑制红外辐射的功 能。
三、纳米吸波材料分类及应用
4、纳米复合吸波材料
四、纳米吸波材料优缺点
不同种类的纳米吸波材料,在物 理、化学方面各有优缺点。
四、纳米吸波材料优缺点
➢金属纳米吸波材料具有比表面 积大、颗粒的表面原子相对较 多的特点,但是,这种材料的 磁损耗不够大,磁导率随频率 的升高而降低比较缓慢,对频 率拓宽不利。化学稳定性、耐 腐蚀性也不够好。
四、纳米吸波材料优缺点
第六讲 纳米吸波材料
张晟颉
主要内容
一.纳米吸波材料 二.纳米吸波材料吸波机理 三.纳米吸波材料分类及应用 四.纳米吸波材料优缺点
一、纳米吸波材料
吸波材料是指能吸收投射到它 表面的电磁波能量,并通过材 料的介质损耗使电磁波能量转 化为热能或其它形式的能量。
一、纳米吸波材料
吸波材料一般由基体材料(或粘 接剂)与吸收介质(吸收剂)复合 而成。
二、纳米吸波材料的吸波机理
➢ 当两个原子趋近而形成分子时, 孤立原子的每个能级会分裂成 两个能级:成键能级Es和反键能 级Ea。这两个能级相对于原子 能级Eo的差值(Eo-Es)和(Ea- Eo) 取决于二原子间的距离。
二、纳米吸波材料的吸波机理
➢ 当3个、4个或N个由远趋近而形 成分子或原子集团时,每个非 简并的原子能级将相应的分裂 成3个、4个或N个能级。
➢而磁滞损耗的大小 与该磁滞回线所围 成的面积大小成正 比。
➢因此,磁滞回线的 面积越大,磁滞损 耗也越大。
《吸声材料》课件
交通工具中的吸声材料应用
总结词
交通工具中,吸声材料主要用于降低机 械噪音和外部噪音,提高乘坐舒适度。
VS
详细描述
在交通工具中,如汽车、火车和飞机等, 吸声材料被用于发动机舱、车厢内壁和底 部等部位,吸收和降低机械运转和外部环 境产生的噪音,提高乘坐舒适度。常见的 交通工具吸声材料包括隔音泡沫、隔音板 等。
详细描述
多孔性吸声材料的特点是具有大量的微小孔洞,这些孔洞能够吸收声波能量并 将其转化为热能,从而达到降低噪音的效果。常见的多孔性吸声材料包括矿棉 、玻璃棉、泡沫塑料等。
共振吸声材料
总结词
共振吸声材料是一种利用共振原理吸收特定频率声波的材料,具有较窄的吸声频 带。
详细描述
共振吸声材料的结构特点是具有一个或多个共振腔体,这些腔体能够吸收特定频 率的声波,从而达到消音效果。常见的共振吸声材料包括各种金属板、水泥板等 。
吸声材料在建筑行业的应用主要体现在建筑隔音方面,通 过采用吸声材料可以有效降低建筑物的噪音传播,提高居 住和工作环境的质量。同时,吸声材料还可以应用于室内 音质方面,通过调节室内声学环境,提高室内声音的质量 和效果。未来,随着人们对居住和工作环境的品质要求不 断提高,吸声材料在建筑行业的应用前景也将更加广阔。
柔性吸声材料
总结词
柔性吸声材料是一种通过粘弹性吸收 声波的材料,具有较好的隔音性能。
详细描述
柔性吸声材料的特点是具有较好的粘 弹性和隔音性能,能够吸收和阻隔各 种频率的声波。常见的柔性吸声材料 包括橡胶、软木、毛毡等。
04 吸声材料的发展趋势与未来展望
CHAPTER
新型吸声材料的研发
总结词
随着科技的不断发展,新型吸声材料的研发也在不断推进, 这些新材料在性能和效果上都有着显著的提升。
吸波材料
智能隐身材料
智能隐身材料:能从自身的表层或内部获取关于 环境条件及其变化信息,进行判断、处理和做出 反应,以改变自身的一种或多种参数,使其很好 的与外界协调。
其实是一种自适应的材料系统。
雷达波智能隐身材料
英国谢菲尔德大学研制的自适应雷达波吸收材料,能够通 过调节电压,使得吸收体中每层导电聚合物的电阻可调节,实 现了反射率、吸收峰不同频率下可调的目的,使得在很宽的频带 内具有很强的隐身能力。
吸波复合材料
小组成员:复材1001 26-33
吸波材料的定义
