二元一次方程组知识结构图-教师版
方程与不等式知识结构图
方程(组)与不等式(组) 知识结构表方程: 含有未知数的等式叫做方程.方程的解:能使方程两边的值相等的未知数的值,叫做方程的解.解方程: 求方程的解的过程叫做解方程.定义: 只含有一个未知数,且未知数的次数是1的整式方程叫做一元一次方程.(1) 一元一次方程 解法: 去分母、去括号、移项、合并同类项、系数化为1.定义: 含有两个未知数,且未知项的次数都是1的整式方程,叫做二元一次方程.由这样的几个方(2) 二元一次方程(组) 程所组成的方程组叫做二元一次方程组.方程组里各个方程的公共解叫做这个方程组的解.分类 解法: 基本思想是消元,基本方法是代入消元法、加减消元法.方程(组) 定义:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.它的一般形式为02=++c bx ax (0≠a ).(3)一元二次方程 解法; 直接开平方法、配方法、因式分解法、求根公式法.根的判别式(ac b 42-=∆):当0>∆时,一元二次方程有两个不相等的实数根;当0=∆时,一元二次方程有两个相等的实数根;当0<∆时,一元二次方程没有实数根.以上结论,反之亦成立.方 定义:分母中含有未知数的方程叫做分式方程.程 (4)分式方程 解法:其基本思想是将分式方程转化为整式方程,其方法是运用等式性质在方程两边同乘以最简公分母.解与 分式方程必须要验根.有时也可采用换元法.不 应用: 一般步骤:①审清题意,找出等量关系;②设未知数;③列出方程(组);④解方程(组);⑤检验方程(组)的根;⑥作答. 等式 不等式:用不等号表示不等关系的式子叫做不等式.不等式的解: 使不等式成立的未知数的值叫做不等式的解.有关概念 不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集.解不等式:求不等式的解集的过程,叫做解不等式.性质1: 如果a >b ,那么a +c >b +c ,a -c >b -c .不等式的性质 性质2: 如果a >b ,并且c >0,那么ac >bc .性质3: 如果a >b ,并且c <0,那么ac <bc .: 只含有一个未知数,且未知数的最高次数是1的不等式.不等式(组) 一元一次不等式 解法: 基本步骤是:去分母、去括号、移项、合并同类项、系数化为1.特别要注意当系数化为1时, 不等式两边同乘以(或除以)同一个负数,不等号的方向必须改变.分类 定义: 几个未知数相同的一元一次不等式所组成的不等式组叫做一元一次不等式组.一元一次不等式组 解法: 求出不等式组中每一个不等式的解集,再求出解集的公共部分.解集有如下规律: 同大取大;同小取小;大小小大取中间;大大小小题无解.应用: 解不等式(组)在实际问题中的应用,关键是使学生能从实际问题中抽象出数量关系,列出不等式(组),建立不等式模型,通过转化为纯数学问题来解决实际应用问题.在列不等式时还要密切关注题中的不等关系,如“至少”,“至多”,“不大于”,“不小于”等等.。
(word完整版)二元一次方程组的概念和解法-教师版
(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。
含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。
判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。
2。
二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。
二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。
一般情况下,一个二元一次方程有无数个解。
【例1】 下列各式是二元一次方程的是( )A 。
30x y z -+=B 。
30xy y x -+=C 。
12023x y -= D 。
210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。
2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。
【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。
【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。
人教版-数学-七年级-下册-第八章-二元一次方程组-知识点
第八章二元一次方程组二、基本定义:1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
三、二元一次方程的解法:1、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”2、加减消元法解二元一次方程组(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
(完整版)二元一次方程组优秀课件PPT
距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。
初中数学《二元一次方程组》单元教学设计以及思维导图
二元一次方程组单元主题设计组及平面解析几何等知识的基础.也可以说本单元的知识是整个初中数学知识体系中数与式部分的必备基础知识.主题单元规划思维导图主题单元学习目标知识与技能:1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型.2.了解二元一次方程组及其相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系.3.了解解二元一次方程组的基本目标:使方程组逐步转化为x=a,专题问题设计问题1:什么是二元一次方程?观察方程组和一元一次方程2x+(22-x)=40有什么关系?问题2:怎样解方程组这两个方程中x,y的系数有什么样的关系?能不能发现新的消元方法?问题3:李明和妈妈买了18元的苹果和梨共5千克,1千克苹果售价4元,1千克梨售价3元,李明和妈妈买苹果和梨各多少千克?问题4:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比2:5.某厂每天生产这种消毒液22.5吨.这些消毒液应该分装大、小瓶两种产品各多少瓶?问题5:观察方程组中的两个方程:这两个方程中y的系数有什么样的关系?能不能发现新的消元方法?问题6:2台大收割机和5台小收割机工作2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?问题7:怎样解下面的二元一次方程组呢?所需教学环境和教学资源活动3:归纳总结代入消元法的概念【活动步骤】(1)讨论如何把二元转化为一元(2)伙伴共同探究什么是消元(3)师生总结定义第二课时:消元—解二元一次方程组活动1:解方程组,【活动步骤】(1)分组解方程组,看哪组又对又快(2)讨论这个方程组中未知数的系数有什么特点?(3)探究根据这一特点可以采用什么办法活动2:联系上面的解法,想一想应怎样解方程组【活动步骤】(1)分组探究解法,一部分用代入法,一部分用上一题的方法。