所谓吸波材料是指材料可吸收,衰减空间 入射的电磁波能量,并减少或消除反射的 电磁波的一类功能材料。与所有复合材料 一样,吸波复合材料同样也是由功能体及 基体组成的。工程应用上除要求在较宽带 宽内对电磁波具有高的吸收率外,尚要求 材料具有重量轻、耐温、耐湿、抗腐蚀等 性能。
( 2) 探索宽频范围内电磁参数频散效应不敏感的新型损耗型 吸波介质, 可在宽频率范围内同时满足阻抗匹配和强吸收, 将 是未来吸波材料研究的热点和难点。 ( 3) 研发既能隐身又能承载的多功能结构型吸波材料, 以及 能自动对外界作出最佳响应功能的智能型吸波材料, 也是未 来隐身材料的主要发展方向之一。
军事隐身领域
F-117A(夜鹰)战斗机在海湾战争中取得的巨大成 绩促使吸波材料快速的发展。
F-117A“夜鹰”隐形战斗机
外形像一个堆积起来的复杂多面体,大部分表面向后倾斜,具有 大后掠机翼和V形垂尾。这种外形能使反射雷达波改变方向,产生散射, 敌方雷达很难收到反射信号。F-117的机身、机翼和垂尾大量采用了 玻璃纤维、碳纤维等雷达隐身材料。
目前国内外在磁性吸波材料的研制方面还存在频 带窄、密度大、性能低等缺点, 应用范围受到一 定限制。今后的主要研究方向将会是:
吸波材料
对人类身体健康损害也产生。
吸波原理
雷达的工作原理
雷达通过发射无线电波,也就是电磁波,电磁波向外辐射,当遇到某一物 体,电磁波被反射回来,雷达接收信号,通过信号处理,判断反射电磁波 物体的形状,速度等信息。
吸波材料的吸波原理
1.阻抗匹配 2.电磁消耗
阻抗匹配
吸波材料反射系数记为R
R = (Z0– Z1) / (Z0+Z1) Zi = μr / εr (i = 0,1)
发展展望
发展能强吸收的吸波材料。 发展能兼容米波、厘米波、毫米波及红外光等多波段的宽频吸波材料; 发展质量轻、厚度薄不影响飞行器机动性能的吸波材料; 发展具有耐高温、耐腐蚀等适应复杂环境的能力,并且具有较高的可维
护性和较长使用寿命的吸波材料。
叶文-冲锋骑士 406647191
隐形飞机的隐形奥秘
吸波材料
目录
1 概况 吸波原理 分类 工程应用
2 3
4 5
发展展望
概况
吸波材料指能吸收、衰减入射的电磁波,并将其电磁能转换成
热能耗散掉或使电磁波因干涉而消失的一类材料。
吸波材料最早用于军事目的,称为“隐身材料”。然而电磁波 的应用极为广泛,它在改善人类生活的同时,其伴生的电磁辐射
电介质型吸波材料的机理是依靠介质的电子极化、离子极化、分子极化等 驰豫、衰减电磁波。
钛酸钡是一种特殊的电介质,其极化强度与电场之间存在电滞效应,被称
为铁电体,铁电体可以利用的吸收机制主要是漏电损耗和驰豫损耗。钛酸 钡还具有很强的压电效应,即当晶体发生机械形变时会产生极化,而在相对 的界面上产生异号的极化电荷,也可以利用来削弱介质内电场。 碳化硅/钛酸钡/有机树脂复合涂层
夜 鹰 隐 形 战 机
吸波材料专题讲座PPT
铁氧体材料的制备方法
2、液相法 液相法是生产各种氧化物微粒的最主要方法。其基本 原理是:选择一种或多种合适的可溶性金属盐类,按所制 备的材料成分配制成溶液,再选择一种合适的沉淀剂或用 蒸发、升华、水解等方法,使金属离子均匀沉淀或结晶出 来,最后将沉淀或结晶物脱水得到超微粉末。 1)水热法 2)低温燃烧合成法 3)溶胶-凝胶法 4)超临界流体干燥法 5)微乳液法 6)喷雾干燥法和喷雾热分解法
铁氧体材料的吸波机制 2、畴壁共振损耗
当磁性材料受到交变磁场的作用时,畴壁将 因受到力的作用而在平衡位置附近振动。当外加 交变磁场的频率等于畴壁振动的固有频率时,发 生畴壁共振。由于畴壁振动与周围环境相互作用 会不断损失能量,因此,在内有电磁波传输的情 况下,畴壁共振时,材料将不断吸收电磁波能量 以维持畴壁的振动。
1 M
1 E
E M 分别称为介质的极化率和磁化率
吸波原理
• 电场和磁场的偶合分量的比值,表示为
r 0 Z H r 0 这个值称为波阻抗。 • 在真空条件下 r r 1
E
( 2.
波阻抗 Z Z 0 0 / 0 120 Z 0 值为自由空间的波阻抗
吸波材料的研究意义
• 电磁辐射分布在空中,潜伏于地下,能造成飞机、 轮船、车辆和电器、电子产品运行失常、失灵, 甚至被损坏,还会损害人类身体健康,导致人体 多种疾病的出现,并且不受时间、空间和国界的 约束,随时都可能向人类发起进攻。 • 科学家预言:电磁污染将成为2l世纪生态环境最 主要的物理污染,因此,治理电磁污染,寻找一 种能抵挡并削弱电磁波辐射的材料——吸波材料, 已成为材料科学的一大课题。
吸波性能检测
吸波材料的反射率:是指相对于某一空间参考 点处平面波反射功率密度与入射功率密度之比, 通常用分贝表示,这是最关键的指标涉及到的相 关参数为:频率(频带)、可承受的功率密度、入射 角、入射面、等效反射系数、散射、极化和为拓 宽材料的设计而需要知道材料的介质参数。 吸波材料反射率的测量是最关键的测试,不 同的波段采用不同的方法。
最新吸波材料PPT课件
效拓展材料的吸波带宽,同时可以提高材料的吸波效率;
2电损耗介质损耗粒子的添加,能够提高多层电路屏的吸
波带宽和吸波效率;3磁损耗介质层的组合,能够提高多
层电路屏的有效损耗带宽和损耗效果;4磁损耗介质层的
组合可以大幅提高该结构的吸波效率,并能够拓展高损耗
的带宽。
6 实验研究现状
6 实验研究现状
结果证明:四种方法都能够提高电路模拟吸波材料的
有报导,对此也应该有更深的研究。
谢谢大家
验表明当使用不同电阻加载(即改变PIN管的偏置电流) 时,
该结构的吸波频率随之改变,从而实现吸波频率可控的目
的。
6 实验研究现状
姚承照等人通过多层电路屏、掺杂电损耗介质、磁
损耗介质层组合、磁电损耗组合的方法,对电路模拟结构
吸波材料在2~1 8GHz区间电磁损耗带宽的拓展进行了初
步探索。下面四个图分别表明:1多层电路屏不仅能够有
对于FSS的优化设计是很一个很重要的环 节,直接关系到所研究的FSS能否符合工程应 用标准。对于一个各参数没有明确数学关系的 FSS结构来说,一个合理、有效的优化设计方 案能节省大量的时间和人力物力。FSS优化设 计中应用最多的就是遗传算法(Genetic Algorithm-GA),是基于生物遗传学的全局优 化方法 。
6 实验研究现状
然后他们通过合理的结构设计,在其它条件相同的情
况下含电路模拟结构电阻渐变吸波复合材料的吸波性能在 8 ~18GHz范围内有3 ~5dB的提高;含电路模拟结构 “陷阱” 式吸波复合材料在厚度≤4mm条件下,实现了吸 波性能在8~18GHz频率范围内吸收率≥12dB。在提高吸 波复合材料吸波性能的同时,电路模拟结构的引入使复合
6 实验研究现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
吸波材料有哪些?
根据成型工艺
涂敷型——吸收剂和粘合剂混合后涂敷于目标表面。铁氧 体吸收材料、金属微粉吸收材料、多晶铁纤维 吸收材料等。
结构型——将吸收剂分散在特种纤维增强的结构材料中所 形成的结构复合材料。承载+吸收电磁波 常用纤维:玻纤、碳纤、碳化硅纤维等。
6
介电损耗
电极化:在外电场的作用下,介质的质点(原子、分子、离子) 正负电荷重心分离,使其转变为偶极子的过程。
电子极化——陶瓷 离子极化——离子结构的物质 取向计划——有机物质 界面极化——结构不均匀的材料
电介质分子的极化需要一定的时间,而在交变电场的作用下, 当这种极化落后于外电场的频率时,便产生了极化的滞后,从 而产生介电损耗。
7
磁损耗
磁性材料在磁化过程和反磁化过程中有一部分能量不可逆地转 变为热能所损耗的能量称为磁损耗。
磁滞 涡流 剩余 损耗 损耗 损耗
8
磁损耗
磁滞损耗:磁化过程中克服矫顽力所消耗的能量。
磁
化
强 度
矫顽力:如果要使材料的磁
化强度回到零,就要加一个
反向的磁场,其磁场强度Hc 就成为矫顽力。
磁化场
9
磁损耗
20
碳纳米管/磁性物质复合吸波材料
碳纳米管是具有中空结构的一维材料,可以利用其毛细现 象将一些元素或物质填充到碳纳米管的内部,制备成具有 特殊性能的一维材料。
将Fe、Co、Ni等铁磁性金属或是铁氧体等磁体包覆或填 充到碳纳米管的外部或内部形成碳纳米管-磁性链复合物。
导电性 电阻损耗 介电损耗
磁性 磁损耗
文本
薄
、
轻
、
宽
、
强 21
发展趋势
兼容化
宽频带吸波
复合化
多材料复合
智能化
智能型材料
22
23
当Г=0,即无反射时,则材料阻抗匹配最好。
11
吸波性能的评价
主要参数:
电阻率(ρ) 复介电常数(ε):ε=ε'-ε"
ε' — 材料在电场作用下极化程度的变量; ε" — 在外电场作用时,材料电偶矩产生移动引起的损耗; 复磁导率(μ):μ=μ'-μ" μ' — 材料在磁场作用下磁化程度的变量; μ" — 在外加磁场的作用下,材料磁偶矩产生移动引起的损
吸波材料
1
目录
1
概况
2
吸波材料的吸波原理
3
吸波材料的分类
4
发展趋势
2
隐形飞机
背景
防辐射手机壳
防辐射键盘
3
什么是吸波材料?