人教版数学七下第八章《二元一次方程组》word知识点整理
第八章二元一次方程组二、基本定义:1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
三、二元一次方程的解法:1、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”2、加减消元法解二元一次方程组(1) 两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
2020春人教版数学七下第八章二元一次方程组word知识点整理
检验二、基本定义:1、 二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样 的方程叫做二元一次方程。
2、 二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组 成了一个二元一次方程组。
3、 二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值, 叫做二元一次方程的解,二元一次方程有无数个解。
4、 二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元 —次方程组的解。
三、二元一次方程的解法:一・知识结构图实际问题 第八章二元一次方程组 解代入法,, 数学问题 实际问题的答案 < --------------------- 数学问题的解• — ■ — • ■ ■ .1 / 厶 J ♦组1.代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2 )消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3 )代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另_个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y )用含另一个未知数(例如x )的代数式表示出来,即写成y=ax+b的形式,即"变"2、将y=ax+b代入到另一个方程中打肖去y ,得到一个关于x的一^―次方程, 即"代:3、解出这个次方程,求出x的值,即"解"。
4、把求得的x值代入y=ax+b中求出y的值,即"回代"5、把x、y的值用{联立起来即"联"2、加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
初中数学知识结构图
初中数学知识结构图(总11页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
第一章有理数知识框架
第二章整式的加减知识框架
第三章一元一次方程知识框架
第四章图形的认识初步知识框架
第五章相交线与平行线知识框架
第六章平面直角坐标系知识框架
第七章三角形知识框架
第八章二元一次方程组知识结构图
第九章不等式与不等式组知识框架
第十章数据的收集、整理与描述知识框架
第十一章全等三角形知识框架
第十二章轴对称知识框架
第十三章实数知识框架:
有理数
实数
无理数
全面调查
抽样调查
收
集
数
据
描
述
数
据
整
理
数
据
分
析
数
据
得
出
结
论
第十四章 一次函数知识框架
第十五章 整式的乘除与分解因式知识框架
第十六章 分式知识框架
第十七章 反比例函数知识框架
整式乘法
整式除法
因式分解
乘法法则
第十八章勾股定理知识框架
第十九章四边形知识框架
第二十章数据的分析知识框架
第二十一章二次根式知识框架
第二十二章一元二次方程知识框架
第二十三章旋转知识框架
第二十四章圆知识框架
第二十五章概率
知识框架
第二十六章二次函数知识框架
第二十七章相似知识框架
第二十八章锐角三角函数知识框架
第二十九章投影与视图知识框架。
二元一次方程组思维导图(超全)
二元一次方程组思维导图(超全).doc
二元一次方程组是由两个未知数及它们的系数和常数项所构成的一种方程组。
它的一般形式为:
a1x + b1y = c1
a2x + b2y = c2
其中,a1、b1、c1、a2、b2、c2均为已知系数或常数,x、y 为未知数,且a1和a2不同时为0。
解决这样的方程组的方法有许多,下面是两种常用的方法:
1. 代入法
首先,我们可以对其中的一条方程进行变形,将其中的一个未知数表示为另一个未知数的函数。
如对第一个方程进行变形:
a1x + b1y = c1
y = (c1-a1x)/b1
然后,我们将这个式子代入第二个方程中:
a2x + b2((c1-a1x)/b1) = c2
根据此式解出x的值,再代回原式计算出y的值,即可得到方程组的解。
2. 消元法
将两个方程相减或相加,使一个未知数的系数相互抵消,从而得到一个只含有另一个未知数的方程式。
然后再代入原方程组中求解另一个未知数。
如将第一个方程乘以b2,第二个方程乘以b1,然后相减:
a1b2x + b1b2y = c1b2
a2b1x + b1b2y = c2b1
(a1b2-a2b1)x = c1b2-c2b1
根据此式解出x的值,再代回其中一个方程中计算出y的值,即可得到方程组的解。
以上是二元一次方程组的基本求解方法,当然还有其他方法,如高斯消元法、矩阵法等。
不同的方法适用于不同的情况,需要根据具体问题进行选择。