吸波材料是指可吸收、衰减空间入射的电磁波 能量,并减少或消除反射的电磁波的一类功能 材料。一般由基体材料和损耗介质复合而成。
研究目标:
“薄、轻、宽、强” 环境稳定性好
4
电磁波吸收原理
18
碳纳米管薄膜
碳纳米管的活化 对碳纳米管进行活化处理可以提高碳纳米管的吸波
性能,用氢氧化钾对碳纳米管进行活化处理后,吸 收频带展宽、吸收加强。
原因:活化碳纳米管具有丰富的孔结构,电磁波在 这些孔结构中反复地被反射、散射, 从而消耗电磁 波能量。
19
碳纳米管/聚合物基复合吸波材料
由于碳纳米管尺寸小、比表面积大,具有良好的 导电性,在与聚合物混合物制备成复合材料能够 形成导电网络,而且能够提高复合材料强度,是 一种综合性能优良的电损耗型复合吸波材料。
涡流损耗:同时兼具电阻损耗和磁损耗。
剩余损耗:除了涡流和磁滞损耗以外的其他所有损耗。 * 低频和弱磁场中,剩余损耗主要是磁后效损耗,且与频 率无关。 * 高频下,剩余损耗主要包括尺寸共振、畴壁共振、自然 共振等引起的损耗。
10
阻抗匹配
自由空间
材料 自由空间
反射
反射系数
Zin— 材料归一化阻抗; εr— 材料复介电常数,εr= ε'- iε"; μr— 材料复磁导率,μr= μ' – iμ"; d — 吸收层厚度; c — 光速; f — 电磁波在自由空间的频率。
根据研究时期
传统吸波材料:金属微粉、石墨、钛酸钡等。 新型吸波材料:纳米吸波材料、导电高聚物、多晶纤维、
手性吸波材料磁滞损耗、涡流损耗等吸收衰减电磁波, 主要包括金属铁粉、铁合金粉、羰基铁粉等。 抗氧化、抗酸碱能力差!介电常数大!而且密度大!
石墨:密度低,电阻是衰减电磁能的主要方式。 高温抗氧化性差!式
目前研究重点:碳纳米管薄膜、 碳纳米管/聚合物基复合吸波材料、 碳纳米管/磁性物质复合吸波材料等。
16
碳纳米管薄膜
研究表明,在Si 基底上定向生长的碳纳米管基本 没有吸波性能,而在Cu 基底上定向生长的管径 30nm、长度5μm、间距150nm 的碳纳米管薄膜 对红光和红外激光的吸收高达98%,对10GH z 的微波有50% 的吸收。
该材料密度小、吸收强, 对微波和红外激光均能吸 收, 主要应用于军事领域。
17
碳纳米管薄膜
碳纳米管的纯化 化学气相沉积法法制备的碳纳米管纯度不高, 存在
较多的缺陷或杂质, 会影响碳纳米管的性能, 因此 通常要将制得的碳纳米管进行纯化处理。
纯化后:介电损耗正切值tanδE
磁损耗正切值tanδM
铁氧体:具有吸收率高、涂层薄和频带宽等优点。 密度大! 饱和磁化强度低!高温稳定性差!
14
新型吸波材料——纳米材料
粉体体积小
比表面积大
颗粒表面原子比例高
量子尺寸效应
多重散射
悬挂的化学键增多
具有良好的吸波性能
界面极化
15
碳纳米管吸波材料
本征吸收性差 导电性很好,属于电损耗型吸波材料, 但磁导率小,磁损耗很小,限制了在微波吸收性能上的提高。
(1)电磁损耗 电阻损耗 介电损耗 磁损耗
(2)阻抗匹配
5
电阻损耗
电磁波在材料里感应产生电流,电流在材料内部传输受阻而 转化为内能。
电导率越大
载流子引起的宏观电流越大(电场引起的
电流和磁场引起的涡流)
有利于电磁能转变为热能
涡流:块状导体在变化的磁场中 或在磁场中运动时产生的在导体 内自成闭合回路的感应电流叫涡 电流,简称涡流。